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Abstract

In this paper we introduce the concept of rational probability measures. These are probability

measures that map every Borel event to a rational number. We show that a rational probability

measure has a finite support. As a consequence we prove a new version of Kolmogorov extension

theorem. In the second part of the paper we define N -rational probability measures as the set

of probability measures that map every Borel event to a rational number with denominator in

N ⊆ N. We show that for every finite N ⊆ N, the set of N -rational probability measures is

closed in the space of Borel probability measures. The latter is not true when N is infinite.

1. Introduction

A rational probability measure maps every Borel set to a rational number. Rational probability

measures are used to model beliefs held by agents who exhibit a specific form of bounded rationality

in their reasoning process. Namely, we consider agents whose language does not contain sentences

of the form tomorrow it will rain with probability
√

2/2. This restriction may be due to their limited

understanding of real numbers, as opposed to rationals, and therefore they cannot consciously hold

such beliefs.

Or main result (Theorem 3.1) shows that the support of every rational probability measure is

necessarily finite. This follows from the fact hat every series of rational numbers converging to

a rational limit has infinitely many subseries converging to an irrational number (Badea, 1987).
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the Marie Curie Fellowship (PIEF-GA-2009-237614) is gratefully acknowledged.
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A direct consequence of the previous seemingly surprising result is a new version of Kolmogorov

extension theorem (Proposition 4.1), stating that a sequence of rational probability measures over

separable metrizable spaces is uniquely extended to a unique — nt necessarily rational — probability

measure over the product space.

In the second part of the paper, we restrict our attention to measures that map every Borel set

to a rational number with denominator belonging to a subset of the natural numbers, N ⊆ N. We

call these measures N -rational, and we show that if N is finite then the set of N -rational probability

measures is closed in the space of Borel probability measures (Proposition 5.1). The latter is not true

when N is infinite. The space of N -rational probability measures captures probabilistic beliefs of

agents who exhibit an additional form of bounded rationality, in that their language can only express

certain rational numbers, e.g., we have in mind agents whose probabilistic beliefs are outputs of a

computer that can only express decimals with at most n digits. A straightforward consequence of

the previous result is that for any finite N ⊆ N, a metrizable space is separable (Polish) if and only

if the space of N -rational probability measures is separable and metrizable (Poilsih).

2. Preliminaries

In this section we present some definitions and standard results. For more details, we refer to

Aliprantis and Border (1994), or Kechris (1995).

A topological space (X, T ) is metrizable whenever there is a metric d : X × X → R such that

(X, d) is a metric space. A topological space is called separable if it contains a countable dense subset.

Recall that a metrizable space is separable if and only if it is second countable. Any subspace of a

separable metrizable space is separable and metrizable. The product of countably many separable

metrizable spaces is separable and metrizable. A metrizable space is complete whenever every Cauchy

sequence converges in X. A topological space is called Polish whenever it is separable and completely

metrizable.

Let X be a separable metrizable space, together with the Borel σ-algebra, B. As usual, ∆(X)

denotes the space of probability measures on (X,B), endowed with the topology of weak convergence.

Recall that the topology of weak convergence, which is usually denoted by w∗, is the coarsest topology

that makes the mapping µ 7→
∫
fdµ continuous, for every bounded and continuous real-valued

function, f . The space ∆(X) is separable and metrizable (Polish) if and only if X is separable and

metrizable (Polish). For further properties of w∗, we refer to Aliprantis and Border (1994, Ch. 15).

For some µ ∈ ∆(X) let Γ(µ) denote its support, i.e., the set of all points X ∈ X such that every

T ∈ T with x ∈ T has positive measure: Γ(µ) = {x ∈ X : x ∈ T ∈ T ⇒ µ(T ) > 0}. The support
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is the smallest closed subset of X with measure equal to 1. If X is separable and metrizable, the

support is unique (Parthasarathy, 1967, Thm. 2.1). We say that a measure µ ∈ ∆(X) is tight

whenever µ(B) = sup{µ(K) | K ⊆ B, K ∈ B and K compact} for all B ∈ B.

3. Properties of rational probability measures

Unless stated otherwise, we assume that X separable and metrizable.

Definition 3.1. We define the set of rational probability measures by

∆Q(X) :=
{
µ ∈ ∆(X)

∣∣∣ µ(B) ∈ Q, ∀B ∈ B
}
.

Theorem 3.1. Every µ ∈ ∆Q(X) has a finite support.

Proof. Consider an arbitrary µ ∈ ∆Q(X), and consider the set of singletons with positive measure,

Γ := {x ∈ X : µ({x}) > 0}. (3.1)

First, we show that Γ is non-empty. Suppose that µ is a non-atomic measure. Then, it follows

from Fremlin (2003, p. 46) that for every ξ ∈ (0, 1) there is some B ∈ B such that µ(B) = ξ, which

contradicts µ ∈ ∆Q(X) if we consider some ξ ∈ R \ Q. Hence, there is at least one atom A ∈ B.

Now, it follows from Aliprantis and Border (1994, Lem. 12.18) that A contains a singleton of positive

measure, implying that Γ is non-empty.

Second, we show that Γ is countable. Let {Γn ; n ≥ 1} be a countable partition of Γ, with

Γn :=
{
x ∈ Γ :

1

n+ 1
< µ({x}) ≤ 1

n

}
.

If Γ is uncountable, there is some n ≥ 1 such that Γn is uncountable, implying that there is a

countably infinite {x1, x2, ...} ⊆ Γn. Finally, observe that

µ(X) ≥ µ(Γn)

≥
∞∑
k=1

µ({xk})

>
∞∑
k=1

1

n+ 1

= ∞,

which is a contradiction.

Third, we show that µ(Γ) = 1. Assume otherwise, implying that µ(X \ Γ) > 0. Since Γ is

countable, it is Borel, implying that X \Γ is also Borel. Hence, it follows from Aliprantis and Border
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(1994, Lem. 12.18) that there is x ∈ X \ Γ with µ({x}) > 0, implying, by Eq. (3.1), that x ∈ Γ,

which is a contradiction.

Now, suppose that Γ is infinite, and construct a sequence of rational numbers {µ({xk})}k>0 where

Γ = {x1, x2, ...}. It follows from µ(Γ) = 1 that

∞∑
k=1

µ({xk}) = 1.

Then, it follows from Badea (1987, Prop., p. 225) that there is a subsequence {x′k}k>0 of {xk}k>0

such that

µ
( ∞⋃
k=1

{x′k}
)

=
∞∑
k=1

µ
(
{x′k}

)
is an irrational number, thus contradicting the hypothesis that µ ∈ ∆Q(X).

Therefore, Γ is necessarily finite. Moreover, it is closed, as the finite union of singletons, implying

that Γ(µ) = Γ, which completes the proof.

Remark 3.1. The previous quite surprising result rules out probability measures with countably

infinite support, even if the probability of each atom is a rational number, as illustrated by the

following example. /

Example 3.1. Let X = {x1, x2, ...} and suppose that µ ∈ ∆(X) is such that

µ
(
{xk}

)
= 2−k

for every k > 0. It is straightforward verifying that

∞∑
k=1

µ
(
{xk}

)
= 1,

thus confirming that µ is a probability measure.

Consider the Fibonacci sequence, {αk}k≥0, and define the increasing sequence {yk}k>0 by

yk := µ
(
{xα1 , ..., xαk

}
)

=
k∑

n=1

µ
(
{xαn}

)
=

k∑
n=1

2−αn (3.2)

=

∑k
n=1 2αk−αn

2αk

and observe that each yk is a rational number, with nominator

pk =
k∑

n=1

2αk−αn (3.3)

4



and denominator

qk = 2αk

for each k > 0. Recall from Brun’s criterion (Brun, 1910) that limk→∞ yk is an irrational number, if

the following three conditions hold for all k > 0:

(a) pk < pk+1,

(b) yk < yk+1,

(c) (pk+2 − pk+1)/(qk+2 − qk+1) < (pk+1 − pk)/(qk+1 − qk).

The first two conditions trivially follow from Equations (3.3) and (3.2) respectively. Now, observe

that

pk+1 − pk
qk+1 − qk

=

∑k+1
n=1 2αk+1−αn −

∑k
n=1 2αk−αn

2αk+1 − 2αk

=
1 +

(
2αk+1 − 2αk

)∑k
n=1 2−αn

2αk+1 − 2αk

=
1

2αk+1 − 2αk
+

k∑
n=1

2−αn ,

and consider the difference

pk+1 − pk
qk+1 − qk

− pk+2 − pk+1

qk+2 − qk+1

=
1

2αk+1 − 2αk
+

k∑
n=1

2−αn − 1

2αk+2 − 2αk+1
−

k+1∑
n=1

2−αn

=
1

2αk+1 − 2αk
− 1

2αk+2 − 2αk+1
− 1

2αk+1

=
1

2αk+1 − 2αk
− 1

2αk+1

(
2αk+2−αk+1 − 1

) − 1

2αk+1

=
1

2αk+1 − 2αk
− 2αk+2−αk+1

2αk+1

(
2αk+2−αk+1 − 1

)
=

1

2αk+1 − 2αk
− 2αk

2αk2αk+1−αk

(
2αk − 1

)
=

1

2αk+1 − 2αk
− 1

2αk+1 − 2αk+1−αk

=
1

2αk+1 − 2αk
− 1

2αk+1 − 2αk−1

which is strictly positive, since αk > αk−1, thus proving that (c) holds, and therefore

µ
( ∞⋃
k=1

{xαk
}
)

= lim
k→∞

yk

is an irrational number. Hence, µ /∈ ∆Q(X). /
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Corollary 3.1. Every µ ∈ ∆Q(X) is tight.

Proof. Recall from Aliprantis and Border (1994, Lemma 12.6) that µ is tight if and only if for all

ε > 0 there is some compact K ⊆ X such that µ(K) > µ(X)− ε. It follows from Theorem 3.1 that

Γ(µ) is finite, and therefore compact. Combine the latter with the fact that for every ε > 0,

µ
(
Γ(µ)

)
> µ(X)− ε

and the proof is completed.

Remark 3.2. The previous result extends Thm. 17.11 from Kechris (1995) to spaces which are not

complete, when the probability measure is rational. /

4. A version of Kolmogorov extension theorem

Consider a sequence of separable metrizable spaces {Xk}k>0 with the corresponding Borel σ-algebras,

Bk, and let X :=
∏

k>0Xk, together with the product σ-algebra, B :=
⊗

k>0 Bk. For every finite

K ⊆ N, consider the sub-σ-algebra of B, defined by

BK :=
{ (∏

k∈K

Bk

)
×
(∏
k/∈K

Xk

) ∣∣∣ Bk ∈ Bk, ∀k ∈ K
}
,

and let µK be a Borel probability measure on (X,BK). Observe that if K ⊆ L then BK ⊆ BL,

implying that {BK} is an increasing net of σ-algebras on X. We say that the collection {(BK , µK)}
is Kolmogorov consistent in X, whenever

BK ⊆ BL ⇒ µK(B) = µL(B)

for all B ∈ BK .

Then, Kolmogorov Extension Theorem provides sufficient conditions for the existence of a unique

Borel probability measure µ ∈ ∆(X,B) extending every µK (see, Aliprantis and Border, 1994, Ch.

15.6). In other words, there is a unique µ ∈ ∆(X,B) such that for every finite K ⊆ N,

µK(B) = µ(B)

for all B ∈ BK .

Proposition 4.1. Let {Xk}k>0 be a family of separable metrizable spaces, together with the Borel

σ-algebras Bk. For each finite K ⊆ N, let µK be a rational probability measure on (X,BK). Assume

that the distributions {µK} are Kolmogorov consistent. Then, there is a unique probability measure

on (X,B) that extends every µK.
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Proof. Since Xk is separable and metrizable, it follows that XK is Hausdorff for every finite K ⊆ N.

Moreover, all µK are tight (Corollary 3.1). Then, the result follows directly from Aliprantis and

Border (1994, Cor. 15.28).

Remark 4.1. Observe that the unique measure µ ∈ ∆(X) extending every µK is not necessarily

rational as illustrated in the following example. /

Example 4.1. Let Xk := {0, 1}, endowed with the discrete σ-algebra, Bk. Consider the Cantor set,

X :=
∞∏
k=1

Xk = {0, 1}N.

For each k > 0, let αk be the k-digit approximation of
√

2/2, and

βk := αk + 10−k.

Now, let µk ∈ ∆(X) be such that

µk
(
{1} × · · · × {1}︸ ︷︷ ︸

k times

×
∞∏

`=k+1

X`

)
= 1− β1

...

µk
(
{0} × · · · × {0}︸ ︷︷ ︸

n times

×{1} × · · · × {1}︸ ︷︷ ︸
k−n times

×
∞∏

`=k+1

X`

)
= βn − βn+1

...

µk
(
{0} × · · · × {0}︸ ︷︷ ︸

k times

×
∞∏

`=k+1

X`

)
= βk,

and for every K ⊆ {1, ..., k}, define µK ∈ ∆(X,BK) by

µK =

∫
∏

`∈{1,...,k}\K X`

dµk,

which is obviously rational for every finite K ⊆ N. Then, it is straightforward that the unique

µ ∈ ∆(X) extending every µK is not rational as

µ
(
{0} × {0} × · · ·

)
= lim

k→∞
βk =

√
2

2
,

is obviously an irrational number. /

Remark 4.2. The previous result extends shows that the Xk’s do need to be complete for Kol-

mogorov extension theorem (Aliprantis and Border, 1994, Cor. 15.27) to hold, as long as the corre-

sponding probability measures are rational. /
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5. The space of N -rational probability measures

For some given N ⊆ N, we restrict attention to those probability measures in ∆(X) that map every

Borel event to a rational number with the denominator belonging to N . Consider the subset of the

rational numbers,

QN := {m/n : m = 0, ..., n ; n ∈ N}.

Definition 5.1. For some N ⊆ N, we define the set of N-rational probability measures by

∆N(X) :=
{
µ ∈ ∆(X)

∣∣∣ µ(B) ∈ QN ,∀B ∈ B
}
.

Obviously, the space of N-rational probability measures coincides with the space of rational

probability measures, i.e.,

∆N(X) = ∆Q(X).

Proposition 5.1. If N is finite, ∆N(X) is a closed subset of ∆(X).

Proof. It suffices to show that an arbitrary convergent sequence {µk} of elements of ∆N(X) has its

limit in ∆N(X), i.e., if µk
w∗→ µ, then µ ∈ ∆N(X).

For an arbitrary finite N ⊆ N, let

N∗ := max
n∈N

n.

Consider the metric d : X×X → R which is assumed to be compatible with the topology on X. For

every x ∈ X, denote the radius δ > 0 open neighborhood of x by

B(x, δ) := {x′ ∈ X : d(x, x′) < δ},

and the corresponding closed subset by

B(x, δ) := {x′ ∈ X : d(x, x′) ≤ δ}.

For an arbitrary x ∈ X, suppose that there is some δ > 0 such that there are at most finitely

many k > 0 with µk
(
B(x, δ)

)
> 0, implying that

lim inf
k>0

µk
(
B(x, δ)

)
= 0. (5.1)

Since µk
w∗→ µ, it follows from Theorem 15.3 in Aliprantis and Border (1994) that µ

(
B(x, δ)

)
≤

lim infk>0 µk
(
B(x, δ)

)
, which together with Eq. (5.1) yields

µ
(
B(x, δ)

)
= 0,

thus implying x /∈ Γ(µ).
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Now, suppose instead that for every δ > 0 there are infinitely many k > 0 with µk
(
B(x, δ)

)
> 0,

and therefore with µk
(
B(x, δ)

)
> 0. Since µk ∈ ∆N(X), it follows that µk

(
B(x, δ)

)
> 0 if and only

if µk
(
B(x, δ)

)
≥ 1/N∗, implying that

lim sup
k>0

µk
(
B(x, δ)

)
≥ 1/N∗. (5.2)

Once again, since µk
w∗→ µ, it follows from Aliprantis and Border (1994, Thm. 15.3) that µ

(
B(x, δ)

)
≥

lim supk>0 µk
(
B(x, δ)

)
, which together with Eq. (5.2) yields

µ
(
B(x, δ)

)
≥ 1/N∗. (5.3)

Now, consider a sequence of positive reals {δn} with δn ↓ 0, which induces a sequence of Borel events

{B(x, δn)} such that

lim sup
n>0

B(x, δn) = {x}. (5.4)

Recall from Billingsley (1995, Thm. 4.1) that

µ
(
lim sup

n>0
B(x, δn)

)
≥ lim sup

n>0
µ
(
B(x, δn)

)
,

which, together with (5.3) and (5.4), yields µ({x}) ≥ 1/N∗. Hence, x ∈ Γ(µ) if and only if µ({x}) ≥
1/N∗, implying that Γ(µ) is finite.

Now, let x ∈ Γ(µ). It follows from applying Aliprantis and Border (1994, Thm. 15.3) twice (once

for (5.5) and once for (5.6)), that for every δ > 0,

µ
(
B(x, δ)

)
≥ lim sup

k>0
µk
(
B(x, δ)

)
(5.5)

≥ lim sup
k>0

µk
(
B(x, δ)

)
≥ lim inf

k>0
µk
(
B(x, δ)

)
≥ µ

(
B(x, δ)

)
. (5.6)

Since Γ(µ) is finite, consider some ρ > 0 such that

ρ < min
x′∈Γ(µ)\{x}

d(x, x′).

Then, obviously µ
(
B(x, ρ)

)
= µ

(
B(x, ρ)

)
= µ({x}). Hence, it follows from (5.5–5.6) that

µ({x}) = lim
k>0

µk
(
B(x, ρ)

)
.

Finally, since the sequence {µk
(
B(x, ρ)

)
}k>0 takes values in the finite set QN , its limit will also

belong to QN , which completes the proof.
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Corollary 5.1. Let N be finite.

(a) ∆N(X) is separable and metrizable if and only if X is separable and metrizable.

(b) ∆N(X) is Polish if and only if X is Polish.

Proof. It follows directly from Proposition 5.1 and Aliprantis and Border (1994, Thm. 15.12 & Thm.

15.15).

Remark 5.1. The previous result does not necessarily hold when N is infinite, e.g., let N = N and

X = {x1, x2}, and consider a sequence of measures {µk}k>0 such that µk({x1}) = αk, where αk is

the k-digit decimal approximation of
√

2/2. It is straightforward verifying that µk ∈ ∆Q(X) for all

k > 0. Then, let µ ∈ ∆(X) satisfy µ({x1}) =
√

2/2, and observe that µk
w∗→ µ, implying that ∆Q(X)

is not closed in ∆(X). /
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