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RATIONAL BELIEF HIERARCHIES1

Elias Tsakas

We consider agents whose language can only express probabilistic beliefs that attach

a rational number to every event. We call these probability measures rational. We intro-

duce the notion of a rational belief hierarchy, where the first order beliefs are described

by a rational measure over the fundamental space of uncertainty, the second order beliefs

are described by a rational measure over the product of the fundamental space of un-

certainty and the opponent’s first order rational beliefs, and so on. Then, we derive the

corresponding (rational) type space model, thus providing a Bayesian representation of

rational belief hierarchies. Our first main result shows that this type-based representa-

tion violates our intuitive idea of an agent whose language expresses only rational beliefs,

in that there are rational types associated with non-rational beliefs over the canonical

state space. We rule out these types by focusing on the rational types that satisfy com-

mon certainty in the event that everybody holds rational beliefs over the canonical state

space. We call these types universally rational and show that they are characterized

by a bounded rationality condition which restricts the agents’ computational capacity.

Moreover, the universally rational types form a dense subset of the universal type space.

Finally, we show that the strategies rationally played under common universally rational

belief in rationality generically coincide with those satisfying correlated rationalizability.

Keywords: Epistemic game theory, bounded rationality, rational numbers, belief hier-

archies, type spaces, unawareness, computational capacity, common belief in rationality.

1. INTRODUCTION

A belief hierarchy is a description of an agent’s beliefs about some fundamental space of uncertainty,

beliefs about everybody else’s beliefs, and so on. During the past few decades, belief hierarchies have

become an integral tool of modern economic theory, often used to analyze games with incomplete

information (Harsanyi, 1967-68), as well as in order to provide epistemic characterizations for sev-

eral solution concepts, such as rationalizability (Brandenburger and Dekel, 1987; Tan and Werlang,

1988), Nash equilibrium (Aumann and Brandenburger, 1995), and correlated equilibrium (Aumann,

1987), just to mention a few1.

Belief hierarchies are in general very complex objects, consisting of infinite sequences of probabil-

ity measures. This makes them in principle very hard to handle and sometimes even to describe,

especially when it comes to high order beliefs. Having recognized this difficulty, Harsanyi (1967-68)

1I am indebted to...
1For an overview of the epistemic game theory literature we refer to the textbook by Perea (2012) or the review

article by Brandenburger (2008).
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2 ELIAS TSAKAS

proposed an indirect Bayesian representation of belief hierarchies, known as the type space model2.

Formally, Harsanyi’s model consists of a set of types for each agent and a continuous function mapping

each type to the corresponding conditional beliefs over the product of the fundamental space of uncer-

tainty and the opponent’s type space. This structure induces a belief hierarchy for every type, thus re-

ducing the infinite-dimensional regression of beliefs to a single-dimensional type. Mertens and Zamir

(1985) and Brandenburger and Dekel (1993) independently completed the analysis by showing the

existence of the universal type space, which represents all belief hierarchies satisfying some standard

coherency properties.

In this paper we restrict attention to agents whose language does not contain sentences of the

form “the event E occurs with probability p”, where p is an irrational number, e.g., Alexandra

cannot express the sentence “tomorrow it will rain with probability
√
2/2” within the bounds of

her language. This is for instance the case when she is unaware of the notion of irrational num-

bers (Modica and Rustichini, 1999; Heifetz et al., 2006). Alternatively, she may be aware of the fact

that there are irrational numbers in the interval [0, 1], but still conceptually not understand them

(Lehtinen et al., 1997). This type of beliefs are modeled by probability measures that attach a rational

number to every Borel event. We call these measures rational.

Obviously, if an agent understands only rational numbers, it is not only her first order beliefs that

are restricted but also her beliefs about everybody else’s beliefs, and so on. For instance, besides

Alexandra not understanding the sentence “tomorrow it will rain with probability
√
2/2”, she also

does not understand either the sentence “with probability
√
3/3, Barney attaches probability p to

tomorrow raining”, or the sentence “with probability q, Barney attaches probability
√
5/5 to tomorrow

raining”. In other words, the belief hierarchy of an agent whose language is restricted to express only

rational beliefs consists of a sequence of rational probability measures, where the first order (rational)

beliefs are described by a rational measure over the underlying space of uncertainty, the second order

(rational) beliefs are described by a rational measure over the product of the fundamental space of

uncertainty and the opponent’s space of rational first order beliefs, and so on. We call this infinite

regression of probability measures rational belief hierarchy.

Following Mertens and Zamir (1985) and Brandenburger and Dekel (1993), we construct a Harsanyi

type space representation of rational belief hierarchies. However, as our first main result (Theorem

4.1) shows, this Bayesian representation has an odd and at the same time undesirable property.

Namely, it contains rational types which are represented by non-rational probability measures over

2Later, Aumann (1976) introduced an alternative representation, the partitional model, which is essentially equiv-

alent to Harsanyi’s type-based structure.
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the product of the fundamental space of uncertainty and the opponent’s rational type space. In other

words, there is some Borel event in the canonical state space3 to which this rational type attaches

an irrational conditional probability even though every order of her belief hierarchy involves only

rational beliefs. Obviously, the latter contradicts our initial idea of an agent whose language cannot

describe non-rational probabilistic beliefs.

In order to make our formal model consistent with our intuitive idea of agents who do not un-

derstand irrational numbers, we consider only those rational types that (i) are associated with ra-

tional conditional beliefs over the canonical state space, and (ii) satisfy common certainty in the

event that everybody’s conditional beliefs are rational. We call these types universally rational (U-

rational), and we show the existence of a Bayesian representation of these types in the same line as

Mertens and Zamir (1985) and Brandenburger and Dekel (1993). Notice that the space of U -rational

types is derived by imposing a sequence of restrictions in the associated type space model, and there-

fore it is not straightforward how these conditions translate into restrictions on the space of rational

belief hierarchies, which at the end of the day is our primitive concept. Our second main result (The-

orem 5.1) fills this gap by characterizing the space of universally rational types in terms of a second

bounded rationality condition imposed directly on the belief hierarchies. This condition restricts the

agent’s computational capacity, and more specifically her ability to divide natural numbers. In our

context, we say that an agent’s computational capacity is bounded by a finite subset of the natural

numbers N ⊆ N, whenever the agent’s belief hierarchy consists of a sequence of measures that assign

probabilities that can be written as ratios with the denominator belonging to N . In other words,

bounded computational capacity means that the agent can only divide with finitely many natural

numbers. Then, we prove that a type is U -rational if and only if it (i) has bounded computational

capacity, and (ii) satisfies common certainty in the event that everybody has bounded computational

capacity. Notice that the previous conditions do not require the agent to believe that everybody else

has the same computational capacity as herself, e.g., Alexandra’s computational capacity may be

bounded by {1, . . . , n−1} and still believe that Barney attaches probability 1/n to some event. This

also implies that bounded computational capacity weaker than bounded language.

Although the space of universally rational types satisfies quite a few restrictions, we can still show

that it is rather rich. Namely, the space of U -rational types forms a dense subset of the universal

type space, implying that every belief hierarchy can be approximated by a sequence of types whose

language cannot express irrational beliefs. This may be of particular interest from a practical point

3The canonical state space is defined as the product of the fundamental space of uncertainty and the type spaces of

each agent.
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of view, in that we often prefer to use “small” type spaces, but which are still sufficiently rich to

approximate every belief hierarchy at an arbitrarily high order (Lipman, 2003; Dekel et al., 2006).

The latter has recently attracted quite a lot of attention among authors who study the robustness of

solution concepts in incomplete information games with regards to small perturbations in the belief

hierarchies (Ely and Pȩski, 2006; Dekel et al., 2007).

In the last part of the paper, we introduce the concept of common (universally) rational be-

lief in rationality, as the natural analogue to common belief in rationality, which is the set of

epistemic conditions that characterize correlated rationalizability (Brandenburger and Dekel, 1987;

Tan and Werlang, 1988; Friedenberg and Keisler, 2011). Obviously, since the universal type space

is a superset of the set of U -rational types, the strategy profiles rationally played under common

U -rational belief in rationality will be a subset of the ones rationally played under under common

belief in rationality, which are the ones surviving iterated elimination of strictly dominated strategies.

Hence, our concept is in general a refinement of correlated rationalizability. However, as we show this

is the case in a very small subset of all games, as the two concepts yield the same outcomes generi-

cally (Theorem 7.1). Observe that common U -rational belief in rationality differs from other concepts

in the literature that place ex ante restrictions on the type space (Battigalli and Siniscalchi, 2003;

Battigalli and Friedenberg, 2012). The reason is that we restrict the entire belief hierarchy, rather

than just the first order beliefs.

This paper belongs to a growing new strand of research within epistemic game theory, that of

bounded reasoning in games. This literature is actually the product of introducing bounded rational-

ity assumptions to the players’ belief formation and/or understanding of the game, and has developed

parallelly to the emergence of related empirical evidence in the experimental economics literature.

Examples include players who are not fully aware of all elements of the game (Dekel et al., 1998;

Halpern, 2001; Heifetz et al., 2006; Li, 2009), players with finite depth of reasoning (Kets, 2010;

Heifetz and Kets, 2011; Strzalecki, 2011), players with ambiguous beliefs (Ahn, 2007), or players

whose beliefs are only finitely additive (Meier, 2006).

The paper is structured as follows: In Section 2 we introduce rational probability measures and

we prove some of their properties; Section 3 extends this framework to an interactive setting by

introducing rational belief hierarchies; In Section 4 we construct the rational type space and show

the existence of a type associated with an non-rational measure over the canonical state space; In

Section 5 we introduce the universally rational types, provide their corresponding Bayesian represen-

tation, as well as their foundation in terms of a second bounded rationality assumption; Section 6

contains some topological properties of rational type spaces; In Section 7, we show that the outcomes
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rationally played under common universally rational belief in rationality generically coincide with

those surviving iterated elimination of strictly dominated strategies; Section 8 concludes.

2. RATIONAL PROBABILITY MEASURES

We begin with some definitions and the basic notation. Let X be a Polish4 space, together with the

Borel σ-algebra, B. As usual, ∆(X) denotes the space of probability measures on (X,B), endowed
with the topology of weak convergence5. For each µ ∈ ∆(X), let supp(µ) denote the support, i.e.,

the smallest closed subset6 of X that receives probability 1 by µ.

Consider the Borel probability measures that assign to every Borel event a rational number.

Definition 1 We define the set of rational probability measures by

(2.1) ∆Q(X) :=
{
µ ∈ ∆(X) : µ(B) ∈ Q,∀B ∈ B

}
.

We use rational probability measures to model the beliefs of an agent whose language does not con-

tain sentences of the form “E occurs with probability p”, where p is an irrational number. This idea is

strongly related to one underlying the notion of awareness, in that an agent is aware of an event if and

only if this event can be described by a sentence within her language (Modica and Rustichini, 1999;

Heifetz et al., 2006). We come back to the relationship of our work to the literature on unawareness

later in the paper.

Below, we provide some results on rational probability measures, which we will use later in the

paper. Throughout this section, unless stated otherwise, we assume that X is separable and metriz-

able.

Proposition 2.1 Every µ ∈ ∆Q(X) has a finite support.

The previous, quite surprising result rules out all probability measures with countably infinite

support, even if each point in the support receives a rational probability. The following example

illustrates such a case.
4A topological space is called Polish whenever it is separable and completely metrizable. Examples of Polish spaces

include countable sets endowed with the discrete topology and Rn together with the usual topology. Closed subsets

of Polish spaces endowed with the relative topology are Polish. The countable product of Polish spaces, together with

the product topology, is also Polish.
5The topology of weak convergence, which is usually denoted by w∗, is the coarsest topology that makes the mapping

µ 7→
∫
fdµ continuous, for every bounded and continuous real-valued function, f . If X is Polish, then ∆(X) endowed

with the topology of weak convergence is also Polish. For further properties of w∗, we refer to Aliprantis and Border

(1994, Ch. 15).
6If X is separable and metrizable, the support is unique (Parthasarathy, 1967, Thm. 2.1).
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Example 2.1 Let X = {x1, x2, . . . } and suppose that µ ∈ ∆(X) assigns probability 2−k to each xk.

It is straightforward verifying that µ is a probability measure. Now, consider an arbitrary ξ ∈ (0, 1),

and construct the Borel subset Bξ ⊆ X so that xk ∈ Bξ if and only if ξ ∈ [ 1
2k
, 2
2k
) ∪ · · · ∩ [2

k−1
2k

, 1).

Observe that ξ = µ(Bξ), implying that for every irrational ξ there is a Borel event receiving an

irrational probability, and therefore µ is not a rational measure. ▹

The following result proves that every Borel probability measure can be approximated by a sequence

of rational probability measures (in the topology of weak convergence).

Proposition 2.2 ∆Q(X) is dense in ∆(X).

Before moving forward, let us first introduce the concept of N-rational probability measures. For

some finite N ⊆ N, consider the subset of the rational numbers,

QN := {m/n : m = 0, . . . , n ; n ∈ N},

and define the set of N -rational probability measures by

(2.2) ∆N(X) :=
{
µ ∈ ∆(X) : µ(B) ∈ QN ,∀B ∈ B

}
.

Obviously, if N ⊆ M ⊆ N, then ∆N(X) ⊆ ∆M(X).

We use N -rational probability measures to describe the beliefs of an agent whose computational

capacity is bounded in that, not only can she not attach an irrational probability to any event, but

moreover she can only divide with finitely many numbers, i.e., those in N .

Proposition 2.3 ∆N(X) is closed in ∆(X).

Obviously, it follows by Proposition 2.2 that ∆N(X) is not closed if N is infinite. The following

result is a direct consequence of Proposition 2.3.

Proposition 2.4 ∆Q(X) is a Borel subset of ∆(X).

3. RATIONAL BELIEF HIERARCHIES

Let Θ be a Polish space together with the Borel σ-algebra, B0. In a game, each θ ∈ Θ corresponds

to a payoff vector (Harsanyi, 1967-68), or a strategy profile (Aumann and Brandenburger, 1995;

Tan and Werlang, 1988), or a combination of the two. Throughout the paper, we refer to Θ as the

underlying — else called, fundamental — space of uncertainty. Let I = {a, b} be the set of agents7,

7Our analysis can be directly generalized to any finite set of agents, in which case we obviously allow for correlated

beliefs, as usual.
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with typical elements i and j. Each agent forms beliefs about Θ (first order beliefs), beliefs about

the opponent’s beliefs about Θ (second order beliefs), and so on. Such a sequence is called a belief

hierarchy.

Formally, consider the following sequence of Polish spaces:

Ψ0 := Θ

Ψ1 := Ψ0 ×∆(Ψ0)

...

Ψk+1 := Ψk ×∆(Ψk)

...

A belief hierarchy is an element of

(3.1) T0 :=
∞∏
k=0

∆(Ψk).

For some (π1, π2, . . . ) ∈ T0, the Borel probability measure πk ∈ ∆(Ψk−1) denotes the k-th order

beliefs.

In this paper, we consider agents whose language can express only rational beliefs. That is, for

some θ ∈ Θ, agent i does not understand the sentence:

� θ occurs with probability
√
2/2

The latter implies that we restrict i’s first order beliefs to the space of rational probability measures.

Furthermore, i does not understand any of the following sentences:

� the event that “j assigns probability
√
2/2 to θ” occurs with probability p

� the event that “j assigns probability q to θ” occurs with probability
√
3/3

That is, we restrict i’s second order beliefs to rational probability measures over the space of rational

probability measures. Likewise, we restrict higher order beliefs. These restrictions are consistent with

the interpretation of rational beliefs as the states of mind of an agent who is unaware of the concept

of irrational numbers. We further elaborate on this later in the paper.

Formally, consider the sequence

Θ0 := Θ

Θ1 := Θ0 ×∆Q(Θ0)

...

Θk+1 := Θk ×∆Q(Θk)

...
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A rational belief hierarchy is a sequence (π1, π2, . . . ), with πk ∈ ∆Q(Θk−1) denoting the k-th order

beliefs. Let

(3.2) TQ
0 :=

∞∏
k=0

∆Q(Θk)

denote the space of all rational belief hierarchies, endowed with the product topology.

Intuitively, rational belief hierarchies form a strict subset of all belief hierarchies. However, observe

that formally TQ
0 is not a subset of T0, because strictly speaking ∆Q(Θk) is not a subset of ∆(Ψk).

Therefore, before moving forward, we would like to make sure that the intuitive idea of one being a

subset of the other is compatible with our formal model. The following result serves this purpose, by

showing that TQ
0 is embedded as a Borel subset of T0.

Proposition 3.1 TQ
0 is homeomorphic to a Borel subset of T0.

Throughout the paper, we denote this embedding by

(3.3) h : TQ
0 ↪→ T0.

As usual, with slight abuse of terminology, whenever we talk about a rational belief hierarchy t ∈ TQ
0

we actually refer to its image h(t) ∈ T0, and therefore we will informally consider TQ
0 to be a Borel

subset of T0.

4. RATIONAL TYPES

In general, belief hierarchies are very large and complex objects, and as such it is really hard

directly working with them. Harsanyi (1967-68) was the first one to circumvent this problem by

proposing a compact way of expressing belief hierarchies, known in the literature as the type space

model. Formally, this model consists of a tuple (Θ, Ta, Tb, ga, gb), where Ti is a Polish space of types

with typical element ti, and gi : Ti → ∆(Θ × Tj) is a continuous function. In a type space, each

ti ∈ Ti is associated with a unique belief hierarchy derived as follows: For each type ti ∈ Ti, the first

order beliefs, π1(ti) ∈ ∆(Ψ0), attach probability

(4.1) π1(ti)(B0) =

∫
(θ,tj):θ∈B0

dgi(ti)

to every Borel event B0 ⊆ Ψ0. The second order beliefs, π2(ti) ∈ ∆(Ψ1), attach probability

(4.2) π2(ti)(B1) =

∫
(θ,tj):(θ,π1(tj))∈B1

dgi(ti)
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to every Borel event B1 ⊆ Ψ1. Likewise, the k-th order beliefs, πk(ti) ∈ ∆(Ψk−1), attach probability

(4.3) πk(ti)(Bk−1) =

∫
(θ,tj):(θ,π1(tj),...,πk−1(tj))∈Bk−1

dgi(ti)

for every Borel subset Bk−1 ⊆ Ψk−1. For a detailed presentation on how the entire belief hierarchy is

derived from a type space model, we refer to Siniscalchi (2007).

Observe that every type space induces a state space Θ × Ti × Tj, and each ti ∈ Ti is mapped to

a probability measure gi(ti), which can be viewed as a conditional belief over the state space given

the information set Θ× {ti} × Tj. We say that gi induces a Bayesian representation of Ti whenever

gi : Ti → ∆(Θ×Tj) is injective, thus ruling out the possibility of two different types being associated

with the same measure. We call a Bayesian representation complete, if gi is also surjective, implying

that every measure in ∆(Θ× Tj) is the image of some type in Ti.

Later, Mertens and Zamir (1985), and Brandenburger and Dekel (1993) independently showed that

Harsanyi’s framework is sufficiently rich to model all instances of interactive uncertainty, in that there

is a type space model (Θ, T ∗
a , T

∗
b , g

∗
a, g

∗
b ), with T ∗

a = T ∗
b = T ∗ and g∗a = g∗b = g∗, such that (i) T ∗

coincides with the set of all belief hierarchies satisfying certain standard coherency restrictions, and

(ii) g∗ induces a complete Bayesian representation of T ∗. This construction is called the universal

type space8.

They started by imposing a standard coherency condition, which states that the k-th and (k+1)-th

order beliefs cannot contradict each other. Formally, let Tc := {(π1, π2, . . . ) ∈ T0 : margΨk−2
πk =

πk−1,∀k > 1}. Then, they showed (Brandenburger and Dekel, 1993, Prop. 1) that there is a homeo-

morphism

(4.4) f∗ : Tc → ∆(Θ× T0).

This homeomorphism is a natural one, in that for all (π1, π2, . . . ) ∈ Tc,

(4.5) margΨk−1
f ∗(π1, π2, . . . ) = πk.

Then, they further restricted attention to belief hierarchies that satisfy, not only coherency, but also

8Heifetz (1993) generalized this representation result to cases where the underlying space of uncertainty is Hausdorff,

while Heifetz and Samet (1998) further considered a purely measurable underlying space of uncertainty.
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common certainty in coherency. Formally, consider the following sequence of subsets of Tc:

T1 := Tc

T2 :=
{
t ∈ Tc : f

∗(t)(Θ× T1) = 1
}

...

Tk :=
{
t ∈ Tc : f

∗(t)(Θ× Tk−1) = 1
}

...

Observe that T1 contains the belief hierarchies satisfying coherency, T2 those satisfying certainty in

everybody’s coherency, and so on. Thus,

(4.6) T ∗ :=
∞∩
k=1

Tk

contains the belief hierarchies satisfying coherency and common certainty in coherency. Finally,

Brandenburger and Dekel (1993, Prop. 2) showed that there is a homeomorphism

(4.7) g∗ : T ∗ → ∆(Θ× T ∗),

implying that there is a complete Bayesian representation of T ∗.

The first natural question arising at this point is whether we can extend their result to the

case of rational belief hierarchies. In other words, is there a type space representation of ratio-

nal belief hierarchies in the same line as the standard results by Mertens and Zamir (1985) and

Brandenburger and Dekel (1993).

We retain the standard coherency restriction. Formally, let

TQ
c :=

{
(π1, π2, . . . ) ∈ TQ

0 : margΘk−2
πk = πk−1, ∀k > 1

}
(4.8)

= TQ
0 ∩ Tc

denote the set of coherent belief hierarchies.

Similarly to Brandenburger and Dekel (1993, Prop. 1), the following result associates each coher-

ent rational belief hierarchy to a probability measure over the product of the underlying space of

uncertainty and the space of the opponent’s rational hierarchies. This induces an injective mapping,

implying that there is no pair of coherent types associated with the same distribution over Θ× TQ
0 .

Proposition 4.1 There is an injection f : TQ
c → ∆(Θ× TQ

0 ).

It is rather easy to see that the function f is in fact the same as f ∗ from Brandenburger and Dekel

(1993, Prop. 1), but restricted to rational belief hierarchies, i.e., for every t ∈ TQ
c and each Borel
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subset B ⊆ Θ× TQ
0 ,

(4.9) f(t)(B) = f ∗(h(t))
(
{(θ, t) ∈ Θ× T0 : (θ, h

−1(t)) ∈ B}
)
.

Throughout the paper, we treat f and f∗ as the same function. Note that f inherits from f ∗ the

property of being a natural mapping, in that every coherent hierarchy is associated with a probability

measure over Θ ×
∏∞

k=0 ∆
Q(Θk) that has the property that its marginal distribution over Θk−1

coincides with the k-th order beliefs induced by this hierarchy, i.e., for every (π1, π2, . . . ) ∈ TQ
c

(4.10) margΘk−1
f(π1, π2, . . . ) = πk.

As usual, we further restrict belief hierarchies so that they satisfy, not only coherency, but also

common certainty in coherency. Formally, consider the following sequence of subsets of TQ
c :

TQ
1 := TQ

c

TQ
2 :=

{
t ∈ TQ

c : f(t)(Θ× TQ
1 ) = 1

}
...

TQ
k :=

{
t ∈ TQ

c : f(t)(Θ× TQ
k−1) = 1

}
...

Note that TQ
1 contains the belief hierarchies that satisfy coherency, TQ

2 contains the belief hierarchies

that satisfy certainty in everybody coherency, and so on. Thus, the types in

(4.11) TQ :=
∞∩
k=1

TQ
k

satisfy coherency and common certainty in coherency. Henceforth, whenever we write “rational belief

hierarchies” or “rational types”, we implicitly refer to elements of TQ, thus omitting to explicitly

say that they satisfy coherency and common certainty in coherency. The following result proves the

existence of a Bayesian representation of the space of rational belief hierarchies, implying that every

type in TQ is identified by a probability measure on Θ× TQ.

Proposition 4.2 There is an injection g : TQ → ∆(Θ× TQ).

Once again, g coincides with the corresponding mapping g∗ used by Brandenburger and Dekel

(1993, Prop. 2) when restricted on the domain h(TQ). That is, for every t ∈ TQ and each Borel

subset B ⊆ Θ× TQ,

(4.12) g(t)(B) = g∗(h(t))
(
{(θ, t) ∈ Θ× TQ : (θ, h−1(t)) ∈ B}

)
.
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Obviously, the representation induced by g is not complete, in that there are measures in ∆(Θ×TQ)

which are not the image of any rational type. The latter is not surprising, as one can easily see that

there exist probability measures π ∈ ∆(Θ × TQ) with margΘ π /∈ ∆Q(Θ), e.g., a measure with

π({θ} × TQ) =
√
2/2.

What is really interesting, as well as far from obvious, is the conclusion of the following theo-

rem. Let us first introduce the notion of a rational representation: Consider a type space model

(Θ, Ta, Tb, ga, gb) such that gi induces a Bayesian representation of Ti. We call this representation

rational whenever gi(t) ∈ ∆Q(Θ × Tj) for every t ∈ Ti. The reason we are particularly interested

in rational representations stems from our initial motivation for this project. Recall that we have

in mind agents whose language does not contain sentences that express probabilistic beliefs of the

form “E occurs with probability p”, where p is an irrational number. Thus, if the representation

induced by g is not rational, it means that there is some rational type t ∈ TQ attaching an irrational

probability to some Borel event in the canonical state space Θ × TQ × TQ. Obviously, the latter

would not be consistent with the type of agents we have in mind.

Theorem 4.1 There is some t ∈ TQ such that g(t) /∈ ∆Q(Θ× TQ).

The previous result has the following surprising implication for the Bayesian representation of

rational belief hierarchies: Although the agent’s language can only describe rational beliefs, there are

types t ∈ TQ associated with irrational beliefs over the canonical state space Θ× TQ × TQ.

5. UNIVERSALLY RATIONAL BELIEF HIERARCHIES

In this section, we restrict our attention to rational types whose language does not contain sentences

that express non-rational probabilistic beliefs, i.e., we are interested in rational types which

(i) are associated with a rational probability measure over the canonical state space,

(ii) are certain that the opponent’s beliefs satisfy (i),

(iii) are certain that the opponent’s beliefs satisfy (ii),

and so on ad infinitum.

Observe that these conditions rule out not only types with non-rational beliefs over the state space,

but also types that believe that their opponent has non-rational beliefs over the state space, and

so on. The belief hierarchies that satisfy these restrictions are called universally rational. First, we

prove that universally rational types have a complete rational Bayesian representation. Then, we

provide a foundation for these types in terms of a second type of bounded rationality which restricts

the computational capacity of the agent, and more specifically the agent’s ability to divide natural
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numbers.

Formally, a type is universally rational (U-rational), whenever it belongs to each of the following

subsets of TQ:

TU
0 :=

{
t ∈ TQ : g(t) ∈ ∆Q(Θ× TQ)

}
TU
1 :=

{
t ∈ TQ : g(t)(Θ× TU

0 ) = 1
}

...

TU
k :=

{
t ∈ TQ : g(t)(Θ× TU

k−1) = 1
}

...

Observe that TU
0 contains exactly the types satisfying condition (i) above, TU

1 contains exactly the

types satisfying (ii), and so on. Throughout the paper we denote the set of U -rational types by

(5.1) TU :=
∞∩
k=0

TU
k .

The following result shows that there is a complete rational Bayesian representation of universally

rational belief hierarchies.

Proposition 5.1 g : TU → ∆Q(Θ× TU) is a homeomorphism.

Note that the previous result is not the product of restrictions on the belief hierarchies. Instead,

it rules out certain rational types based on a sequence of conditions on the corresponding Bayesian

model. Below, we characterize the space of U -rational types in terms of an additional (bounded

rationality) condition imposed directly on the beliefs hierarchies — which is our primitive notion —

rather on the associated type space which is only a model describing the belief hierarchies.

Recall the notion of N -rational measures introduced in Section 2, and consider an agent whose

computational capacity is restricted by some finite N ⊆ N, in that she can only form N -rational

beliefs. Intuitively, we have in mind an agent who exhibits a second type of bounded rationality in

that she can only divide by finitely many denominators, on top of the fact that her language contains

only sentences describing rational beliefs.

Notice that in principle we do not require the agent to believe that everybody else has the same

computational capacity as her, i.e., agent i’s computational capacity may be restricted by some finite

N ⊆ N and still attach positive probability to the opponent’s computational capacity being restricted

by M ) N , or even believe that her opponent’s computational capacity is not restricted by any finite

M ⊆ N. That is, bounded computational capacity is weaker than restricting the agent’s language.

We further discuss this distinction later in the paper.
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Formally, for some finite N ⊆ N, consider a sequence (π1, π2, . . . ) ∈
∏∞

k=0 ∆
N(Θk), where each

πk ∈ ∆N(Θk−1) denotes the (N -rational) k-th order beliefs. In other words, the agent forms N -

rational beliefs about Θ (first order beliefs), N -rational beliefs about Θ × ∆Q(Θ) (second order

beliefs), and so on.

As we have already mentioned above, observe that the second order beliefs may attach positive

probability to the opponent holding some rational, but not necessarily N -rational first order beliefs.

This is the case, for instance, when the agent’s computational capacity is restricted by {1, . . . , n−1},
but her language is not, e.g., she does understand the sentence “E occurs with probability 1/n”

and she also deems possible that her opponent attaches probability 1/n to E, but she herself never

attaches probability 1/n to any event because for instance it is computationally very costly to form

beliefs beyond the bounds of {1, . . . , n− 1}.
Let TN

0 :=
∏∞

k=0 ∆
N(Θk), and impose the usual restriction of coherency and common certainty in

coherency,

(5.2) TN := TN
0 ∩ TQ.

Types in TN are called N-rational. The following result shows that the agent’s computational capacity

is necessarily preserved by the Bayesian representation. That is, if an agent’s belief hierarchy is

restricted by some finite N ⊆ N, then the agent attaches an N -rational probability to every Borel

event in the canonical state space Θ × TQ × TQ conditional on her own type. Moreover, every

N -rational probability measure on Θ× TQ is the image of some N -rational type.

Proposition 5.2 g : TN → ∆N(Θ× TQ) is homeomorphic.

Let N :=
{

{1, . . . , n} | n ∈ N
}
, and define the space of rational types whose computational

capacity is bounded by some finite {1, . . . , n} ⊆ N, i.e.,

(5.3) TN
0 :=

∪
N∈N

TN .

Then, we recursively define the types that (i) are certain that everybody’s computational capacity

is bounded (by some finite set of denominators), (ii) are certain that everybody is certain that

everybody’s computational capacity is bounded, and so on. Formally, let

TN
1 :=

{
t ∈ TN

0 : g(t)(Θ× TN
0 ) = 1

}
...

TN
k :=

{
t ∈ TN

0 : g(t)(Θ× TN
k−1) = 1

}
...
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and define the types that have bounded computational capacity, and satisfy common certainty in

everybody’s computational capacity is bounded by

(5.4) TN :=
∞∩
k=0

TN
k .

Throughout the paper we call these types N -rational. The following result characterizes the U -

rational types in terms of a restriction on the bounds of the agent’s computational capacity. More

specifically, we show that the U -rational types are exactly those that

(i) have bounded computational capacity,

(ii) are certain that the opponent satisfies (i),

(iii) are certain that the opponent satisfies (ii),

and so on.

In other words, a type is U -rational if and only if it is N -rational.

Theorem 5.1 TU = TN .

The previous result is quite interesting as it provides foundations for the set of U -rational types

in terms of conditions imposed directly on the belief hierarchies rather than on the corresponding

Bayesian model.

Note that although U -rational types are shown to be the ones restricted by bounded computational

capacity and common certainty in bounded computational capacity, their language may not be

restricted by any finite N ⊆ N. We provide an example of such a case below.

Example 5.1 Consider the type space model (Θ, Ta, Tb, ga, gb) such that Θ = {θ1, θ2}, and Ta =

{t1a, t2a, . . . } and Tb = {t1b , t2b , . . . }. Moreover, for each k > 0, suppose that g(tka) assigns probability

1/k to (θ1, t
k
b ) and probability (k − 1)/k to (θ2, t

k
b ), while g(tkb ) assigns probability 1/k to (θ1, t

k+1
a )

and probability (k − 1)/k to (θ2, t
k+1
a ).

First, observe that Ti ⊆ TN and therefore Ti ⊆ TU for each i ∈ {a, b}. Second, notice that for

every ℓ > k agent tki ’s language contains the sentence “j attaches probability 1/ℓ to θ1”, e.g., t
k
a

� is certain that “b attaches probability 1/k to θ1”,

� is certain that b is certain that a is certain that “b attaches probability 1/(k + 1) to θ1”,

� is certain that b is certain that a is certain that b is certain that a is certain that “b attaches

probability 1/(k + 2) to θ1”,

and so on.

Hence, tka’s language is not bounded by any finite N ⊆ N, even though her computational capacity

is bounded by {k} ∈ N . ▹
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The previous example illustrates the difference between restricting one’s language and restricting

her computational capacity. Restricting the agent’s language implies that the agent cannot compute

values expressed by sentences outside this language. However, the converse is not necessarily true,

e.g., the agent may understand a sentence of the form “E occurs with probability p” and still never

hold these beliefs, simply because p is a very complex.

6. TOPOLOGICAL PROPERTIES OF RATIONAL TYPE SPACES

In this section we study the topological properties of the space of rational and universally rational

types. In fact, as it turns out, these spaces are sufficiently rich in that every type in the universal

type space can be approximated by a sequence of U -rational types.

Proposition 6.1 TU is dense in T ∗.

The previous result is particularly interesting for the analysis of robustness of solution concepts

with respect to slight perturbations in the belief hierarchies in finite incomplete information games,

as for instance in Ely and Pȩski (2006), or Dekel et al. (2007).

7. COMMON RATIONAL BELIEF IN RATIONALITY

Consider a finite normal form game
(
I, (Si)i∈I , (Ui)i∈I

)
, where I = {a, b} denotes the finite set of

players, with typical elements i and j. For every i ∈ I, let Si, with typical element si, denote player

i’s finite set of (pure) strategies, and Ui : Si × Sj → R denote i’s payoff function. A probability

measure µi ∈ ∆(Sj) is called i’s conjecture about the opponent’s action, with µi(sj) denoting the

probability that i assigns to j playing sj. Given the conjecture µi, player i’s (subjective) expected

payoff from playing si ∈ Si is equal to

ui(si, µi) :=
∑
sj∈Sj

µi(sj) Ui(si, sj).

We say that si is a best reply to the conjecture µi, and we write si ∈ BRi(µi), whenever ui(si, µi) ≥
ui(s

′
i, µi) for all s

′
i ∈ Si.

Since this is a normal-form game where players do not observe each other’s strategy before they

choose their own, each i forms a belief hierarchy consisting of a conjecture about j’s strategy, a

conjecture about j’s conjecture about i’s strategy, and so on. As usual, we represent these belief

hierarchies with a type space model, (Sa, Sb, Ta, Tb, ga, gb), where Ti is a Polish type space, and

gi : Ti → ∆(Sj × Tj) is a continuous function. This construction differs from the one described

in Section 4, in that the two players form beliefs over different fundamental spaces, i.e., each i is
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uncertain only about Sj. This is because, as usual, we focus on belief hierarchies restricted by the

condition that players know their own actual strategy. An element (si, ti) ∈ Si×Ti is called strategy-

type pair of player i, whereas each (sa, sb, ta, tb) ∈ Sa×Sb×Ta×Tb is called state (of the world). We

say that i is rational at a state (sa, sb, ta, tb) whenever si is a best reply to the conjecture about j’s

strategy induced by ti.

Consider the set of states in Sa × Sb × T ∗
a × T ∗

b where both players are rational:

R∗
0 :=

{
(sa, sb, ta, tb) ∈ Sa × Sb × T ∗

a × T ∗
b : si ∈ BRi

(
margSj

g∗i (ti)
)
, for all i ∈ {a, b}

}
.

For every k > 0, inductively define

R∗
k :=

{
(sa, sb, ta, tb) ∈ Sa × Sb × T ∗

a × T ∗
b : g∗i (ti)(margSj×T ∗

j
R∗

k−1) = 1, for all i ∈ {a, b}
}
,

and obtain the states that satisfy rationality and common belief in rationality, by

(7.1) R∗ :=
∞∩
k=0

R∗
k.

At these states, not only is everybody rational, but also everybody believes that everybody is rational,

everybody believes that everybody believes that everybody is rational, and so on. The strategy profiles

rationally played under common belief in rationality are the ones in

S∗ := S∗
a × S∗

b(7.2)

:= projSa
R∗ × projSb

R∗.

These strategy profiles are exactly those played under correlated rationalizability, and are the ones

surviving iterated elimination of strictly dominated strategies (Brandenburger and Dekel, 1987). In

two-player games, they also coincide with the set of rationalizable9 outcomes (Bernheim, 1984; Pearce,

1984).

Now, suppose that we restrict attention to players with rational belief hierarchies. Belief hierarchies

are represented by types in the type space (Sa, Sb, T
Q
a , TQ

b , ga, gb), where T
Q
i is the space of all rational

belief hierarchies, and gi : T
Q
i → ∆(Sj × TQ

j ) is an injective mapping derived analogously to the one

in Proposition 4.2. Let Sa × Sb × TQ
a × TQ

b denote the set of states where both players have rational

belief hierarchies.

9The equivalence between rationalizability and correlated rationalizability does not hold in games with more than

two players (Pearce, 1984, p. 1035).
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Similarly to the unrestricted case, we recursively impose the following restrictions

RQ
0 :=

{
(sa, sb, ta, tb) ∈ Sa × Sb × TQ

a × TQ
b : si ∈ BRi

(
margSj

gi(ti)
)
, for all i ∈ {a, b}

}
...

RQ
k :=

{
(sa, sb, ta, tb) ∈ Sa × Sb × TQ

a × TQ
b : gi(ti)(margSj×TQ

j
RQ

k−1) = 1, for all i ∈ {a, b}
}

...

thus obtaining the states satisfying rationality and common rational belief in rationality by

(7.3) RQ :=
∞∩
k=0

RQ
k .

The strategy profiles rationally played under common rational belief in rationality are

SQ := SQ
a × SQ

b(7.4)

:= projSa
RQ × projSb

RQ.

Likewise, we can also define the states that satisfy rationality and common universally rational

belief in rationality, denoted by RU . Finally, let SU denote the strategy profiles that can be played

at some state in RU . Obviously, it follows by construction that

(7.5) SU ⊆ SQ ⊆ S∗.

In general, there are games where the second inclusion is strict10, e.g., there may exist pure strategies

which are optimal only to irrational conjectures, as illustrated by the following example.

Example 7.1 Consider, for instance, the following game played between Alexandra and Barney,

who choose among the row and column strategies respectively, i.e., Sa = {a1, a2, a3} and Sb = {b1, b2}.
Observe that the only first order beliefs of Alexandra that would make a3 rational would be to

a3

a2

a1

b2b1

0

2

2 +
√
2

0

1

1

√
2

0

0

2

1

1

10Since we only consider finite games, the first inclusion is always an equality, i.e., SU = SQ. This is because for all

k > 0, and for every t ∈ TQ, there is some t′ ∈ TU such that πℓ(t) = πℓ(t
′) for all ℓ ≤ k.
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attach probability
√
2/2 to the event that Barney plays b1. Thus, a3 belongs to projSa

R∗
0 but not to

projSa
RQ

0 . Moreover, observe that projSa×Sb
R∗

k = projSa×Sb
R∗

0 and projSa×Sb
RQ

k = projSa×Sb
RQ

0 for

all k > 0, implying that a3 belongs to S∗
a but not to SQ

a . ▹

However, as the following theorem shows, the previous case is non-generic. Recall that a result

holds generically, whenever for an arbitrary strategy space Sa × Sb, the payoff vectors (Ua, Ub) ∈
R|Sa×Sb|×R|Sa×Sb| that make this result hold are of Lebesgue measure 1 in the space R|Sa×Sb|×R|Sa×Sb|.

In fact, we show that the strategy profiles rationally played under common U -rational belief in

rationality generically coincide to those rationally played under common belief in rationality.

Theorem 7.1 SU = S∗ generically.

Obviously, the latter implies that SU generically contains the strategy profiles surviving iterated

elimination of strictly dominated strategies.

8. DISCUSSION

In this section we relate the notion of rational belief hierarchies to other well-known concepts, and

we discuss possible interpretations of different rational type spaces.

Rational beliefs and unawareness. As we have already mentioned, rational probability measures

can be thought as beliefs of an agent whose language does not contain sentences of the form “E

occurs with probability p”, for any irrational number p ∈ [0, 1]. This idea is consistent with consider-

ing an agent who is unaware of the notion of irrational numbers and therefore does not understand

sentences that express probabilistic beliefs which involve irrational numbers. Identifying the agent’s

language with the collection of events that the agent is aware is not new in the literature (e.g.,

Modica and Rustichini, 1999; Halpern, 2001; Heifetz et al., 2006; Li, 2009). The common character-

istic of these models is that each agent is endowed with a language — subjective view of the world —

and she can only reason within the bounds of this language. A straightforward consequence is that

she attaches positive probability only to events generated by this language.

Heifetz et al. (2006) introduced a generalized framework accommodating interactive unawareness.

In their model, each agent’s language restricts not only what the agent is aware of, but also what the

agent believes that others are aware of. More specifically, if an agent is unaware of a sentence, she is

also unaware of the possibility that someone else is aware of this sentence11. The latter is consistent

11Halpern and Rêgo (2009) go one step further by allowing agents to be aware of the possibility of being unaware

of an event, thus accommodating situations where the agent deems possible that somebody else attaches positive
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with the way we construct rational belief hierarchies in Section 3 in that the k-th order rational beliefs

attach positive probability only to (k − 1)-th order rational beliefs. From the previous discussion it

becomes clear why Theorem 4.1 is an intuitive contradiction. More specifically, recall that we have

in mind an agent who is unaware of the concept of rational numbers. However, Theorem 4.1 says

that there are types associated with a rational belief hierarchy, which at the same time “assign

probability p ∈ [0, 1] \Q to some Borel event B” in the canonical state space. Since we only consider

agents who hold conscious beliefs, it follows that these specific types will know the event “B occurs

with probability p”, and therefore this last sentence will be part of their language, which in turn

contradicts our initial assumption that our agent is unaware of the concept of irrational numbers.

Bounded computational capacity. In Section 5, we provided a characterization of universally rational

belief hierarchies in terms of a bounded rationality condition which restricts the computational ca-

pacity of the players. Firstly, let us elaborate a bit on the difference between bounded computational

capacity on the one hand and bounded language on the other. As we have already mentioned above,

when an agent’s language is not sufficiently rich to describe certain probabilistic beliefs, the agent

is not even aware of the existence of these degrees of uncertainty. Therefore, discussing about the

agent’s capacity to compute these beliefs is meaningless in the first place. Conversely, an agent may

understand what
√
2/2 means but still find it unnecessarily complex to compute beliefs with such

precision. Consider for instance an agent who simply adopts as her own probabilistic assessment the

estimation yielded by a computer whose output is restricted to at most five decimals. Obviously, the

agent may still understand the notion of an irrational number. From the previous discussion it be-

comes apparent that in our model bounded language is strictly stronger than bounded computational

capacity.

There are quite a few papers in the literature that account for bounded computational capacity

in the players’ belief formation. Megiddo (1989) models belief hierarchies when we restrict attention

only to computable beliefs. More recently, Eliaz (2003) and Spiegler (2004) have studied repeated

games with players who prefer to hold simpler beliefs about their opponents’ strategies.
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probability to an event of which she herself is unaware.
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APPENDIX A: PROOFS OF SECTION 2

Proof of Proposition 2.1: Consider an arbitrary µ ∈ ∆Q(X), and consider the set of singletons with positive

measure,

(A.1) Γ := {x ∈ X : µ({x}) > 0}.

First, we show that Γ is non-empty. Suppose that µ is a non-atomic measure. Then, it follows from Fremlin (2003,

p. 46) that for every ξ ∈ (0, 1) there is some B ∈ B such that µ(B) = ξ, which contradicts µ ∈ ∆Q(X) if we consider

some ξ ∈ R \ Q. Hence, there is at least one atom A ∈ B. Now, it follows from Aliprantis and Border (1994, Lem.

12.18) that A contains a singleton of positive measure, implying that Γ is non-empty.

Second, we show that Γ is countable. Let {Γn ; n ≥ 1} be the countable partition of Γ, defined by

Γn :=
{
x ∈ Γ :

1

n+ 1
< µ({x}) ≤ 1

n

}
.

If Γ is uncountable, there is some n ≥ 1 such that Γn is uncountable, implying that there is a countably infinite

{x1, x2, . . . } ⊆ Γn. Finally, observe that

µ(X) ≥ µ(Γn)

≥
∞∑
k=1

µ({xk})

>
∞∑
k=1

1

n+ 1

= ∞,

which is a contradiction.

Third, we show that µ(Γ) = 1. Assume otherwise, implying that µ(X \ Γ) > 0. Since Γ is countable, it is Borel,

implying thatX\Γ is also Borel. Hence, it follows from Aliprantis and Border (1994, Lem. 12.18) that there is x ∈ X\Γ
with µ({x}) > 0, implying, by Eq. (A.1), that x ∈ Γ, which is a contradiction.

Now, suppose that Γ = {x1, x2, . . . } is infinite. Observe that the sequence of rational numbers {µ({xk})}k> satisfies∑∞
k=1 µ({xk}) = 1. Then, it follows from Badea (1987, Prop., p. 225) that there is a subsequence {yk}k>0 of {xk}k>0

such that
∑∞

k=1 µ({yk}) is an irrational number, thus contradicting the hypothesis that µ ∈ ∆Q(X).

Therefore, Γ is necessarily finite. Moreover, it is closed, as it is the finite union of singletons, implying that supp(µ) =

Γ, which completes the proof. Q.E.D.

Proof of Proposition 2.2: It follows from Billingsley (1968, p. 237) that the space of Borel probability measures

with finite support — denoted by ∆S(X) and called space of simple probability measures — is dense in ∆(X). It

follows from Proposition 2.1 that ∆Q(X) is a subspace of ∆S(X). Recall that denseness is transitive (Gupta, 2000,

Thm. 4.12), implying that it suffices to show that ∆Q(X) is dense in ∆S(X).

Consider an arbitrary µ ∈ ∆S(X), with Γ(µ) = {x1, . . . , xn}, and suppose without loss of generality that 0 ≤
µ({x1}) ≤ · · · ≤ µ({xn}) ≤ 1. Let {Uk

i }∞k=1 be a decreasing sequence of open neighborhoods of µ({xi}) with its radius

converging to 0, such that U1
i ∩ U1

i+1 = ∅ whenever µ({xi}) < µ({xi+1}). Observe that for every k > 0 and each

i ∈ {1, . . . , n} there is αk
i ∈ [0, 1]∩Q∩Uk

i such that αk
1 + · · ·+αk

n = 1, thus inducing a sequence of rational probability

measures {µk} such that(
µk({x1}), . . . , µk({xn})

)
→

(
µ({x1}), . . . , µ({xn})

)
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implying that µk
w∗

→ µ which completes the proof. Q.E.D.

Proof of Proposition 2.3: It suffices to show that an arbitrary convergent sequence {µk} of elements of ∆N (X)

has its limit in ∆N (X), i.e., if µk
w∗

→ µ, then µ ∈ ∆N (X).

Let N̄ := maxn∈N n. Let also d : X ×X → R be a metric compatible with the topology on X, and for every x ∈ X

and δ > 0, define an open neighborhood of x as B(x, δ) := {x′ ∈ X : d(x, x′) < δ}.

Consider an arbitrary x ∈ X, and suppose there is some δ > 0 such that there are finitely many k > 0 with

µk

(
B(x, δ)

)
> 0. Then, obviously, there are infinitely many k > 0 such that µk

(
B(x, δ)

)
= 0, implying that

lim inf µk

(
B(x, δ)

)
= 0. Hence, it follows from µk

w∗

→ µ that µ
(
B(x, δ)

)
≤ lim inf µk

(
B(x, δ)

)
= 0 (Aliprantis and Border,

1994, Thm. 15.3), implying that x /∈ Γ supp(µ). If, on the other hand, for every δ > 0 there are infinitely many

k > 0 such that µk

(
B(x, δ)

)
> 0, it follows from µk ∈ ∆N (X) that there are infinitely many k > 0 such that

µk

(
B(x, δ)

)
≥ 1/N̄ , where B(x, δ) := {x′ ∈ X : d(x, x′) ≤ δ} is the closure of B(x, δ). Therefore, µ

(
B(x, δ)

)
≥

lim supµk

(
B(x, δ)

)
≥ 1/N̄ (Aliprantis and Border, 1994, Thm. 15.3). Now, consider a sequence of positive reals {δn}

with δn ↓ 0, which induces a sequence of Borel events {B(x, δn)} such that lim supn>0 B(x, δn) = {x}. Then, it follows
from µ

(
lim supn>0 B(x, δn)

)
≥ lim supn>0 µ

(
B(x, δn)

)
≥ 1/N̄ (Billingsley, 1995, Thm. 4.1) that µ({x}) ≥ 1/N̄ . Hence,

x ∈ supp(µ) if and only if µ({x}) ≥ 1/N̄ , implying that supp(µ) is finite.

Let x ∈ supp(µ). It follows from Aliprantis and Border (1994, Thm. 15.3) that for every δ > 0,

µ
(
B(x, δ)

)
≥ lim supµk

(
B(x, δ)

)
≥ lim supµk

(
B(x, δ)

)
≥ lim inf µk

(
B(x, δ)

)
≥ µ

(
B(x, δ)

)
.(A.2)

Since supp(µ) is finite, there is some ρ > 0 such that x′ /∈ B(x, ρ) for any x′ ∈ supp(µ) \ {x}, implying that

µ
(
B(x, δ)

)
= µ

(
B(x, δ)

)
= µ({x}) for every δ < ρ. Hence, it follows from (A.2) that µ({x}) = limµk

(
B(x, δ)

)
. Finally,

since the sequence {µk

(
B(x, δ)

)
} contains only elements of the finite set QN , it follows that limµk

(
B(x, δ)

)
∈ QN ,

which completes the proof. Q.E.D.

Proof of Proposition 2.4: First, observe that ∆Q(X) =
∪

n∈N ∆{1,...,n}(X). It follows from Proposition 2.3 that

∆{1,...,n}(X) is closed, and therefore Borel in ∆(X) for every n ∈ N, which completes the proof. Q.E.D.

APPENDIX B: PROOFS OF SECTION 3

Proof of Proposition 3.1: We proceed inductively to show that for every k ≥ 0

� Θk is embedded as a Borel subset of Ψk, and

� ∆Q(Θk) is embedded as a Borel subset of ∆(Ψk).

First, observe that Θ0 = Ψ0 = Θ, implying that Θ0 is embedded as a Borel subset of Ψ0 via the identity function.

It follows from Proposition 2.4 that ∆Q(Θ0) is a Borel subset of ∆(Ψ0). Hence, ∆Q(Θ0) is embedded as a Borel subset

of ∆(Ψ0) via the identity function.

Now, suppose that Θk is embedded as a Borel subset of Ψk via ϑk : Θk → Ψk, and ∆Q(Θk) is embedded as a

Borel subset of ∆(Ψk) via δk : ∆Q(Θk) → ∆(Ψk). Define the function ϑk+1 : Θk+1 → Ψk+1 such that for each

(θk, µk) ∈ Θk ×∆Q(Θk), ϑk+1(θk, µk) :=
(
ϑk(θk), δk(µk)

)
. Obviously, it follows from above that Θk+1 is embedded as



RATIONAL BELIEF HIERARCHIES 23

a Borel subset of Ψk+1 via ϑk+1, and therefore Θk+1 is homeomorphic to ϑk+1(Θk+1). Hence, ∆(Θk+1) is homeomorphic

to ∆
(
ϑk+1(Θk+1)

)
. Since ϑk+1(Θk+1) is Borel in Ψk+1, there is a homeomorphism ∆

(
ϑk+1(Θk+1)

)
7→ {µ ∈ ∆(Ψk+1) :

µ
(
ϑk+1(Θk+1)

)
= 1}, where {µ ∈ ∆(Ψk+1) : µ

(
ϑk+1(Θk+1)

)
= 1} is a Borel subset of ∆(Ψk+1). The latter implies that

there is a homeomorphism νk+1 : ∆(Θk+1) → {µ ∈ ∆(Ψk+1) : µ
(
ϑk+1(Θk+1)

)
= 1}. By Proposition 2.4, ∆Q(Θk+1)

is Borel in ∆(Θk+1). Let δk+1 : ∆Q(Θk+1) → {µ ∈ ∆(Ψk+1) : µ
(
ϑk+1(Θk+1)

)
= 1} be the same mapping as νk+1

but restricted in the domain ∆Q(Θk+1). Then, it follows directly that δk+1 embeds ∆Q(Θk+1) as a Borel subset on

{µ ∈ ∆(Ψk+1) : µ
(
ϑk+1(Θk+1)

)
= 1} and therefore on ∆(Ψk+1), which completes the proof by induction. Q.E.D.

APPENDIX C: PROOFS OF SECTION 4

Proof of Proposition 4.1: Since Θ0 = Θ is Polish, it is by definition separable and metrizable. Supposing that

Θk is separable and metrizable, ∆Q(Θk) is separable and metrizable too, as it is a subspace of ∆(Θk), which is also

separable and metrizable (Aliprantis and Border, 1994, Thm 15.12). Thus, Θk+1 = Θk×∆Q(Θk) is also separable and

metrizable, and therefore it follows by induction that every Θk is separable and metrizable. Since πk+1 ∈ ∆Q(Θk) has

a finite support (by Proposition 2.1), it follows that it is tight, and therefore, by applying a version of Kolmogorov

extension theorem (Aliprantis and Border, 1994, Cor. 15.28), we prove the existence of a unique measure π ∈ ∆(Θ×TQ
0 )

that extends every πk. Q.E.D.

Proof of Proposition 4.2: The proof follows directly from TQ = {t ∈ TQ
c : f(t)(Θ× TQ) = 1}. Q.E.D.

Proof of Theorem 4.1: Take two arbitrary θ1, θ2 ∈ Θ, and consider the following sequence:

P1 :=
{
p1 ∈ ∆Q(Θ0) : p1(θ) = 1, for some θ ∈ {θ1, θ2}

}
P2 :=

{
p2 ∈ ∆Q(Θ1) : p2(θ, p1) = 1, for some (θ, p1) ∈ {θ1, θ2} × P1

}
...

Pk :=
{
pk ∈ ∆Q(Θk−1) : pk(θ, p1, . . . , pk−1) = 1, for some (θ, p1, . . . , pk−1) ∈ {θ1, θ2} × P1 × · · · × Pk−1

}
...

Let Tp be the set of types (p1, p2, . . . ) ∈
∏

k>0 Pk that satisfy coherency and common certainty in coherency. Observe

that for every p1 ∈ P1 there are exactly two measures in P2 such that (p1, p2) does not contradict coherency. Likewise,

for every (p1, p2) ∈ P1 × P2 that does not contradict coherency, there are exactly two measures p3 ∈ P3 such that

(p1, p2, p3) does not contradict coherency and 1-fold certainty in coherency. Inductively, for each k > 1, for every

(p1, . . . , pk−1) ∈ P1×· · ·×Pk−1 that does not contradict coherency, 1-fold, . . . , and (k−3)-fold certainty in coherency,

there are exactly two measures pk ∈ Pk such that (p1, . . . , pk) does not contradict coherency, 1-fold, . . . , and (k − 2)-

fold certainty in coherency. Therefore, Tp has the same cardinality as {0, 1}N, implying that it is uncountable. Now,

consider a belief hierarchy (π1, π2, . . . ) such that

π1 is uniformly distributed over Θ,

π2 is uniformly distributed over Θ× projP1
Tp,

...

πk is uniformly distributed over Θ× projP1×···×Pk−1
Tp
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...

First observe that (π1, π2, . . . ) satisfies coherency and common certainty in coherency. Moreover, by construction

(π1, π2, . . . ) ∈ TQ, and therefore g(π1, π2, . . . ) ∈ ∆(Θ × TQ). However, observe that g(π1, π2, . . . ) has an infinite

support, and therefore by Proposition 2.1, g(π1, π2, . . . ) /∈ ∆Q(Θ× TQ), which completes the proof. Q.E.D.

APPENDIX D: PROOFS OF SECTION 5

Proof of Proposition 5.1: The proof is rather straightforward. Consider an arbitrary t ∈ TU . It follows from

t ∈ TU
0 that g(t) ∈ ∆Q(Θ × TQ). Now, suppose that there is some t′ ∈ TQ \ TU such that g(t)(Θ × {t′}) > 0.

Since t′ /∈ TU , it follows that there is some k ≥ 0 such that t′ /∈ TU
k , implying that t /∈ TU

k+1, which contradicts

t ∈ TU . Therefore, g(TU ) ⊆ ∆Q(Θ × TU ), implying, together with Proposition 4.2, that g : TU → ∆Q(Θ × TU )

is an injection. Now, take an arbitrary µ ∈ ∆Q(Θ × TU ). It follows by construction that µ is associated with a U -

rational belief hierarchy, implying that g : TU → ∆Q(Θ × TU ) is surjective. Finally, continuity follows directly from

Brandenburger and Dekel (1993, Prop. 2). Q.E.D.

Proof of Proposition 5.2: First, we show that g(TN ) ⊆ ∆N (Θ× TQ). Consider an arbitrary (π1, π2, . . . ) ∈ TN .

It follows from Proposition 4.2 that there is some π ∈ ∆(Θ× TQ) such that g(π1, π2, . . . ) = π. It suffices to show that

π ∈ ∆N (Θ×TQ). For each k ≥ 0, let Bk denote the Borel σ-algebra in Θk. Since π extends every πk+1, it follows that

for every Bk ∈ Bk,

(D.1) πk+1(Bk) = π
(
Bk ×

∞∏
ℓ=k

∆Q(Θℓ)
)
.

Observe that every Borel event B ⊆ Θ× TQ is also Borel in Θ×
∏∞

k=0 ∆
Q(Θk), and

(D.2) B =

∞∩
k=0

(
projΘk

B ×
∞∏
ℓ=k

∆Q(Θℓ)
)
.

Then, it follows from Billingsley (1995, Thm. 4.1), together with Eq. (D.2), that

π(B) = lim
k→∞

π
(
projΘk

B ×
∞∏
ℓ=k

∆Q(Θℓ)
)

(D.1)
= lim

k→∞
πk+1

(
projΘk

B
)
.

Since (projΘk
B) ∈ Bk and πk+1 ∈ ∆N (Θk), it follows that πk+1

(
projΘk

B
)
∈ QN . Since {πk+1(projΘk

B)}k>0 is a

convergent sequence taking finitely many values, it follows that the limit converges to one of these values. Therefore,

π(B) ∈ QN , which proves that π ∈ ∆N (Θ× TQ).

Showing that ∆N (Θ× TQ) ⊆ g(TN ) is straightforward, and it follows directly from ∆N (Θ× TQ) ⊆ ∆Q(Θ× TQ).

Thus, we conclude that ∆N (Θ× TQ) = g(TN ), which together with Proposition 4.2 completes the proof. Q.E.D.

Proof of Theorem 5.1: First, we show that TU
0 = TN

0 . Consider some t ∈ TU
0 , implying that g(t) ∈ ∆Q(Θ×TQ).

By Proposition 2.1, g(t) has a finite support, implying that there is some n > 0 such that g(t) ∈ ∆{1,...,n}(Θ × TQ).

Hence, t ∈ TN
0 , which proves that TU

0 ⊆ TN
0 . Now, consider some t ∈ TN

0 , implying that t ∈ TN for some N ∈ N .

Therefore, by Proposition 5.2, g(t) ∈ ∆N (Θ × TQ), and therefore g(t) ∈ ∆Q(Θ × TQ), implying that t ∈ TU
0 , thus

proving TN
0 ⊆ TU

0 . Hence, TN
0 = TU

0 .
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Now, for an arbitrary k ≥ 0 suppose that for all ℓ ≤ k,

(D.3) TU
0 ∩ · · · ∩ TU

ℓ = TN
0 ∩ · · · ∩ TN

ℓ .

Then, we show that TU
0 ∩ · · · ∩ TU

k+1 = TN
0 ∩ · · · ∩ TN

k+1:

TU
0 ∩ · · · ∩ TU

k+1 = TU
0 ∩

( k∩
ℓ=0

{
t ∈ TQ : g(t)(Θ× TU

ℓ ) = 1
})

= TU
0 ∩

{
t ∈ TQ : g(t)

(
Θ× (TU

0 ∩ · · · ∩ TU
k )

)
= 1

}
=

{
t ∈ TU

0 : g(t)
(
Θ× (TU

0 ∩ · · · ∩ TU
k )

)
= 1

}
(D.3)
=

{
t ∈ TN

0 : g(t)
(
Θ× (TN

0 ∩ · · · ∩ TN
k )

)
= 1

}
=

k∩
ℓ=0

{
t ∈ TN

0 : g(t)(Θ× TN
ℓ ) = 1

}
= TN

0 ∩
( k∩
ℓ=0

{
t ∈ TN

0 : g(t)(Θ× TN
ℓ ) = 1

})
= TN

0 ∩ · · · ∩ TN
k+1.

Thus, it follows by induction that TU
0 ∩ · · · ∩ TU

k = TN
0 ∩ · · · ∩ TN

k for all k ≥ 0, implying that TU = TN . Q.E.D.

APPENDIX E: PROOFS OF SECTION 6

Lemma E.1 TQ is dense in T ∗.

Proof: Consider an arbitrary t∗ ∈ T ∗, and we show that there is a sequence of rational types converging to t∗ in

the topology of weak convergence.

It follows from Proposition 2.2 that for every t ∈ T ∗ there is a sequence of rational probability measures on the

space Θ × T ∗ that converges to g(t), i.e., there is a sequence {µt
k}k>0 with µt

k ∈ ∆Q(Θ × T ∗), such that µt
k

w∗

→ g(t).

Now, let Ti be a copy of T ∗, inducing a homeomorphism ri : Ti → T ∗. The elements of Ti are not yet associated with

any belief hierarchy. For each k > 0, define the type space (Θ, Ta, Tb, g
k
a , g

k
b ), such that for each ti ∈ Ti, and every

(θ, tj) ∈ Θ× Tj ,

(E.1) gki (ti)(θ, tj) = µ
ri(ti)
k

(
θ, rj(tj)

)
.

Observe that, by construction, for each k > 0, every ti is associated with a rational belief hierarchy. The latter induces

a mapping

βk
i : Ti → TQ

that associates every ti to a sequence of rational types, {βk
i (ti)}k>0. In other words, in the type space (Θ, Ta, Tb, g

k
a , g

k
b ),

the type ti yields the same rational hierarchy as βk
i (ti) does in (Θ, TQ

a , TQ
b , ga, gb). Note that for different k’s we may

obtain different hierarchies associated with ti. Finally, it suffices to show that

(E.2) βk
i

(
r−1
i (t∗)

) w∗

→ t∗.
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Observe that, for every k > 0 and each ti ∈ Ti, the first order beliefs associated with βk
i (ti) are given by

π1

(
βk
i (ti)

)
= margΘ g

(
βk
i (ti)

)
= margΘ gki (ti)

(E.1)
= margΘ µ

ri(ti)
k .

Since, µ
ri(ti)
k

w∗

→ g
(
ri(ti)

)
, it follows that {π1(β

k
i (ti))}k>0 weakly converges to the first order beliefs associated with

ri(ti). Since the latter is true for each i ∈ {a, b} and every ti ∈ Ti, it follows that for every n > 0 the sequence of n-th

order rational beliefs {πn(β
k
i (ti))}k>0 weakly converges to the n-th order beliefs associated with ri(ti). Therefore, the

sequence of rational types {βk
i (ti)}k>0 weakly converges to ri(ti), i.e., β

k
i (ti)

w∗

→ ri(ti). Finally, set ti = r−1
i (t∗), and

obtain Eq. (E.2), which completes the proof. Q.E.D.

Lemma E.2 TU is dense in TQ.

Proof: Let (π1, π2, . . . ) ∈ TQ. Then, it suffices to show that there is a sequence of N -rational — and therefore

by Theorem 5.1, U -rational — types {tℓ}∞ℓ=1, such that πk(t
ℓ)

w∗

→ πk for all k > 0. Now, for each ℓ > 0, define

tℓ :=
(
π1(t

ℓ), π2(t
ℓ), . . .

)
by

� πk(t
ℓ) := πk for all k < ℓ, and

� πk(t
ℓ) is such that margΘ πk(t

ℓ) = π1(t
ℓ) and also πk(t

ℓ)
(
Θ× {π1(t

ℓ)} × · · · × {πk−1(t
ℓ)}

)
= 1 for all k ≥ ℓ.

First, observe that by construction, for every ℓ > 0, the type tℓ is N -rational. Now, consider an arbitrary k > 0. Then,

it suffices, for every ε > 0, there is some ℓ0 such that for every bounded and continuous real-valued function f ,∣∣∣∣ ∫ fdπk(t
ℓ)−

∫
fdπk

∣∣∣∣< ε

for all ℓ > ℓ0. Set ℓ0 = k and the proof is completed. Q.E.D.

Proof of Proposition 6.1: Recall that denseness is transitive. Then, the proof follows directly from Lemmas E.1

and E.2. Q.E.D.

APPENDIX F: PROOFS OF SECTION 7

Proof of Theorem 7.1: We show that generically each pure strategy is rationally played under some conjecture if

and only if it is rationally played under some rational conjecture. Then, since this is a finite game, for each rational con-

jecture there is some U -rational belief hierarchy inducing this conjecture. First, we simplify the notation we use through-

out the proof: Let Si = (s1i , . . . , s
K
i ) and Sj = (s1j , . . . , s

L
j ). For each si ∈ Si, let Ui(si) :=

(
Ui(si, s

1
j ), . . . , Ui(si, s

L
j )
)
.

Fix some arbitrary Uj ∈ R|Si×Sj | and
(
Ui(s

1
i ), . . . , Ui(s

k−1
i ), Ui(s

k+1
i ), . . . , Ui(s

K
i )

)
∈ R|(Si−1)×Sj |. Then, we show that

the set

(F.1) Z :=
{
Ui(s

k
i ) ∈ R|Sj | : ski ∈ (projSi

R∗
0) \ (projSi

RU
0 )

}
is of Lebesgue measure 0 in R|Sj |. Define λ : ∆(Sj) → R by

(F.2) λ(µi) := max
s′i∈Si\{ski }

ui(s
′
i, µi),
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which is obviously continuous and convex in ∆(Sj). Now, suppose that
(
Ui(s

k
i , s

1
j ), . . . , Ui(s

k
i , s

L
j )
)
∈ Z. This implies

that

(F.3) ui(s
k
i , µi) ≥ λ(µi)

only holds with equality. Finally, observe that for every ε > 0,

�
(
Ui(s

k
i , s

1
j ) + ε, . . . , Ui(s

k
i , s

L
j ) + ε

)
/∈ Z. This is because in this case, (F.3) holds with strict inequality for

the irrational conjecture µi ∈ ∆(Sj) that solved it before. Therefore, by Proposition 2.2 there exists some

µ′
i ∈ ∆Q(Sj) which would be sufficiently close to µi and therefore by continuity it also satisfies (F.3).

�
(
Ui(s

k
i , s

1
j )− ε, . . . , Ui(s

k
i , s

L
j )− ε

)
/∈ Z. The reason is that in this case, (F.3) does not hold for any conjecture,

rational or irrational.

Repeat the same argument for all Uj ∈ R|Si×Sj | and
(
Ui(s

1
i ), . . . , Ui(s

k−1
i ), Ui(s

k+1
i ), . . . , Ui(s

K
i )

)
∈ R|(Si−1)×Sj | and

the proof is completed. Q.E.D.
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