% Maastricht University

Memory versus search in games

Citation for published version (APA):

Breuker, D. M. (1998). Memory versus search in games. [Doctoral Thesis, Maastricht University].
Universiteit Maastricht. https://doi.org/10.26481/dis.19981016db

Document status and date:
Published: 01/01/1998

DOI:
10.26481/dis.19981016db

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

« A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.

« The final author version and the galley proof are versions of the publication after peer review.

« The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 21 May. 2024

https://doi.org/10.26481/dis.19981016db
https://doi.org/10.26481/dis.19981016db
https://cris.maastrichtuniversity.nl/en/publications/8111328d-3508-4c87-b0b0-fcdbe77ef02e

Memory versus Search in Games

Memory versus Search in Games

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit Maastricht,
op gezag van de Rector Magnificus,

Prof. dr. A.C. Nieuwenhuijzen Kruseman,
volgens het besluit van het College van Decanen,
in het openbaar te verdedigen
op vrijdag 16 oktober 1998 om 16.00 uur

door

Dennis Michel Breuker

Promotor: Prof. dr. H.J. van den Herik

Leden van de beoordelingscommissie:
Prof. dr. P.T.W. Hudson (voorzitter)
Prof. dr. A. de Bruin (Erasmus Universiteit Rotterdam)
Prof. dr. J. Schaeffer (University of Alberta, Edmonton)
Prof. dr. S.H. Tijs
Prof. dr. H. Visser

Dissertation Series No. 98-4
ISBN 90-9012006-8
NUGI 855
Subject headings: artificial intelligence / games / search
©1998 Dennis Breuker
Cover design and photography: Hans Hoornstra

Voor min moeder en
ter nagedachtenis aan mijn vader

vi

Contents

List of Tables xi
List of Figures xiii
Preface b 4%
1 Introduction 1
1.1 Games 1
1.2 Knowledge versus search L0000 3
1.3 Memory versus search L. 4
1.4 Problem statements L. 5
1.5 Outline of the thesis 6

2 The transposition table 9
2.1 Notions and concepts L 10
2.2 Transpositions 13
2.3 A transposition tableo 14
2.3.1 Hashing o 14

2.3.2 The traditional components 16

2.4 Implementing a transposition table 19
2.4.1 Datastructures oo 19

2.4.2 Probability of errors 20

2.5 Experimental set-up L 22
2.5.1 Thegameofchess 22

2.5.2 The game of domineering 26

2.6 The test domains 27
2.6.1 Chess test sets in the literature 27

2.6.2 Ourchesstestset., 29

2.6.3 The domineering test set 30

2.7 Experiments and results L 30
2.7.1 Comparing replacement schemes 31

2.7.2 Quantifying the merits of move and score 42

2.7.3 Using additional memory 44

2.8 Chapter conclusions 47

vil

viii CONTENTS
3 The proof-number search algorithm 51
3.1 An informal description 51
3.2 The pseudo-code of the algorithm 54
3.3 Experimental set-up 55
3.3.1 Thesearchengine a7
3.3.2 Themoveordering, 58
3.4 Thetestset 58
3.5 Experiments. 59
36 Results. 59
3.6.1 Strengths of pnsearch 61
3.6.2 Weaknesses of pnsearch 64
3.7 Chapter conclusions L. 66
4 The pn?-search algorithm 69
4.1 Pn search with small memory: pn% search 69
4.2 The size of the second-level pn search 70
4.3 Experiments 74
44 Results. 75
4.5 Chapter conclusions L 78
5 The graph-history-interaction problem 81
5.1 The history of a position L. 81
5.2 An example of the GHI problem 83
5.3 A review of previouswork L 85
5.4 BTA: an enhanced DCG algorithm 88
5.4.1 Phase 1: select the best node 90
5.4.2 Phase 2: evaluate the best node 93
5.4.3 Phase 3: back up the new information 95
5.5 The pseudo-code of the BTA algorithm 95
5.5.1 Phase 1: select the most-provingnode 95
5.5.2 Phase 2: evaluate the most-provingnode 99
5.5.3 Phase 3: back up the new information 100
5.6 Experimental set-up 0L 102
57 Results. 103
5.8 Chapter conclusions L. 104
6 Evaluations and conclusions 107
6.1 More memory and less search 107
6.2 Less memory and more search 108
6.3 Less memory and lesssearch L. 109
6.4 Future research L 109
6.4.1 More memory and less search 110
6.4.2 Less memory and moresearch 110
6.4.3 Proof-number search L. 111

CONTENTS

1X

Appendices

A

B

H =2 O Q

The chess middle-game test set

The chess endgame test set

The transposition-table results

The pn-search and pn’-search test set
The pn-search versus af-search results

The pnZ-search results

G The BTA results for pn search

References

Index

Summary

Samenvatting

Curriculum Vitae

113

117

121

129

137

139

143

147

159

163

167

171

CONTENTS

List of Tables

2.1 Game-theoretic results of domineering. 41
3.1 Comparing pn search and af search. 61
5.1 Comparing four pn-search variants. 103
C.1 Results for 3-ply middle-game searches without time stamping. . . . 122
C.2 Results for 3-ply middle-game searches with time stamping. 122
C.3 Results for 4-ply middle-game searches without time stamping. . . . 122
C.4 Results for 4-ply middle-game searches with time stamping. 123
C.5 Results for 5-ply middle-game searches without time stamping. . . . 123
C.6 Results for 5-ply middle-game searches with time stamping. 123
C.7 Results for 6-ply middle-game searches without time stamping. . . . 124
C.8 Results for 6-ply middle-game searches with time stamping. 124
C.9 Results for 7-ply middle-game searches without time stamping. . . . 124
C.10 Results for 7-ply middle-game searches with time stamping. 125
C.11 Results for 8-ply middle-game searches without time stamping. . . . 125
C.12 Results for 8-ply middle-game searches with time stamping. 125
C.13 Results for 10-ply endgame searches with time stamping.. 126
C.14 Replacement-scheme results for domineering. 127
C.15 Comparing move and score in the middle game. 127
C.16 Comparing move and score in the endgame. 128
C.17 PV results in the middle game. 128
C.18 PV results in the endgame. 0oL 128
E.1 Comparing pn search and af search. 137
F.1 Two extremes of the fraction function. 139
F.2 The pn? results for varying parameters a and b. 140
G.1 The results for four pn-search variants. 143

x1

xii LIST OF TABLES

List of Figures

2.1 A depth-first traversal of a search tree. 12
2.2 A breadth-first traversal of the search tree of Figure 2.1. 12
2.3 A best-first traversal of the search tree of Figure 2.1. 13
2.4 A BTM position that can be reached by distinct move orders. 14
2.5 The hash value. 16
2.6 A wWTM position with blocked Pawns. 18
2.7 The af-search function with a transposition table. 25
2.8 Schemes in the middle game (without time stamping). 35
2.9 Schemes in the middle game (with time stamping). 37
2.10 Using a transposition table in the middle game. 38
2.11 Comparing replacement schemes in the endgame. 39
2.12 Comparing replacement schemes in domineering. 40
2.13 Comparing move and score in the middle game. 43
2.14 Comparing move and score in the endgame. 45
2.15 Storing an n-ply PV in the middle game. 48
2.16 Storing an n-ply PV in the endgame. 49
3.1 An AND/OR tree with proof and disproof numbers. 53
3.2 The pn-search algorithm for trees. bY)
3.3 The proof-and-disproof-numbers-calculation algorithm. 56
3.4 The most-proving-node-selection algorithm. a7
3.5 The node-expansion algorithm., a7
3.6 The ancestor-updating algorithm.. 58
3.7 Mate in 38 (wTm); (L. Ugren). 62
3.8 Mate in 25 (WTmMm); (J.-L. Seret). 63
3.9 Problem 14 of Win at Chess (WTM). 65
3.10 Problem 150 of The Enjoyment of Chess Problems (WTM).. 66
3.11 Problem 213 of Win at Chess (WTM). 67
3.12 Six-fold transposition in problem 213 of Win at Chess (WTM). . .. 67
4.1 The fraction function f(z). 73
4.2 The theoretical size of the second-level search. 74
4.3 The practical size of the second-level search. 75

xiil

Xiv LIST OF FIGURES
4.4 The pn? results with fixed parametera. 76
4.5 The pn? results with fixed parameter b. 77
4.6 The pn? results with fixed ratio %. 78
5.1 A pawn endgame (WTM). 83
5.2 The GHI problem in the pawn endgame. 84
5.3 A search tree with repetitions. 85
5.4 The DCG corresponding with the tree of Figure 5.3. 86
5.5 Our DCG corresponding with the DCG of Figure 5.4. 90
5.6 Encountering the first repetitionec.o 91
5.7 Encountering the second repetitione..o L. 92
5.8 Encountering the repetitione. o000 93
5.9 Marking node F' as a possible-draw. 94
5.10 Marking node C' as a possible-draw. 94
5.11 The BTA pn-search algorithm for DCGs. 96
5.12 The function SelectMostProvingNode. 97
5.13 The function SelectBestChild. 98
5.14 The procedure ExpandNode. 99
5.15 The procedure UpdateAncestors. 100
5.16 The procedure UpdateOrNode. 101
5.17 The procedure UpdateAndNode. 102
5.18 Mate in 14 (wtm); (J. Kriheli).00 00000 105

Preface

After receiving my M.Sc. degree in Leiden, I faced the pleasant choice between be-
coming a Ph.D. researcher in Leiden and becoming a Ph.D. researcher in Maastricht.
After some thought I decided to go to Maastricht, a choice I have never regretted. T
was inspired not only by the beauty of Maastricht, but also by many persons, whom
I want to acknowledge here.

First of all, I would like to thank my supervisor Jaap van den Herik. His critical
attitude towards my research always kept me going. Furthermore, he taught me
valuable lessons on doing research and on writing scientific articles. Next, many
thanks go to Jonathan Schaeffer. Talking to him always made me enthusiastic, and
his experience in the domain of game playing was of great benefit. Also, his suggestion
to shift my attention towards computer games, giving my research a new impulse,
proved very valuable. I thank Jos Uiterwijk for the daily supervision. We had many
fruitful discussions, and without his help the thesis would not have been what it is
now.

Further, I want to thank Patrick Hudson for reading this thesis. His suggestions
for correcting my English writings were helpful. Patrick, I promise never to fax you
that many pages again. I thank the late Bob Herschberg for scrutinizing some parts
of the thesis in an earlier stage, improving the text considerably.

I would like to thank my colleagues at the Department of Computer Science
for making me feel comfortable. Of all the room-mates I have had in the past few
years, I especially want to thank Victor Allis for his ever-present enthusiasm. 1
thank Patrick Schoo, Maarten van der Meulen and Jo “de la Hiti” Beerens for their
technical support. Many thanks go to the administrative staff of the Department
of Computer Science. Sabine, iech bedaank diech veur d’ne relativerende kiek op ’t
promovere en veur 't frisse winsje in de vakgréop. Joke, bedankt voor de kritische
grapjes en voor het helpen met de crypto’s.

I thank my chess pals Harold “Liebe” Bekkering and Gerrit “Big-Love” Verhagen
for always being there when I needed a good friend to talk to (or to drink with on
the OLVP). Further, T will never forget the good times I had with Hans “Hmpf”
Hoornstra. Finally, the visits of Cees “Bebi” Beekhuis made my stay in Maastricht
even more pleasant than it already was.

Tk wil in het bijzonder mijn ouders bedanken voor de mogelijkheden die ze me
hebben geboden om me te ontwikkelen. Helaas is mijn vader te vroeg overleden om
mijn promotie mee te maken, maar ik weet dat hij trots op me zou zijn geweest.

XV

XVl PREFACE

Acknowledgements

The research reported in this thesis is supported, in part, by the Foundation for
Computer Science Research in the Netherlands (STON), with financial support from
the Netherlands Organization for Scientific Research (NWO) (dossier code 612-22-
306).

Part of the research has been performed in the framework of the SYRINX project
(SYnthesis of Reliable Information using kNowledge of eXperts), a joint research
effort of IBM and the Universiteit Maastricht (project code 561553). The research
has been carried out under the auspices of SIKS, the Dutch Research School for
Information and Knowledge Systems.

Dennis Breuker
Amsterdam, August 1998

Chapter 1

Introduction

In this thesis, research on the balance between memory and search is presented. As
is well known, the trade-off between knowledge and search plays a key role in many
domains, such as expert systems, theorem proving, and games. We explicitly note
that our research has a focus which differs from the research on the trade-off between
knowledge and search, where dealing with knowledge and knowledge representations
in order to arrive at intelligent solutions is stressed. In our research we look at just
one characteristic of knowledge, viz. the storage of knowledge. More specifically, the
research presented in the thesis concentrates on memory versus search in games.
The domain used is that of two-player zero-sum games, and in particular the games
of chess and domineering.

1.1 Games

For as long as computers have existed, people have tried to let them play intelligent
(non-trivial) games. The challenge of a computer playing an intelligent game is a
classic problem within the field of Artificial Intelligence (AT). Two pioneers seriously
considered a computer playing chess, when AT was still in its infancy. Shannon (1950)
published a seminal research article in which he described mechanisms to be used
in a program playing chess. Turing (1953) was the first to describe a chess-playing
program. The first program that could play a reasonable game in a related domain
was a checkers program (Samuel, 1959; Samuel, 1967). This program was able to
learn from its mistakes, thereby improving its performance.

Since then, much research has been conducted in the domain of games, resulting
in very strong programs for many intelligent games. Nowadays, the best checkers
program is CHINOOK, written by Martin Bryant, Rob Lake, Paul Lu, Jonathan
Schaeffer and Norman Treloar (Schaeffer et al., 1992; Schaeffer, 1997). Tn 1992 it
played the “Man versus Machine World Checkers Championship” against Dr. Marion
Tinsley, who is considered the greatest human checkers player in the history of the
game (after he became World Champion in 1955 he lost only five serious games out

1

2 Chapter 1. Introduction

of some thousands (Schaeffer, 1996a)). It was the first time in history that a machine
challenged a human for an official title in a non-trivial game of skill. Tinsley won
the match (4 wins, 33 draws, and 2 losses). In 1994 a rematch between Tinsley and
CHINOOK was played. Tinsley withdrew due to illness after six games (all draws)
and he passed the title to CHINOOK. Don Lafferty, the 1994 United States checkers
Champion, then challenged CHINOOK and they tied the match (1 win, 18 draws, and
1 loss). Tinsley never recovered from his illness and died in 1995. The subsequent
Man versus Machine World Championship against Don Lafferty (January 1995)
ended in a victory for CHINOOK (1 win and 31 draws). Since then the gap between
man and machine has widened considerably. Therefore, CHINOOK is considered to
be the strongest checkers-player in the world.

The best chess program (or better: chess machine or chess computer) is DEEP
BLUE, created by Jerry Brody, Murray Campbell, A. Joseph Hoane Jr., Feng-hsiung
Hsu and Chung-Jen Tan (Hsu et al., 1990). In February 1996 it played a six-game
match under normal tournament conditions against the human chess World Cham-
pion of the PCA, Garry Kasparov. Kasparov won the match (3 wins, 2 draws, and
1 loss). However, DEEP BLUE won the first game, surprising many experts (Uiter-
wijk, 1996; Newborn, 1997). In May 1997 it played a second six-game match against
Kasparov. This time DEEP BLUE was able to win the match (2 wins, 3 draws, and 1
loss) (Schaeffer and Plaat, 1997; Goodman and Keene, 1997; King, 1997). This was
a milestone in Al history, finally realizing Shannon’s dream of 50 years before.

One of today’s strongest Othello programs is LOGISTELLO, written by Michael
Buro (1994). In the 22 international Othello tournaments it has played so far, it
ended first sixteen times, and second five times. In August 1997 it played a six-game
match against the Othello World Champion Takeshi Murakami, and won the match
with the perfect score of 6-0. This clearly shows that the best Othello programs
have become stronger than any human player (Buro, 1997).

We offer four arguments why researchers are so interested in intelligent games.

First, games provide an exact, closed domain (the rules are well-defined), in
contrast to real-world problems, which are often rather vague (Van den Herik, 1983).
Often many pages are required to give a proper description of (the background of)
a real-world problem. Some real-world problems (e.g., in law and legal knowledge-
based systems) can be interpreted differently by different people (Van den Herik,
1991). In contrast, games can be defined with sufficient precision.

Second, intelligent games are not trivial. Although it takes only an hour or so to
learn the rules of chess, so far it has been impossible, even for the best human, to
play chess perfectly. Playing intelligent games is hard and the obstacles that have to
be tackled reflect the complexities inherent in real-world problems. Minsky (1968)
stated “It is not that the games and the mathematical problems are chosen because
they are clear and simple; rather it i1s that they give us, for the smallest initial
structures, the greatest complezity, so that one can engage some really formidable
situations after a relatively minimal diversion into programming.”

Third, the domain of games is well-suited for testing new ideas in problem solving.
Therefore, Michie (1980) proposed computer chess as the drosophila melanogaster

1.2. Knowledge versus search 3

(fruit fly) of machine intelligence. According to Fraenkel (1996) ideas from the do-
main of games have been used in mathematics, computer science and economics. Nils-
son (1971) mentions several applications, including operations research (traveling-
salesman problem) and chromosome matching.

Fourth, by creating a machine which plays an intelligent game, it may be possible
to gain more insight into the way people reason. The Dutch psychologist De Groot
(1946) has investigated the thinking process of chess-players during a game. The
American psychologists Newell and Simon (1972) tried to build models of the human
mind, based on the results of their research on computer chess (Newell et al., 1958).
Recently, a follow-up to De Groot’s (1946) book has been published (De Groot and
Gobet, 1996) concentrating on perception and memory of chess players.

All four arguments provide a legitimate reason to perform research on games.
Developing computer programs or a new computer technique may help to model
a domain adequately or may remove an obstacle. Our research is inspired by the
arguments two and three. We have developed two new techniques (for transposition
tables and for proof-number search) and solved two open problems (domineering
and the graph-history-interaction problem).

1.2 Knowledge versus search

One of the best known trade-offs in Computer Science is the trade-off between space
and time. In the domain of Al, especially game playing, this comes down to the
trade-off between knowledge and search (Clarke, 1977). In theory, all problems with
a finite state space are solvable (Allis et al., 1991) in two distinct ways.

1. Solve the problem by knowledge, not using any search. This is possible if
all information for the initial state and the subsequent states necessary for
solving the problem is available. Moreover, there is sufficient space to store the
information, and there is a way of discovering and representing the knowledge
necessary for solving the problem. For instance, the game of nim can be solved
by knowledge alone (Bouton, 1901).

2. Solve the problem by search, not using any knowledge. This is possible if
there is sufficient time available to do a sufficiently large search of the state
space. For instance, the game of tic-tac-toe can be solved by brute force alone
(Berlekamp et al., 1982a).

Most problems cannot be solved in practice by using knowledge only or search
only. If the state space is too large to be searched in a reasonable time, knowledge is
needed to guide the search and to reduce the state space. If the state space is too large
to be stored in memory, search is needed to compensate for the loss of knowledge.
Thus, for solving the majority of problems a combination of knowledge and search
is needed. Some examples of games which have been solved by a combination of
knowledge and search are qubic (Patashnik, 1980; Allis and Schoo, 1992), connect-

4 Chapter 1. Introduction

four (Allis, 1988; Uiterwijk et al., 1989; Allen, 1989), go-moku (Allis et al., 1993;
Allis, 1994; Allis et al., 1996) and nine men’s morris (Gasser, 1995).

When opting for search to solve a problem, we basically distinguish two search
categories.

1. Full-width search (henceforth called brute-force search uses minimal knowledge
to guide the search. After expanding a node in the search, knowledge is used to
sort the children. The choice of the node to expand next comes from a (small)
subset of the nodes in the tree. For instance, in breadth-first search the next
node to be expanded is one of the siblings of the last expanded node, and in
depth-first search the next node to be expanded is one of the children of the
last expanded node.

2. Best-first search uses more knowledge to guide the search. The knowledge is
used for the choice on which node to expand next. The node selected can be
any leaf in the tree.

Two basic types of knowledge interact with search (Berliner, 1984).

1. Directing knowledge. In brute-force, search directing knowledge affects the
order in which the descendants of a node are examined. In best-first search,
directing knowledge guides the search (i.e., selects which node to expand next).

2. Terminal knowledge. Terminal knowledge is applied to the leaves of the search
tree. It produces either an exact value (win, draw, or loss), in case the leaf is a
terminal node, or a measure of the goodness of the position the leaf represents.
Terminal knowledge is used both in brute-force search and in best-first search'.

In brute-force search many leaves will be evaluated during a search process. Ter-
minal knowledge is applied to all leaves (millions of times during a single search
process). Thus, each term in the terminal-knowledge function (the evaluation func-
tion) contributes to the cost of an evaluation, which affects the speed of the search
process, and should be carefully weighed.

1.3 Memory versus search

The trade-off between knowledge and search mostly deals with knowledge and knowl-
edge representations. We only look at one characteristic of knowledge, viz. the stor-
age of knowledge in memory. The purpose of storing knowledge acquired during the
search process is to re-use it at a later time. Here we introduce the trade-off between
memory and search, by giving two points of view.

As a first observation we note that the size of computer memory is no longer an
obstacle, making it easier to equip a computer with more memory. Now the question
is: can we make use of the large amount of memory, by storing more knowledge into

'In best-first search terminal knowledge is closely related to directing knowledge, and may be
identical (Berliner, 1984).

1.4. Problem statements 5

this memory, thereby decreasing the need for searching? Depth-first search needs
little memory. Only the path from the root to the position under investigation needs
to be stored in memory. To use the remaining memory, knowledge about positions
encountered in the search process may be stored in a large table, the so-called trans-
posttion table. The knowledge stored in the table 1s used to relieve the search. Thus,
searching is reduced at the cost of using more memory.

As a second observation we mention the noteworthy increase in computer speed.
Can we make use of this increase by using speed to accelerate the search, thereby
acquiring more knowledge, decreasing the need for memory? Most best-first search
algorithms need a large amount of memory to store the entire search tree. The quality
of a best-first search algorithm depends on the quality of the directing knowledge.
The speed of a computer increases faster than the amount of internal memory in a
computer. Thompson (1996b) states that from 1985 to 1996, the speed of a typical
high-quality workstation has increased by a factor of 150 (from 1 MIP to 150 MIPs),
whereas its internal memory only has increased by a factor of 16 (from 16 MB to
256 MB). At current computer speeds, memory is quickly filled. Therefore, ways
have to be found to use the increase in speed to acquire more knowledge per node,
improving the directing knowledge. Then, the search process will search the state
space more efficiently, reducing the need for memory at the cost of more searching.

1.4 Problem statements

Three problem statements are considered. The first problem statement addresses
decreasing the need for search by increasing the use of memory.

Problem statement 1: Which methods exist to improve the efficiency of a transpo-
sition table?

A transposition table 1s normally used in combination with a depth-first-search
algorithm. The most commonly used depth-first algorithm for two-person games is
the af algorithm. In the thesis we present research on improving the efficiency of
a transposition table used in the af algorithm. The research is performed in two
domains: chess and domineering.

The second problem statement addresses decreasing the need for memory by
increasing the use of search.

Problem statement 2: Which methods exist for best-first search to reduce the need
for memory by increasing the search, thereby gaining more knowledge per
node?

In the thesis we present research on a relatively new best-first-search algorithm,
proof-number search (pn search). Like many best-first search algorithms, pn search
stores the complete search tree in memory. An attempt is made to reduce the need
for memory for pn search, realized in a pn-search variant, called pn? search.

6 Chapter 1. Introduction

Summarizing, in the first problem statement the need for search is reduced by
increasing the use of memory. Analogously, in the second problem statement the
need for memory is reduced by increasing the use of search. An attempt to combine
the advantages of both approaches (reducing the need for search and reducing the
need for memory) is the following. In a search tree, it may happen that identical
nodes are encountered at different places. If these so-called transpositions are not
recognized, the search algorithm unnecessarily expands identical subtrees. Therefore,
it is profitable to recognize transpositions and to ensure that for each set of identical
nodes, only one subtree is expanded. If a best-first search algorithm (which stores
the whole search tree in memory) is used, the search tree is converted into a search
graph, by joining identical nodes into one node. This causes subtrees to be merged,
decreasing the need for memory. Since the graph contains fewer nodes than the
tree, less searching is needed as well. However, joining identical nodes into one node
introduces the so-called graph-history-interaction (GHI) problem, since determining
whether nodes are identical is not the same as determining whether the search states
represented by the nodes are identical.

This is laid down in the third problem statement, addressing both the decrease
in the need for memory and the decrease in the need for search.

Problem statement 3: Is it possible to give a solution for the GHI problem for best-
first search?

1.5 Outline of the thesis

The contents of the thesis is as follows.

Chapter 1 contains an introduction, the three problem statements and an outline
of the thesis.

Chapter 2 tries to answer the first problem statement by discussing enhance-
ments to the implementation of a transposition table. First, some important notions
and concepts, used throughout the thesis, are defined. Thereafter, it is explained
why a transposition table is needed. Next, implementation details are given and
an experimental set-up is presented. Three series of experiments are described: (1)
when different positions compete for storage in the same entry of the transposition
table, a replacement scheme has to be used for priority arguments; several replace-
ment schemes are compared; (2) the merits of storing different characteristics of a
position are quantified; (3) the use of additional memory is discussed, and it appears
that there is still room for improvements. Finally, it is shown that a transposition
table is a useful way of reducing the search at the cost of using more memory.

Chapter 3 presents the pn-search algorithm. Experiments with pn search have
been performed to obtain more insight into the strengths and weaknesses of this
algorithm when applied to a complex game such as chess (i.e., to positions of which
it is possible to prove the game-theoretic value). The algorithm will be used as a
test bed in the Chapters 4 and 5. First, an informal description of the algorithm is

1.5. Outline of the thesis 7

given, followed by the pseudo-code. Experiments are reported, comparing the pn-
search algorithm to the af-search algorithm. The strengths and weaknesses of the
pn-search algorithm are discussed.

Chapter 4 tries to answer the second problem statement and presents the pn?-
search algorithm. This is a modification of the pn-search algorithm when only little
memory is available, using less memory at the cost of more searching. Experiments
are given, showing that this algorithm solves more positions in the test set than the
standard pn-search algorithm, implying that pn? search is a useful algorithm when
little memory is available.

Chapter b answers the third problem statement. A review of attempted solutions
to the GHI problem is presented. Next, our practical solution for best-first search
algorithms that keep the whole search tree in memory is presented. Thereafter,
the pseudo-code for the implementation in pn search is shown. This algorithm is
compared to the standard pn-search algorithm and its modifications. Experiments
are reported, showing that this graph algorithm for pn search performs well.

The evaluation of the three problem statements, final conclusions, and future
research are given in Chapter 6.

Appendix A lists the test set used for the chess middle-game transposition-table
experiments. The test set used for the chess endgame transposition-table experiments
is presented in Appendix B. Appendix C lists the results of all experiments described
in Chapter 2. The test set used for the proof-number search experiments is given
in Appendix D. Appendix E presents the results of the pn-search and «3-search
experiments described in Chapter 3. The results of the pn? experiments described
in Chapter 4 are shown in Appendix F. Finally, Appendix G lists and compares
the results of the experiments given in Chapter 5 with the results of the pn tree
algorithm.

Chapter 1. Introduction

Chapter 2

The transposition table

This

In this chapter we try to obtain more insight into the first problem statement:

chapter is an updated and abridged version of!

Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1994a). Replace-
ment Schemes for Transposition Tables. ICCA Journal, Vol. 17, No. 4, pp.
183-193,

Breuker D.M. and Uiterwijk J.W.H.M. (1995). Transposition Tables in Com-
puter Chess. New Approaches to Board Games Research: Asian Origins and
Future Perspectives (ed. A.J. de Voogt), pp. 135-143. International Institute
for Asian Studies, Leiden, The Netherlands,

Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1996). Replace-
ment Schemes and Two-Level Tables. ICCA Journal, Vol. 19, No. 3, pp. 175-180,

. Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1997b). Informa-

tion in Transposition Tables. Advances in Computer Chess 8 (eds. H.J. van den
Herik and J.W.H.M. Uiterwijk), pp. 199-211. Universiteit Maastricht, Maas-
tricht, The Netherlands, and

Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1998b). Solving
Domineering. Submitted as journal publication. Also published (1998) as Tech-
nical Report CS 98-05, Universiteit Maastricht, Maastricht, The Netherlands.

which methods exist to improve the efficiency of a transposition table?

In Section 2.1 some important notions and concepts, used throughout the thesis,
are introduced. Section 2.2 explains what transpositions are and why it is important
to recognize them. The concept behind the transposition table is given in Section 2.3.
Section 2.4 lists several data structures suitable for a transposition table. The exper-
imental set-up of our research is given in Section 2.5. Section 2.6 discusses the test
domains. Three series of experiments to improve the efficiency of the transposition

table are presented in Section 2.7. Section 2.8 provides conclusions.

I Thanks are due to the Editors of Advances in Computer Chess 8, the Editor of New Approaches
to Board Games Research, and the Editorial Board of the ICCA Journal for giving permission to

use the contents of the articles in this chapter.

10 Chapter 2. The transposition table

2.1 Notions and concepts

In this section we define several notions and introduce various concepts which we
will use throughout the thesis. The main notions are: game tree, search tree and
search methods.

(Game tree

A game tree is a representation of the state space of a game. In the case of a two-
player zero-sum game, the game tree is an oriented AND/OR tree. A node in the
tree represents a position in the game; an edge represents a move. A sequence of
edges forms a path if each edge shares one node in common with the preceding edge,
and the other node in common with the succeeding edge. The root of the tree is
a representation of the initial position. A terminal position is a position where the
rules of the game determine whether the result is a win, a draw, or a loss. A terminal
node represents a terminal position. A node is ezpanded by generating all successors
of the position represented by the node. A direct successor of a node is termed a
child of the node. Analogously, the direct predecessor of a node is termed the parent
of the node. Nodes having the same parent are termed siblings. A node with at least
one successor is termed an interior node. We note that the root is the only interior
node without a parent.

A game tree is generated by expanding all the interior nodes. This process is
repeated until all unexpanded nodes are terminal nodes. It follows that the game
tree for the initial position is an explicit representation of all possible paths of the
game (Pearl, 1984). Zermelo (1912) was the first person stating that every position
(not necessarily a terminal position) can be theoretically characterized as a win,
a draw, or a loss in the game of chess. The game-theoretic value is the value of
the initial position, given that both players play optimally. A minimal game tree is
defined as a minimal part of the game tree necessary to determine the game-theoretic
value. The game-theoretic value can, in principle, be determined by examining the
complete game tree. Since for most games the game tree (and even a minimal game
tree) is extremely large, this is not feasible in practice. For instance, in chess the
game tree consists of roughly 10*? nodes (Shannon, 1950). Chinchalkar (1996) gives
1.77894 x 10*® as an upper bound and, according to Bonsdorff et al. (1978), N.
Petrovié assumes that the upper bound is approximately 2 x 10%3.

Search tree

When the game tree is too large to be generated completely, a search treeis generated
instead. This tree is only a part of the game tree. The root represents the position
under investigation, and all other nodes of the search tree are generated during the
search process. The nodes which do not have children (yet) are termed leaves. Leaves
include terminal nodes and nodes which are not yet expanded.

The depth of a node in a tree is zero for the root, and one plus the depth of its
parent otherwise. A node P with a smaller depth than a node @) is an ancestor of

2.1. Notions and concepts 11

node @ if node P is on the path from the root to node @. In this case, node @ is
a descendant’ of node P. A subtree of a tree is formed by a node together with all
its descendants. The depth of a tree is equal to the largest depth of all leaves, often
counted in plies. A ply can be viewed as a half move (a move by one of the two
players). The term ply was introduced by Samuel (1959). A path from the root to
a leaf is called a wvariation. Leaves are evaluated (given a value) with the aid of an
evaluation function. A principal variation is a sequence of moves where both players
play optimally, according to the evaluation function used.

The order in which the nodes of the search tree are generated is defined by the
type of search method.

Search methods

Several search methods have been developed. They fall into three categories®: (1)
depth-first search algorithms, (2) breadth-first search algorithms, and (3) best-first
search algorithms.

In depth-first search algorithms the root is expanded and one of its children
is chosen for further investigation. If the node chosen is not a terminal node, the
node is expanded and again one of its children is chosen for further investigation. If
the child chosen is a terminal node, one of the node’s siblings is chosen for further
investigation. If all children have been investigated, one of the siblings of the parent
is chosen for further investigation, and so on. This process is repeated throughout
the whole tree. In summary, the children are expanded before the sibling nodes. In
Figure 2.1 a search tree of depth three is depicted. For all AND/OR trees/graphs
in this thesis white squares represent OR nodes (positions with the first player to
move), and black circles represent AND nodes (positions with the second player to
move). As an aid to the reader we mention that oR nodes can be seen as playing
positions with White to move (WTM), with one or two selected strategies in mind;
AND nodes as playing positions with Black to move (BTM), in which case White has
to be prepared for all countermoves. The numbers represent the order in which the
nodes are generated with depth-first search.

An advantage of depth-first search is that it may find a solution rather quickly.
However, a disadvantage is that this method often spends much time exploring
unfruitful paths. An example of a depth-first search algorithm is af search (Knuth
and Moore, 1975).

In breadth-first search algorithms, first the node representing the initial state is
expanded. Then one of the leaves of the next level is chosen for further investigation.
If it is not a terminal node, it is expanded. Thereafter, the next leaf on this level
is chosen for further investigation. If all the leaves on this level have been chosen,
one of the leaves of the next level is chosen for further investigation. This process
is repeated throughout the whole tree. In summary, the children are expanded after

2We note that a parent is a special case of an ancestor, and a child is a special case of a
descendant.

3Here we split the brute-force search into two categories, effectively creating three categories
instead of the two mentioned in Section 1.2.

12 Chapter 2. The transposition table

Figure 2.1: A depth-first traversal of a search tree.

the sibling nodes. This is illustrated in Figure 2.2. The numbers indicate the order
in which the nodes are generated with breadth-first search.

Figure 2.2: A breadth-first traversal of the search tree of Figure 2.1.

An advantage of breadth-first search is that the first solution found will be the
solution with the shortest path. A major disadvantage is that it requires a large
amount of memory to store all the nodes of the tree: a node is not needed (and does
not have to be preserved in memory any more) after its subtree is expanded, but
since breadth-first search expands the nodes one level after another, all nodes have
to be kept in memory. Depth-first search first expands all the children of a node,
and therefore a chosen node is not needed (and does not have to be preserved in
memory any more) as soon as one of its siblings is chosen for expansion.

Finally, best-first search combines the advantages of both depth-first search and
breadth-first search. At each step of the search process, the most promising path
(according to some criterion) is expanded. Usually what happens is that some depth-

2.2. Transpositions 13

Figure 2.3: A best-first traversal of the search tree of Figure 2.1.

first searching occurs when the most promising branch is explored. Eventually, if the
path looks less promising, one of the lower-level branches will be explored. However,
search at the old branch is only suspended, and the search can return to it whenever it
seems necessary. An example of a best-first search algorithm is proof-number search
(Allis et al., 1994). A best-first traversal is depicted in Figure 2.3. The numbers
indicate a possible order in which the nodes might be generated.

Plaat (1996) states that the border between best-first search algorithms and
depth-first search algorithms is not as clear as shown above. Plaat et al. (1996) give
a new formulation of the SSS* algorithm (Stockman, 1979), based on the af algo-
rithm. Furthermore, they present a framework, termed MTD(f), that facilitates the
construction of several best-first fixed-depth game-tree search algorithms, based on
the depth-first minimal-window a3 search, enhanced with storage.

2.2 Transpositions

When searching for a move, game programs build large search {rees. Since a position
can sometimes be arrived at by several distinct move sequences, the size of the search
tree can be reduced considerably if the results of a position previously encountered
remain available. The results can be stored in a large direct-access table, called a
transposition table (Greenblatt et al., 1967; Slate and Atkin, 1977). A closer inspec-
tion shows that the search tree then can be considered as a search graph, due to the
transpositions. As an example we provide the chess position of Figure 2.4. It can be
reached via the distinct move orders 1. e4 /N6 2. {/N\e3, and 1. Hc3 H\f6 2. e4d.
To complicate matters, the following sequence of seven plies, 1. /N3 HNI6 2. {HNe3
Ng8 3. ed /N6 4. {Ngl, also leads to the same position.

Assume that the position of Figure 2.4 appears somewhere in the search tree.
After examining the position, a best move is found together with its score, based on
a subtree of a certain depth. Since it is possible that this position exists elsewhere in

14 Chapter 2. The transposition table

Figure 2.4: A BTM position that can be reached by distinct move orders.

the tree, the relevant information of the position is saved in the transposition table.
The relevant information includes the score of the position, the best move, and the
depth to which the subtree was searched. Adhering to a8 search (Knuth and Moore,
1975), the score need not be an exact value, but may be a lower or an upper bound.

Slate and Atkin (1977) already remarked that, for chess, “Strictly speaking, po-
sitions reached via different branches are rarely truly identical, because the 50-move
and three-time repetition draw rules make the identity of a position dependent on
the history of moves leading to that position. This effect is small, and we decided to
ignore it.” However, ignoring the history of a position can give an incorrect result.
This is known as the graph-history-interaction (GHI) problem, of which a solution
is presented in Chapter 5. Up to Chapter 5 we concur in ignoring the history of a
position.

2.3 A transposition table

2.3.1 Hashing

In the ideal case one would preserve every position encountered in a search pro-
cess, together with its relevant information*. However, the memory required usually
exceeds the available capacity of most present-day computers. Therefore, a trans-
position table is implemented as a finite hash table (Knuth, 1973). A position is
converted into a sufficiently large number (the hash value) by using some hashing

4In chess, the side to move, castling rights and en-passant status are all part of the description
of a position.

2.3. A transposition table 15

method. The most popular method used by game programmers is described by Zo-
brist (1970).

Hashing in chess

In chess there are twelve different pieces (Pawn, Knight, Bishop, Rook, Queen, King
for both colours) and 64 squares. For any combination of a piece and a square a
random number is generated. In addition, four unique random numbers are generated
for castling rights, eight for en-passant rights, and one for changing the side to move.
Thus, in total 781 (12 x 644448+ 1) unique numbers are available. The hash value
for a position is calculated by doing an exclusive-or (XOR) of the numbers associated
with the piece-square combinations of that position. If applicable, the castling and
en-passant numbers are included too. This way of calculating a hash value has two
advantages.

1. The XOR operation is a fast, bitwise operation.

2. The hash value can be updated incrementally. The hash value for a position
resulting from some move can simply be obtained by doing an XOR between
the hash value of the old position and the two numbers associated with the
piece-fromSquare and the piece-toSquare of the move involved?®.

Warnock and Wendroff (1988) implemented in their program LACHEX a hashing-
algorithm method used less frequently, based on the theory of error-correcting codes.
Their hashing set is constructed from a Bose-Chaudhuri-Hocquenghem (BCH) code
(MacWilliams and Sloane, 1977). The only other program we know which uses this
method is ZUGZWANG (Feldmann, 1993). The method is not widely used; for details
we refer to Warnock and Wendroff (1988).

Hashing in domineering

(For a description of the domineering game we refer to subsection 2.5.2.) For any
occupied square on a board a unique random number is generated. (It is irrelevant
whether a square is occupied by a vertically or horizontally placed domino.) So for
the standard (8x8) board 64 unique numbers are sufficient. No random number for
changing the side to move is needed, since 1t 1s impossible to have two equal positions
with different players to move for the same starting player. The hash value of a
position is calculated by doing an XOR of the numbers associated with the occupied
squares. The hash value for a position resulting from some move is obtained by doing
an XOR between the hash value of the old position and the two numbers associated
with the squares of the move involved.

50ne additional XOR is needed for changing the side to move. When capturing, castling or en
passant is involved, one or a few additional XORs have to be applied.

16 Chapter 2. The transposition table

Hash value and hash key

Figure 2.5 illustrates how the hash value is generally used. If the transposition table
consists of 2" entries, the n low-order bits of the hash value are used as a hash indez.
The remaining bits (the hash key) are used to distinguish among different positions
mapping onto the same hash index (i.e., the same entry in the transposition table).
Therefore, the total number of bits should be sufficiently large (Hyatt et al., 1990).
For instance, the chess program CRAY BLITZ uses a 64-bit hash value. For more
details, we refer to subsection 2.4.2.

Hash value
Transposition table

Hash index

n .
Hash key (n bits) (2 entries)

Figure 2.5: The hash value.

2.3.2 The traditional components

For an entry in a transposition table to be effective, it should at least contain the
following information (Marsland, 1986; Hyatt et al., 1990):

key ©: contains the more significant bits of the hash value (see Figure 2.5). The key
is used to distinguish among different positions having the same hash index.

move : contains the best move in the position obtained from a search. This is the
move which either caused a cut-off, or obtained the highest score. The move
is used for the directing knowledge (move ordering).

score : contains the value of the best move in the position obtained from a search.
Since we adhere to af search, the score can be an exact value, an upper bound
or a lower bound. The score can be used to adjust the a and 8 bounds of the
search.

flag : contains information on the score. The flag indicates whether the score 1s an
exact value, an upper bound, or a lower bound.

6Marsland (1986) uses the term ‘lock’.

2.3. A transposition table 17

depth : contains the relative depth of the subtree searched. When doing an n-ply
search from the root and a position is stored at ply m of the tree, the search
depth is n—m. The depth indicates how deep a previously encountered position
has been investigated.

We call a transposition table with these five information fields a traditional table.

During the search, each position encountered is looked up in a table. If the posi-
tion is found, the information stored can be used in three distinct ways, depending
on the contents of flag and depth.

1. The depth still to be searched is less than or equal to the depth retrieved from
the table and the retrieved value is an exact value. The position does not have
to be searched: the search value is retrieved from the table”. Usually, the best
move is also retrieved from the table, and used for determining the principal
variation.

2. The depth still to be searched is less than or equal to the depth retrieved from
the table and the retrieved value is not an exact value. The retrieved value can
be used to adjust either the a value (if the retrieved value is a lower bound)
or the 3 value (if the retrieved value is an upper bound). If this causes a to
be greater than or equal to 3, then a cut-off occurs and the position does
not have to be searched. Otherwise, the retrieved move can be used as a first
candidate, since it was considered best (or at least good enough to yield a
cut-off) previously.

3. The depth still to be searched is greater than the depth retrieved from the
table. In this case only the retrieved move is useful®. It can be investigated
first, since it was considered best for a shallow search, the probability being
high that it also will be best for deeper searches. Thus the move is used to
improve the directing knowledge (move ordering).

When using iterative deepening (Gillogly, 1972; Slate and Atkin, 1977) and
minimal-window search (Pearl, 1980; Marsland and Campbell, 1982; Reinefeld,
1983), transposition tables may significantly reduce the search effort, especially in
chess endgame positions with only a few pieces on the board. Nelson (1985) states
that “In normal situations the move generator is called only about 35% of the time,
the other 65% being handled by the transposition-table move.” Ebeling (1986) con-
cludes that “not using the hash table for moves affects the search size by at least a
factor of two.” Hyatt et al. (1990) show that “these rules let Cray Blitz find about
30% of typical middle-game positions in the transposition table, and well beyond
90% in certain endgame positions.” Berliner and Ebeling (1990) show that the use

7If the depth still to be searched is less than the depth retrieved, the search results may differ
from the results when searching without a transposition table.

8 Many heuristics, like aspiration search (Brudno, 1963; Berliner, 1974; Gillogly, 1978), ProbCut
(Buro, 1995), and fail-high reductions (Feldmann, 1997) also use the retrieved value. It is used for
setting the search window.

18 Chapter 2. The transposition table

of transposition tables combined with good move-ordering heuristics may yield that
“on average, the program searches only about 1.4 times the number of nodes that
an af search with perfect move ordering would search.”

In chess, transposition tables are especially useful in positions without Pawns
or with blocked Pawns. As an example, consider problem no. 70 from Fine (1941),
shown in Figure 2.6. At first sight, this seems an easy position. However, White has
only one winning move, which is the unexpected move 1. &b1!. It is possible to
find this move by using knowledge about distant opposition (Fine, 1941), or by doing
a deep (at least 24 ply) search. Without a transposition table this is not possible in
tournament time.

Figure 2.6: A wTM position with blocked Pawns.

For instance, assuming that both sides have five moves on average at their dis-
posal for each position (an underestimation), the minimal game tree when searching
33 ply consists of some 9 x 10! nodes (~ wl(4/2)] 44 [(d/2)]1 1 (Knuth and Moore,
1975), with w = 5, and d = 33). However, Hyatt et al. (1984) show that CRAY BLITZ
searches only about 4 x 10 nodes when searching this position to a depth of 33 ply
(reached in only 65 seconds on a Cray X-MP). The reduction in nodes searched by
CRrAY BLITZ (a factor of more than 200,000) is caused by the transposition table.

Sometimes transposition tables are used to store information about only a specific
part of the position (e.g., the pawn structure, or king safety)?. Since this only replaces
a part of the evaluation function, not reducing the number of nodes searched, it is
outside the scope of our experiments.

9Warnock and Wendroff (1988) use the name search tables when talking about transposition
tables in the broadest sense.

2.4. Implementing a transposition table 19

2.4 Implementing a transposition table

2.4.1 Data structures

Several data structures come to mind for implementing transposition tables (Pronk,
1987; Van Diepen and Van den Herik, 1987). Two main choices exist.

1. A table with a variable number of positions per entry (array of linked lists).
Two advantages of this implementation are (1) the available memory can be
divided flexibly among the entries, and (2) no memory is wasted on empty
entries. Two major disadvantages are (1) the pointers of the linked list (needed
to implement the variable number) take up much memory compared to the
size of an entry position, and (2) more computation is needed to check for the
existence of a position in a chain of the linked list.

2. A table with a fixed number of positions per entry (two-dimensional array).
The advantage of this implementation is that no memory is wasted on extra
pointers. The disadvantage is that memory will be wasted when the search is
shallow and the table is not filled completely.

The disadvantages of a table with a variable number of positions per entry are
more serious than the disadvantage of a table with a fixed number of positions per
entry (Van Diepen and Van den Herik, 1987), leading to the logical choice of the
latter implementation.

A position which needs to be stored in an entry where all positions are occupied
is called an overflow. Overflows can be stored in an overflow area. Two choices for
the overflow area exist.

1. The overflow area is implemented as another table or binary tree. Two disad-
vantages of this implementation are (1) in the overflow area the complete hash
value has to be stored in memory, and (2) many comparisons may be needed
to find a position in the table.

2. The overflow area is in the same table. The overflows are stored using dou-
ble hashing (Knuth, 1973). An advantage of this implementation is that only
one table needs to be used. A disadvantage is that again many comparisons
may be needed to find a position in the table. For an extended review of this
implementation, we refer to Beal and Smith (1996).

On the matter of implementation we distributed a questionnaire among readers
of the ICCA Journal and the newsgroup rec.games.chess.computer (then called
rec.games.chess). In the paragraph below we refer to their responses.

The implementation with double hashing is used by, amongst others, Hyatt
(1994), Stanback (1994) and Weill (1994). Since using an overflow area may cause
more computation to check whether a position exists in the table, a table with one
position per entry, not using an overflow area, is used most frequently (Feldmann,

20 Chapter 2. The transposition table

1994; Uiterwijk, 1994; Wendroff, 1994). Distinguishing between two identical posi-
tions with different side to move can be done in two ways: (1) use two different
transposition tables (one for White and one for Black), or (2) use one transposi-
tion table, and use one additional random number for the player to move, which is
XoRed with the hash value. The latter method is used most frequently (Feldmann,
1994; Hyatt, 1994; Schaeffer, 1994; Uiterwijk, 1994; Weill, 1994; Wendroff, 1994).

2.4.2 Probability of errors

Implementing a transposition table as a hash table introduces two types of error,
identified as early as 1970 by Zobrist. The first type of error (type-1 error) is the
most important one. A type-1 error only occurs when the number of available hash
values is much less than the total number of positions in a game, such as in chess.
In this case, it can happen that two different positions yield the same hash value.
This is a serious error, because when a type-1 error occurs, the information in this
entry will be used for the wrong position and, if so, will introduce search errors.
One way of detecting this error is to store the whole position in the transposition
table. However, in many games this takes up too much space, and is therefore not
feasible in practice. Another way of detecting this error is to test the move suggested
by that transposition-table entry for legality in the position, effectively lowering the
error rate. If the move is illegal, then the table entry must concern another position
than the one being investigated. Note that if the move s legal, the positions still
may differ. The probability of the occurrence of type-1 errors can be lowered by
increasing the number of bits in the hash value.

The second type of error (type-2 error, or clash) occurs when two different posi-
tions map onto the same entry in the transposition table, i.e., the positions have equal
hash indices, but different hash keys. This is known as a collision (Knuth, 1973).
When a collision occurs, a choice has to be made which of the two positions involved
should be preserved in the transposition table. Such a choice is based on a replace-
ment scheme. Several replacement schemes are discussed in subsection 2.7.1. The
probability of the occurrence of collisions can be lowered by increasing the number
of bits in the hash index (thus increasing the number of entries in the transposition
table).

The probability of a type-1 error and the probability of a collision are both
calculated in the same way. The only difference is the number of distinguishable
positions (for a type-1 error this is the number of possible hash values!® and for a
collision this is the number of possible hash indices, i.e., table entries!!).

Let N be the number of distinguishable positions, and M be the number of differ-
ent positions which have to be stored in the transposition table’?. The probability
that all M positions will have different hash values (i.e., the probability that no

10j.e., 2%, where k is the number of bits of the hash value.
Hj.e., 27, where n is the number of bits of the hash index.
12This number is equal to the number of non-empty positions in the transposition table after the

search has been completed, augmented with the number of collisions during the search.

2.4. Implementing a transposition table 21

errors occur) is given by

P(noerrors):(l—%)x(1—%)><~~~><(1—M]\71).

If M is small compared to N, then all cross products can be neglected and we have
the following approximation

1424 +M—-1 _ MM-=1)

P ~1-— 1l——-.
(no errors) v 5N
For small positive # we have log(1 —z) & —z, and thus

M(M -1

logP(no errors) ~ —Q.
2N

Thus, it follows that

M(M-—1

P(no errors) e~ 2N
If M is sufficiently large, this formula yields
P(no errors) & eI (2.1)

This result equals the formula given by Gillogly (1989)13.

We note that the problem of calculating the probability that at least one error
occurs (being 1 — P(no errors)), is analogous to the problem widely known as the
birthday paradoz (Feller, 1950), where the probability of at least two persons having
the same birthday in a group of M persons (N being 365) has to be calculated.

The expected number of errors can be calculated as well. Feldmann (1993) derives
the following formula for the expected number of errors (F):

N—-1 4
E=M-Nx(1—(I).
When N is sufficiently large (which is the case for a transposition table), this formula
can be approximated by

E~M—Nx(l—e %), (2.2)

As an example we consider a program which searches 100,000 nodes per second.
If it plays a game using a total of two hours of thinking time, the number of nodes
searched is 7.2 x 108, Assume that for about 30% of the nodes, an attempt is made
to store them in the transposition table. In the example, this is 216 million nodes.
If the hash value consists of 32 bits, the probability of at least one type-1 error is

_ 216,000,0002
1—e 2x232

which is very close to 1. So a hash value of 32 bits clearly is too small. If we want to
reduce the probability of at least one error to less than 1 percent, Equation 2.1 says
that at least 62 bits are required. When using a 64-bit hash value, the probability
is reduced to about 1 x 1073, In this case, the expected number of type-1 errors for
the example above is about 0.05.

13 The article contains a typing error. The probability given here is correct (Gillogly, 1994).

22 Chapter 2. The transposition table

2.5 Experimental set-up

The transposition-table experiments are performed in the domains of chess and
domineering. The experimental set-ups for both domains are described in the next
two subsections.

2.5.1 The game of chess

For the chess experiments we have developed a test program ALIBABA, being a
simple chess program, designed to be easily reproducible by other researchers'*.
This reproducibility serves to promote a uniform platform for research. The major
components of ALIBABA constitute the remainder of this section, viz. the search
engine, the evaluation function, the move-ordering heuristics, and the transposition

table.

The search engine

The search engine is based on a variant of a3 search: iterative-deepening, minimal-
window, principal-variation search® (Marsland, 1986). Furthermore, ALIBABA uses
aspiration search (Brudno, 1963; Berliner, 1974; Gillogly, 1978). At the start of
each new iteration, the upper bound and lower bound of the window are set to the
value resulting from the previous iteration plus and minus the value of a Pawn,
respectively. If the search fails (the value does not lie within the a8 window), the
window is adjusted to either (—oo, value) when failing low, or (value, +00) when
failing high.

Leaves in the search tree should be “relatively quiescent” when evaluated (Shan-
non, 1950). Not all leaves are quiescent, so they should be further investigated by
a quiescence search. In this search only capturing moves and promotion moves are
considered, except if the King is in check, when all moves must be searched. We
note that in the former case a quiescence search may be terminated early, viz. as
soon as it becomes clear that all moves to be generated will be disadvantageous
(Schriifer, 1989). No other search extensions are used in the experiments in order to
avoid possible search anomalies.

Before executing the principal-variation search at a node in the search tree, it
is checked whether the position represented by the node 1s a draw by stalemate, by
three-fold repetition, or by the 50-move rule, or whether it is a win by checkmate.

14 The full C source code is available by anonymous FTP.
The URL is ftp://ftp.cs.unimaas.nl/pub/software/breuker/alibaba.tar.Z

15We note that the version of principal-variation search as mentioned by Marsland (1986) is
identical to the version of negascout as mentioned by Reinefeld (1989). We use the 1989 reference
instead of 1983, which was the first source of this algorithm, since the algorithm described in
Reinefeld (1983) contains minor errors.

2.5. Experimental set-up 23

The evaluation function

The evaluation function used is simple. It consists of a material part and a posi-
tional one. The material part counts the difference of material between sides. The
positional part is restricted to summing piece-square-table values. During a game,
for every type of piece a 64-square table is maintained. Each table contains positional
values for that piece on every square on the board. Again, we tried to keep things as
simple as possible for the reproducibility. Therefore the positional values are inde-
pendent of the position at the root. The positional part of the evaluation function is
updated incrementally: whenever a move is investigated during the search process,
the positional value of the piece-fromSquare table entry is subtracted from it, and
the value of the piece-toSquare table entry is added to it. Finally, the evaluation
function also serves to detect draws by stalemate, by three-fold repetition and by
the 50-move rule as well as checkmate.

The move-ordering heuristics

In any position, ALIBABA generates only legal moves, excluding pseudo-legal moves,
such as placing or leaving its own King in check. Since the move ordering is im-
portant for the efficiency of the af algorithm the following ordering heuristics are
implemented.

Refutation tables (Akl and Newborn, 1977). For every move in the root position, the
main variation is stored. In the next iteration, moves out of these refutation
lines are tried first.

History heuristic (Schaeffer, 1983; Schaeffer, 1989b). A score for every legal move
encountered in the search tree is maintained. Every time a move is found to be
best in a search, its score is adjusted by an amount proportional to the depth
of the subtree investigated. When ordering moves using this heuristic, moves
with a higher score are considered before moves with a lower score.

In ArLiBABA, the moves are ordered in the following way. The first move to be
considered is the move from the refutation table (if present). Then, if the position
is found in the transposition table (see page 24), the transposition-table move is
the next move to be considered. These moves are followed by capture moves (the
highest-valued piece to be captured first; if equal, then the lowest-valued capturing
piece first). Thereafter follow the promotion moves (ordered by promotion piece; the
highest-valued promotion piece first). The remaining moves are ordered according to
their descending history-heuristic scores. In addition to the move-ordering heuristics
mentioned above, applied immediately after move generation, the root moves are
also ordered during the iterative-deepening search processes.

24 Chapter 2. The transposition table

af} search combined with a transposition table

Whenever a move is investigated in the a3 search, the resulting position is looked up
in the transposition table. If the position is present, and the depth of the examined
subtree is greater than or equal to the depth still to be searched, the information in
the table 1s considered reliable. Therefore, if the score is an exact value, it can 1m-
mediately be used; otherwise, it can be used to update the window bounds (possibly
causing a cut-off). The transposition-table move is always used to order moves (see
page 23).

After a position has been investigated to a certain depth, it is stored in the
transposition table together with the best move (i.e., the move which caused a cut-
off, or the move with the highest score), its score, a flag (denoting whether the score
was an exact value, a lower bound, or an upper bound), and the search depth. During
quiescence search, a position is never stored in the transposition table.

The results of a transposition-table look-up are used at all nodes in the tree. If
a leaf position is present in the table, the transposition-table score is used for the
evaluation. If the score was an exact value, this score is used as evaluation value.
Otherwise, the position is evaluated using the evaluation function. If the evaluation
value is higher than the transposition-table score and the bound is an upper bound,
the evaluation value becomes equal to the transposition-table score (analogously for
the lower-bound score). Since the evaluation function is also used in the quiescence
search, the transposition table is used in the quiescence search as well. Note, however,
that since positions are only retrieved and not stored during quiescence search, their
usefulness is limited during that phase.

In our experiments the transposition table is implemented as a linear array with
one or two table positions per entry. No overflow area is used (see also subsec-
tion 2.4.1). Furthermore, a 64-bit hash value is used!®. More details of the imple-
mentation of a transposition table in plain af search are given in Marsland (1986).

The pseudo-code (based on Marsland, 1986) for the implementation of a trans-
position table in plain af search (in a negamax framework) is given in Figure 2.7.
Details concerning enhancements, move-ordering techniques and quiescence search
are omitted for clarity. The parameters of the function are the current position under
investigation (position), the depth to be searched (depth), and the @ and # bounds
of the search window, respectively. We note that the function Evaluate needs as
parameters the position and the transposition-table information. If a leaf position
is present in the table, the transposition-table score is used for the evaluation (see
above). Furthermore, the function TryToStore attempts to store the search infor-
mation in the transposition table, using a replacement scheme (see Section 2.7.1)
when encountering a collision. The function AlphaBeta returns the best value of the
position under investigation.

16In the experiments the size of the transposition table ranges from 8K to 2048K entries. For
these transposition-table sizes the hash index ranges from 13 to 21 bits.

2.5. Experimental set-up

function AlphaBeta(position, depth, «,)
olda == «
Retrieve(position, ttMove, ttScore, ttFlag, ttDepth)
/* If the position is not found, ttDepth will be —1 and ttMove 0 */
if ttDepth>depth then begin
if ttFlag=ExactValue then return ttScore
elseif ttFlag=LowerBound then o := max(«, ttScore)
elseif ttFlag=UpperBound then 3 := min(3, ttScore)
if a>f then return ttScore
end
if depth=0 then /* Leaf */
return Evaluate(position, ttScore, ttFlag, ttDepth)
if ttDepth>0 then begin /* Examine tt-move first */
newPos := DoMove(ttMove, position)
bestValue := —AlphaBeta(newPos, depth—1, —3, —a)
UndoMove(ttMove, newPos)
bestMove := ttMove
if bestValue>/ then goto Done
end
else bestValue := —oc0
GenerateMoves(movelist, nrMoves)
if nrMoves=0 then
return Evaluate(position, ttScore, ttFlag, ttDepth)
for i:=1 to nrMoves do begin
if movelist[i]AttMove then begin
a := max(bestValue, a)
newPos := DoMove(movelist[i], position)
value := —AlphaBeta(newPos, depth—1, —f, —a)
UndoMove(movelist[i], newPos)
if value>bestValue then begin
bestValue := value
bestMove := movelist[i]
if bestValue>(3 then goto Done
end
end
end
Done:
if bestValue<olda then ttFlag := UpperBound
elseif bestValue>(then ttFlag := LowerBound
else ttFlag := ExactValue
TryToStore(position, bestMove, bestValue, ttFlag, depth)
return bestValue

end /* AlphaBeta */

Figure 2.7: The af-search function with a transposition table.

26 Chapter 2. The transposition table

2.5.2 The game of domineering

Like chess, domineering is a two-player zero-sum game with perfect information.
The game is also known as crosscram, and as dominoes. It was proposed by Goran
Andersson around 1973 (Gardner, 1974; Conway, 1976). In domineering the players
alternately place a domino!” (2x1 tile) on a board, i.e., on a finite subset of Cartesian
boards of any size or shape. The game is usually played on rectangular boards. The
two players are denoted by Vertical and Horizontal. In standard domineering the
first player is Vertical, who is only allowed to place its dominoes vertically on the
board. Horizontal may play only horizontally. Of course, dominoes are not allowed to
overlap. As soon as a player is unable to move the player loses. Although domineering
can be played on any board and with Vertical as well as Horizontal to move first,
the original game is played on a (8x8) checker-board with Vertical to start, and this
instance has generally been adopted as standard domineering. According to West
(1996) this size is sufficiently large to be beyond the range of human analysis, and
hence the size is fit for an interesting game.

For the domineering replacement-scheme experiments we have developed the
program DoMi. The search engine is plain af search. The evaluation function is a
two-valued function, only returning the values win and loss.

The move-ordering heuristics

In Dowmr a distinction is made between (1) the mobility, (2) the number of real moves,
and (3) the number of safe moves. Mobility is defined as the number of distinct moves
that a player can make in a position. The number of real moves is defined as the
maximum number of moves that a player can make in a position, provided that
the opponent does not make any move. The number of safe moves is defined as the
maximum number of moves that a player can make from a given position in the
remaining part of the game, irrespective of the moves that the opponent will make.

The mobility, the number of real moves, and the number of safe moves are up-
dated incrementally. During the search, the decrements § of the number of real moves
and the number of safe moves are continuously updated for both players. The four
values are instrumental for a move ordering within the a8 search, the heuristic be-
ing: the higher the ordering value, the better the move likely is. The formula for the
ordering value is

ordering value = 0 (real moves opponent) — §(real moves player to move) +
d (safe moves opponent) — d (safe moves player to move).

Forward cut-offs

The number of real moves indicates an upper bound of the search-tree depth, and
the number of safe moves indicates a lower bound of the search-tree depth. If the
number of safe moves of the player to move is greater than or equal to the number
of real moves of the opponent after the player has made its move, the move is called

17The markings on the dominoes are irrelevant.

2.6. The test domains 27

a winning move. In this case, no further moves are generated and the search at this
position will be terminated, resulting in a win for the player to move. If the number
of safe moves of the opponent is greater than the number of real moves of the player
to move after the player to move has made 1ts move, the move is called a losing move.
In this case, the move is discarded and the next sibling, if any, will be generated.

af} search combined with a transposition table

The implementation of the transposition table is similar to the implementation given
in Figure 2.7, with two exceptions: (1) ttFlag is always equal to ExactValue (since
only the values win and loss are used and therefore no bound values are possible),
and (2) only the best value and not the best move is stored in the table!®. All
symmetries of the rectangular board are used in DoMI. Whenever a node is inves-
tigated in the search, the resulting position is looked up in the transposition table.
If it is not present, any of the three symmetrical positions (a horizontal, and/or a
vertical reflection) is looked up. In the latter case, if present, the information of the
symmetrical position is used®.

2.6 The test domains

In this section we describe the test domains in which the experiments are performed.

2.6.1 Chess test sets in the literature

Several methods have been used to test the strength of a chess-playing program. In
many cases a test set is used. Previous test sets mentioned in the literature are:

o the Win-at-Chess set of 300 tactical positions from Reinfeld (1958). These
positions serve well to test the tactical ability of chess programs, although the
strongest programs have outgrown the test (Anantharaman et al., 1988);

o the Bratko-Kopec set of 24 positions (Kopec and Bratko, 1982). These po-
sitions are divided into two categories: twelve tactical and twelve positional
positions. The positional positions all have a pawn-lever move (described by
Kmoch, 1959) as their solution. This test suite has two disadvantages: (1) 24
positions are too few, and (2) the test is highly specialized in what it tests;

e a test set consisting of 86 positions, devised by Nielsen (1991). The main
purpose of this test set is to estimate the ELo rating (Elo, 1978) of the program;

181f a position is present in the table, its game-theoretic value (win or loss) is known and no
further search is needed at this point.

19We note that we do not make use of rotation symmetry, because that exchanges the concepts
of horizontal and vertical.

28 Chapter 2. The transposition table

o a large test set of 5551 positions, described by Lang and Smith (1993). Tt con-
sists of roughly 2530 tactical positions, 800 positional positions, 2100 endgame
positions and 110 opening positions. The test set seems very good, but it will
take a long time to run a program on all the test positions. Even if the pro-
gram is allowed to analyze each position for only three minutes (tournament
speed), it will take more than 11 days of computing time. Considering that
a programmer needs to test every modification of the program, we have not
adopted this test set for our research.

Berliner et al. (1991) give a taxonomy of chess positions and have tried to devise
a representative test set. Private communication between Lang and Berliner shows
that great difficulties were encountered in creating such a set and only some twenty
positions have been produced so far (Lang and Smith, 1993).

Finally, it is known (Lang and Smith, 1993) that many commercial companies,
such as Fidelity Electronics and Heuristic Software, and many professional program-
mers, have created their own test sets, but they have rarely published these positions.
Most of these tests are devised to test only one aspect of a chess program. Some
of these tests are published in computer chess magazines, such as Computerschaak,
Modul, and ComputerSchach und Spiele. With the popularity of the Internet nowa-
days, many more test sets (including the ones mentioned above) are available at
several FTP sites. See, for instance, URL ftp://external.nj.nec.com/pub/wds/.

As already evident from above, test sets always have a disadvantage: either the
number of positions is too small to be representative of positions in high-level chess
games, or the number of positions is so large that it will take too much time to test
a program on every position. Anantharaman (1991) mentions three other methods
to test the strength of a chess program.

1. Play a large number of tournament games. The disadvantage is the time it will
take to play a sufficient number of games to obtain a good impression of the
strength of the program.

2. Play matches between two computers, starting from a set of chosen positions,
playing both sides. This approach has been used by, amongst others, Gillogly
(1978) and Schaeffer (1986). According to Anantharaman this will take much
time too, because about 1,000 games are necessary to spot a rating difference
of ten points?°.

3. Marsland and Rushton (1973) have taken 760 positions from a collection of
games between human masters from several strong tournaments. They test
the program using all these positions. Conclusions on the strength of a chess
program are based on the average rank of the move the human master played.
One of the disadvantages is that there is no distinction between minor mistakes

20This is only important if the versions tested do not differ much in strength. If one version is
much stronger (say about 250 points) than the other version, it is not interesting to know whether
it is 240, 250, or 260 points stronger.

2.6. The test domains 29

and major blunders. Another disadvantage is that the possibility that the move
played by the program is better than the human move is not taken into account.

Anantharaman (1991) describes another approach to test chess programs. The
approach was designed to test search heuristics, but can equally well be applied to
test other enhancements of a chess program. The method is used in testing DEEP
THOUGHT and its successor DEEP BLUE. The quality of the test program is measured
using a deeper searching reference program. This reference program is about 300 rat-
ing points stronger than the test program. Anantharaman used circa 3,600 positions
to evaluate the test program. He concluded that comparing the move chosen by the
test program with the move chosen by a human expert is not a reliable method for
evaluating the test program. He showed further that comparing the move chosen by
the test program with the move chosen by the reference program is a better way
for evaluating the test program, correlating well with USCF ratings. Anantharaman
reports that with the described technique the same reliability can be reached within
only 6% to 16% of the time required when using matches between computers.

2.6.2 Our chess test set

Our testing method for chess differs from the methods discussed above. We have
opted to use a sequence of positions derived from actual games as the test set. One
advantage is that the chosen positions will not be biased towards tactical issues,
but will automatically incorporate positional ones. Moreover, the choice also meets
the requirement that successive positions should be related, which is essential when
investigating the effects of clearing the transposition table between moves (see sub-
section 2.7.1). Finally, our goal is not to investigate the strength of the test program,
but to investigate the sizes of the search trees involved.

The chess experiments have been divided into two parts. The first part concerns
middle-game experiments, and the second part endgame experiments. The middle-
game experiments and the endgame experiments are separated to see whether the
results are different, since it 1s known that the benefits from the use of transposition
tables are greater in endgame positions than in middle-game positions (Slate and
Atkin, 1977).

For the middle-game experiments we have chosen positions from all six Kas-
parov games of the Euwe memorial VSB tournament 1994 as our test set. Clearly,
Kasparov, being the World Champion, is a good player, so his games are of high
quality. The opening phase is omitted. We shall only consider middle-game posi-
tions, defined as positions from move 15 onwards where both sides have at least 18
points of material?!. We note that games 1, 2, and 6 terminate when they are still
in the middle game according to this definition. Our final restriction is that only
positions where Kasparov is to move are investigated??, resulting in 94 positions as
a middle-game test set. The positions are given in Appendix A.

21Pawn=1, Knight=3.25, Bishop=3.25, Rook=5, Queen=9. Kings do not contribute.
22This could be interpreted as a bias in the test positions.

30 Chapter 2. The transposition table

For the endgame experiments we have chosen positions of five games, taken
from four instructive endgame books (Fine, 1941; Bouwmeester, 1966; Levenfish
and Smyslov, 1971; Averbakh, 1987). An endgame position is defined as a position
where at least one side has less than 18 points of material. Only the wTM positions
are considered. This results in an endgame test set, consisting of 112 positions.
The positions are listed in Appendix B. The test set includes many different types
of endgame, such as pawn endgames, bishop endgames, rook endgames and queen
endgames. The number of blocked-pawn pairs ranges from zero to four.

2.6.3 The domineering test set

The domineering experiments have been divided into two parts. For the first series
of experiments we have taken the empty standard (8x8) board as the test position.
Next to the goal of finding the game-theoretic value of the test position, we have set
as research goal: deciding which replacement scheme is best.

The second series of experiments concentrates on establishing the game-theoretic
value of domineering, played on non-standard boards. We have investigated rectan-
gular board sizes mxn, with m ranging from 2 to 8, and n from m to 9. The variable
m denotes the number of rows and the variable n denotes the number of columns
of the rectangular board. Contrary to so-called impartial games, such as tic-tac-toe,
were both players always have the same options, domineering is a game in which the
options for both players are not alike. These games are called partizan. For partizan
games it can matter which player starts the game. In the case of domineering, for
square boards (including standard domineering) it is irrelevant whether Vertical or
Horizontal starts, but for non-square boards it does matter. We explicitly refrain
from the rule that Vertical always starts. Of course an mxn game started by Hor-
izontal is equivalent to an nxm game started by Vertical. It thus makes sense to
distinguish four possible outcomes for the various domineering games, denoted by
‘1,2, ‘V’, and ‘H’. The meanings are as follows:

1: a first-player win, independent of whether Vertical or Horizontal starts;
2: a second-player win, independent of whether Vertical or Horizontal starts;
V: a win for Vertical, independent of whether Vertical plays first or second;

H: a win for Horizontal, independent of whether Horizontal plays first or second.

2.7 Experiments and results

The literature on transposition tables is mainly tutorial in nature (e.g., Marsland,
1986), with only a few detailed discussions of performance (e.g., Ebeling, 1986; Scha-
effer, 1989b). One frequently cited performance observation is that doubling the
number of positions in the table reduces the size of the search tree. This is an ob-
vious result, since the more information in the table, the greater the probability of

2.7. Experiments and results 31

finding a transposition. Performance analyses of other aspects of transposition ta-
bles, such as which positions to replace, have not, as far as we know, been published
in the literature. This section lists three of our experiments concerning transposition
tables. In subsection 2.7.1 experiments on using replacement schemes are described.
The results have been published before in Breuker et al. (1994a), Breuker et al.
(1996), and Breuker et al. (1998b). Subsection 2.7.2 quantifies the merits of using
the move information and the score information of the transposition table. In sub-
section 2.7.3 several ways of using the additional memory are examined. The results
of the last two sections have been published before in Breuker and Uiterwijk (1995)
and Breuker et al. (1997b).

2.7.1 Comparing replacement schemes

The most common implementation of a transposition table is a large hash table.
Even though this table is usually made as large as possible, subject to memory
constraints, and an overflow area is used, collisions (for which see subsection 2.4.2)
are bound to occur. When a collision occurs, a choice has to be made whether to
replace or to retain the position in the table. This choice is governed by a replacement
scheme. From the literature and from discussions with computer-chess practitioners,
it appears that the most common form of collision resolution is to prefer the results
of deeper searches over shallower ones (Greenblatt et al., 1967; Slate and Atkin,
1977; Marsland, 1986; Hyatt, 1994; Stanback, 1994). This has an intuitive appeal,
but has not been supported empirically. This subsection compares the performance
of seven collision-resolution schemes, the impact of clearing the transposition table
between searches, and the effect of changing the number of positions in the table.

Replacement schemes

Whenever a collision is detected, a choice has to be made whether to replace the
existing position in the transposition table. We examine seven different replacement
schemes, viz. DEEP, NEw, OLD, BiGg1, BiIGALL, TwWoDEEP, TwoBIG1. They are
based on five concepts, as numbered below.

1. Concept Deep (used in scheme DEEP).

The concept Deep is traditional. It is based on the depths of the subtrees
examined for the positions involved. In scheme DEEP at a collision, the position
with the deepest subtree is preserved in the table (Marsland, 1986; Hyatt et al.,
1990). The rationale behind this scheme is that a subtree searched to a greater
depth usually contains more nodes than a subtree searched to a shallower
depth. Therefore, more time was invested in searching the larger tree. Hence,
this value, if retrieved from the table, saves more work (i.e., eliminates a larger
tree).

2. Concept New (used in scheme NEW).
The concept New prefers the last examined position over earlier ones. The

32

Chapter 2. The transposition table

replacement scheme NEW always replaces any position in the table when a
collision occurs. This concept is based on the observation that most transpo-
sitions occur locally, within small subtrees of the global search tree (Ebeling,

1986).

Concept Old (used in scheme OLD).

The concept Old prefers the earliest examined position over later ones. The
replacement scheme OLD (the opposite of the scheme NEW) never replaces an
existing position with a newer position. This scheme has only been included
for the sake of completeness.

. Concept Big (used in schemes Bic1 and BIGALL).

The concept Big is based on the number of nodes of a subtree. Sometimes a
subtree contains many forcing moves. It also may be potentially well-ordered
(in which case many cut-offs have occurred). In such cases, the depth of the
search tree fails to be a good indicator of the amount of search already per-
formed and therefore potentially to be saved. It then may be attractive to
select, for retention, the position with the biggest subtree rather than the one
with the deepest subtree, going by number of nodes rather than by their depths.
A drawback then is that the number of nodes must be retained as part of each
transposition-table entry, reducing the effective number of positions possible
for a given amount of storage.

This concept is used in two schemes: BiG1 and BiGALL. The former counts a
table position in a transposition table as a single node, the latter as N nodes,
where N is the number of positions searched in order to obtain the information
of the table position stored.

Concept Two-level (used in schemes TWODEEP and TwoBIG1).

The concept Two-level uses a two-level transposition table (Ebeling, 1986;
Schaeffer, 1994). Such a transposition table has two table positions per entry?3.
For the scheme TwWODEEP the subtree of the first table position is larger than
the subtree of the second table position. Upon a collision:

e if the candidate position has been searched to a depth greater than or
equal to the depth of the extant first table position, the first table position
1s shifted to the second table position, and the candidate position is stored
in the first table position;

e otherwise, the candidate position is stored in the second table position
(possibly overwriting an existing position).

Thus, the candidate position is always stored, and the less important of the
remaining two positions (in terms of depth of search) is overwritten. We have
also tested the analogous combination of the schemes NEw and BiG1 (further
denoted as TwoBIG1).

23Ebeling (1986) implemented the two-level transposition table in a slightly different way.

2.7. Experiments and results 33

We note that in all replacement schemes in our experiments the decision to overwrite
an entry does not depend on the type of the score (exact value, lower bound, or upper
bound) of the positions involved.

Time stamping

When playing a game, a choice must be made about what to do with the positions
stored in the transposition table during the search from a previous position in the
game. Successive positions in a game are related to one another, and it therefore
may seem best to retain all positions in the transposition table?*. However, these
positions are subject to aging, and will be of little use after a few moves in the
game. Consequently, clearing the transposition table between searches may also seem
attractive, e.g., when the evaluation function between searches is changed.

Instead of physically clearing positions in the transposition table, it may be
preferable to time-stamp them after the completion of each search. A time-stamped
position remains stored in the table until a collision occurs, when it is uncondition-
ally overwritten. While time-stamped but not overwritten, it will still be used for
retrieving information. A position not time-stamped holds information more recent
than any previous search.

Table sizes

Undoubtedly, many experiments have been conducted to test the effect of the
transposition-table size on the number of nodes investigated. In spite of this, there
are few reports in the literature. Ebeling (1986) states: “each doubling in the hash
table size yields only a 7% decrease in the search size.”

Schaeffer (1994) reported a 5% decrease in the number of nodes searched when
doubling the number of positions in the transposition table. It is remarkable that
both authors arrive at effects of the same order of magnitude in spite of employing
different move-ordering techniques.

We have tested the effect of doubling the number of positions in the transposi-
tion tables by conducting the experiments for chess with eight different table sizes,
ranging from 8K to 1024K positions and for domineering with four different table
sizes, ranging from 256K to 2048K positions, each time doubling the number of

positions?®.

The chess experiments

To test the ideas mentioned, the following chess experiments were conducted. The
first series of experiments concerned middle-game positions only. It observed the per-
formance of every combination of the seven replacement schemes (with and without

24We note that if the evaluation function depends on the position at the root of the search
tree, search anomalies can occur if the values of positions from a previous search are retrieved
from the transposition table. In our chess experiments we did not encounter that problem, since in
ALIBABA the evaluation values are independent of the position at the root (cf. page 23).

25We use K as an abbreviation for 1024.

34 Chapter 2. The transposition table

time stamping) and the eight table sizes. The middle-game tests have been con-
ducted on 94 middle-game positions, taken from six games between chess experts
(see Section 2.6). Each position was searched for 3 to 7 ply. For table sizes of 16K,
64K, 256K and 1024K positions 8-ply searches were performed on 44 middle-game
positions taken from the first three games given in Appendix A.

The second series of experiments concerned endgame positions only. It observed
the performance of every combination of the seven replacement schemes (only with
time stamping) and eight table sizes (ranging from 8K to 1024K positions). These
tests have been conducted on 112 endgame positions, taken from five games between
chess experts (see Section 2.6). Each position was searched to a depth of 10 ply.

The domineering experiments

In the first series of experiments five replacement schemes have been compared.
From the chess experiments it will be evident (as expected) that the scheme OLD
is not a good candidate for practical use (cf. page 36), since it uses by far more
nodes than all other replacement schemes considered. Therefore, scheme OLD is
not considered for the domineering experiments. Further, it will be shown that the
differences between schemes Big1 and BIGALL are marginal in chess (cf. page 36).
Therefore, for the domineering experiments we decided to drop scheme BIGALL.
Thus, the following five replacement schemes are considered: TwoBiG1, TWODEEP,
Big1, DEEP and NEwW. As mentioned before, the experiments are performed with
four different transposition-table sizes, ranging from 256K to 2048K positions.

For the second series of experiments we have used the best replacement scheme
(TwoBIG1) found from the first series of experiments together with a transposition
table of 2048K positions. All boards with m#n are investigated twice: (1) with the
first player moving vertically, and (2) with the first player moving horizontally.

The performance metric

As the measure for quantifying the search effort in the chess and domineering experi-
ments we use the number of all nodes investigated, i.e., the sum of the interior nodes
and the leaves. The complete results of all experiments are listed in Appendix C.
A few typical results are graphically illustrated in this section. When comparing
the replacement schemes for each table size the number of positions has been kept
constant. This implies that the three Big schemes (Big1, BIGALL, TwoBIG1) use
slightly more memory than the other schemes because each table position has one
additional field (to store the information about the size of the subtree searched). Tt
is claimed that these minor differences do not affect the interpretation of the results.
Further, we note that the two-level schemes (TwoB1G1, TWODEEP) have half the
number of entries compared to the other five schemes.

2.7. Experiments and results 35

The chess middle-game experiments without time stamping

Figure 2.8 shows the middle-game results for the seven replacement schemes using
7-ply searches without time stamping. The graph plots the number of nodes inves-
tigated (in millions) as a function of transposition-table size. The number of nodes
is the sum of the nodes investigated for the 94 test positions.

220 T T T T T T
TwoBigl ——
TwoDeep -+--
210 | Bigl -8--- 7
BigAll ~x-
Deep &
200 e New -*-- 7]
2 A Old -o--
Z N N
S 10F o % .
£
- 180 N
Q -,
< o
o
S 1o}
2 N
ks
= 160
o)
=]
2
£ 150
=
b4
140
130
120 Il Il Il Il Il Il
8 16 32 64 128 256 512 1024

Table size (in K positions)

Figure 2.8: Comparing replacement schemes in the chess middle game
(without time stamping, 7-ply searches).

The following trends seem to be evident.

e As the table size increases, the number of nodes searched tends to level out
to a constant. In other words, at some point, possibly before 1024K in our
case, no significant gains may be hoped for by increasing the table size. This
is caused by the larger percentage of tree nodes that can be retained in the
transposition table: the probability of harmful collisions (i.e., collisions that
cost many nodes) then greatly decreases. At a certain point the transposition
table is sufficiently big to hold the entire search tree.

e As the table size increases, the spread between replacement schemes shrinks.
For table sizes from 512K upwards, the spread is only around 3%, whereas the
smallest practicable size, 8K, suggests a spread of no less than 21% between

36 Chapter 2. The transposition table

the best (TwoBIG1) and worst (OLD) scheme. This is a consequence of the
argument above.

e The two-level-table schemes outperform those with one level only. For most
data points, TwoBIG1 is better than TWoDEEP.

e The schemes OLD and NEW are worse than the other three one-level-table
schemes. This can be explained by observing that OLD and NEW do not take
into account the amount of work done to investigate a position.

e There is hardly any difference between the schemes Big1 and BiGALL.

e Our data for small table sizes (8K to 64K) confirm Ebeling’s (1986) statement,
based on 10 positions, that TwWoDEEP “reduces search times by 5 to 10% for
middle game positions” when compared with DEEP.

It is important to observe that the deeper the search performed, the larger the
transposition table should be. Beyond 256K positions for a 7-ply search, perfor-
mance levels off; there is little further to gain. However, some programs can search
considerably deeper than 7 ply. They may not have sufficient memory to allow a
transposition-table size large enough to reach the point where doubling the num-
ber of positions in the table has a limited benefit. The shape of the lines in Fig-
ure 2.8 may provide some insight into the effect of transposition-table performance
for deeper searches. For example, assuming that searching one ply deeper increases
the tree size by a factor of about 4 (Thompson, 1982; Junghanns et al., 1997) a
9-ply search might build a 16 times larger tree than a 7-ply search. The 9-ply results
for 256K positions can be approximated by using the 16K (25166K) data point of the
7-ply results. This shows TwoBIG1 to be a clear winner.

If we use a 1% reduction in node counts as a criterion for the usefulness of
doubling the number of positions in the transposition table, then we obtain from
Figure 2.8 for 3, 4, 5, 6, and 7-ply searches in the middle game the following suggested
table sizes: <8K, 16K, 32K, 32K, and 256K positions, respectively.

The chess middle-game experiments with time stamping

The same experiments as above were performed, the only difference being time
stamping. This means that each time after a search was completed, the table posi-
tions were given a time-stamp, as opposed to clearing the table positions. Thereafter,
the next position in the game was searched. Thus the results of a previous search
could still be used. Figure 2.9 shows the results of these experiments.

Comparing this figure to Figure 2.8, the following trends seem to be evident.

e The shapes of all graphs are similar in the Figures 2.8 and 2.9.

e The relative order of merit of the replacement schemes seems to be invariant
for time stamping; whether one time-stamps or clears the transposition tables
between moves, TWoBIG1 appears to have a persistent edge.

2.7. Experiments and results 37

220 T T T T T T
: TwoBigl ——
TwoDeep -+--
210 | Bigl -8--- 7
S BigAll -
Deep -+~
200 - 0\ New -¥-- 7
> [old -~
£ \\ ‘\
£ 190 .
8
= 180 o
o
<
o
g 10
5}
k
= 160
)
1
2
s 150
=
b4
140
130
120 Il Il Il Il Il Il

8 16 32 64 128 256 512 1024
Table size (in K positions)

Figure 2.9: Comparing replacement schemes in the chess middle game
(with time stamping, 7-ply searches).

Time stamping has a slight performance benefit. The savings with time stamping
are some 2%. Therefore, it can be recommended since it only requires one additional
bit per table position and requires little additional computation.

As mentioned on page 33, 8-ply searches have been performed on middle-game
positions for table sizes of 16K, 64K, 256K and 1024K positions, again with and
without time stamping. The results are given in Appendix C. Assuming a ratio of
four in search size between subsequent ply depths, the 7-ply results for table sizes of
16K, 64K and 256K positions should be scalable to the 8-ply results for table sizes of
64K, 256K and 1024K positions, respectively. Inspection of the results verifies this.
In other words, the 7-ply search conclusions given above are confirmed by the 8-ply
search results, in particular the conclusion that the two-level schemes outperform
those with one level.

The benefit of a transposition table in chess middle games

Figure 2.10 shows the relation between the benefit of using a transposition table
and the search depth for all 94 middle-game positions. The data are shown for a
transposition table of 1024K positions and replacement scheme TwoBIG1, using

38 Chapter 2. The transposition table

time stamping. The search size without a transposition table is 1.

1.1 T T T T

Search size ratio

0.2 1 1 1 1

5 6
Search depth (in ply)

Figure 2.10: Using a transposition table in the chess middle game
(with time stamping, scheme TwoB1G1, 1024K positions).

For this example we see that, limiting ourselves to a 3-ply search in middle-game
positions, the use of a transposition table with time stamping is even counterpro-
ductive in that it prolongs the search. The probable cause is an unfavourable move
ordering, caused by a poor best-move suggestion from the transposition table. How-
ever, it 1s reassuring that the use of transposition tables is definitely advantageous
at more realistic search depths of over 3 ply.

Ebeling (1986) concludes that “not using the hash table for moves affects the
search size by at least a factor of two.” The graph confirms this factor for searches of
6 ply and deeper. It is noted that transposition tables reduce the search considerably
in many other domains, such as domineering (cf. page 40) and also in single-agent-
search problems, such as sokoban (Junghanns and Schaeffer, 1997).

The chess endgame experiments with time stamping

Figure 2.11 shows the endgame results for the seven replacement schemes using 10-
ply searches with time stamping. The graph plots the number of nodes investigated

2.7. Experiments and results 39

(in millions) as a function of transposition-table size. The number of nodes is the
sum of the nodes investigated for the 112 test positions.

1600 T T T T T T
h TwoBigl ——
TwoDeep -+--
) Bigl -©---
1400 o, BigAll -
Deep —&-
New —x--
Old -o--
1200 1
~\<>\\
1000 }

800

600 -

Number of nodes searched (in millions)

400

200 1 1 1 1 1 1
8 16 32 64 128 256 512 1024
Table size (in K positions)

Figure 2.11: Comparing replacement schemes in the chess endgame
(with time stamping, 10-ply searches).

From this graph it follows that the conclusions given for the middle-game exper-
iment also hold for the endgame, with one exception. In middle-game positions it is
clear that the concept BiG works better than the concept DEEP: schemes Big1 and
BiG ALL search fewer nodes than scheme DEEP. and scheme TwoBi1G1 fewer nodes
than scheme TwWoDEEP. The difference between the two concepts has disappeared
in the endgame. This is explained as follows. If a subtree contains many forcing
moves or is well-ordered, cut-offs occur. Since in the middle game the mobility of
each player is higher than in the endgame, such pruning will on average cause larger
savings in middle-game positions than in endgame positions. Therefore, the size of
search trees of equal depth will vary more in middle-game positions than in endgame
positions. The concept DEEP does not have a preference for any of two such sub-
trees, whereas the concept BiG has a preference for the largest subtree. Thus, in the
middle game the size (as compared to the depth) of the search tree investigated will
be a better characteristic measuring the work performed than it is in the endgame.

If we again use a 1% reduction in node counts as a criterion for the usefulness of

40 Chapter 2. The transposition table

doubling the number of positions in the transposition table, then we obtain for 3, 4,
5,6,7,8,9, and 10-ply searches in the endgame the following suggested table sizes:
<8K, <8K, <8K, 32K, 64K, 512K, >1024K, and >1024K positions, respectively.

Solving domineering

From preliminary experiments it was obvious that standard 8 x8 domineering could
not be solved in a reasonable amount of time without using a transposition table
(Fotland, 1997). Using a transposition table, we solved the game. It appeared to be
a first-player win. Later on, we were informed that this result was independently
found by Morita (1997).

In Figure 2.12 the results for the five replacement schemes in domineering are
given. Detailed results are listed in Appendix C. The graph plots the number of nodes
investigated (in millions) to solve the standard game as a function of transposition-
table size.

4000 T T
TwoBigl ——
s TwoDeep ~+--
3600 - o Bigl -5 -
"~ Deep ~x-
S New -&-
3200 | Sl b
Z T
E 2800 - T 1
g Tl
3 T
£ 2400 - S 4
Q RN
3 Tl
2 Tal
£ 2000 T -
2 ~
= ~_
e ~._
=} n . ~
g 1600 F oo R T b
© N
g : T
= h
Z. L
1200
800
400
256 512 1024 2048

Table size (in K positions)

Figure 2.12: Comparing replacement schemes in domineering.

It 1s noted that the conclusions from the domain of chess also hold in the do-
main of domineering and are even more pronounced: two-level replacement schemes
work much better than one-level schemes. Furthermore, the concept Big shows more
improvement over the concept Deep than in chess.

2.7. Experiments and results 41

Solving domineering for non-standard boards

Table 2.1 gives the results for the second series of experiments. The numbers indicate
the real number of nodes investigated. The scheme used is TwoBiG1 with 2048K
positions. In the first column the board size is depicted. The second column gives
the game-theoretic value, with ‘1°, ‘2’ ‘V’ and ‘H’ as defined in subsection 2.6.3.

Size | Res Nodes Size | Res Nodes Size | Res Nodes
2x2 | 1 1 3x7 | H 77 5x8 | H 30,348
2x3 | 1 2 3x8 | H 74 5x9 | H 177,324
2x4 | H 13 3x9 | H 99 6x6 | 1 17,232
2x5 | 'V 15 4x4 | 1 40 6x7 |V 302,259
2x6 | 1 14 4x5 | V 87 6x8 | H 3,362,436
2x7 | 1 17 4x6 | 1 1,327 6x9 | V 18,421,911
2x8 | H 67 4x7 | 'V 1,984 <7 |1 408,260
2x9 | 'V 126 4x8 | H 12,024 7x8 | H 12,339,876
3x3 | H 1 4x9 | V 45,314 <9 | H 320,589,295
3x4 | H 10 5xb | 2 604 8x8 | 1 441,990,070
3xb | H 19 5x6 | H 1,500 8x9 | V 70,918,073,509
3x6 | H 40 5x7 | H 13,584

Table 2.1: Game-theoretic results of domineering for various board sizes.

Our results fully agree with the results published earlier by Berlekamp and
coworkers as far as investigated by them (see Berlekamp et al., 1982b; Berlekamp,
1988; Guy, 1991). They provide complete analyses for boards with a size of 2xn
(2<n<T), 3xn (3<n<5b), and 5x5. We remark that games with a game-theoretic
value ‘1’, ‘2°, ‘H” and ‘V’ match their characterizations of fuzzy, zero, positive and
negative games, respectively. By using a straightforward af algorithm, returning
only whether a position is a win or a loss, we did not keep track by what difference
a position 1s won or lost. Hence, it is impossible to provide a detailed comparison
with their analyses.

Another subset of our results coincide with the results obtained previously by
Fotland (1997), who did his investigations several years ago. Fotland also used a
straightforward af algorithm plus a large transposition table. He did not solve the
8x8, and the mx9 (5<m<8) boards. Our program DoMI never investigated more
nodes than Fotland’s program; DoMI has a more efficient node investigation than
Fotland’s program by a ratio of up to 10 for the larger boards.

In Table 2.1 we may discern several patterns of exponential growth with the
board size, e.g., the nxn series, the mxn series with fixed m, etc. The results
suggest that the ratio always grows exponentially with the board size. Since the 8x9
board took more than 600 hours to be solved, we did not investigate the 9x9 board.
It is interesting to note that of all boards considered the 5x5 board is the only one
in which the second player wins.

42 Chapter 2. The transposition table

2.7.2 Quantifying the merits of move and score

Although it is evident that the use of a transposition table reduces the search effort,
two open questions still exist. First, how big is the overall reduction? And second,
which information has the largest impact on the reduction? This subsection consists
of two parts. The first part compares storing the best move with storing the value
of the best move. The second part compares storing the bound values for minimal-
window search with storing the ezact values?®.

From the components mentioned in subsection 2.3.2 it follows that a transposition
table is used for two reasons: (1) the score is used for establishing the value of the
position, and (2) the retrieved move is used for move ordering. In the first case the
value is either an exact value, and this position does not have to be re-searched, or
a bound value, in which case either the o value or the 3 value might be adjusted?®”.

We have investigated the merits of these individual components in order to obtain
more insight into the way a transposition table helps to reduce the search effort. This
information may help in devising more efficient transposition-table schemes and may
deliver guidelines about what additional information can be useful. For investigating
the merits of move and score we have performed six experiments.

1. Search without a transposition table.
2. Search with a traditional transposition table, without score.
3. Search with a traditional transposition table, without mowve.

4. Search with a traditional transposition table, without move, only storing and
using the score information if the score is an ezact value.

5. Search with a traditional transposition table, without move, only storing and
using the score information if the score is a bound value.

6. Search with a traditional transposition table, with move and score, storing
and using the score information both if the score is an ezact value or a bound
value (i.e., use the transposition table fully).

The experiments 1 and 6 are performed to obtain upper and lower bounds.

Results of the merits of move and score

As the measure for quantifying the search effort we use the number of all nodes
investigated, i.e., the sum of interior nodes and leaves. The test set used for the
experiments consists of 18 consecutive wTM middle-game positions taken from the
game Kasparov-Short, Amsterdam 1994, and 21 consecutive WT'M endgame positions
taken from the game Rabinovich-Romanovsky, Leningrad 1934 (see Appendix A and

26 We note that the experiments are only performed in the chess domain, since in the domineering
experiments no moves and no bound values are stored.

27Obviously, when the depth still to be searched is greater than the depth in the transposition
table, the score from the transposition table is not used.

2.7. Experiments and results 43

B). Both games were played by human experts. The 18 middle-game positions have
been searched to a depth of 8 ply, and the 21 endgame positions to a depth of 10 ply.
The replacement scheme used for all experiments is TwoBIG1, the scheme which
performs best (see subsection 2.7.1). All experiments have been performed with a
series of transposition tables, ranging from 8K positions to 256K positions, since
beyond 256K positions there is little further to gain, as 1s shown in subsection 2.7.1.
Time stamping (see page 33) is used. The complete results can be found in Ap-
pendix C. The number of nodes are the cumulative results of all 18 and 21 positions,
respectively. The merits of the best move and its score stored in a transposition-table
entry have been examined separately.

Middle-game experiments

In Figure 2.13 the results of the use of a traditional transposition table for the middle-
game positions are depicted. The figure shows the number of nodes investigated as
a function of the transposition-table size. The numbers in the legend refer to the
experiments mentioned on page 42.

900 T T T T
No tt [1] -—
Tt move [2] -+--
800 I Tt score [3] -©--- o
True tt score [4] >
Bound tt score [5] -2
200 - Traditional tt [6] -*--
8 (1
‘§ 600
= [4]
b=y
£ 500]
3} e o
§ “V+<2;"\"“‘"“"“4»»»,
S 400 F &r T e B N |
E
s . 3
5 300 gi1ii‘—'::::;—;&,1,,,,, ,,,,) 7
<) E— Ao 1T
= T T m R R B eeoemmme
2 [6] T T A LT [
;;;;; e I3]
200 - e |
100]
0 1 1 1 1
8 16 32 64 128 256

Table size (in K positions)

Figure 2.13: Comparing move and score in the chess middle game
(8-ply searches).

Figure 2.13 clearly shows that the use of a transposition table (experiment 6) is

44 Chapter 2. The transposition table

very profitable in terms of number of nodes searched compared to searching with-
out a transposition table (experiment 1); a result which was already evident from
the results of subsection 2.7.1. Further, using the field score of a transposition ta-
ble (experiment 3) is more important than using the field move (experiment 2)%8.
This is caused by the minimal-window search: whenever one of the bounds of the
minimal window is updated, its lower bound will be greater than its upper bound,
thereby causing a cut-off. Experiments show that whenever a position is found in
the transposition table, the retrieved value causes a cut-off in about 50% of the
cases??. However, this effect stems fully from bound values (experiment 5). Exact
values (experiment 4) hardly have any effect in this respect. Upon closer investiga-
tion it becomes clear that exact values are used only a few times. Typically, an exact
value 1s encountered tens of times in the transposition table, while a bound value is

encountered tens of thousands of times®C.

Endgame experiments

The results of the experiments on the endgame positions are analogous to the results
of the experiments on the middle-game positions, but they are more pronounced, as
can be seen in Figure 2.14. Moreover, the use of a transposition table is more prof-
itable in endgames than in middle games. We see that the largest (256K positions)
transposition table used in middle games with only the field move (experiment 2)
results in about a 36% node decrease, whereas in the endgame the decrease is about
65%. If in addition score is used (experiment 6), a total decrease of about 68% in
the middle game and about 89% in the endgame is obtained.

2.7.3 Using additional memory

A collision (Knuth, 1973) occurs when two different board positions map onto the
same entry in the transposition table (i.e., they have an equal hash index, but a
different hash value). Regardless of whether the old entry is replaced by the new
one, collisions will have a negative effect on the efficiency of a transposition table,
since one of the two positions will not be present in the table. The probability of
the occurrence of collisions can be lowered by increasing (doubling) the number of
positions in the transposition table. However, at a certain point the doubling is not
profitable any more (cf. subsection 2.7.1). This subsection looks at other ways to use
additional memory, by comparing the use of more information per entry position
with the use of more positions in the table.

28 We note that the results of the experiments depend on the move-ordering mechanism used (for
which see page 23).

29 The minimal window causes the retrieved value to be either a fail low, or a fail high.

30 A1l nodes (except nodes on the principal variation and fail-high nodes) are searched with a
minimal window. Therefore, no exact value is known for these nodes.

2.7. Experiments and results 45

600 ' ' | |
Nott[1] =—
Tt move [2] -+--
Tt score [3] -©--
True tt score [4] -
500 | Bound tt score [5] -4~]
Traditional tt [6] -—* -
E =
=400
E [4]
b=y
(5}
=
Q
5 300 _
5]
3
]
=
kS
5 200 F e f2] |
S I
g R LR
: T e
Hoooooo e [3]
100 & ~——~g,—m\—:-;::::.:;’ TInInininioazosoo. == 1
S U
L ””_7‘[5]
0 I I I I
8 - ~ o 128 256

Table size (in K positions)

Figure 2.14: Comparing move and score in the chess endgame
(10-ply searches).

Additional components

In our search for storing additional information in a transposition-table entry we
have found several suggestions, amongst others made by Schaeffer (1994), Stanback
(1994), and Thompson (1996a). From their suggestions, we mention six additional
components.

date : contains the root’s ply number in the game at the time when the position was
stored®!. Sometimes only a 1-bit date flag is used, stating whether the position
is from an ‘old’ search or not. The date is used for time stamping. A position
will be overwritten by a position with a newer date.

depth : contains the number of ply seen from the root. A position is more important
if it is nearer to the root, since there it has a higher probability of being re-
searched; possible savings are then most likely larger than savings for positions
deeper 1n the tree.

31Feldmann (1996) defines date as the number of conversion moves (irreversible moves) made in
the game.

46 Chapter 2. The transposition table

extenston : contains a Boolean value, denoting if a search extension was done at this
position. The extension criteria of a node may vary (e.g., because the extension
is dependent on the af window), resulting in an extension one time and not
in an extension the other time. The Boolean extension helps to overcome this
problem (which is especially important when doing a re-search).

principal : contains a Boolean value, denoting if this position is part of the principal
variation of a child of the root3?. Positions which are part of the principal
variation of a root’s child are important positions, and may not be overwritten
by other positions.

draw : contains a Boolean value, denoting if the backed-up score of this position is
a proved draw. This is useful for distinguishing between variations resulting in
positions which are real draws, and variations resulting in balanced positions
(which obtain a draw value).

additional bound : instead of storing only a lower bound or an upper bound of the
score, both bounds can be stored in an entry, with separate search depths for
each. This is done by Truscott (1981) in the program DUCHESS.

Presumably, the information contained in these six components will have an im-
pact on the number of nodes searched. However, only very few researchers have
published even provisional results about experiments on these additional compo-
nents. In subsection 2.7.1 we mentioned an experiment testing the use of a 1-bit
date flag (time stamping), concluding that time stamping has a slight edge. In gen-
eral it seems that adding these new components to an entry is not very profitable
(Schaeffer, 1996b).

Storing the additional information described above does not take up much mem-
ory. Most fields need one bit of storage only, since they are Booleans. The choice
for small additional components is made on purpose, since a larger entry results
in a transposition table with fewer entries (assuming the same amount of memory
is available). However, once a critical transposition-table size has been reached not
much is to be gained from doubling the number of positions. Moreover, if the avail-
able memory is less than the memory needed for doubling the number of positions
in the table, it still can be used for storing more information in an entry.

The above considerations have led to the question of how to use additional fields,
taking up more memory than only one bit. Instead of storing the best move (which
can be seen as a 1-ply principal variation) in a transposition-table entry, it may be
interesting to investigate the effects of storing a deeper principal variation in an
entry (Schaeffer, 1996b). This principal variation (PV) can be used to guide the
search. If a position is not present in the transposition table, a good move may still
be available from the n-ply PV information of an ancestor position.

32Note that this is a way to implement the refutation table using the transposition table.

2.8. Chapter conclusions 47

Additional memory

Below we describe a limited set of experiments investigating the effects of storing an
n-ply PV in a transposition-table entry33. The PV information is used as follows. If
a position is found in the transposition table, the corresponding PV is retrieved from
the table. The first move in the PV is used for move ordering and the remainder of
the PV is used in further search. If a position is not found in the transposition table,
and a good move is available from the PV of an ancestor position, then this move is
used for move ordering.

The conditions for the experiments are the same as the conditions mentioned in
subsection 2.7.2. Again, the number of nodes in the Figures 2.15 and 2.16 are the
cumulative results of all 18 and 21 positions, respectively. We have tested the results
of storing an n-ply PV (n = 2...5) in an entry versus storing only the best move (a
1-ply PV). The complete results of the experiments are presented in tabular form in
Appendix C.

Middle-game experiments

In Figure 2.15 the results of the PV experiments on middle-game positions are
depicted. The number of nodes investigated are shown as a function of the
transposition-table size.

Our first observation is that storing an n-ply PV seems hardly worthwhile: the
effects are small and severely dependent on the size of the transposition table. The
explanation for this is that for less than 0.1% of the nodes investigated a position
appears to be absent in the transposition table, whereas a PV from an ancestor
still is available. To give some quantification, it can be seen that with the largest
transposition table (256K positions), storing a 5-ply PV instead of a 1-ply PV wins
roughly 5%, outperforming the 1% gain by simply doubling the number of positions
in the table to 512K (see subsection 2.7.1).

Endgame experiments

The results of the experiments on the endgame positions are analogous to the results
of the experiments on the middle-game positions, as can be seen in Figure 2.16. Here
again, for the largest transposition-table size, the 5-ply PV outperforms the 1-ply
PV, this time by some 12%.

2.8 Chapter conclusions
This chapter has shown that a transposition table (memorizing the outcome of po-

sitions previously analyzed in games, such as chess and domineering) is a useful
technique. The technique has enabled us to solve a large number of different-sized

33We note that these experiments are solely performed in the chess domain, since no moves are
stored in the domineering experiments.

48 Chapter 2. The transposition table

300 T T T T
‘ 1-ply PV ——
R 2-ply PV —+--
NN 3-ply PV -3---
E 4-ply PV -x-
280 |- 5-ply PV -]
z
2
E 260 -
8
=1
Q
<
o
5 240
5}
=]
<
=
)
1
g 220
S
E
=
b4
200
g
180 Il Il Il Il
8 16 32 64 128 256

Table size (in K positions)

Figure 2.15: Storing an n-ply PV in the chess middle game
(8-ply searches).

domineering games, including the standard 8 x8 game. Without a transposition table
this takes a much longer time and can therefore be considered practically impossible.
We have described three series of experiments on the use of a transposition table.
The goal of these experiments was to obtain more insight into the first problem
statement: which methods exist to improve the efficiency of a transposition table?

First, we have tested which replacement scheme performs best. On logical
grounds, one is tempted to conclude that the number of nodes of a subtree (used in
schemes BiG1 and BIGALL) is a better estimate of the work performed (and there-
fore potentially to be saved) than the depth of that subtree (used in scheme DEEP),
especially in positions with a large mobility. The experiments support this logic. In
chess middle-game positions and in domineering the schemes based on the concept
BiG perform better than the schemes based on the concept DEEP. In chess endgame
positions this difference disappears, since the lower mobility then diminishes the dif-
ferences in effects of the two measures. Based on the 7-ply and 8-ply results in chess
middle games, the 10-ply results in chess endgames and the domineering results, we
conclude that a two-level scheme is better than any one-level scheme. Thus it fol-
lows that the most widely used scheme, DEEP, is not best. Based on the conclusions

2.8. Chapter conclusions 49

80 T T T T
b 1-ply PV ——
2-ply PV -+--
75 B 3-ply PV -8--- A
N 4-ply PV -
5-ply PV -&--
70
Z
.2
‘B 65 -
8
=1
£ 60
o
=]
2
& 55t
S
=
—
5
3 50
°©
g
=
b4
45
40
35 1 1 1 1

8 16 32 64 128 256
Table size (in K positions)

Figure 2.16: Storing an n-ply PV in the chess endgame(10-ply searches).

we recommend using the scheme TwoBIG1 as the best replacement scheme for a
transposition table.

Second, it 1s examined which information is more important to store in a
transposition-table entry: the best move in a position, or the score of that move.
It follows that storing the score of a position is more profitable than storing the best
move. This result holds for chess middle-game positions as well as endgame posi-
tions. It was also found that for minimal-window search bound values have a much
larger effect than exact values. This effect, although nowadays expected, contrasts
with the idea for which transposition tables originally were devised, i.e., avoiding
the re-search of positions searched before.

Third, we have tested the effect of storing an n-ply PV (n = 2...5) in an entry,
instead of only the best move (a 1-ply PV). Preliminary results show that a 5-ply PV
may win roughly 5% for the chess middle game, and 12% for the endgame, though
more experiments are necessary to validate the conjecture that it really is profitable
to use additional memory by storing a 5-ply PV instead of increasing the number of
positions in the transposition table.

From the experiments it follows that it is important to choose a good replace-
ment scheme. Further, the available memory can be used to make the transposition

50 Chapter 2. The transposition table

table as large as possible. However, once a critical transposition-table size has been
reached not much is to be gained from doubling the number of positions in the table.
In that case, better ways exist for using the available memory. Instead of doubling
the number of positions in the transposition table, it is better to use the additional
memory by storing more information in an entry, thereby enlarging the entry size.
Based on the above experiments it is recommended to concentrate on storing addi-
tional information which affects the number of cut-offs generated by bound values.

Chapter 3

The proof-number search
algorithm

This chapter is a slightly adapted version of Breuker D.M., Allis L.V., and Herik H.J.
van den (1994b). How to Mate: Applying Proof-Number Search. Advances in Com-
puter Chess 7 (eds. H.J. van den Herik, 1.S. Herschberg, and J.W.H.M. Uliterwijk),
pp. 251-272. University of Limburg, Maastricht, The Netherlands!.

The second and third problem statement deal with best-first search. In this chap-
ter we therefore present a relatively new best-first search algorithm, called proof-
number search (pn search), which will be used in the experiments addressing the
second and third problem statement.

The basic ideas behind the pn-search algorithm are presented in Section 3.1. Sec-
tion 3.2 lists the pseudo-code of the pn-search algorithm for trees. The experimental
set-up is given in Section 3.3, and the test set is described in Section 3.4. Section 3.5
provides the experiments, of which the results are discussed in Section 3.6. Finally,
Section 3.7 evaluates the experiments.

3.1 An informal description

In this section we present a short overview of pn search, based on Allis (1994). A
detailed description of pn search can be found in Allis et al. (1994).

Proof-number search is a best-first AND/OR tree-search algorithm, and is in-
spired by the conspiracy-number algorithm (McAllester, 1988; Schaeffer, 1990). Be-
fore starting the search, a search goal is defined (e.g., try to reach at least a draw).
The evaluation of a node returns one of three values: true, false, or unknown. The
evaluation is seen from the point of view of the player to move in the root position.
The value true indicates that the player to move in the root position can achieve the

IThanks are due to the Editors of Advances in Computer Chess 7 for giving permission to use
the contents of the article in this chapter.

51

52 Chapter 3. The proof-number search algorithm

goal, while false indicates that the goal is unreachable. A node is proved if its value
has been established to be true, whereas the node is disproved if its value has been
determined to be false. A node is solved as soon as i1t has been proved or disproved.
A tree is solved (proved or disproved) if its root is solved. The goal of pn search is
to solve a tree.

Two variants of creating a search tree exist (cf. Allis, 1994).

1. Immediate evaluation. Each node in the tree 1s immediately evaluated after it is
generated. The tree is built by first generating (and evaluating) the root. Then
at each step a leaf is selected, expanded and all its children are immediately
evaluated.

2. Delayed evaluation. Each node is only evaluated when it is selected, and not
immediately after it is generated. The tree is built by first generating the root
(without evaluation). Then, at each step a leaf is selected and evaluated. If
the evaluation value is unknown, the node is expanded (without evaluating its

children).

The advantage of immediate over delayed evaluation is that in the former variant
more information is available. However, if the evaluation takes much time, it is better
to use the delayed variant, avoiding the evaluation of many nodes that will not be
used for solving the tree. Since, in the standard pn-search experiments described in
this chapter, the evaluation is fast (only checking whether the position is a win, a
loss, or a draw) we use the immediate variant in our further description of pn search.

Like other best-first search algorithms, pn search repeatedly selects a leaf, ex-
pands it, evaluates all its children, and updates the tree with the information ob-
tained from the expansions and evaluations. Unlike most other best-first search algo-
rithms, pn search does not use a heuristic evaluation function in order to determine
a most-promising node. Instead, the shape of the search tree (the number of children
of every internal node) and the values of the leaves determine which node to select
next.

In general, to solve a tree, a number of leaves of the current search tree needs to
be proved or disproved. A set of leaves, which, if all proved, would prove the tree,
is called a proof set. Likewise, a set of leaves, which, if all disproved, would disprove
the tree, 1s called a disproof set. The size of the smallest proof set of the tree is a
lower bound for the number of node expansions necessary to prove the tree, while
the size of the smallest disproof set of the tree is a lower bound for the number of
node expansions necessary to disprove the tree.

In Figure 3.1 an AND/OR tree has been depicted. The numbers to the left of a
node denote proof numbers, while the numbers to the right of a node denote disproof
numbers. A proof number of a node represents the minimum number of leaves which
have to be proved in order to prove that node. Analogously, a disproof number of a
node represents the minimum number of leaves which have to be disproved in order
to disprove that node.

Proved nodes (e.g., node K in Figure 3.1) have proof number 0 and disproof
number oco. This follows from the fact that no expansions are needed to prove the

3.1. An informal description 53

olKlw 1[L]1 11 N

true false

Figure 3.1: An AND/OR tree with proof and disproof numbers.

node, since it 1s already proved, and that no number of expansions could ever disprove
the node. Analogously, disproved nodes (e.g., node O in Figure 3.1) have proof
number oo and disproof number 0. Unsolved leaves (e.g., nodes E, F, L, M, N, I,
and P) have a proof and disproof number of unity, as expanding the node itself may
be sufficient to solve the node.

Internal AND nodes have as proof numbers the sum of the proof numbers of their
children, since to prove an AND node, all children must be proved. The disproof
number of an AND node equals the minimum of its childrens’ disproof numbers,
since only one child needs to be disproved to disprove the AND node. For instance,
the proof number of node H is equal to the sum of the proof numbers of its children
M and N (2 = 1+41). The disproof number of node H is equal to the minimum
of the disproof numbers of its children (1). Analogously, the proof number of an
internal OR node equals the minimum of the proof numbers of its children, whereas
its disproof number equals the sum of the disproof numbers of its children. For
instance, the proof number of node A is equal to the minimum of the proof numbers
of its children B, C and D (1). The disproof number of node A is equal to the sum
of the disproof numbers of its children (3 = 1424-0).

The root (A) has proof number 1. This means that at least one leaf (in this case
node L) should be proved to prove the root. The disproof number of the root is equal
to 3. This means that at least three nodes (node F or node F, node L, and node M
or node N) have to be disproved to disprove the root.

The main assumption underlying pn search is that it is generally better to expand

54 Chapter 3. The proof-number search algorithm

those nodes which are in the smallest proof and/or disproof sets. In other words,
pn search concentrates at each step on the potentially least amount of work necessary
to solve the tree.

The only remaining question is: when to select a node from the smallest proof set
of the root and when to select a node from its smallest disproof set? Surprisingly, we
can always do both at the same time. Allis et al. (1994) prove that the intersection
of any smallest proof set and any smallest disproof set of the same node 1s always
non-empty. The nodes which are elements of both a smallest proof set and a smallest
disproof set of the root are called most-proving nodes. Thus, if after expansion of
a most-proving node P, it obtains the value true, the proof number of the root is
decremented by unity, while if P obtains the value false, the disproof number of
the root is decremented by unity. If the value of P remains unknown, the newly
generated children may have their impact on the proof and/or disproof numbers of
P and its ancestors. A most-proving node is determined in the tree by selecting, at
AND nodes, a child with disproof number equal to its parent’s, and at OR nodes a
child with proof number equal to its parent’s. By thus traversing the tree from its
root to a leaf (e.g., the bold path from A to L in Figure 3.1), it is shown that a
most-proving node is found (Allis et al., 1994).

3.2 The pseudo-code of the algorithm

All algorithms given in this section are based on the algorithms given by Allis (1994).
The main proof-number search algorithm is given in Figure 3.2. The only parameter
of the procedure is root, being the root of the search tree. After execution of the
procedure, the root’s value can have one of three values: true, false or unknown.
First, the root is evaluated and its proof and disproof numbers are initialized. Then,
in the main loop, repeatedly a most-proving node is selected, expanded, and all its
children are evaluated. Thereafter, traversing the tree backwards to the root, the
proof and disproof numbers are adjusted.

The function Evaluate evaluates a position, and returns one of the following three
values: true, false, or unknown. The function SetProofAndDisproofNumbers initializes
the proof and disproof numbers of a node. The algorithm is given in Figure 3.3. The
only parameter of the function is node, being the node to be initialized. Two cases are
distinguished. In the first case the node is an internal node (since it is expanded), and
the proof and disproof numbers are initialized according to the proof and disproof
numbers of its children. In the second case the node is not expanded, but it is
evaluated, since immediate evaluation 1s used. The proof and disproof numbers are
initialized according to the evaluation.

The function ResourcesAvailable returns a Boolean value indicating whether suffi-
cient resources are available to continue searching. This is usually dependent on the
available memory, but can also depend on a limited amount of time available. The
function SelectMostProvingNode finds a most-proving node. The algorithm is given
in Figure 3.4. The only parameter of the function is node, being the root of the

3.3. Experimental set-up 55

procedure ProofNumberSearch(root)
Evaluate(root)
SetProofAndDisproofNumbers(root)

root.expanded := false

while root.proof#£0 and root.disproof£0 and
ResourcesAvailable() do begin
mostProvingNode := SelectMostProvingNode(root)
ExpandNode(mostProvingNode)
UpdateAncestors(mostProvingNode, root)
end

if root.proof=0 then root.value := true
elseif root.disproof=0 then root.value := false
else root.value := unknown /* resources exhausted */

end /* ProofNumberSearch */

Figure 3.2: The pn-search algorithm for trees.

(sub)tree where the most-proving node is located. As long as the node is expanded,
a child is chosen with proof or disproof number (dependent on the type of node)
equal to that of the parent. If a leaf is reached, the algorithm stops, and that node
is returned.

The most-proving node found is expanded. This is done by the procedure Ex-
pandNode. The only parameter of this procedure is node, being the node to be
expanded. In Figure 3.5 its algorithm is depicted. First, all children are generated.
Next, every child is evaluated and its proof and disproof numbers are set according
to this evaluation.

After the expansion of the most-proving node, the new information has to be
backed up throughout the whole tree. This is done by the procedure UpdateAnces-
tors. The procedure has two parameters. The first parameter (node) is the node to
be updated, while the second parameter (root) is the root of the search tree. Its
algorithm is shown in Figure 3.6.

3.3 Experimental set-up

Pn search first examines the most forcing variations where the mobility of the op-
ponent is as small as possible. This is explained as follows. The OR player chooses
a child with the lowest proof number. By definition, the proof number of this child
(an AND node) is equal to the sum of the proof numbers of its children. Tt follows
that the AND child with the lowest proof number has the lowest mobility. Because
pn search first examines forcing variations, it is expected that 1t will work extremely

56 Chapter 3. The proof-number search algorithm

procedure SetProofAndDisproofNumbers(node)
if node.expanded then /* internal node */
if node.type=AND then begin /* AND node */
node.proof := 0
node.disproof := oo
for i:=1 to node.numberOfChildren do begin
/* Add up proof numbers and minimize disproof numbers */
node.proof := node.proof + node.children[i].proof
if node.children[i].disproof<node.disproof then
node.disproof := node.children[i].disproof
end
end else begin /* OR node */
node.proof := oo
node.disproof := 0
for i:=1 to node.numberOfChildren do begin
/* Minimize proof numbers and add up disproof numbers */
if node.children[i].proof<node.proof then
node.proof := node.children[i].proof
node.disproof := node.disproof + node.children[i].disproof
end
end
else /* leaf */
case node.value of begin
false:
node.proof := oo
node.disproof := 0
true:
node.proof := 0
node.disproof := oo
unknown:
node.proof := 1
node.disproof := 1
end

end /* SetProofAndDisproofNumbers */

Figure 3.3: The proof-and-disproof-numbers-calculation algorithm.

3.3. Experimental set-up 57

function SelectMostProvingNode(node)
while node.expanded do begin
=1
if node.type=OR then /* OR node */
while node.children[i].proof#node.proof do i := i+1
else /* AND node */
while node.children[i].disproof#node.disproof do i := i+1
node := node.children[i]
end

return node
end /* SelectMostProvingNode */

Figure 3.4: The most-proving-node-selection algorithm.

procedure ExpandNode(node)

GenerateAllChildren(node)

for i:=1 to node.numberOfChildren do begin
Evaluate(node.children[i])
SetProofAndDisproofNumbers(node.children[i])
node.children[i |.expanded := false

end

node.expanded := true

end /* ExpandNode */

Figure 3.5: The node-expansion algorithm.

well in cases where the goal can be reached by forcing variations. Therefore, we have
chosen to investigate this in the domain of finding checkmates.

3.3.1 The search engine

The proof-number search engine is implemented according to the description in Sec-
tion 3.1. The most important enhancement of the pn-search implementation, relative
to a naive implementation is in the initialization of proof and disproof numbers at
the leaves. In the standard algorithm, proof and disproof numbers are each initial-
ized to unity. Assume that after expansion all the n children evaluate to the value
unknown. Then the proof and disproof numbers of the most-proving node are set to
1 and n for an OR node, and to n and 1 for an AND node. In our implementation, to
distinguish between leaves, before expansion, we set the proof and disproof number
of node P to 1 and n (or n and 1, depending on the node type), where n is the

58 Chapter 3. The proof-number search algorithm

procedure UpdateAncestors(node, root)
SetProofAndDisproofNumbers(node)
while node#£root do begin
node := node.parent
SetProofAndDisproofNumbers(node)
end
end /* UpdateAncestors */

Figure 3.6: The ancestor-updating algorithm.

number of legal moves in the position represented by P. Experiments show that the
extra overhead introduced by counting the number of legal moves at each node is
more than compensated for by the value of the extra information thus revealed to
the node-selection process (Allis, 1994).

3.3.2 The move ordering

For pn search the move ordering is of less importance than for af search. For the
reproducibility of the experiments we have chosen to order the moves in descending
square order (h8, g8, ..., a8, h7,...,a7, ..., hl ... al). The moves are sorted according
to their from squares. If two moves have identical from squares they are sorted
according to their to squares. If these are also identical, then the moves must be
promotion moves, and the moves are sorted according to their promotion pieces (in
the order Queen, Rook, Bishop, Knight).

As an example we provide the starting position at the game of chess. The White
moves are sorted thus: h2-h4, h2-h3, g2-g4, g2-g3, f2f4, 213 e2-e4,
e2—e3, d2-d4, d2-d3, c2-c4, c2-c3, b2-b4, b2-b3, a2-a4, a2-a3,
Ngl-h3, Hg1l+H3, {HNbl—<3, {HNbl-a3l.

3.4 The test set

For our experiments we used a diverse set of mating problems. They are taken
from Krabbé’s (1985) Chess Curiosities and Reinfeld’s (1958) Win at Chess. The
35 positions taken from Krabbé (1985) are mating problems in six moves or more.
They are indicated by the name Kz, in which z refers to the diagram number in the
source and takes the values 8, 35, 37, 38, 40, 44, 60, 61, 78, 192, 194, 195, 196, 197,
198, 199, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 261,
284, 317, 333 and 334. The 82 positions taken from Reinfeld (1958) are problems
where we know that a forced mate is possible. They are indicated by the name Rz,
z again referring to the problem number in the source, this time running over 1,
4,5, 6,9, 12, 14, 27, 35, 49, 50, 51, 54, 55, 57, 60, 61, 64, 79, 84, 88, 96, 97, 99,
102, 103, 104, 105, 132, 134, 136, 138, 139, 143, 154, 156, 158, 159, 160, 161, 167,

3.5. Experiments 59

168, 172, 173, 177, 179, 182, 184, 186, 188, 191, 197, 201, 203, 211, 212, 215, 217,
218, 219, 222, 225, 241, 244, 246, 250, 251, 252, 253, 260, 263, 266, 267, 278, 281,
282, 283, 285, 290, 293, 295 and 298. This results in a test set of 117 positions (see
Appendix D).

3.5 Experiments

Pn search always aims at proving or disproving a certain goal. In our experiments
the only goal is searching for mate. In our description, we distinguish between the
attacker and the defender. The attacker is the player to move in the root position,
while the defender is the opponent. A position is proved if the attacker can mate,
while draws (by stalemate, by repetition of positions and by the 50-move rule) and
mates by the defender are defined to be disproved positions for the attacker. If a
position is neither proved nor disproved, it is said not to be solved.

We have compared the the pn-search algorithm to the a(-search algorithm, im-
plemented in Duck? on the test set described in Section 3.4. We note that it is
possible to create a special mate searcher using a3 search, which will perform better
than Duck. However, pn search does not use any chess-specific knowledge other
than recognizing mates, stalemates, and drawn positions. Therefore, we decided to
choose DUCK as the af searcher. The search was terminated as soon as any mate
was found. The experiments are conducted to investigate how a best-first search
algorithm (using much memory, since it stores the whole search tree) compares to
the widely used depth-first aF-search algorithm (using little memory). Furthermore,
in the next chapters we concentrate on best-first search, using proof-number search
as example and using the same test set.

We have performed experiments in which both programs had to solve each posi-
tion within 1,000,000 nodes. This limit was selected for two reasons:

1. The calculation time (up to 5 minutes on the hardware used) corresponds
roughly to tournament conditions.

2. The search tree for pn search must be kept in memory during the calculations:
a tree of 1,000,000 nodes is close to the maximum achievable on the hardware
used.

3.6 Results

This section contains the results of the experiments described in Section 3.5. The
complete results for every test position individually are presented in Appendix E. As

?In contrast to ALIBABA, of which the of search engine was designed specifically for the
transposition-table experiments, DUCK is a full-blown tournament program, incorporating a de-
tailed evaluation function and several a3 enhancements such as extension heuristics. For more
details, see Breuker et al. (1994b).

60 Chapter 3. The proof-number search algorithm

the measures of performance we use the number of positions solved and the number
of nodes investigated.

From the 117 test positions, 106 positions were solved by at least one algorithm:
73 were solved by both algorithms, 30 by pn search only and 3 by af search only. We
have stated for each test position the algorithm by which it could be solved within
1,000,000 nodes.

Both algorithms: K35, K38, K197, K211, k212, k261, k317, r1, R4, RS, RY, R12,
RrR14, R27, R35, R49, RH0, RH4, R55, RH7, R60, R61, R64, R7T9, R84, R88, R97
R99, R102, R103, R104, R132, R134, R136, R139, R143, R154, R156, R158
R160, R161, R167, R172, R173, R177, R179, R184, R186, R188, R191, R197,
R203, R211, R212, R215, R217, R219, R225H, R244 R246, R251, R253, R260,
R263, R266, R267, R278, R282, R283, R285, R290, R295, R298.

Pn search only: kK37, k61, k192, k194, k196, kK198, K199, K206, K207, K208
K214, K215, K216, k218, K219, K333, K334, r6, RH1, R138, R159, R168,
R182, R218, R222, R241, R250, R2H2, R281, R293.

af search only: K60, K284, R105.
Neither algorithm: K8, K40, K44, K78, K195, K209, k210, k217, K220, rR96, rR201.

In Table 3.1 the results are summarized. In the first row of the table the total
number of nodes searched on the 73 positions solved by both algorithms is listed.
The second row contains the average number of nodes searched per position. The
third row lists the number of times the stated algorithm outperformed the other
(by the criterion of the number of nodes searched). In the fourth and fifth row a
position is selected where the ratio of nodes visited was lowest for pn search and
a3 search, respectively. The sixth row shows the average number of nodes searched
by pn search on the 30 positions not solved within a million nodes by a3 search. The
last row shows the average number of nodes searched by af search on K60, K284
and R105, the only three positions solved by af search but not by pn search.

Comparing the performance of pn search with af search creates a consistent
impression of a general superiority of pn search as a mate searcher.

e The total number of nodes investigated by pn search is about 20% of the
number of nodes investigated by af search.

e Pn search outperformed af search in some 84% of the cases.

e The ratio of nodes visited from the point of view of pn search was lowest in
the case of position R217. The number of investigated nodes by pn search is
only a fraction (0.08%) of the number investigated by a8 search. From the
point of view of af search the best position was R253. Here, the number of
nodes investigated by a3 search is about 13% of the number investigated by
pn search.

3.6. Results

61

Pn search af search
Total number of nodes searched 953,762 5,198,074
Average number of nodes per position 13,065 71,206
Best performer 61 12
Best instance (nodes) of pn search (R217) 271 331,404
Best instance (nodes) of af search (R253) 2,355 311
Pn search (nodes) where af search failed 230,166 | >1,000,000
af? search (nodes) where pn search failed >1,000,000 644,058

Table 3.1: Comparing pn search and a3 search.

e The average number of nodes investigated by pn search on the 30 positions
that af search did not solve within 1,000,000 nodes is 230,166. In contrast,
the number of nodes investigated by «af search on the three positions that
pn search did not solve within 1,000,000 nodes is much higher (644,058).

In the next subsection the particular strengths and weaknesses of pn search are
discussed.

3.6.1 Strengths of pn search

This subsection discusses two strengths of pn search: (1) the algorithm does not need
specific chess knowledge, and (2) the algorithm finds deep, forced mates.

No specific chess knowledge

The pn-search algorithm does not use any specific chess knowledge. All that is needed
is a move generator, and an evaluation function able to recognize mate, stalemate
and draws by repetition or by the 50-move rule. We would like to stress that, quite
unlike af search, move ordering has not much influence on the performance of
pn search. This phenomenon is explained by the way pn search builds its tree. At
each step, the child with the smallest proof or disproof number (depending on the
node type) is selected. Only if two children tie is the selection of a node based on
the move ordering. Experiments with changing the move ordering showed that this
ordering has little influence on the number of nodes grown®. Not using any chess
knowledge has the advantage that pn search can be incorporated into any chess
program, regardless of the evaluation function and of the heuristics applied.

3This is contrary to the results found for conspiracy-number search, as given by Klingbeil and
Schaeffer (1990). They show that move ordering does have influence when searching in tactical
chess positions.

62 Chapter 3. The proof-number search algorithm

Finding deep, forced mates

The strategy of pn search may be described as investigating first those variations in
which the opponent has the least mobility. Instead of examining the mobility for a
single position, pn search examines the mobility of the search tree as a whole. The
proof number of the root indicates, at any point in time during the computation, the
mobility left to the defender for escaping mate. The achievements seem to indicate
that, during a mate search, mobility is the most important factor. Clearly, chess
characteristics, such as material balance and positional advantage, lose most of their
meaning when trying to force a mate is the unique goal aimed at. Moreover, the
distance-to-mate is no longer a dominant factor in the size of the search tree grown.
As long as the mobility of the defender is restricted, pn search will continue to
explore a variation, regardless of the depth of the subtree explored. We present two
sample positions where this characteristic leads to the discovery of a deep mate,
which would not be found if the depth of the subtree explored was an important
factor (as it is in af search).

7,

*%

Figure 3.7: Mate in 38 (wTM™); (L. Ugren).

The position in Figure 3.7 is taken from Diagram 194 in Krabbé (1985). We
note that the square al is the left-bottom square, so Black has 4 Pawns ready to
promote. For the chess-playing reader we cite the solution as stated by Krabbé: “ 1.
&a34+ dal 2. b2+ Hbl 3. £xd4+ el If White could now play 4. £b2+
bbl 5. &xedb+ etc., that would shorten the procedure enormously, but of course
Black would escape: 4. ..., &9d2. This necessitates the repetition of a seven-move
operation to bring the zwickmiihle around: 4. %&e3+ dpdl 5. Ed8+ el 6.
&d2+ &dl 7. £ba+ el 8. a3+ &bl 9. Eb8+ Hal 10. 2b2+ &bl
11. &xeb+ el 12. &fa+ dl 13. Hd8+ Fel 14. &d2+ &dl 15. £ba+

3.6. Results 63

el 16. £a3+ &bl 17. £b8+ Hal 18. £b2+ &bl 19. &xf6+ el 20.
Seb5+ &dl 21. Hd8+ el 22. &d2+ Hdl 23. 2bda+ Pl 24. a3+ &bl
25. £b8+ Fal 26. £b2+ &bl 27. HxgT+ Pel 28. Hh6+ odl 29. Ed8+
el 30. &d24 hdl 31. &b+ el 32. a3+ Kbl 33. Eb8+ Hal 34.
£eT! and finally the idea is clear: f6 is the only safe square to threaten mate; on
other squares the £\h4 or one of the Pawns could have thwarted that mate. 2 d4
and Aeb had to go to open the diagonal, &6 to gain access to g7, and & g7 to gain
access to 6. After 34. &e7, mate cannot be staved off for more than a few moves.”
The remaining moves are: 34. ..., c1=% 35. 4f64+ Wb2 36. Zxb2 el=% 37.
Eb8+ We5 38. & xeb mate.

Proof-number search solves this mate in 229,423 nodes, whereas our implemen-
tation of a3 search fails to solve it within 50,000,000 nodes®.

Figure 3.8: Mate in 25 (WTM); (J.-L. Seret).

The position in Figure 3.8 is taken from Diagram 199 in Krabbé (1985). Again,
for the chess-playing reader we give the solution as stated by Krabbé: “Here, there
are also two troublemakers and White disposes of an extended zwickmiihle like the
one in diagram 194 [our Figure 3.7] to silence them. 1. &b2 would mean mate in
2 if Black didn’t have 1. ... a3+. That Pawn can be immediately removed with
1. &xad+, but after el 2. BEcd+ bl 3. &c2+ dal! (gcl 4. &15+ allows
White to enter the solution at move 14) 4. b3 Black has the nasty 4. ..., b5 5.
cxb6 Ebb+ etc. Therefore, in order to remove the a4, White must first remove
the &b7. Hence 1. $e2+ el (‘%CQ 2. Ecd+ dHbl 3. £d3+ Hal 4. Ec2 and
5. Ha2 mate) 2. &g4+ Hfl 3. $h3+ dgl 4. Ega+ Fhl 5. &g2+ bgl

4This result is heavily dependent on the search extensions used. The af program THETURK
solves this mate in 3,325,715 nodes when choosing the right extensions (Schaeffer, 1998)

64 Chapter 3. The proof-number search algorithm

6. &xb74+! Hfl 7. &a6+ el 8. Eed+ Bdl 9. &e2+ el 10. 2b54!
&d1 and we are back in the diagram, but without the 2b7 which means the £ a4
meets its end too. 11. &xad4+ bel 12. Ec4+ ddl 13. 2c24+ FHel! Because
if now 13...., &ral 14. Hb3! 14. 215+ Hdl 15. &ga+ el 16. Zed+ Hfl
17. £h3+4 gl 18. Hga+ Hhl 19. Sg2+ gl 20. &c6+! Hfl 21. &b5+
Hel 22. Eed4+ FHd1 and there we are: back in the diagram, but without those
inconvenient Pawns. 23. &b2! HExch 24. 2a4+4+ Ec24 25. £xc2 mate.”

Proof-number search solves this mate in 370,016 nodes, whereas our implemen-
tation of af search fails to solve it within 50,000,000 nodes.

In Figures 3.7 and 3.8, the mate found by pn search is also the intended solution
to the problem. Since the solutions contained many forcing moves (leaving the de-
fender few moves), pn search performed very well. a8 search performed very poorly
because the solutions were very deep (75 and 49 ply, respectively). As we will see in
subsection 3.6.2, in some cases, the duty of playing the most-forcing moves imposed
by pn search may lead to excessive departures from the optimal solution.

3.6.2 Weaknesses of pn search

This subsection discusses three weaknesses of pn search: (1) the inability to find
good, non-forcing moves, (2) the inability to find the shortest mate, and (3) the
inability to deal with transpositions.

Non-forcing moves

In many mating problems, the attacker delivers check on most moves, thus restricting
the options of the defender. In some cases, however, the attacker plays a non-forcing
move, after which almost any move by the defender leads to the same decisive attack.
Since the mobility of the opponent is increased by such a non-forcing move, pn search
prefers first to investigate those variations in which the defender is most confined.

Hence, if the only solution requires one or more non-forcing moves, pn search will
not perform as well as it will when a mate exists with forcing moves only. We note
here that its preference is not merely for checking moves (which are forcing moves
in human parlance), but it must, by its algorithm, prefer the most-forcing checks.
A similar problem is recognized by Schaeffer (1989a, 1990) when using conspiracy-
number search as a tactical analyzer.

As a measure of the difficulty of a position for pn search caused by non-forcing
moves, we propose considering the number of different variations within the solu-
tion. We present a sample position where pn search performed worse than a3 search.
The existence of non-forcing moves proved a significant factor in degrading its perfor-
mance. Problem 14 of Reinfeld (1958) (Figure 3.9) is a mate in four moves consisting
of 49 variations. After 1. Wxh74 Hf8, the best move is the non-forcing move 2.
& 16, threatening the unavoidable 2. ..., Wg7 mate. Proof-number search solves
this mate in 324,542 nodes, whereas af search only needs 127,519 nodes.

We conclude that in positions where the solution requires non-forcing moves,
pn search is at a disadvantage. The three positions not solved by pn search (K60,

3.6. Results 65

Figure 3.9: Problem 14 of Win at Chess (WTM).

K284 and R105) have solutions with non-forcing moves. It is even worse, since the
first moves of both solutions are non-forcing, making it impossible for pn search to
find the solutions within 1,000,000 nodes.

Mate length

As stated before, pn search is indifferent to the depth of the search, being governed
only by the defender’s number of options. As a consequence, pn search finds mates
in over 100 moves, while optimal ones exist in fewer than ten moves. The position
shown in Figure 3.10 is problem 150 of Howard (1961). It shows an example of
pn search finding a mate in 114 moves while an optimal mate of four moves exists.
The intended solution reads 1. ¢ve4 and now either 1. ..., fxe6 2. f7 e5 3. f8=2&
Heg8 4. /Nf6 mate, or 1. ..., Heg8 2. exf7+ Hh7 3. 8=+ g8 4. 7 mate.

As a solution we suggest initializations of the proof and disproof numbers different
from the ones proposed above, specifically with the initial values depending on the
depths in the search tree. This may solve the problems of the apparently aimless
and certainly long paths to mate.

Transpositions

A third weakness encountered when using pn search is the inability of dealing with
transpositions. Assume that an identical subvariation occurs as six separate subtrees
within one variation tree. Then, the number of variations to be solved increases by a
factor of six. The amount of search to be performed, however, increases by a factor
of far more than six. Since, by the rules of combining proof and disproof numbers in

66 Chapter 3. The proof-number search algorithm

7.
%
———

s 0
2 2 2

Figure 3.10: Problem 150 of The Enjoyment of Chess Problems (WTM).

AND/OR trees, the difficulty of each subtree is propagated upwards sixfold, pn search
may well be led to the investigation of other subtrees. If these subtrees fail to deliver
a mate pn search will, at long last, arrive at the correct branch in another subtree
leading to mate.

As an example we provide problem 213 of Reinfeld (1958) (Figure 3.11). The
intended solution starts with the moves 1. Exh7+ dxh7 2. Wh54+ &g8 3.
Exg7+ dxg7 4. £h6+ Fh7 5. &gb+ Hg7 6. Whe+ Lf7 7. Wie+ Lg8 8.
W6+ Ph8, reaching the position of Figure 3.12. In the solution tree this position
occurs six times, depending on Black’s defence at moves 4, 5 and 6. The proof
number of this position will be high because the distance-to-mate from that position
is still considerable. Upward propagation will expand the proof number six-fold.
The resultant high proof number provides an obstacle which pn-search was unable
to overcome.

3.7 Chapter conclusions

In this chapter we have described experiments comparing pn search with «f search.
Pn search has been presented as a best-first search technique easy to implement and
uniquely attuned to finding mates in chess. Beyond recognizing mates, stalemates,
and drawn positions, no chess-specific knowledge is required. When a mate exists
within its horizon, this technique consistently outperforms conventional techniques
in terms of nodes visited, except when the solution relies on the presence of non-
forcing moves, transpositions, or on providing the shortest mate.

67

3.7. Chapter conclusions

Figure 3.11: Problem 213 of Win at Chess (WTM).

Figure 3.12: Six-fold transposition in problem 213 of Win at Chess (WTM).

Chapter 3. The proof-number search algorithm

Chapter 4

The pn?-search algorithm

One of the drawbacks of proof-number search (pn search) is that the whole search
tree has to be stored in memory. Since computers are fast, the search tree grows
quickly, causing the memory to be filled up completely. When the memory is full,
the search process has to be terminated prematurely. Consequently, no solution will
be found. For reducing memory usage, Allis et al. (1994) suggest two techniques
which reduce the size of a generated search tree: the DeleteSolvedSubtrees technique
and the DeleteleastProving technique. The first technique removes all nodes which
are solved. The technique is not very successful in searches which fail to determine
the root value. The second technique removes parts of the tree least likely needed
in the search. In this chapter we introduce a third technique which increases the
information of the nodes in the tree in order to guide the search in a better way,
thereby finding a solution more quickly. By this method we attempt to obtain more
insight into the second problem statement of this thesis: which methods exist for
best-first search to reduce the need for memory by increasing the search, thereby
gaining more knowledge per node?

Section 4.1 introduces the pnZ-search algorithm. Details concerning this algo-
rithm are discussed in Section 4.2. Section 4.3 presents the experiments. The results
of the experiments are listed in Section 4.4. Section 4.5 states the conclusions.

4.1 Pn search with small memory: pn? search

Gaining more knowledge per node searched can be realized by using a better eval-
uation function at the leaves. One way of doing this is to use a search process at
the leaves to obtain a more accurate evaluation. This method is used by other re-
searchers as well. Berliner (1979) already used this idea in the B* algorithm, in
which a shallow a3 search evaluates the leaves. Pijls and De Bruin (1994) described
the RSEARCH algorithm, in which certain leaves (the so-called pseudo-terminals) are
evaluated by doing another RSEARCH. Recently, Baum and Smith (1997) reported
on their Bayesian model of searching game trees: a two-stage Bayesian search is

69

70 Chapter 4. The pn?-search algorithm

performed in which an outer search is called by the inner search as its evaluation
function. For the pn?-search algorithm, introduced here, we also use this idea. It is
briefly mentioned by Allis (1994), but so far no thorough research has been done on
pn? search.

Pn? search is a search process consisting of two levels of pn search. The first-level
search builds a tree in the same way as the standard pn-search algorithm for trees,
as described in Section 3.1. However, the evaluation of the most-proving node is not
performed by an evaluation function, but by a second-level pn search. The most-
proving node of the first-level search tree acts as the root of the second-level search
tree. The leaves in the second-level search are evaluated in the standard way, i.e.,
by an evaluation function returning one of the values true, false, and unknown. The
leaf values are backed-up as usual leading to an evaluation of the most-proving node
of the first-level pn search with more knowledge (acquired by using the second-level
pn search) than in the standard way. After termination of the second-level pn search,
the second-level tree is disposed of and the first-level search tree is updated using
the new proof and disproof numbers of the most-proving node.

For pn? search the same tree-creation variants exist as in standard pn search:
immediate evaluation and delayed evaluation (see Section 3.1). For the first-level
search, the evaluation of a leaf takes much time, since it is a (pn-)search process
itself. Therefore, it is efficient to use the delayed-evaluation variant for the first-level
pn search. A limited set of experiments has shown that the delayed-evaluation variant
indeed performs better for the first-level pn search than the immediate-evaluation
variant. For the second-level search it is efficient to use the immediate-evaluation
variant of the pn-search algorithm for trees, because the second-level pn search uses
a fast evaluation function.

If the evaluation by the second-level pn search yields unknown, the most-proving
node of the first-level search should be expanded, because delayed evaluation is used.
However, this node has just been expanded by the second-level pn search. Hence,
after completion of the second-level pn search, the children of the root of the second-
level search tree (the most-proving node of the first-level search tree) are preserved,
but the subtrees of the children are removed. In this way, whenever a most-proving
node evaluates to unknown, it has already been expanded by the second-level search.
If the evaluation by the second-level is true or false (solving the most-proving node
of the first-level search) the second-level search tree is removed completely.

The following important question arises: how many nodes should the second-level
pn search use for the evaluation of the most-proving node of the first-level pn search?
An attempt to answer this question is made in the next sections.

4.2 The size of the second-level pn search
In this section we investigate how many nodes the second-level pn search should

use for the evaluation of the most-proving node of the first-level search. It is not
advisable for this number to be large, when the first-level pn search is still small,

4.2. The size of the second-level pn search 71

because the evaluation of the most-proving nodes then proportionally consumes too
much time. Hence, the size of the second-level search tree should be in relation to
the size of the first-level search tree.

Allis suggested making this size equal to the size of the first-level search tree.
From this position he made two statements which are paraphrased below.

1. A search resulting in a first-level tree of size NV has searched approximately % X
N? nodes in the second-level search. This can be shown easily by investigating
successive steps in the search process. First, the root is evaluated using a
second-level search of one node. Then, the root is expanded, and the first new
node is evaluated using a second-level search of at least two nodes (depending
on the number of children of the root), etc. A first-level tree of size N has
therefore searched at most Zf\;l 1= Mé\r—+11 nodes in the second-level search,
which, for big N, is approximately equal to % x N2,

2. The memory requirements during the creation of a first-level tree of size N
are 2 x N nodes. This is trivial, since the size of the second-level search 1s set
equal to the size of the first-level tree (being N). Therefore, at most N + N
nodes are needed to search a first-level tree with N nodes.

A new 1dea

Allis’ suggestion has the disadvantage that relatively easy problems will take much
longer to be solved than with standard pn search (see the first statement above).
Therefore, we introduce the following idea: start searching with the standard pn-
search algorithm; only when it appears that the solution will not be found, start
using a second-level search with growing size. In this case, solutions of easy problems
will still be found fast, and solutions of more difficult problems may also be found
because of the increase in directing knowledge since the second-level search tree
grows. In conclusion, we suggest that the size of the second-level search tree is some
fraction (between 0 and 1) of the size of the first-level search tree. This fraction
should preferably start small, and grow larger as the size of the first-level search tree
increases.

Let f(z) be a function that determines the fraction, z being the size (i.e., the
number of nodes) of the first-level search tree. A standard model for the desired type
of growth of the second-level search tree is the logistic-growth model (Berkey, 1988).
From this model we adopt the following function

1

f@) = T — (4.1)
with two parameters a and b, both strictly positive. The parameter a determines
the transition point of the function: as soon as the size of the first-level search tree
reaches a nodes, the second-level search uses half the size of the first-level search

tree (the larger a, the later this occurs). Parameter b determines the S-shape in the

72 Chapter 4. The pn?-search algorithm

function (the larger b, the more stretched the S-shape is). We note that the pn%-
search algorithm as suggested by Allis (1994) is a special case of this function: the
size of the second-level search tree i1s equal to the size of the first-level search tree
when both parameter a and parameter b become small, because then the fraction

function approaches f(z) = 1. When a becomes large and b becomes small the
fraction function approaches f(z) = 0, which means that standard pn search is
used’.

Preliminary experiments revealed that it 1s advisable to choose the value of pa-
rameter a in the order of magnitude of the maximum number of nodes. If parameter
a is chosen too small, the transition point moves too far to the left side of the graph
(see Figure 4.1), meaning that easy problems will not be found fast any more. If
parameter a is chosen too large, the transition point moves too far to the right side
of the graph, meaning that too few nodes are used for the second-level pn search,
which does not improve the directing knowledge. In this case, the resulting pn?-
search algorithm will have the same drawback as the standard pn-search algorithm,
viz. the memory will be filled before a solution is found. Parameter b may have any
positive value.

The fraction function exemplified

Figure 4.1 presents four sample functions (with different parameters a and b), illus-
trating the functions given by Equation 4.1, together with the function f(z) = 1.
The x-axis shows the number of nodes in the first-level search tree (in thousands).
The y-axis shows the corresponding values of the function f(z). Since the pn? algo-
rithm will be used when the amount of memory available 1s low, we assume that no
more than 300,000 (300K) nodes fit in memory. Therefore, the range of the x-axis is
chosen from 0 to 300K nodes.

The figure shows that when parameter a increases (in this case from 100K to
150K), the transition point moves to the right (compare [4] and [1]). Further, when
parameter b increases, the S-shape becomes more stretched (compare [3] and [1]). If
b is relatively large, the S-shape may even disappear (compare [2] and [1]).

The theoretical size of the second-level tree

The sizes of the corresponding second-level searches for the five functions of Fig-
ure 4.1 are shown in Figure 4.2. The x-axis again shows the number of nodes in the
first-level search tree (in thousands). The y-axis shows the size of the corresponding
second-level search tree, given by z x f(z).

From the figure it follows that the size of the second-level search tree grows with
increasing size of the first-level search tree. When parameter a increases, the growth
of the second-level search tree starts at a later point (compare [4] and [1]). Further,
when parameter b increases, the growth of the second-level search tree starts at an
earlier point, but the increase becomes slower (compare [3], [1] and [2]).

1'We note that in our implementation it results in the delayed-evaluation variant of standard
pn search.

4.2. The size of the second-level pn search 73

(51
0.9

08

Fraction function f(x)
=)
W
T

03

02

(ab) = (150,000 30,000) [1]
(a b) = (150,000 150,000) [2] ——
{ (ab)=(150,000 7,500)[3] -----
[3]/ (ab)=(100,000 30,000) [4]
fx)=1[5] ——

0.1

0 50 100 150 200 250 300
Size x of first-level tree (in thousands)

Figure 4.1: The fraction function f(z).

The practical size of the second-level tree

In practice, the sizes of the second-level searches are bounded by the maximum
number of nodes that fit into memory (in our case 300K). For instance, if the first-
level search tree contains 225K nodes and function f(z) = 1 is used, then the second-
level search tree should search 225K nodes as well. However, the maximum number
of nodes that fit into memory is 300K. Therefore, in this case the second-level search
tree has a maximum size of 75K. As soon as this size is reached, the second-level
search is terminated, the second-level tree is disposed of, and the first-level search
continues. When the first-level tree has reached a size of 300K nodes, no memory is
left for the second-level search. In this case, the complete search is terminated and
it is indicated that no solution is found.

If these memory bounds are taken into account, the five functions given in Fig-
ure 4.2 transform into the functions illustrated in Figure 4.3. The axes are equal to
the axes in Figure 4.2

The figure shows that the sizes of the second-level searches are bounded by

300K—=z.

74 Chapter 4. The pn?-search algorithm

300 - - ' ' ' /
(@b) = (150,000 30,000) [1] —— '
(ab) = (150,000 150,000) [2] -—-- 4
(ab)= (150,000 7.500) [3] -

250 L (ab)=(100,000 30,000) Fjl]) v/,’/" 1

200

150

100

Size of second-level tree (in thousands)

50

0 50 100 150 200 250 300
Size x of first-level tree (in thousands)

Figure 4.2: The theoretical size of the second-level search.

4.3 Experiments

In this section we describe three series of experiments. They are performed to inves-
tigate the behaviour of the pn?-search algorithm using function f(z) with different
parameters a and b. In the first series of experiments we examine the effect of varying
parameter b, while keeping parameter a constant. Then, in the second series of ex-
periments we examine the effect of varying parameter a, while keeping parameter b
constant. Finally, in the third series of experiments we examine the effect of varying
the ratio %. The idea of examining this ratio stems from the following observations.
If a increases, the transition point of the fraction function f(z) shifts to the right.
This means that a large first-level tree in memory does not have much information
per leaf, because small second-level searches are used for the evaluations. If the first-
level tree contains many nodes, the problem to be solved may be a difficult problem,
and more directing knowledge may be needed to solve the problem. Therefore, it is
then advisable to increase the directing knowledge by also increasing parameter b.
Analogously, if a decreases, the transition point of the fraction function f(z) moves
to the left in the graph. This means that a small first-level tree in memory already
contains much information per node, because relatively large second-level searches
are used for the evaluations. In order to limit this overhead it can be wise to reduce

4.4. Results 75

300 T T T T T
(ab) =(150,000 30,000) [1] —
(ab) = (150,000 150,000) [2] -----
(ab) =(150,000 7,500) [3] ------
(ab) = (100,000 30,000) [4] -
20 - f)=1[5] - 7
2z
g
2
£ 200 | .
8
T
5 150 F - .
—é //' ?.\/\\
9] v N
g‘-)’ // /
S 100f L) -
kZ S :; 121
3 [5],- (4]
2 p)
50 b 7 e .
i /131
e - [1] :
0 Lo L 1 I I
0 50 100 150 200 250 300

Size x of first-level tree (in thousands)

Figure 4.3: The practical size of the second-level search.

the initial size of the second-level search tree, which is taken care of by decreasing
parameter b. In both cases the ratio roughly remains equal.

The experiments are performed with second-level searches of size z x f(z), with
f(z) given in Equation 4.1, and with the special case that the second-level search
size 1s x. Further, the maximum number of nodes to be held in memory is set to
300K. The value of parameter a ranges from 75K (i of the maximum number of
nodes) to 750K (2% times the maximum number of nodes). The value of parameter
b ranges from 3,750 to 750K. These values were found by trial and error.

The test set for the experiments is a large subset (108 positions) of the set used
in the pn-search experiments (see Section 3.4). The positions not tested are K8, kK40,

K44, K78, K195, K209, K210, K217, and K2202.

4.4 Results

In this section we discuss the most important results of the experiments mentioned in
the previous section. The complete results can be found in Appendix F. We mention

2These positions were not solved within 1,000,000 nodes in the previous chapter, and we did
not expect that they could be solved within the experimental bounds of this chapter.

76 Chapter 4. The pn?-search algorithm

that in almost all cases pn? search solves all 108 test positions, contrary to pn search
for trees (cf. Chapter 3). Therefore, we use as a measure the total amount of nodes
searched (i.e., including both first-level and second-level searches) over all 108 test
positions.

Results of the first series

Figure 4.4 shows the results of the first series of experiments (varying parameter
b, while keeping parameter a constant). Parameter a takes values of 75K, 150K,
300K, 450K, 600K, and 750K, and for each value of a parameter b takes values
of 15K, 30K, 60K, 90K, 120K, 150K, 180K, 210K, and 240K. The results of the
experiments with function f(z) = 1 are shown for comparison. The x-axis shows the
value of parameter b (in thousands), and the y-axis shows the total number of nodes
searched (in millions).

140 T T T T T T T T
a= 75000 -—
a=150,000 -+--
a=300,000 -3--
120 F a=450,000 - 7
a=600,000 -~
a=750,000 -x--
= fx)=1 -0
§ 100 | .
E o
g
& K
B O8F N\ g
= \
Q Y
5] N
g \
8
2 60 .
=
el
]
5
E
E 40 -
Z
20 -
0 1 1 1 1 1 1 1 1

0 30 60 90 120 150 180 210 240
Parameter b (in thousands)

Figure 4.4: The pn? results with fixed parameter a.

We note that in the experiments with (a b) equal to (450K 15K), (450K 30K),
(600K 15K), (600K 30K), (600K 60K), (750K 15K), (750K 30K), (750K 60K), and
(750K 90K) not all 108 test positions are solved. Therefore, these points are not
shown 1n the figure. The number of positions solved in these cases is 88, 104, 87,
91, 106, 87, 87, 99, and 107, respectively. In the positions not solved, the first-level

4.4. Results 77

search tree contained 300K nodes without finding a solution. In these cases the nodes
in the first-level search tree do not have sufficient information to direct the search,
because the transition point lies too far to the right in the graph (large parameter

a).

Results of the second series

The results of the second series of experiments (varying parameter a, while keeping
parameter b constant) are shown in Figure 4.5. The x-axis shows the value of pa-
rameter @ (in thousands). Further explanation for Figure 4.5 is analogous to that
for Figure 4.4.

140 T T T T T T T T T T
b= 15000 <—
b= 30,000 —+-
b= 60,000 @
120 | b= 90,000 ~x-
b = 120,000 &
b =150,000 -%--
- b = 180,000
g L b=210,000 -+ |
é 100 b =240,000 &
‘g f(x)=1 —>—
=
B 80 F R
=
Q
5
3
5]
2 60 _
=
s
=}
3
S
E 40 -
Z
20 F g
0 1 1 1 1 1 1 1 1 1 1
0 75 150 225 300 375 450 525 600 675 750 825

Parameter a (in thousands)

Figure 4.5: The pn? results with fixed parameter b.

From these two series of experiments we provisionally conclude that a small
parameter b is to be preferred in terms of the number of nodes searched. However,
we note that there is a risk of choosing b too small, in which case pn? search will
not always find a solution. Also, it shows that a large parameter a is to be preferred.
Further, the proper use of fraction function f(z) given by the logistic-growth model
is significantly better than the function f(z) = 1.

78 Chapter 4. The pn?-search algorithm

Results of the third series

In figure 4.6 the results of the third series of experiments are given (fixed ratio %)
The ratio takes the values 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. Again, the results of
the experiments with function f(z) = 1 are shown for comparison. We note that in
the experiments with (a b) equal to (450K 22.5K), (600K 30K), (600K 60K), (750K
37.5K), and (750K 75K) not all test positions are solved. Therefore, these points are

not shown in the figure. The number of positions solved in these cases is 98, 91, 106,
87, and 104, respectively.

140 | — T T T T T T T T T
} bla=0.05 <—
\ bla=0.1 -+--
\ ba=02 &
120 - bla=04 -
' ba=0.6 -&-
ba=08 x -
= \ bla=1.0 o -
E 100 \\ f(x)=1 R
Z
= \
= +
B 80 s
=
Q
5
3
5]
g 60 4
=
£
=}
3
S
E 40 -
Z
20 | e
0 1 1 1 1 1 1 1 1 1 1
0 75 150 225 300 375

450 525 600 675

750 825
Parameter a (in thousands)

Figure 4.6: The pn? results with fixed ratio 2

From this graph we conclude that, with a ratio of more than 0.1, the results seem
to be fairly independent of the choice of the parameters.

4.5 Chapter conclusions

For the pn? algorithm we conclude that the use of the function f(z) = 1 works
well, since 1t solves all test positions unlike standard pn search. However, the use of
fraction function f(z) as given by Equation 4.1, gives significantly better results.

4.5. Chapter conclusions 79

If the goal of the search is to find a solution as quickly as possible, it is recom-
mended to take the fraction function with large parameter ¢ and small parameter
b. The disadvantage is that sometimes solvable positions will not be solved because
the standard pn search takes too long, filling the memory with nodes not containing
sufficient directing knowledge.

If the goal of the search is to solve any solvable position, it is wiser to choose
parameters a and b, such that % is sufficiently large, i.e., at least more than 0.1. The
best performance on the test set is obtained by choosing (a b) equal to (600K 80K)
(cf. Appendix F). All test positions are then solved within about 35 million nodes.

Of the 108 test positions, 92 were solved by both the immediate-evaluation vari-
ant of standard pn search and the best version of pn? search (a = 600K and b =
80K). For these 92 positions the number of nodes searched by pn? search (5,856,337)
is about twice the number of nodes searched by standard pn search (2,974,602). In
our view this is an affordable price for the advantage of the larger probability of
finding mates (in this case amounting to an additional 18% solved positions). Fur-
ther, for these 92 positions pn? search used at maximum about 240K (first-level and
second-level) nodes in memory.

The results of the experiments in this chapter show that the pn?-search algorithm
is an adequate method for reducing the need for memory in the standard pn-search
algorithm. This is accomplished by gaining more knowledge per node through in-
creasing the search: leaves are evaluated using a second-level pn search. The use of
the growth-function f(z) proposed here gives significantly better results than the
naive implementation of pn? search (effectively using f(z) = 1).

80

Chapter 4. The pn?-search algorithm

Chapter 5

The
graph-history-interaction
problem

This chapter is an updated and abridged version of

1. Breuker D.M., Herik H.J. van den, Allis L.V., and Uiterwijk J.W.H.M. (1997a).
A Solution to the GHI Problem for Best-First Search. Proceedings of the Ninth
Dutch Conference on Artificial Intelligence (eds. K. van Marcke and W. Daele-
mans), pp. 457-468. University of Antwerp, Antwerp, Belgium, and

2. Breuker D.M., Herik H.J. van den, Allis L.V., and Uiterwijk J.W.H.M. (1998a).
A Solution to the GHI Problem for Best-First Search. Submitted as journal
publication. Also published (1997) as Technical Report CS 97-02, Universiteit
Maastricht, Maastricht, The Netherlands.

5.1 The history of a position

In a search tree, it may happen that identical nodes are encountered at different
places. If these so-called transpositions are not recognized, the search algorithm un-
necessarily expands identical subtrees. Therefore, it is profitable to recognize trans-
positions and to ensure that for each set of identical nodes, only one subtree is
expanded.

In computer-chess programs using a depth-first search algorithm, this idea is re-
alized by storing the result of a node’s investigation in a transposition table. For
details, see Section 2.3. If an identical node is encountered in the search process, the
result is retrieved from the transposition table and used without further investiga-
tion.

If a (selective) best-first search algorithm (which usually stores the whole search
tree in memory) is used, the search tree is converted into a search graph, by joining
identical nodes into one node, thereby merging the subtrees.

81

82 Chapter 5. The graph-history-interaction problem

These common ways of dealing with transpositions contain an important flaw:
determining whether nodes are identical is not the same as determining whether
the search states represented by the nodes are identical (cf. Section 2.1). For two
reasons, the path leading to a node cannot be ignored. First, the history of a node
may partly determine the legitimacy of a move. For instance, in chess, castling rights
are not only determined by the position of the pieces on the board, but also by the
knowledge that in the position under investigation the King and Rook have not
moved previously. Second, the history of a node may play a role in determining the
value of a node. For instance, a position may be declared a draw by its three-fold
repetition or by the so-called k-move rule (Kazié et al., 1985).

We refer to the first problem as the move-generation problem, and to the second
problem as the evaluation problem. The combination of these two problems is referred
to as the graph-history-interaction (GHI) problem (cf. Palay, 1985; Campbell, 1985).

The GHI problem is a noteworthy problem not only in chess but in the field of
game playing in general. Its applicability extends though to all domains where the
history of states is important. To mention just one example: in job-shop scheduling
problems the costs of a task may be dependent on the tasks done so far, e.g., the
cost of preparing a machine for performing some process depends on the state left
after the previous process.

A possible solution to the GHI problem is to include in all nodes the status of the
relevant properties of the history of the node, i.e., the properties which may influence
either the move generation or the evaluation of the node. A disadvantage of such a
solution is that too many properties may be relevant, resulting in the need for storing
large amounts of extra information in each node. For chess, we can distinguish four
relevant properties of the history of a position (the first two being relevant for the
move-generation problem, and the last two for the evaluation problem):

1. the castling rights (Kingside and Queenside for both players),

2. the en-passant capturing rights,

3. the number of moves played without a capture or a pawn move, and
4. the set of all positions played on the path leading to this node.

The first two properties can be included in each node, without much overhead. The
third property can be included in each node, but will reduce the frequency of trans-
positions drastically. The inclusion of the fourth property is necessary to determine
whether a draw by three-fold repetition has been encountered. Unfortunately, it
would require too much overhead. As a result, in most chess programs, the first two
properties are included in a node, while the last two are not.

Depending on which properties are included in a node, the probability of two
nodes being identical will be reduced. If not all relevant properties are included and
transpositions are used, it is possible that incorrect conclusions are drawn from the
transpositions (cf. Section 2.2). Campbell (1985) mentioned that, contrary to best-
first search (which he calls selective search), in depth-first search the GHI problem
occurs less frequently.

5.2. An example of the GHI problem 83

In this chapter we deal with the third problem statement: is it possible to give a
solution for the GHI problem for best-first search? A solution to the GHI problem for
best-first search is presented with only a few relevant properties included in a node.
In Section 5.2 an example of the GHI problem is given. Previous work on the GHI
problem is discussed in Section 5.3. In Section 5.4 the general solution to the GHI
problem for best-first search is described. A formalized description and the pseudo-
code for the implementation in pn search is given in Section 5.5. Section 5.6 lists
experiments with the new algorithm. It is compared to three other pn-search variants.
The results are presented in Section 5.7. Finally, Section 5.8 provides conclusions.

5.2 An example of the GHI problem

Figure 5.1 shows a pawn endgame position, taken from Campbell (1985), where the
GHI problem can occur. White (to move) has achieved a potentially won position.
However, we show that it is possible to evaluate this position incorrectly as a draw.
In this chapter we assume that a single repetition of positions evaluates to a draw,
in contrast with the FIDE ruling which stipulates that the same position must occur
three times.

/
"
" >

;,/
e
/7//7//%7/%

Figure 5.1: A pawn endgame (WTM).

In Figure 5.2 a relevant part of the search tree is depicted. After the move se-
quence 1. &b5? e6? 2. La6? d5 3. Hbb eb the position after move 1 is
repeated (node F), and evaluated as a draw. Since White does not have any better
alternative on the third move, the position after 2. a6 (node H) is evaluated as a
draw. Backing up this draw leads to the incorrect conclusion that node A evaluates
to a draw. However, after the winning move sequence 1. a5! e6 2. Ha6! the

84 Chapter 5. The graph-history-interaction problem

same position (node H) is reached, which is now evaluated as a win after 2. ...,
&d5 3. Lb5 Le6 4. FLc6! (node G). Backing up this win leads to the correct
conclusion that node A evaluates to a win.

Kb5? Kab!

Kds! \ Ke6? Ke6

b E
draw "+ kae?
Kes! | Ka6!

o .

win

Figure 5.2: The GHI problem in the pawn endgame.

An example of the general case is given in Figure 5.3. It shows an AND /OR search
tree with identical positions®. The values of the leaves (given in italics) are seen from
the OR player’s point of view. The values given next to the nodes are back-up values.
We note that the GHI problem can occur in any type of AND/OR tree. However, to
keep the example as clear as possible we have chosen to show the example for a
minimax game tree.

The terminal nodes F and G are a win for the OR player, and the terminal nodes
C and F are evaluated as a draw because of the repetition of positions. Propagating
the evaluation values of the terminal nodes through the search tree results in a win
at the root. When making use of transpositions, every node should occur only once
in the tree. Assume that a parent generates its children and that one of its children
already exists in the tree. Then a connecting edge from the parent to the existing
node is made. This transforms the search tree into a Directed Cyclic Graph (DCGQG)
(Figure 5.4).

In this DCG it is difficult to determine unambiguously the value of node F due
to the GHI problem. The value of this node is dependent on the path leading to
it. Following the path A-B-C-F, child C' of node F' is a repetition and hence F is

!In games such as chess, a repetition of positions is impossible after only two ply (node C in
the left subtree of node B and node F' in the subtree of node D). Our example disregards this
characteristic for simplicity’s sake.

5.3. A review of previous work 85

win draw

Figure 5.3: A search tree with repetitions.

evaluated as a draw, but following the path A-B-D-F', child C' is not a repetition
and 1s not evaluated as a draw. Thus, in the DCG, node F' has two different values.
Hence, in this example it is not possible to determine the value of root A, since in
the first mentioned case it 1s a draw, and in the second case it is a win, due to the
values of £ and G.

5.3 A review of previous work

Although several authors have mentioned the GHI problem, so far no solution to
this problem has been described. Only provisional ideas have been given. Below, we
review the five most important ideas?.

Palay (1985) first identified the GHI problem. He suggested two “solutions”: (1)
refrain from using graphs, and (2) recognize when the GHI problem occurs and
handle accordingly. The first “solution” (apart from not being a real solution, it
merely ignores the problem) had as a drawback that large portions of the graph now

2Berliner and McConnell (1996) suggested the use of conditional values as an idea to solve the
GHI problem. They promised details in a forthcoming paper.

86 Chapter 5. The graph-history-interaction problem

win

win

Figure 5.4: The DCG corresponding with the tree of Figure 5.3.

would be duplicated every time a duplicate node occurred, wasting a large amount
of time and memory. The second solution worked as follows. When the positions
suffering from the GHI problem were recognized, the path from the repetition node
upwards to the ancestor with multiple parents was split into separate paths. He did
not implement this strategy, since he conjectured that such positions only occurred
occasionally (the GHI problem occurred in three out of 300 test positions). A disad-
vantage of this solution is that the recognition of positions suffering from the GHI
problem is not straightforward.

Another idea for a solution originates from Thompson (Campbell, 1985). While
building a tactical analyzer, Thompson (1995) used a DCG representation. He saw
it suffering from the GHI problem. He cured the problem by taking into account
the history of the node to be expanded. The value of this node was then, if neces-
sary, corrected for its history. The newly-generated children were evaluated by doing
af? searches, yet neglecting their history. As a consequence, the only history errors
could occur at the leaves. These errors were corrected as soon as such a leaf was
expanded, but it could happen that the expansion of a node was suppressed due to
the error.

Campbell (1985) discussed the GHI problem thoroughly, applying it to depth-first
search only. The key in avoiding most occurrences of the GHI problem appears to be
iterative deepening. Some problems (called “draw-first”) can be overcome®. However,

3In the draw-first case node F' in Figure 5.4 is first reached through path A—-B—C—F (and the

5.3. A review of previous work 87

other problems, which he called “draw-last” could not be solved by his approach?.
Finally, he remarked that “the GHI problems occur much more frequently in selective
search programs, and require some solution in order to achieve reasonably general
performance. Both Palay’s and Thompson’s approaches seem to be acceptable.” We
conclude that Campbell gave a partial solution for depth-first search, and no solution
for best-first search.

Baum and Smith (1995) stumbled on the GHI problem when implementing their
best-first search algorithm BPIP (Best Play for Imperfect Players). Baum and Smith
completely store the DCG in memory and grow it by using “gulps”. In each gulp a
fraction of the most interesting leaves is expanded. For each parent-child edge e a
subset S(e) was defined as the intersection of all ancestor nodes and all descendant
nodes of edge e. A DCG was claimed to be legitimate (i.e., no nodes have to be
split) if and only if, for all children C' with more than one parent P, S(epc) is
independent of P. Their solution was as follows. Each time a new leaf was created
three possibilities were distinguished: (1) if the leaf was a repetition it was evaluated
as a draw, else (2) if a duplicate node existed in the graph, these two nodes were
merged on the condition that the resultant DCG was legitimate, else (3) the node was
evaluated normally. After leaf expansion it was exhaustively investigated whether
every node C' with multiple parents passed the S(e) test. If not, such a node C
was split into several nodes C’, C”, ..., with distinct subsets S(epc). Then, the
subtrees of the newly-created nodes had to be rebuilt and re-evaluated. Baum and
Smith gave this idea as a solution to the GHI problem without the support of an
implementation. Moreover they remarked that “Implementation in a low storage
algorithm would probably be too costly”. We believe that the overhead introduced
by our idea, described in the next section, is much less than the overhead introduced
by the idea of Baum and Smith.

Schijf et al. (1994) investigated the problem in the context of pn search (Al-
lis et al., 1994). They examined the problem in Directed Acyclic Graphs (DAGs)
and DCGs separately. They noted that, when the pn-search algorithm for trees is
used in DAGs, the proof and disproof numbers are not necessarily correctly com-
puted, and the most-proving node is not always found. Schijf (1993) proved that
the most-proving node always exists in a DAG. Furthermore, he formulated an al-
gorithm for DAGs that correctly determines the most-proving node. However, this
algorithm is only of theoretical importance, since it has an unfavourable time-and-
memory complexity. Therefore, a practical algorithm was developed. Surprisingly,
only two minor modifications to the pn-search algorithm for trees are needed for
a practical algorithm for DAGs. The first modification is that instead of updating
only one parent, all parents of a node have to be updated. The second modifica-
tion is that when a child is generated, it has to be checked whether this node is a

value of node F is based on child C' being a repetition) and later in the search node F is reached
through path A-B—D—F and the previous value of node F' is used.

4In the draw-last case node F in Figure 5.4 is first reached through path A-B-D-F (and the
value of node F is based on child C' being no repetition) and later in the search node F' is reached
through path A-B—C—F and the previous value of node F' is used.

88 Chapter 5. The graph-history-interaction problem

transposition (i.e., if it was generated earlier). If this is the case, the parent has to
be connected to this node that has already been generated. Schijf et al. (1994) note
that this algorithm contains two flaws. First, the proof and disproof numbers do not
represent the cardinality in the smallest proof and disproof set, but these numbers
are upper bounds to the real proof and disproof numbers. Second, the node selected
by the function SelectMostProvingNode is not always equal to a most-proving node.
However, 1t still holds that if the node chosen is proved, the proof number of the
root decreases, whereas if this node is disproved, the disproof number of the root
decreases. In either case the proof or disproof number may decrease by more than
unity, as a result of the transpositions present. This algorithm has been tested on
tic-tac-toe (Schijf, 1993). The DAG algorithm uses considerably fewer nodes (viz. a
factor of five) to prove the game-theoretic value of tic-tac-toe. For the problem of
applying pn search to a DCG, Schijf et al. (1994) give a time-and-memory-efficient
algorithm, which, however, sometimes inaccurately evaluates nodes as a draw by
repetition. They remark that, as a consequence, their algorithm is sometimes unable
to find the goal, even though it should have found it.

5.4 BTA: an enhanced DCG algorithm

In this section we describe a new algorithm (denoted BTA: Base-Twin Algorithm)
for solving the GHI problem for best-first search. The algorithm had been developed
in a joint effort with Victor Allis. Its correctness has been proven experimentally.
A formal proof is beyond the scope of this research. The description given below
provides a clarity of reasoning, which in our opinion, is sufficiently convincing in its
own.

The BTA algorithm is based on the distinction of two types of nodes, termed base
nodes and twin nodes. The purpose of these types is to distinguish between identi-
cal positions with different history. Although it was known in the DCG algorithm
described by Schijf et al. (1994) that nodes sometimes may be incorrectly evaluated
as a draw, their algorithm was unable to note when this occurs. We have devised
an alternative in which a sufficient set of relevant properties for correct evaluation
is recorded. We have chosen to include in a node only a small number of relevant
properties. The reasons for not including all relevant properties are:

e some properties are only relevant for a small number of nodes,

e the more properties that are included, the lower the frequency of transposi-
tions, and

e some properties require too much overhead and/or take up too much space
when included in a node.

The move-generation problem (cf. Section 5.1) can easily be solved by including
the relevant properties (in chess these are the castling rights and the en-passant
capturing rights) into each node. Hence, only the evaluation problem (cf. Section 5.1)

5.4. BTA: an enhanced DCG algorithm 89

needs to be solved. We have chosen to describe the solution of repetition of positions,
since repetition of positions occurs in many search problems, and the k-move rule is
a special rule which seldomly shows up in practice. As mentioned before, we assume
that a single repetition of positions results in a draw.

Our representation of a DCG

Basically the GHI problem occurs because the search tree is transformed into a DCG
by merging nodes representing the same position, but having a different history. To
avoid such an undesired coalescence, we propose an enhanced representation of a
DCG. In the graph we distinguish two types of nodes: base nodes and twin nodes.
After a node is generated, it is looked up in the graph by using a pointer-based table.
If it does not exist, it is marked as a base node. If it exists, 1t 1s marked as a twin
node, and a pointer to its base node is created. Thus, any twin node points to its
base node, but a base node does not point to any of its twin nodes. Only base nodes
can be expanded. The difference with the “standard implementation” of a DCG is
that if two or more nodes are represented by the same position (ignoring history)
they are not merged into one node. However, their subtree is generated only once.
In general, a twin node may have a value different from its base node, although they
represent the same position.

Figure 5.5 exhibits our implementation of the DCG given in Figure 5.4 (assuming
that the position corresponding with node F is first generated as child of node C' and
only later as child of node D). Nodes in upper-case are base nodes, nodes in lower-
case are twin nodes. The dashed arrows are pointers from twin nodes to base nodes.
The problem mentioned in Figure 5.4 can now be handled by assigning separate
values to nodes F' and f, and to C and ¢, depending on the paths leading to the
corresponding positions.

The BTA algorithm as solution

As stated before, encountering a repetition of positions in node p does not mean
that the repetition signals a real draw (defined as the inevitability of a repetition
of positions under optimal play). To handle the distinction, we introduce the new
concept of possible-draw. Node p is marked as a possible-draw if a node is a repetition
of anode P in the search path. (Whether a possible draw also is a real draw depends
on the history.) Then the depth of node P in the search path (termed the possible-
draw depth) is stored in node p.

The BTA algorithm for best-first search consists of three phases. Phase 1 deals
with the selection of a node. Phase 2 evaluates the selected node. Phase 3 backs
up the new information through the search path. The three phases are repeatedly
executed until the search process is terminated.

90 Chapter 5. The graph-history-interaction problem

Figure 5.5: Our DCG with base nodes and twin nodes corresponding with
the DCG of Figure 5.4.

5.4.1 Phase 1: select the best node

In phase 1 a node is selected for evaluation®. This is accomplished in a way similar
to the best-first tree algorithm (see Section 2.1). For comparison, a short outline of
the tree algorithm is given. First, the root is selected. Next, a best child from the
selected node is selected according to the best-first-search criteria. The last step is
repeated until (1) a repetition has been encountered (evaluating to a draw), or (2)
a leaf has been found.

The selection of a node in the BTA algorithm is as follows. First, the root is
selected (for further selection, see below). Then, for each selected node, two cases

exist:

1. if a child of the selected node is marked as a possible-draw, and the remaining
children are either real draws, or marked as possible-draws, then the selected
node is marked as a possible-draw and the corresponding possible-draw depth is
set to the minimum of the possible-draw depths of the children. Subsequently,
all possible-draw markings from the children are removed and the parent of
the selected node is re-selected for investigation;

2. otherwise, a best child is selected for investigation, ignoring the children which
are either real draws, or marked as a possible-draw.

5We assume that the selection of a node proceeds in a top-down fashion.

5.4. BTA: an enhanced DCG algorithm 91

Assume that a node at depth d in the search path is marked as a possible-draw and
the corresponding possible-draw depth is equal to d. This implies that the possible-
draw marking of this node is based solely on repetitions of positions in the subtree
of the node and on real draws. Therefore, the node is a real draw by repetition,
independent of the history of the node. Hence, the node is evaluated accordingly.

The selection of a node is repeated until (1) a real draw by repetition has been
encountered, or (2) (a twin node of) a base node with known game-theoretic value
has been found®, or (3) a leaf has been found.

The selection of a node in the BTA algorithm is illustrated below. In Figure 5.6
part of a search graph is depicted. The selection starts at the root (node A). Assume
the traversal is in a left-to-right order. Then, at a certain point, node ¢ is selected,
and marked as a possible-draw because it is a repetition of node C' at depth two in
the search path. See Figure 5.6 (the equal sign represents the possible-draw marking
and the subscript two represents the possible-draw depth).

Figure 5.6: Encountering the first repetition c.

After marking node ¢ as a possible-draw, the parent of this node (node D) is re-
selected and marked as a possible-draw, with the same possible-draw depth as node
c. Further, the possible-draw marking of node ¢ is removed. After marking node D
as a possible-draw, its parent C' is re-selected. The next best child (not marked as
a possible-draw) E is selected. Continuing this procedure, at a certain point child d
of node F' is selected. The child ¢ of twin node d is found by directing the search to

6This is possible, because a base node does not point to its twin nodes. If the game-theoretic
value of a twin node becomes known, its corresponding base node is evaluated accordingly, but
other twin nodes remain unchanged.

92 Chapter 5. The graph-history-interaction problem

the base node D of node d. Node ¢ is (again) marked as a possible-draw because it
is a repetition of node C' at depth two in the search path. See Figure 5.7.

Figure 5.7: Encountering the second repetition e.

After the re-marking of node ¢ as a possible-draw, the parent of this node (twin
node d) is re-selected and marked as a possible-draw, with the same possible-draw
depth as node c. Thereafter, the possible-draw marking of node ¢ is removed (for the
second time). After marking node d as a possible-draw, its parent F is re-selected.
The next best child (not marked as a possible-draw) e is selected. This node is a
repetition of node F at depth three in the search path, and is marked as a possible-
draw. See Figure 5.8.

After marking node e as a possible-draw, the parent of this node (node F) is
re-selected. All its children are marked as a possible-draw. Therefore, node F' is also
marked as a possible-draw, with a possible-draw depth of two (the minimum of the
possible-draw depths of the children). Further, the possible-draw markings of all
children are removed. See Figure 5.9.

After marking node F as a possible-draw, the parent of this node (node F) is re-
selected and marked as a possible-draw, with the same possible-draw depth as node
F. Subsequently, the possible-draw marking of node F' is removed. After marking
node F as a possible-draw, its parent (node C') is re-selected. However, all its children
are marked as a possible-draw. Therefore, node C' is also marked as a possible-draw,
with a possible-draw depth of two (the minimum of the possible-draw depths of
the children). Again, the possible-draw markings of all children are removed. See
Figure 5.10.

Now the selection process finishes, since node C' at depth two in the search path

5.4. BTA: an enhanced DCG algorithm 93

\ /

()

Figure 5.8: Encountering the repetition e.

is marked as a possible-draw, and its corresponding possible-draw depth is equal to
the depth of the node in the search path. This means that all continuations from
C lead, in one or another way, to repetitions occurring in the subtree of node C.
Therefore, node C' is evaluated as a real draw by repetition, independent of the
history of the node, but on the basis of its potential continuations.

5.4.2 Phase 2: evaluate the best node

In phase 2 the selected node (say node P) is evaluated. For comparison, again a
short outline of the tree algorithm is given. The evaluation of node P is dependent
on the condition under which phase 1 has terminated.

1. If node P is a repetition, it is evaluated as a draw.

2. If node P is a leaf, it is expanded, the children are evaluated and node P is
evaluated using the evaluation values of the children.

For the evaluation of node P in the BTA algorithm three cases are distinguished.

1. If node P is a real draw by repetition, it is evaluated as a draw. The corre-
sponding base node (if existing) is also evaluated as a draw.

2. If node P is a twin node and its corresponding base node is a terminal node,
node P becomes a terminal node as well and is evaluated as such.

94

Chapter 5. The graph-history-interaction problem

Figure 5.9: Marking node F' as a possible-draw.

Figure 5.10: Marking node C' as a possible-draw.

3. If node P is a leaf, it is expanded, the children are evaluated, and node P is
evaluated using the evaluation values of the children.

5.5. The pseudo-code of the BTA algorithm 95

5.4.3 Phase 3: back up the new information

In phase 3 the value of the selected node is updated to the root” and all possible-
draw markings are removed. In contrast to the tree algorithm, in the BTA updating
process nodes marked as a possible-draw may occur. The back-up value of a node is
determined by using only the evaluation values of children not marked as a possible-
draw. Thus, the children marked as a possible-draw are ignored, because in the next
iteration the search could be mistakenly directed to one of these children, whereas
this child was a repetition in the current path, not giving any new information. After
establishing the back-up value of a node, the possible-draw markings of the children
are removed.

5.5 The pseudo-code of the BTA algorithm

In this section an implementation of the BTA algorithm in pn search (see Chapter 3)
is given. An explanation following the three phases of Section 5.4 provides details on
the seven relevant pn-search procedures and functions. We will make use of several
properties of pn search, in order to simplify and accelerate the general BTA algo-
rithm. For chess, The goal of pn search is finding a mate. A loss and a real draw are
in this respect equivalent (i.e., they are no win). Hence, two types of nodes with a
known game-theoretic value exist: proved nodes (win) and disproved nodes (no win
possible). A proved or disproved node is called a solved node.

5.5.1 Phase 1: select the most-proving node

Phase 1 of the algorithm deals with the selection of a (best) node for evaluation.
This node is termed the most-proving node. In Figure 5.11 the main BTA pn-search
algorithm is shown. The only parameter of the procedure is root, being the root of
the search tree. The BTA algorithm resembles the tree algorithm described in Sec-
tion 3.2, a difference being that procedure UpdateAncestors is called with the parent
of the most-proving node as the parameter instead of the most-proving node itself,
since the most-proving node already has been evaluated in procedure ExpandNode.

The procedures Evaluate and SetProofAndDisproofNumbers and the function Re-
sourcesAvailable are identical to the same procedures and function in the standard
tree algorithm (see Figure 3.2), and not detailed here. The function SelectMostProv-
ingNode finds a most-proving node, according to certain conditions. The function is
given in Figure 5.12. The only parameter of the function is node, being the root of
the (sub)tree where the most-proving node is located.

The function starts to examine whether the node under investigation (say node
P) is a twin node. If so, then the investigation proceeds with the associated base
node.

7In a DCG there can exist more than one path from a node to the root. However, only the path
along which the node was selected is taken into account. Other paths, if any, may be updated after
other selection processes.

96 Chapter 5. The graph-history-interaction problem

procedure BTAProofNumberSearch(root)
Evaluate(root)
SetProofAndDisproofNumbers(root)
root.expanded := false
root.depth := 0

while root.proof#£0 and root.disproof£0 and
ResourcesAvailable() do begin
mostProvingNode := SelectMostProvingNode(root)
ExpandNode(mostProvingNode)
UpdateAncestors(mostProvingNode.parent, root)
end

if root.proof=0 then root.value := true
elseif root.disproof=0 then root.value := false
else root.value := unknown /* resources exhausted */

end /* BTAProofNumberSearch */

Figure 5.11: The BTA pn-search algorithm for DCGs.

If node P has been solved (case 1), node P is returned, because the graph has
to be backed up using this new information.

If node P has not been solved, it is examined whether node P is a repetition in the
current path (case 2). If so, it is marked as a possible-draw. Its ancestor transposition
node in the current path is looked up, and the pdDepth (possible-draw depth) of the
node becomes equal to the depth in the search path of the ancestor node®. Since it
is not useful to examine a repetition node further, the selection of the most-proving
node is directed to the parent of node P.

If node P has not been solved and is not a repetition in the current path, it is
checked whether node P is a leaf (case 3). If so, node P is the most-proving node
which has to be expanded, and node P is returned.

Otherwise (case 4), a best child is selected by the function SelectBestChild, to be
discussed later. If no best child was found, it means that every child is either solved
(proved in case of an AND node, and disproved in case of an OR node) or is marked
as a possible-draw. If any of the children is marked as a possible-draw, the node P 1is
marked as a possible-draw as well. The pdDepth of the node is set to the minimum
of the children’s pdDepths and the markings of all children are removed, etc. See
Section 5.4.

In Figure 5.13 the function SelectBestChild is listed. The function has three pa-
rameters. The first parameter (node) is the parent from which a best child will be

8 The variable pdDepth will act as an indicator of the lowest level in the tree at which there are
nodes having repetition nodes in their subtrees.

5.5. The pseudo-code of the BTA algorithm 97

function SelectMostProvingNode(node)
if NodeHasBaseNode(node) then baseNode := BaseNode(node)
else baseNode := node
/* 1: Base node has been solved */
if baseNode. proof=0 or baseNode.disproof=0 then return node
elseif Repetition(node) then begin /* 2: Repetition of position */
MarkAsPossibleDraw(node)
ancestorNode := FindEqualAncestorNode(node)
node.pdDepth := ancestorNode.depth
return SelectMostProvingNode(node.parent)
end elseif not baseNode.expanded then /* 3. Leaf */
return node
else begin /* 4: Internal node; look for child */
bestChild := SelectBestChild(node, baseNode, pdPresent)
if bestChild=NULL then begin
if pdPresent then begin
MarkAsPossibleDraw(node)
node.pdDepth := c©
for i:=1 to baseNode.numberOfChildren do begin
if PossibleDrawSet(baseNode.child[i]) then
if baseNode.child[i].pdDepth<node.pdDepth then
node.pdDepth := baseNode.child[i].pdDepth
UnMarkAsPossibleDraw(baseNode.child[i])
end
if node.depth=node.pdDepth then return node
else return SelectMostProvingNode(node.parent)
end else begin /* All children are solved, so choose any one */
baseNode.proof := baseNode.child[1].proof
baseNode.disproof := baseNode.child[1].disproof
return node
end
end else begin
bestChild.depth := node.depth+1
return SelectMostProvingNode(bestChild)
end
end
end /* SelectMostProvingNode */

Figure 5.12: The function SelectMostProvingNode.

98 Chapter 5. The graph-history-interaction problem

function SelectBestChild(node, baseNode, pdPresent)
bestChild := NULL
bestValue := oo
pdPresent := false
if node.type=OR then begin /* OR node */
for i:=1 to baseNode.numberOfChildren do begin
if PossibleDrawSet(baseNode.child[i]) then
pdPresent := true
elseif baseNode.child[i].proof<bestValue then begin
bestChild := baseNode.child[i]
bestValue := bestChild.proof
end
end
end else begin /* AND node */
for i:=1 to baseNode.numberOfChildren do begin
if PossibleDrawSet(baseNode.child[i]) then begin
pdPresent := true
break
end
if baseNode.child[i].disproof<bestValue then begin
bestChild := baseNode.child[i]
bestValue := bestChild.disproof
end
end
end

return bestChild
end /* SelectBestChild */

Figure 5.13: The function SelectBestChild.

selected. The second parameter (baseNode) is the base node of that parent®. Finally,
the third parameter (pdPresent, meaning possible draw present) indicates whether
one of the children is marked as a possible-draw. The parameter pdPresent is initial-
ized by the function SelectBestChild. If the node is an OR node, a child marked as a
possible-draw will not be selected as best child, since it gains nothing and the goal
(win) cannot be reached. A best child (of an OR node) is a child with the lowest
proof number. If the node is an AND node, a child marked as a possible-draw is a
best child, since the player to move in the AND node is satisfied with a repetition
(thereby making it impossible for the opponent to reach the goal). Otherwise, a best
child (of an AND node) is a child with the lowest disproof number. This best child

9We note that if the parent is a base node itself, then the base node is equal to the parent.

5.5. The pseudo-code of the BTA algorithm 99

is returned. If the best child is either solved or marked as a possible-draw, NULL is
returned.

5.5.2 Phase 2: evaluate the most-proving node

After the most-proving node has been found, it has to be expanded and evaluated.
Phase 2 of the algorithm performs this task. Figure 5.14 provides the procedure
ExpandNode. The only parameter is node, being the node to be expanded.

procedure ExpandNode(node)
if NodeHasBaseNode(node) then baseNode := BaseNode(node)

else baseNode := node

if baseNode.proof=0 or baseNode.disproof=0 then begin
/* 1: base node already solved */
node.proof := baseNode.proof
node.disproof := baseNode.disproof
end elseif PossibleDrawSet(node) then begin
/* 2: node has become a real draw */
node.proof := oo
node.disproof := 0
baseNode.proof := co
baseNode.disproof := 0
end else begin
/* 3: node has to be expanded */
GenerateAllChildren(baseNode)
for i:=1 to baseNode.numberOfChildren do begin
Evaluate(baseNode.child[i])
SetProofAndDisproofNumbers(baseNode.child[i])
if not NodeHasBaseNode(baseNode.child[i]) then
baseNode.child[i].expanded := false

end
SetProofAndDisproofNumbers(baseNode)
baseNode.expanded := true

node.proof := baseNode.proof
node.disproof := baseNode.disproof
end

end /* ExpandNode */

Figure 5.14: The procedure ExpandNode.

The procedure starts establishing the base node of the node'?. If the base node

10We note that if the node is a base node itself, then the base node is equal to the node.

100 Chapter 5. The graph-history-interaction problem

is solved (case 1), the node is evaluated accordingly.

Otherwise, if the node is marked as a possible-draw (case 2) (and since it was
chosen by function SelectMostProvingNode), it is evaluated as a real draw.

In case 3 the node has to be expanded. All children are generated, and evalu-
ated. If a generated child has no corresponding base node, the attribute expanded is
initialized to false; if it has a corresponding base node, the attribute expanded has
been initialized before. Then the node itself is initialized by procedure SetProofAnd-
DisproofNumbers.

5.5.3 Phase 3: back up the new information

Phase 3 of the algorithm has as task to back up the evaluation value of the most-
proving node. The procedure for updating the values of the nodes in the path is
listed in Figure 5.15. The procedure has two parameters. The first parameter (node)
is the node to be updated, while the second parameter (root) is the root of the search
tree. Depending on the node type, UpdateOrNode (Figure 5.16) or UpdateAndNode
(Figure 5.17) is performed.

procedure UpdateAncestors(node, root)
while node#nil do begin
if NodeHasBaseNode(node) then baseNode := BaseNode(node)

else baseNode := node

if node.type=OR then UpdateOrNode(node, baseNode)
else UpdateAndNode(node, baseNode)

node := node.parent /* parent in current path */
end
if PossibleDrawSet(root) then
UnMarkAsPossibleDraw(root)
end /* UpdateAncestors */

Figure 5.15: The procedure UpdateAncestors.

The parameters of UpdateOrNode are node and baseNode. The algorithm basi-
cally is the same as the orR part of the procedure SetProofAndDisproofNumbers. It
only differs when a child 1s marked as a possible-draw. In that case, the child is
discarded so its value is not used when calculating the back-up value of the node.
Then, the possible-draw marking of the child is removed. If the node appears to be
disproved (since all children are either disproved or marked as a possible-draw) and a
repetition child exists, the value of the node is calculated by procedure SetProofAnd-
DisproofNumbers. Otherwise, the value has been calculated correctly. If the node has
been solved, its base node is initialized accordingly.

5.5. The pseudo-code of the BTA algorithm 101

procedure UpdateOrNode(node, baseNode)
min = oo
sum := 0
pdPresent := false
for i:=1 to baseNode.numberOfChildren do begin
if PossibleDrawSet(baseNode.child[i]) then begin
pdPresent := true
proof := oo
disproof := 0
UnMarkAsPossibleDraw(baseNode.child[i])
end else begin
proof := baseNode.child[i].proof
disproof := baseNode.child[i].disproof

end
if proof<min then min := proof
sum := sum -+ disproof

end

if min=co and pdPresent then
SetProofAndDisproofNumbers(node)
else begin
node.proof := min
node.disproof := sum
end
if node.proof=0 or node.disproof=0 then begin /* node solved */
baseNode.proof := node.proof
baseNode.disproof := node.disproof
end

end /* UpdateOrNode */

Figure 5.16: The procedure UpdateOrNode.

102 Chapter 5. The graph-history-interaction problem

The two parameters of UpdateAndNode are equal to the parameters of proce-
dure UpdateOrNode. The procedure differs from the AND part of the procedure Set-
ProofAndDisproofNumbers when the node is solved, and hence the value of its base
node is evaluated accordingly'!.

procedure UpdateAndNode(node, baseNode)

min 1= oo

sum =0

for i:=1 to baseNode.numberOfChildren do begin
proof := baseNode.child[i].proof
disproof := baseNode.child[i].disproof
sum := sum -+ proof
if disproof<min then min := disproof

end

node.proof := min

node.disproof := sum

if node.proof=0 or node.disproof=0 then begin /* node solved */
baseNode.proof := node.proof
baseNode.disproof := node.disproof

end

end /* UpdateAndNode */

Figure 5.17: The procedure UpdateAndNode.

5.6 Experimental set-up

In this section give the experimental set-up for evaluating the BTA pn-search algo-
rithm presented in Section 5.5. The game of chess is used as the test domain. Our
BTA algorithm, denoted by BTA, is compared with the following three pn-search
variants:

1. the standard tree algorithm (see Section 3.2), denoted by Tree,
2. a DAG algorithm, developed by Schijf (1993), denoted by DAG, and

3. an (incorrect) DCG algorithm, developed by Schijf et al. (1994), denoted by
DCG.

11'We note that it is impossible for a child of an AND node to be marked as a possible-draw, since
in that case the search for a most-proving node would have been terminated in an earlier phase,
and the parent already would have been marked as a possible-draw.

5.7. Results 103

In all implementations, the move ordering is identical. The test set of 117 positions is
given in Section 3.4 (see Appendix D). All four algorithms searched for a maximum
of 500,000 nodes per test position. After 500,000 nodes the search was terminated
and if no solution had been found the problem was marked as not solved'?.

5.7 Results

To verify our solution we have first tested the position given in Figure 5.1'3. Tree
finds a solution within 482,306 nodes. DCG, ignoring the history of a position,
incorrectly states that White cannot win (due to the GHI problem). Our BTA does
find a solution within 10,694 nodes. This provides evidence that the occurrence of
the GHI problem has been correctly handled. BTA shows the benefit of being a DCG
algorithm, as evidenced by the decrease in number of nodes investigated by a factor
of roughly 40 as compared to Tree.

4t of pos. solved Total nodes
(out of 117) (96 positions)

Tree 99 4,903,374
DAG 102 3,222,234
DCG 103 2,482,829
BTA 107 2,844,024

Table 5.1: Comparing four pn-search variants.

Thereafter, we have performed the experiments as described in Section 5.6.
The outcomes are summarized in Table 5.1. The complete results are listed in Ap-
pendix G. The first column shows the four pn-search variants. The number of posi-
tions solved by each algorithm is given in the second column. Exactly 96 positions
were solved by all four algorithms. BTA solves each position which was solved by
at least one of the other three algorithms. In the third column the total number of
nodes evaluated for the 96 positions are listed. The additional positions solved per
algorithm are as follows.

Tree: K208, K215, R281.
DAG: K208, K215, K216, rR168, R182, R281.
DCG: K44, k60, K217, K284, rR168, R182, R252.

12The maximum number of nodes in these pn-search experiments is lower than the corresponding
number given in Chapter 3 due to implementation details.

13We note that for this problem the goal for White was set to promotion to Queen (without Black
being able to capture it on the next ply) instead of mate. Further, the search was restricted to the
5x5 ad—e8 board. This helps to find the solution faster, but does not influence the occurrence of

the GHI problem.

104 Chapter 5. The graph-history-interaction problem

BTA: K44, K60, K208, K215, K216, K217, K284, rR168, R182, R252, R281.
Neither algorithm: K8, K40, K78, K195, K209, k210, K220, rR96, R105, R201.

Obviously, Tree investigates the largest number of nodes. The explanation is easy:
the algorithm does not recognize transpositions. Further, DCG examines the smallest
number of nodes: this algorithm sometimes prematurely disproves positions; hence,
on the average fewer nodes have to be examined. However, if such a prematurely
disproved position does lead to a win and the node is important to the principal
variation of the tree, the win can be missed, as happens in the positions K208,
K215, K216 and R281. This is already remarked by Schijf et al. (1994).

From Table 5.1 it further follows that BTA performs best. The four positions
which were incorrectly disproved by DCG were proved by BTA. Compared to the
tree algorithm, BTA solves eight additional positions and uses only 58% of the
number of nodes: a clear improvement. The reduction in nodes compared to DAG
is still 11.7%. The increase in nodes searched relative to DCG (12.7%) is already
explained by the unreliability of the latter. We feel that the advantage of the larger
number of solutions found heavily outweighs the drawback of the increase in nodes
searched. We note that the selection of the most-proving node in BTA can be costly
in positions with many possible transpositions. However, in these types of positions
the reduction in the number of nodes searched is even larger than in “normal”
positions.

As a case in point we present Figure 5.18 corresponding with Diagram 216 in
Krabbé (1985). It is solved by our BTA algorithm (in 247,686 nodes) and by the
DAG algorithm (in 366,336 nodes) and not by the two other algorithms (within
500,000 nodes). Many transpositions (and many repetitions of positions) exist, since
after 1. Ea5+4+ b8 White has a so-called zwickmiihle and can position the Bishop
anywhere along the a7-gl diagonal for free. For instance, after 2. £a7+ a8 3.
£b64+ Hb8 almost the same position with the same player to move has been
reached: the Bishop has moved from d4 to b6. At any time White can choose such a
manoeuvre. For the chess-playing reader, the solutionis 1. Ea5+! &b8 2. a7+
Ha8 3. 2c5+! &b8 4. Eb5+ a8 5. Be?! &7 6. Bab+ HLb8 7. &a7+
Ha8 8. £d4+! Hb8 9. Eb5+ La8 10. Ed7! Web 11. Eab+ LHb8 12. a7+
a8 13. £b6+ Hb8 14. & xc7 mate.

5.8 Chapter conclusions

In this chapter we have given a solution to the GHI problem, resulting in an improved
DCG algorithm for pn search, called BTA (Base-Twin Algorithm). Tt is shown that
the restricted version (ad4-e8 board) of a well-known position, in which the GHI
problem occurs when a naive DCG algorithm is used, our BTA algorithm finds the
correct solution. The results on a test set of 117 positions do not falsify our claim.
Despite the additional overhead for recognizing positions suffering from the GHI
problem, our BTA algorithm is hardly less efficient than other, not entirely correct
DCG algorithms, and finds more solutions.

5.8. Chapter conclusions 105

Figure 5.18: Mate in 14 (wTM); (J. Kriheli).

Although our algorithms are confined to pn search, the strategy used is gener-
ally applicable to any best-first search algorithm. The only important criterion for
application is that a DCG is being built according to the best-first principle (choose
some leaf node, expand that node, evaluate the children, and back up the result).
We consider the GHI problem in best-first search to be solved. The importance of
this statement is that with the increasing availability of computer memory a growing
tendency exists to use best-first search algorithms and variants thereof, or best-first
fixed-depth algorithms (Plaat et al., 1996), which no longer suffer from the GHI
problem.

Our solution to the GHI problem gives an affirmative answer to the third problem
statement: is it possible to give a solution for the GHI problem for best-first search?
By transforming the search tree into our DCG representation, less memory is needed,
since only the roots of equal subtrees are duplicated. Moreover, less search is needed,
since the DCG contains fewer nodes than the tree. One disadvantage is the cost of
finding a most-proving node. If many transpositions exist in the tree, many possible
draws will occur, prolonging the search for a most-proving node. We are convinced
that the advantage of solving the GHI problem outweighs this disadvantage. What
remains is solving the GHI problem for depth-first search. This will need a differ-
ent approach, storing additional information in transposition tables rather than in
the search tree/graph in memory. However, Campbell (1985) already noted that in
depth-first search the frequency of GHI problems is considerably smaller than in
best-first search. The solution of the GHI problem for depth-first search therefore
seems to be of minor importance for practical use.

106 Chapter 5. The graph-history-interaction problem

Chapter 6

Evaluations and conclusions

In this thesis we have presented research on the balance between memory and search
in two-player zero-sum games. As example domains we have used the games of chess
and domineering. The trade-off between memory and search led to the formulation of
three problem statements. In this chapter the problem statements are re-addressed
and evaluated.

6.1 More memory and less search

We investigated whether we can exploit the large amount of memory currently avail-
able. The underlying idea is that storing more knowledge into memory may result in
a decreasing need for search. A depth-first search algorithm only stores the path from
the root to the node under investigation, and hence it uses little memory. However,
many depth-first search algorithms use the available memory for keeping a trans-
position table. The transposition table eliminates the need for search at identical
nodes, because the results of previous search processes have been saved in the table.
The first problem statement addresses decreasing the need for search by increasing
the use of memory.

Problem statement 1: Which methods exist to improve the efficiency of a transpo-
sition table?

In Chapter 2 we investigated three methods of improving the efficiency of a
transposition table. Irrespective of the size of the transposition table, collisions (cf.
subsection 2.4.2) are bound to occur. When a collision occurs, a choice has to be
made which of the two positions involved should be preserved in the transposition
table. Such a choice is governed by a replacement scheme.

The first method to improve the efficiency of the transposition table is to improve
the replacement scheme. Experiments have shown that a two-level scheme works
significantly better than a traditional one-level scheme. Further, the concept Big

107

108 Chapter 6. Evaluations and conclusions

(based on the number of nodes of the subtree) works better than the most widely
used concept Deep (based on the depth of the subtree).

The second (obvious) method of improving the efficiency of a transposition table
is to increase the number of positions in the table. In most implementations the num-
ber of positions usually is a power of two. Hence, increasing the number of positions
means doubling the number of positions. However, after a certain transposition-table
size has been reached it turns out that doubling the number of positions in the table
has a limited benefit. Moreover, doubling the number of positions in the table can
cause the table to take up too much memory.

When doubling the number of positions has a limited benefit the memory can be
used to store additional information in an entry. This is the third method for im-
proving the efficiency of the transposition table. We first have performed experiments
to investigate which information is more important to store in a transposition-table
entry: the best move in a position, or the score of that move. Experiments show that
the score is more important than the move. Further, we have investigated the effect
of storing an n-ply PV (n = 2..5) in an entry, instead of only the best move (a 1-ply
PV). Our results show that storing additional information in an entry is a profitable
way of using the available memory, which outperforms the benefit of doubling the
number of positions in the table. We believe that this is a fruitful domain for future
research (cf. Section 6.4).

6.2 Less memory and more search

We investigated whether we can exploit the increase in computer speed. The underly-
ing idea is that more speed enables more search, thereby acquiring more knowledge,
and hence decreasing the need for memory. Best-first search needs a large amount
of memory to store the entire search tree. At present computer speeds, the memory
available is quickly filled. Since the quality of a best-first search algorithm depends
on the quality of the directing knowledge, ways have to be found to use the increase
in speed to acquire more knowledge per node, hence also improving the directing
knowledge. Consequently, the search process will search the state space more effi-
ciently, reducing the need for memory at the cost of more search. The second problem
statement addresses decreasing the need for memory by increasing the use of search.

Problem statement 2: Which methods exist for best-first search to reduce the need
for memory by increasing the search, thereby gaining more knowledge per
node?

In Chapter 4 we introduced the pnZ-search algorithm. This is a best-first search
algorithm (pn search), using a second search (also pn search) as evaluation of a
leaf, thereby adding more (directing) knowledge to every node in the search tree.
Experiments with this algorithm (listed in section 4.4) show that pn? search is a
good method of reducing the need for memory by increasing the search. The pn?-
search algorithm uses roughly twice as much search time compared to the traditional

6.3. Less memory and less search 109

pn-search algorithm, leading to a decrease in the need for memory. A further advan-
tage of the pn’-search algorithm is that it solves test positions not solvable (due to
memory constraints) by a standard pn-search framework.

6.3 Less memory and less search

In the first problem statement we tried to reduce the need for search by increasing
the use of memory. Analogously, in the second problem statement we tried to reduce
the need for memory by increasing the use of search. An attempt to combine the
advantages of both approaches (reducing the need for search and reducing the need
for memory) is the following. In a search tree it is profitable to recognize transposi-
tions and to ensure that for each set of identical nodes, only one subtree is expanded.
If a best-first search algorithm (which stores the whole search tree in memory) is
used, the search tree is converted into a search graph, by joining identical nodes
into one node. This causes subtrees to be merged, decreasing the need for mem-
ory. Since the graph contains fewer nodes than the tree, less searching is needed as
well. However, joining identical nodes into one node introduces the so-called graph-
history-interaction (GHI) problem, since determining whether nodes are identical is
not the same as determining whether the search states represented by the nodes are
identical. The third problem statement addresses decreasing the need for memory
and decreasing the need for search.

Problem statement 3: Is it possible to give a solution for the GHI problem for best-
first search?

In Chapter 5 we have given a solution to the GHI problem for best-first search,
resulting in a Directed-Cyclic-Graph (DCG) algorithm for pn search, called the BTA
(Base-Twin Algorithm) algorithm. This algorithm is based on the distinction of two
types of nodes, termed base nodes and twin nodes. The purpose of these types is to
distinguish between equal positions with different history. By transferring the search
tree into our implementation of a search DCG, less memory is needed, since only the
roots of equal subtrees are duplicated. Furthermore, less search is needed, since the
DCG contains fewer nodes than the tree. It is shown that our algorithm is hardly
less efficient than other, not entirely correct DCG algorithms in terms of numbers
of nodes searched. One drawback of our solution is the cost of finding the node to
be expanded, in the case that many transpositions occur. We are convinced that the
advantage of solving the GHI problem outweighs this drawback.

6.4 Future research

In this section several recommendations for future research on the trade-off between
memory and search are given.

110 Chapter 6. Evaluations and conclusions

6.4.1 More memory and less search

This subsection provides some ideas for future research on af search in combination
with a transposition table. The idea of using an n-ply principal variation in an
entry, instead of only the best move (cf. subsection 2.7.3), seems worthy of further
investigation. Based on the experiments concerning «/f search with a transposition
table (cf. Chapter 2) it is advised to concentrate on using additional information
affecting the number of cut-offs generated by bound values.

A second recommendation is to store the best n moves with their respective
values (exact values, upper bounds, or lower bounds) in an entry, instead of only
storing the best move.

As a third recommendation it may be worthwhile investigating whether an entry
1s still effective in the table. To this end we store in a transposition-table entry the
last time the position from this entry has been read in the search!, and we use this
stamp for the decision what to do when a collision occurs.

The transposition table can also be used to store results of partial game boards.
when using partition search (Ginsberg, 1996). After a certain number of moves played
in the game of domineering, the board is usually divided into separate (and smaller)
regions. The search time will decrease considerably if the results of these regions can
be found in the transposition table. In this case it is not sufficient to store only the
values of win and loss in the table, since it has to be known by what margin a player
can win a region (Conway, 1976; Berlekamp, 1988).

6.4.2 Less memory and more search

This subsection lists some ideas for future research on modifications of the pn-
search algorithm (or other best-first search algorithms), decreasing the need for
memory. The fraction function used in Section 4.2 works well. Still, it would be
interesting to investigate whether other fraction functions perform even better. After
every initialization of a most-proving node in the first-level tree, pn? search deletes
the second-level tree. If the next most-proving node is one of the children of the
previously expanded node, then the second-level tree is recreated. Therefore, it could
be advantageous to store the last N second-level trees in a cache to reduce this
overhead, a proposal already suggested by Schaeffer (mentioned by Allis, 1994).

The pn’-search algorithm can be seen as a pn-search algorithm with another
pn search for evaluation. Other combinations are worthwhile to be investigated,
such as the combination of pn search and a3 search, leading to two variants: (1) use
the pn-search algorithm with a/ search for evaluation, and (2) use the af algorithm
with pn search for evaluation. The first variant can be used e.g., in a chess tactical
analyzer: pn search uses af search at the leaves to get a more accurate evaluation.
The second variant can be used e.g., in a chess program: a (positional) af search
uses pn search at the leaves to check for forced mates.

1'We note that this is a method different from time stamping, where the last time a position has
been written into an entry is stored.

6.4. Future research 111

6.4.3 Proof-number search

In this subsection we give two recommendations for improving pn search as it is used
in the game of chess.

First, pn search often finds a longer mate than the optimal shortest one. If it
is desired to urge pn search to find a shorter mate than it does at present, the
following two solutions are suggested: (1) after a mate has been found, try searching
for a shorter mate by only examining nodes in the search tree at a lower depth than
the depth of the shortest mate found so far, or (2) the proof and disproof numbers
in the leaves are initialized to values over unity, say at the depth of the node in
question in the tree; this deters deep searches and hence long mates.

Second, in Chapter 3 it is shown that pn search is a good searcher for mates,
especially when the winning variation contains forcing moves. When considering
extending pn search to other tactical problems, say as a tactical analyzer for gaining
material, a difficulty arises: the condition for suspending search (recognizing the
proved or disproved nature of a node) is not easy to formulate. Temporary gains
should be discarded, and proved or disproved should hold only when the material
gain is permanent. Then and only then the goal is reached and the node should be
evaluated to true, as is a win in standard pn search. A possible definition, worthwhile
testing, is: the gain value of a node is stable if the attacker is to move and has gained
at least the material expected. Since this definition of a stable gain is a heuristic, it
may be incorrect. To prevent unwanted effects, the variation found by pn search can
be checked by an o search. The variation can also be used to sort the moves in the
a3 search, resulting in deeper searches than a standard full-width search, because
of the additional cut-offs of pn search.

112 Chapter 6. Evaluations and conclusions

Appendix A

The chess middle-game test
set

For the transposition-table experiments on chess middle-game positions described
in Chapter 2 the following test set has been used.

e The 6 wTM positions from move 15 onwards of the following game:
Kasparov—Ivanchuk, Amsterdam (round 1) 1994
1.ed eb 2. N3 &\c6 3. d4 exd4 4. {H\xd4 SH6 5. §\xcb bxch 6. ed WeT 7. We2
Nd5 8. c4 £ab 9. b3 g6 10. £a3 Wb 11. g3 Ne3 12. Hixed &xa3d 13. Hed
We7 14. N6+ B8 15. £g2 Abd+ 16. Hfl Ed8 17. Wb2 S a3 18. We3 4 b4
19. Wh2 $a3 20. We3 ab4 1-1

Move 15 (WTM)

113

114

Appendix A. The chess middle-game test set

e The 18 wTM positions from move 15 onwards of the following game:

Kasparov—Short, Amsterdam (round 2) 1994

1.e4 e6 2. d4 d5 3. {H\c3 N6 4. ed NFAT 5. T4 ¢5 6. N3 H\c6 7. £e3 cxd4 8.
PNxdd £c5 9. Wd2 0-0 10. 0-0-0 a6 11. h4 Hxd4 12. £xd4 b5 13. Eh3 b4 14.
Nad dxd4 15. Wxd4 16 16. Wxba fxed 17. Wd6 W6 18. 5 Whe+ 19. bl
Exf5 20. Ef3 Exf3 21. gxf3 W6 22. 3 h3 Df7 23. c4 dxcd 24. Hc3 WeT 25.
We6 b8 26. Hed H\b6 27. Hgb+ Lel 28. Wed g6 29. Wxes Hb7 30. Ed6
c3 31. &xeb+ £xe6 32. Exeb 1-0

Move 15 (WTM)

The 20 BTM positions from move 15 up to and including move 34 of the fol-
lowing game:

Timman-Kasparov, Amsterdam (round 3) 1994

1.d4 ©f6 2. o3 g6 3. &gh £g7 4. c3 b6 5. &xf6 &xf6 6. e4 &b7 7. &d3
c58.d5e6 9. £c4 0-0 10. 0-0 {Hab6 11. Wd3 NeT 12. d6 He8 13. H\bd2 & gT
14. h4 a6 15. a4 Wh8 16. €5 6 17. h5 fxed 18. hxgh h6 19. Efel Wxd6 20.
Wixd6 {\xd6 21. H\xed L xeh 22. Bxeh Bf4 23. £d3 Eaf8 24. £3 a5 25. Hf2
FoeT 26. Ehb Ne8 27. Jogd N6 28. Hed H\d5 29. B ed E A6 30. Hcd Nf4 31.
Sxb7T Exgb+ 32. h2 Exg2+ 33. Fhl db 34. H\xb6 Eb8 35. Exe6 Exb7
36. 2d6 Egb 37. Ed1 d4 38. {Ncd Fh7 39. BEel Bhd+ 40. dogl g7+ 0-1

7 8%

Move 15 (BTM)

115

e The 24 BTM positions from move 15 onwards of the following game:

Ivanchuk—Kasparov, Amsterdam (round 4) 1994

1.e4 ch 2. {HNF3 d6 3. d4 cxd4 4. Hxd4 N6 5. {H\c3 ab 6. f4 W7 7. W3 g6 8.
Hed £¢7 9. h3 ed 10. fxed dxed 11. 2h6 2 xh6 12. Wxf6 0-0 13. HNd5 Wab
14. b4 Wd8 15. HNeT+ WxeT 16. Wxe7 exd4 17. £cd {H\c6 18. Wics) &e3 19.
211 /\d8 20. Ef3 £e6 21. Exe3 dxe3 22. &xeb H\xeb 23. Wxe3 a5 24. b5
Eac8 25. 0-0-0 HEcb 26. Ed5 b6 27. We3 Ec7 28. Wd6 Efc8 29. Ed2 Eb7
30. g4 &\cb 31. W6 h6 32. 5 Ee8 33. hd h7 34. h5 g5 35. Ed6 Heb 36.
Wds g7 37. a3 a4 38. Hb2 HEbeT 39. Exb6 1-0

e The 15 wTM positions from move 15 up to and including move 29 of the
following game:
Kasparov—Timman, Amsterdam (round 5) 1994
1. ed eb 2. N3 N6 3. {xeb d6 4. N3 Hxed 5.d4 d5 6. £d3 N\eb 7. 00 &e7
8. Hel £g4 9. ¢4 {6 10. {\c3 dxed 11. 2 xcd 0-0 12. d5 HNab 13. £d3 6
14. h3 £hb5 15. Heb 26 16. 2gh £d6 17. He2 & b4 18. & xf6 gxf6 19. Ecl
Hc8 20. Hed 5 21. Hgd Wxds 22. a3 £d6 23. HHixf5 Hcd8 24. Eed & xeb 25.
NeT+ g7 26. Hxdd &xb2 27. Nfa S xd3 28. Hxd3 S xcl 29. Wxcl Exd3
30. Wes+ 1-0

116 Appendix A. The chess middle-game test set

e The 11 BTM positions from move 15 onwards of the following game:
Short-Kasparov, Amsterdam (round 6) 1994
1.ed4 ch 2. c3 e6 3. H)f3 a6 4. d4 cxd4 5. {yxd4 d6 6. g4 bb 7. a3 h6 8. & g2
£b79.0-0 /Nd7 10. f4 Hc8 11. 2e3 gh 12. We2 gxf4 13. Hxf4 e 14. Hf5
exd4 15. &xd4 Hed 16. Hdd 2g7 17. Hafl Eh7 18. hl &h8 19. c3 HeT
20. & xeb dxed 21. W3 Nxf5 22. Wxf5 HgT7 23. N6+ Hf8 24. HNdT+ Fg8
25. N6+ Hfs 3-1

5947,
7]

Move 15 (BTM)

Appendix B

The chess endgame test set

For the transposition-table experiments on chess endgame positions described in
Chapter 2 the following test set has been used.

e The 28 wTM positions from move 31 onwards of the following game:

Gossip—Mason, New York (round 20) 1889

1.e4e6 2.d4 d5 3. {ne3 N6 4. ed VAT 5. 14 ¢5 6. dxcd e 7. N3 & xch 8.
Ne2 Whe 9. c3 212+ 10. d2 Wed+ 11. doc2 Wed+ 12. ¥d3 H\ch 13. Wxed
Nxed 14. HNed4 2dT 15. {H\xcb bxeb 16. £d3 Ned 17. £e2 &NbT7 18. Efl & b6
19. £d2c5 20. £a6 BEbS 21. Eael /Nd8 22. &d3 ab 23. el a4 24. a3 N7
25. 15 c4 26. fxe6 & xeb 27. &c2 H\c5 28. {HN\d4 0-0 29. H\xeb fxeb 30. E x84+
Zxf8 31. &e3 H/\b3+ 32. £xb3 £xe3 33. BExe3 cxb3 34. Be2 Ef4 35. Hd2
BHf7 36. Bed Ef24+ 37. Be2 Bxe2+ 38. dxe2 gb 39. He3 Lfs 40. Hd4
h5 41. g3 g5 42. h3 hd 43. g4+ Hf4 44. e dxed 45. Hba d4 46. dxad d3
47. BHxb3 bed 48. a4 He3 49. a5 d2 50. b4 d1W 51. b3 Wal 52. c4 d4
53. Hbd We3 54. e Wxb3 55. ab Wxcd+ 56. b7 Whs+ 57. La7 dch 58.
Ha8 b 0-1

Move 31 (WTM)

117

118

Appendix B. The chess endgame test set

e The 21 wTM positions from move 34 onwards of the following game:

Rabinovich—-Romanovsky, Leningrad 1934

1. c4 D6 2. N\e3 c6 3. d4 d5 4. D3 Hed 5. e3 e6 6. £d3 5 7. We2 /NdT 8.
b3 £b4 9. £b2 a5 10. Ecl 0-0 11. 0-0 £d6 12. HNe2 Wd8 13. Hed Wha
14. £3 Necd 15. g3 Who6 16. Nf4 Hixd3 17. Hexd3 gb 18. Hg2 N6 19. Ecel
g4 20. fxgd Nxegd 21. Pgld N6 22. He2 BT 23. bd {Hed 24. {H\cb EbS 25.
a3 b6 26. {N\xed fxed 27. Bef2 &d7 28. c5 &xf4 29. Hxf4 Hxf4 30. Exf4 b5
31. W2 de8 32. Bf6 Sgb 33. W4 Wixf4 34. Exf4 h5 35. h3 g7 36. &c3
&15 37. g4 hxgd 38. hxgd £g6 39. g2 Hh6 40. Bf6 He8 41. del HgT 42.
Efl a8 43. Hh3 a6 44. g3 Eh8 45. hd B8 46. Exf8 Hxf8 47. &g3 €5
48. A xed HIT 49. Hha Heb 50. Hgd Se8 51. Hh6 &17 52. g7 Le8 53. gb
Hf5 54. Hf8 1-0

e The 17 wTM positions from move 26 onwards of the following game:

Capablanca—Alekhine, Buenos Aires World Championship (game 5)
1927

1.d4 d5 2. c4 e6 3. {\c3 N6 4. &5 N\bdT 5. e3 c6 6. a3 £e7 7. N3 0-0 8.
6d3 dxcd 9. &xcd /Nd5 10. £ xeT WxeT 11. Ecl Hxed 12. Exc3 e 13. dxed
Nxed 14. Hxed Wxed 15. 0-0 &c6 16. & xet Wxet 17. Hd3 W6 18. WhH3
We7 19. Efdl Ead8 20. h3 Exd3 21. Exd3 g6 22. Wdl We5 23. ¥d2 ab 24.
Ed7 b5 25. Wic3 Wxc3 26. bxe3 Hc8 27. bfl g7 28. Ea7 ad 29. c4 Hf6
30. Eab deb 31. Fe2 bxcd 32. Bcd db 33. Excd Hal 34. Ed4+ Leb 35.
&d3 c5 36. Eh4 h5 37. g4 hxg4 38. Exgd d6 39. Ef4 5 40. Eh4 dd5 41.
&2 Hab 42. &3 %f%

119

e The 17 wTM positions from move 38 onwards of the following game:
Fischer—Reshevsky, New York US Championship (round 5) 1962
1.e4 ch 2. N3 d6 3. d4 cxd4 4. Hxd4 N6 5. G\c3 a6 6. h3 g6 7. g4 &7 8. gb
Nh5 9. Be2 eb 10. b3 N4 11. [Nd5 Hxdd 12. Wxdd Hc6 13. Sgd4 A xgd
14. hxgd We8 15. Wd1 {H\d4 16. ¢3 Hxb3 17. axb3 We6 18. Eab 6 19. Wd5
Wxd5 20. Exdd Jod7 21. gxf6 & xf6 22. gb &eT 23. Fe2 Baf8 24. de3 Hcl
25. b4 b5 26. Edd1 goeb 27. HEal Hc6 28. Eh3 &8 29. Eh1 Ec7 30. Eh4
d531. Eal Ecb 32. exdd5+ Joxd5 33. Ed1+ Foeb 34. EdS f5 35. Ea8 Heb
36. Eh3 4g7 37. Exh8 &xh8 38. Exh7 Ee8 39. BEfT+ Jogd 40. 3+ Fog3 41.
Fod3 ed+ 42. fxed Hd8+ 43. &d4 Fogd 44. Bl Sed 45. Fed AT 46. Hegl+
Foh5 47. Ff3 EAT7 48. 5 Ef7T+ 49. dhed Ef5 50. 6 £d8 51. &6 &xf6 52.
gxf6 Exf6 53. ded Ef2 54. Eel 1-0

Move 38 (WTM)
e The 29 wTM positions from move 38 onwards of the following game:

Lisitsin—Capablanca, Moscow (round 5) 1935
1. 03 db 2. ¢4 c6 3. e3 N6 4. {Nc3 S g4 5. cxdd {Lixdb 6. Le2 6 7. d4 NdT
8.0-0Wc7 9. 4d2 £d6 10. Hed NTI6 11. H\xd6+ Wxd6 12. Hed & xe2 13.
Wxe2 0-0 14. Ecl /b6 15. {Hd3 Ee8 16. Bfel {/\bd7 17. h3 Wd5 18. b3
Whs 19. &¢3 Nd5 20. Wd2 Hxe3 21. Wxed Ead8 22. a4 Wh6 23. b4 N6
24. Wicd fNed 25. ab BT 26. a6 Ec8 27. axb7 Wixb7 28. Eal Ec7 29. Hecl
Eb8 30. We2 Weg 31. HEad Eb6 32. Wad Wh 33. 3 /N6 34. Bcb Hdb 35.
Exc6 Hcexcb 36. Excb Exc 37. Wxc6 HNxe3 38. HH\ch N\db 39. bs \b6 40.
NAT A8 41. [Hxb6 axb6 42. Wed h5 43. ofl gb 44. dogl ogT 45. Jof1 Wd6
46. Jogl W4 47. We3 Foh7 48. Hfl W5 49. Wed g7 50. of2 Wb 51. We2
Fof6 52. Wh2 Wd5 53. Fped b 54. f4 exf4+ 55. oxf4 oeb 56. hd 6 57. el
Wed 58. g3 gb 59. hxgh fxgd 60. Wh2 Wh3+ 61. ched g4 62. We2 Wxg3 63.
Wied+ e 64. Wel W3+ 65. e WG+ 66. dodd Wd6+ 0-1

Move 38 (WTM)

120 Appendix B. The chess endgame test set

Appendix C

The transposition-table
results

This appendix presents the results of the three series of experiments given in Chap-
ter 2. The first series of experiments investigates which replacement scheme performs
best. The second series of experiments examines which information is more impor-
tant to store in a transposition-table entry: the best move in a position, or the score
of that move. Finally, the third series of experiments investigates the effect of storing
an n-ply PV (n = 2..5) in an entry, instead of only the best move (a 1-ply PV).

Comparing replacement schemes

The first series of experiments consists of three parts. First, the 3-ply to 8-
ply transposition-table results for the seven replacement schemes (TwoBIGl,
TwoDEEP, Big1l, BIGALL, DEEP, NEwW and OLD) on chess middle-game positions
are listed in Tables C.1 to C.12. The middle-game figures reported are number of
nodes searched in thousands. The 3-ply to 7-ply results are listed with eight table
sizes (8K, 16K, 32K, 64K, 128K, 256K, 512K and 1024K). These results are the
cumulative results of all six games (94 middle-game positions) given in Appendix A.
The 8-ply results are listed with four table sizes (16K, 64K, 256K and 1024K). These
results are the cumulative results of the first three games (44 middle-game positions)
given in Appendix A. For every ply depth two tables are given: one without time
stamping and one with it. In the former case the transposition tables are cleared
between moves.

121

122 Appendix C. The transposition-table results

TwoBicl TwoDEeEeEp Bicl BicArLL Deep NeEw OLD
8K 684 684 686 686 687 687 688
16K 684 684 683 683 684 684 685
32K 684 684 684 684 684 684 685
64K 684 684 684 684 684 684 684
128K 684 684 684 684 684 684 684
256K 684 684 684 684 684 684 684
512K 684 684 684 684 684 684 684
1024K 684 684 684 684 684 684 684

Table C.1: Replacement-scheme results for the chess middle game
(without time stamping, 3-ply searches).

TwoBicl TwoDEEp Bicl BicArLL Deep NeEw OLD
8K 660 660 660 660 665 665 661
16K 660 660 660 660 660 660 660
32K 660 660 660 660 660 660 660
64K 660 660 660 660 660 660 660
128K 660 660 660 660 660 660 660
256K 660 660 660 660 660 660 660
512K 660 660 660 660 660 660 660
1024K 660 660 660 660 660 660 660

Table C.2: Replacement-scheme results for the chess middle game
(with time stamping, 3-ply searches).

TwoBicl TwoDEEP Bicl BicALL Deep New OLD
8K 2,737 2,774 2,790 2,800 2,816 2,789 2,814
16K 2,757 2,751 2,808 2,807 2,780 2,784 2,788
32K 2,758 2,756 2,754 2,753 2,791 2,778 2,765
64K 2,758 2,758 2,735 2,735 2,763 2,755 2,776
128K 2,757 2,757 2,763 2,763 2,749 2,766 2,756
256K 2,757 2,757 2,745 2,745 2,734 2,730 2,776
512K 2,757 2,757 2,766 2,766 2,761 2,761 2,782
1024K 2,757 2,757 2,767 2,767 2,759 2,759 2,791

Table C.3: Replacement-scheme results for the chess middle game
(without time stamping, 4-ply searches).

123

TwoBicl TwoDeEgp Bicl BicAuL Deep NeEw OLD
8K 2,706 2,673 2,648 2,705 2,727 2,735 2,739
16K 2,671 2,697 2,608 2,698 2,606 2,644 2,688
32K 2,687 2,703 2,683 2,701 2,661 2,602 2,704
64K 2,682 2,682 2,651 2,659 2,719 2,670 2,674
128K 2,684 2,684 2,633 2,633 2,705 2,714 2,647
256K 2,684 2,684 2,679 2,679 2,681 2,700 2,700
512K 2,684 2,684 2,680 2,680 2,672 2,674 2,603
1024K 2,684 2,684 2,680 2,680 2,673 2,674 2,701

Table C.4: Replacement-scheme results for the chess middle game
(with time stamping, 4-ply searches).

TwoBicl TwoDEEp Bicl BicAuL Deep NeEw OLD
8K 8,067 9,186 9,185 9,206 9,341 9,312 9,435
16K 8,932 9,004 9,101 9,109 9,221 9,141 9,235
32K 8,088 8,099 9,020 9,079 9,061 9,046 9,169
64K 9,014 9,016 9,000 9,006 9,037 9,089 9,091
128K 8,085 8,975 8,945 8,046 9,024 9,089 8,965
256K 8,993 8,082 9,036 9,038 9,010 8955 9,052
512K 8,964 8,964 9,003 9,003 8967 80968 9,066
1024K 8,964 8,064 8939 8,030 8083 8087 8,086

Table C.5: Replacement-scheme results for the chess middle game
(without time stamping, 5-ply searches).

TwoBicl TwoDeEgp Bicl BicAuL Deep NeEw OLD
8K 8,892 8,815 8,912 8,854 0,003 9,065 9,160
16K 8,755 8,806 8,798 8,833 8841 8842 9,005
32K 8,741 8,796 8,844 8,835 8,922 83829 8,744
64K 8,724 8,718 8721 8,767 8779 8750 8,893
128K 8,755 8,744 8793 8,855 8,763 8776 8801
256K 8,736 8,745 8,802 8,801 8,765 8723 8,739
512K 8,732 8,732 8,743 8,798 8703 8,690 8,836
1024K 8,732 8,732 8,736 8,764 8744 8746 8,769

Table C.6: Replacement-scheme results for the chess middle game
(with time stamping, 5-ply searches).

124

Appendix C. The transposition-table results

TwoBicl TwoDEEP Bicl BicALL DEEP NEwW OLD
8K 40,619 42,120 42,280 42,694 42,903 45,932 46,581
16K 39,210 39,896 40,305 40,112 40,831 42,864 43,693
32K 38,146 38,930 39,165 39,321 39,172 40,506 41,828
64K 38,088 38,061 38,901 38,919 38,695 39,265 39,751
128K 38,247 37,884 38,798 38,287 38,313 38,635 38,781
256K 37,892 38,059 37,867 38,210 37,983 38,042 38,607
512K 38,036 37,871 37,757 38,178 38,009 38,342 38,269
1024K 37,959 37,790 37,901 37,734 38,454 37,810 38,243

Table C.7: Replacement-scheme results for the chess middle
(without time stamping, 6-ply searches).

game

TwoBicl TwoDEEP Bicl BIicGALL DEEP NEwW OLD
8K 40,148 41,390 41,846 41,421 42,747 45249 46,631
16K 38,190 39,367 39,680 39,380 40,780 42,457 43,294
32K 37,187 37,695 38,583 38,344 38,638 40,169 40,462
64K 37,008 36,898 37,764 37,555 37,813 38,940 38,501
128K 36,754 36,959 37,077 37,131 37,004 37,437 37,781
256K 36,854 36,705 36,697 37,053 36,689 38,015 37,529
512K 36,865 36,658 36,446 36,613 36,756 36,901 36,894
1024K 36,914 36,425 36,983 36,265 36,462 36,690 36,447

Table C.8: Replacement-scheme results for the chess middle game
(with time stamping, 6-ply searches).

TwoBicl TwoDEEP Bicl BIicALL DEEP NEw OLD
8K 162,393 168,136 175,713 177,681 181,147 199,937 205,747
16K 149,363 153,613 162,211 162,578 165,565 181,221 191,766
32K 141,105 143,399 149,651 150,810 153,938 165,531 174,633
64K 136,147 138,046 141,101 142,081 143,767 152,896 158,519
128K 132,571 134,148 136,419 136,996 136,879 142,206 146,668
256K 131,739 131,720 133,513 134,047 134,900 139,362 138,438
512K 131,511 131,092 131,961 133,667 134,183 135,244 136,112
1024K 131,722 130,997 132,152 132,130 132,938 132,597 133,623

Table C.9: Replacement-scheme results for the chess middle game

without time stamping, 7-ply searches).
g

TwoBicl TwoDEEP Bicl BIiGALL DeEP NEW OLD
8K 159,463 166,755 177,310 178,308 181,614 196,798 216,668
16K 149,330 153,771 160,847 161,390 166,035 179,992 200,805
32K 139,768 144,800 149,229 149,105 152,088 164,413 179,437
64K 135,154 137,008 140,681 140,523 144,751 150,047 160,516
128K 131,154 132,456 134,055 134,473 137,187 141,991 145,095
256K 129,206 127,970 131,685 131,508 132,414 136,596 138,460
512K 128,502 127,783 130,016 129,589 131,591 131,839 132,956
1024K 127,797 127,592 128,450 129,906 128,856 132,099 130,440

Table C.10: Replacement-scheme results for the chess middle game
(with time stamping, 7-ply searches).

TwoBicl TwoDEEP Bicl BIGALL DeEpP NEW OLD
16K 433,734 446,535 487,496 501,011 513,109 588,646 632,460
64K 363,502 370,538 397,446 395,755 411,775 494,620 501,081
256K 319,972 330,656 357,510 341,741 343,183 382,383 397,500
1024K 316,183 300,192 327,089 324,880 323,494 344,971 339,173

Table C.11: Replacement-scheme results for the chess middle game
(without time stamping, 8-ply searches).

TwoBicl TwoDEEP Bicl BIGALL DeEpr NEwW OLD
16K 421,808 441,366 495,808 493,721 527,186 590,553 706,031
64K 354,250 366,945 400,034 393,498 415,413 493,801 545,271
256K 321,320 321,361 342,764 337,188 349,470 397,421 407,303
1024K 300,430 312,459 320,724 316,780 317,324 329,933 333,470

Table C.12: Replacement-scheme results for the chess middle game
(with time stamping, 8-ply searches).

126 Appendix C. The transposition-table results

Second, the 10-ply results for the seven replacement schemes (TwoBIGI,
TwoDEEP, Bicl, BicALL, DEEP, NEW and OLD) on chess endgame positions are
listed in Table C.13 with eight table sizes (8K, 16K, 32K, 64K, 128K, 256K, 512K
and 1024K). All figures reported are number of nodes searched in millions. These
results are the cumulative results of all five games (112 endgame positions) given in
Appendix B. For every endgame experiment time stamping was used.

TwoBicl TwoDEEP Bicl BicALL Deep New OLD
8K 608 638 909 997 953 1,034 1,569
16K 508 533 740 779 758 914 1,392
32K 434 447 615 632 599 807 1,124
64K 396 407 517 520 501 698 916
128K 365 359 428 415 408 607 692
256K 334 330 372 367 388 528 505
512K 309 304 333 327 334 460 396
1024K 287 292 305 302 301 404 330

Table C.13: Replacement-scheme results for the chess endgame
(with time stamping, 10-ply searches).

Third, the results in the domain of domineering for five replacement schemes
(TwoBIG1, TwoDEEP, Bigl, DEEP and NEW) are listed with four table sizes
(256K, 512K, 1024K and 2048K) in Table C.14. All figures reported are number
of nodes searched in millions. The results are given for the empty standard (8x8)
board. Obviously, no time stamping was used, since the test set consists of only one
position.

Quantifying the merits of move and score

For the second series of experiments the following six experimental searches have
been performed.

1. Search without a transposition table.
. Search with a traditional transposition table, without score.

. Search with a traditional transposition table, without mowve.

> W N

. Search with a traditional transposition table, without mowve, only storing and
using the score information if the score is a true value.

5. Search with a traditional transposition table, without mowve, only storing and
using the score information if the score is a bound value.

6. Search with a traditional transposition table, with move and score, storing and
using the score information both if the score is a true value or a bound value
(i.e., use the transposition table fully).

127

TwoBicl TwoDeEep Bicl DEegp NEw
256K 1,212 1,298 1,659 1,930 3,742
512K 885 939 1,122 1,283 2,743
1024K 607 635 745 812 2,130
2048K 442 452 492 504 1,380

Table C.14: Replacement-scheme results for domineering.

First, the 8-ply transposition-table results for the replacement scheme TwoBiIG1
on 18 consecutive wTM middle-game positions taken from the game Kasparov-Short,
Amsterdam (round 2) 1994 (cf. Appendix A) are listed in Table C.15.

Second, the 10-ply results for the replacement scheme TwoBIG1 on 21 con-
secutive WTM endgame positions taken from the game Rabinovich-Romanovsky,
Leningrad 1934 (cf. Appendix B) are listed in Table C.16. The experiments have
been performed with six table sizes (8K, 16K, 32K, 64K, 128K and 256K). For ev-
ery experiment time stamping was used. All figures reported are number of nodes
searched in thousands.

True Bound Traditional

No tt Tt-move Tt-score tt-score tt-score tt

8K | 610,606 473,041 326,130 599,491 321,141 297,244
16K | 610,696 456,754 298,797 599,491 282,651 262,409
32K | 610,696 433,430 274,630 599,491 264,205 235,358
64K | 610,696 414,718 266,698 599,491 250,568 213,422
128K | 610,696 403,509 258,279 599,491 239,020 200,483
256K | 610,606 392,076 248,917 599,491 227,815 193,644

Table C.15: Transposition-table results for the chess middle game
(with time stamping, 8-ply searches).

Using additional memory

For the third series of experiments we have tested the results of storing an n-ply PV
(n = 2..5) in an entry versus storing only the best move (a 1-ply PV).

First, the 8-ply transposition-table results for the replacement scheme TwoBiIG1
on 18 consecutive wTM middle-game positions taken from the game Kasparov-Short,
Amsterdam (round 2) 1994 (cf. Appendix A) are listed in Table C.17.

Second, the 10-ply results for the replacement scheme TwoBIG1 on 21 con-
secutive WTM endgame positions taken from the game Rabinovich-Romanovsky,
Leningrad 1934 (cf. Appendix B) are listed in Table C.18. The experiments have

128 Appendix C. The transposition-table results

True Bound Traditional

No tt Tt-move Tt-score tt-score tt-score tt

8K | 409,119 208,056 118,658 404,658 114,304 73,690
16K | 409,119 188,754 102,370 404,394 102,988 61,779
32K | 409,119 174,397 95,666 404,415 90,221 52,473
64K | 409,119 161,670 88,800 402,261 85,470 47,928
128K | 409,119 151,189 81,801 402,644 81,811 43,107
256K | 409,119 144,681 76,388 402,644 81,501 43,168

Table C.16: Transposition-table results for the chess endgame
(with time stamping, 10-ply searches).

been performed with six table sizes (8K, 16K, 32K, 64K, 128K and 256K). For ev-
ery experiment time stamping was used. All figures reported are number of nodes
searched in thousands.

1-ply PV 2-ply PV 3-ply PV 4-ply PV 5-ply PV
8K 297,244 295,662 204,646 295,330 292,025
16K 262,409 259,041 261,433 261,788 258,357
32K 235,358 231,825 239,193 241,828 236,579
64K 213,422 221,658 219,221 215,449 213,998
128K | 200,483 201,704 207,532 202,358 203,506
256K | 193,644 194,858 188,259 187,287 184,820

Table C.17: PV results for the chess middle game
(with time stamping, 8-ply searches).

1-ply PV 2-ply PV 3-ply PV 4-ply PV 5-ply PV

]K 73,690 75,732 77,254 74,340 73,209
16K 61,779 63,815 62,303 60,851 62,768
32K 52,473 52,432 51,213 55,629 51,898
64K 47,928 44,365 50,903 46,377 43,603

128K 43,107 41,250 43,680 41,919 42,128
256K 43,168 37,208 38,843 37,451 37,744

Table C.18: PV results for the chess endgame
(with time stamping, 10-ply searches).

Appendix D

The pn-search and
pn?-search test set

This appendix lists the test set of 117 positions used for the proof-number-search
experiments described in Chapters 3, 4, and 5.
The following wTM positions from Reinfeld (1958) and Krabbé (1985) have been

used:

129

130 Appendix D. The pn-search and pn?-search test set

Krabbé #215

Krabbé #217 Krabbé #218

131

Reinfeld #60 Reinfeld #61 Reinfeld #64 Reinfeld #84

132 Appendix D. The pn-search and pn?-search test set

/"7
_

Reinfeld #99

Reinfeld #136

Reinfeld #173 Reinfeld #182 Reinfeld #184 Reinfeld #186

133

=7 //’ / 1
B | pe

Reinfeld #203

Reinfeld #212

Reinfeld #260 Reinfeld #263 Reinfeld #267 Reinfeld #278

134 Appendix D. The pn-search and pn?-search test set

Reinfeld #293 Reinfeld #295 Reinfeld #298

The following BTM positions from Reinfeld (1958) and Krabbé (1985) have been
used:

135

jaedaf o

Reinfeld #252

Reinfeld #266 Reinfeld #290

136 Appendix D. The pn-search and pn?-search test set

Appendix E

The pn-search versus
afB-search results

This appendix presents the results of the experiments with the pn-search algorithm
and the aF-seach algorithm described in Chapter 3. In Table E.1 all results are listed
for the test set of 117 positions. The numbers refer to the number of nodes searched.
A dash signifies that no solution is found due to the memory constraints (1,000,000
nodes). The first column lists the test positions. Columns two and three show the
results for pn search and af search, respectively.

Pn search a3 search Pn search «f3 search
K8 - - K199 370,016 -
K35 296 244,122 K206 15,978 —
K37 43,221 - K207 95,418 -
K38 273 57,509 K208 62,791 -
K40 - - K209 - -
K44 - - K210 - -
K60 - 930,899 K211 957 155,641
K61 42,228 - K212 81,842 104,368
K78 - - K214 685 -
K192 23,290 - K215 114,060 -
K194 229,423 - K216 592,890 -
K195 - - K217 - -
K196 208,428 - K218 118,361 -
K197 323 15,831 K219 310,447 -
K198 247,435 - K220 - -

Table E.1: Comparing pn search and af search (continued on next page).

137

138 Appendix E. The pn-search versus af-search results

Pn search a3 search Pn search af3 search
K261 482 906 RrR161 2,045 4,212
K284 - 224,092 R167 896 178,495
K317 173,480 158,523 R168 | 596,956 -
K333 145,922 - R172 99 6,062
K334 | 217,516 - R173 419 5,729
r1 7,640 18,225 R177 527 5,538
R4 82 52 R179 184 10,342
RD 57 22 R182 807,709 -
R6 71,966 - R184 82 1,026
RrR9 207 124,234 R186 108 30,588
R12 175 1,174 R188 117 94
R14 324,542 127,519 rR191 22,466 17,952
R27 77 270 R197 95 762
R35 527 3,421 rR201 - -
R49 16,546 545,344 rR203 19,917 6,166
RrR50 183 830 RrR211 278 282,863
RrR5H1 227,361 - R212 458 204,009
RrRbH4 85 1,631 R215 164 3,244
RHH 31,456 393,646 R217 271 331,404
RH7 113 106 R218 277,639 -
R60 69 107 R219 157 414
RrR61 78 537 R222 59,591 -
RrR64 137 1,201 R225 342 3,034
R79 152 49,502 RrR241 360,983 -
R84 93 609 R244 458 70,466
R&8 759 21,862 R246 120 753
R96 - - R250 1,147 -
ROT 107 7,186 R251 136,479 384,761
R99 75,411 12,227 R252 | 537,628 -
R102 279 208 R253 2,355 311
rR103 2,150 20,662 R260 807 511,553
rR104 5,047 14,017 R263 887 45,180
rR105 ~ 777,182 R266 716 289,510
R132 2,301 6,340 R267 1,206 22,800
R134 854 19,008 R278 636 389,195
R136 185 114 R281 317,214 -
R138 211,466 - R282 749 58,274
R139 274 47,199 R283 30,778 102,501
RrR143 900 13,023 R285H 218 2,372
R154 117 1,784 R290 523 42,650
R156 82 1,081 R293 121,720 -
R158 526 5,416 R295 81 3,584
R159 385,487 - R298 150 3,900
R160 110 2,783

Table E.1: Comparing pn search and «f search (continued).

Appendix F

The pn?-search results

This appendix lists the results of the experiments with the pn?-search algorithm and
its modifications.

In Chapter 4 it is stated that when parameter a becomes large and parameter b
becomes small the fraction function approaches f(z) = 0, which means that standard
pn search is used. When both parameter a and parameter b have a small positive
value the fraction function approaches f(z) = 1, which means that the pn®-search
algorithm suggested by Allis (1994) is used. Table F.1 confirms these observations.
In the first column of the table the algorithm is given. The second column states the
number of positions solved, and the third column states the total number of nodes
searched. We note that the pn-search result differs from the result with (a b) equal
to (999K 1), because the first result stems from the immediate-evaluation variant of
pn search, and the second from the delayed-evaluation variant of pn search.

Algorithm Solved # nodes
Pn search 92 2,974,602
a=999K b=1 87 2,392,664
a=1b=1 108 67,085,784
Pn? search (Allis) 108 67,085,784

Table F.1: Two extremes of the fraction function.

Next, all results of the experiments described in Chapter 4 are presented in
Table F.2. For these experiments, the test set consists of 108 positions. In the first
two columns the values of parameters a and b are given. The third column states
the number of positions solved. The sizes of the first-level and second-level tree are
listed in columns four and five, respectively. Column six shows the total number of
nodes searched over the solved positions. Finally, the maximum number of nodes in
memory for the most difficult test position is given in column seven.

139

140 Appendix F. The pn?-search results

a b # | First level Second level Total | Maximum
75K 3,750 | 108 | 2,668,522 414,715,077 417,384,499 122,822
75K 7.5K | 108 | 2,107,363 183,059,544 185,166,907 97,880
75K 15K | 108 | 1,321,283 58,630,011 59,951,294 70,808
75K 30K | 108 825,798 56,792,248 57,618,046 48,488
75K 37.5K | 108 737,686 55,092,677 55,830,363 42,945
75K 45K | 108 658,312 52,527,548 53,185,860 40,428
75K 60K | 108 599,335 54,678,255 55,277,590 35,580
75K 75K | 108 553,540 55,622,054 56,175,594 39,947
75K 90K | 108 538,282 57,474,549 58,012,831 39,084
75K 120K | 108 510,672 58,163,405 58,674,077 37,322
75K 150K | 108 503,728 59,589,317 60,093,045 36,568
75K 180K | 108 494,585 59,457,269 59,951,854 36,563
75K 210K | 108 488,951 59,792,279 60,281,230 36,003
75K 240K | 108 492,391 61,418,574 61,910,965 35,605

100K 10K | 108 | 2,482,057 141,392,048 143,874,105 110,920
100K 60K | 108 663,291 50,661,253 51,324,544 46,305
100K 90K | 108 561,438 49,790,831 50,352,269 34,653
125K 125K | 108 | 2,818,440 104,339,512 107,157,952 120,979
125K 75K | 108 659,378 46,992,565 47,651,043 43,770
125K 90K | 108 621,220 49,335,318 49,956,538 38,737

150K 3,750 | 108 | 4,998,281 612,351,208 617,349,489 189,770
150K 7.5K | 108 | 4,390,473 269,286,304 273,676,777 166,447
150K 15K | 108 | 3,113,015 80,038,932 83,151,947 135,643

150K 30K | 108 | 1,728,353 60,406,646 62,134,999 91,605
150K 60K | 108 901,278 54,777,822 55,679,100 55,430
150K 75K | 108 793,386 56,532,843 57,326,229 53,954
150K 90K | 108 674,730 49,173,880 49,848,610 48,665
150K 120K | 108 601,153 49,506,906 50,108,059 37,630
150K 150K | 108 555,561 50,273,586 50,829,147 34,647
150K 180K | 108 526,613 51,573,591 52,100,204 33,413
150K 210K | 108 518,422 54,791,716 55,310,138 38,152
150K 240K | 108 510,498 56,215,959 56,726,457 38,249
150K 480K | 108 498,061 63,168,302 63,666,363 31,185
200K 20K | 108 | 3,642,974 58,523,263 62,166,237 164,472
200K 90K | 108 853,735 54,127,970 54,981,705 55,158
200K 120K | 108 696,652 50,890,364 51,587,016 48,860
250K 25K | 108 | 4,046,147 46,244,259 50,290,406 175,617
250K 90K | 108 | 1,057,131 55,266,557 56,323,688 68,215
250K 150K | 108 697,125 49,876,992 50,574,117 49,780

300K 15K | 108 | 6,904,133 85,195,061 92,099,194 275,206
300K 225K | 108 | 5,558,725 43,618,137 49,176,362 237,670
300K 30K | 108 | 4,391,781 43,512,164 47,903,945 200,110

Table F.2: The pn? results for varying parameters a and b
(continued on next page).

141

a b # | First level Second level Total | Maximum
300K 40K | 108 | 3,219,230 39,278,406 42,497,636 162,091
300K 60K | 108 | 2,003,287 46,485,285 48,488,572 117,496
300K 90K | 108 | 1,248,374 48,739,998 49,088,372 77,854
300K 120K | 108 957,952 53,597,265 54,555,217 59,768
300K 150K | 108 817,824 56,359,721 57,177,545 55,057
300K 165K | 108 753,545 51,515,985 52,269,530 55,570
300K 180K | 108 711,403 51,190,005 51,901,408 51,969
300K 210K | 108 647,192 49,930,739 50,577,931 44,686
300K 240K | 108 618,720 51,738,723 52,357,443 40,312
300K 300K | 108 553,488 48,820,125 49,373,613 36,234
300K 480K | 108 516,863 56,576,815 57,093,678 37,855
450K 15K | 88 | 2,685,315 77,055 2,762,370 | >300,000
450K 225K | 98 | 5,300,701 2,889,136 8,198,837 | >300,000
450K 30K | 104 | 6,159,818 13,468,281 19,628,099 | >300,000
450K 45K | 108 | 5,200,437 31,899,341 37,099,778 277,633
450K 60K | 108 | 3,710,957 32,101,854 35,812,811 200,822
450K 75K | 108 | 2,755,338 37,285,569 40,040,907 158,558
450K 90K | 108 | 2,158,171 43,057,915 45,216,086 135,001
450K 120K | 108 | 1,458,198 45,147,453 46,605,651 98,068
450K 150K | 108 | 1,173,016 50,363,222 51,536,238 74,863
450K 180K | 108 989,985 55,097,838 56,087,823 65,040
450K 210K | 108 850,180 52,617,722 53,467,902 55,486
450K 240K | 108 772,110 50,392,270 51,164,380 50,924
450K 270K | 108 720,221 51,678,441 52,398,662 52,916
450K 300K | 108 655,616 47,560,738 48,216,354 45,910
450K 330K | 108 634,798 48,572,363 49,207,161 40,442
450K 360K | 108 614,915 49,918,022 50,532,937 40,806
450K 450K | 108 560,286 49,245,643 49,805,929 36,882
600K 15K | 87 | 2,392,664 0 2,392,664 | >300,000
600K 30K | 91 | 3,539,437 433,025 3,972,462 | >300,000
600K 60K | 106 | 5,175,810 21,486,835 26,662,645 | >300,000

600K SOK | 108 | 4,061,359 30,818,703 34,880,062 | 236,383
600K 90K | 108 | 3,429,832 32,596,751 36,026,583 200,682
600K 120K | 108 | 2,198,328 37,433,618 39,631,946 136,878
600K 150K | 108 | 1,632,654 42,467,933 44,100,587 112,288
600K 180K | 108 | 1,310,916 46,726,924 48,037,840 87,436
600K 210K | 108 | 1,137,207 51,167,545 52,304,842 73,973
600K 240K | 108 | 1,006,380 55,098,476 56,104,856 68,357
600K 300K | 108 826,932 55,119,547 55,946,479 59,813
600K 360K | 108 719,206 49,798,501 50,517,707 47,901
600K 480K | 108 614,823 49,558,639 50,173,462 39,913
600K 600K | 108 558,575 48,982,121 49,540,696 36,773

Table F.2: The pn? results for varying parameters a and b

(continued on next page).

142 Appendix F. The pn®-search results

a b # | First level Second level Total | Maximum
750K 15K | 87 | 2,302,664 0 2,392,664 | >300,000
750K 30K | 87 | 2,392,664 0 2,392,664 | >300,000
750K 375K | 87 | 2,392,664 834 2,393,498 | >300,000
750K 60K | 99 | 4,668,848 4,396,135 9,064,983 | >300,000

750K 75K | 104 | 4,879,717 12,059,792 16,939,509 | >300,000
750K 90K | 107 | 4,625,718 24,204,635 28,830,353 | >300,000
750K 120K | 108 | 3,226,125 32,090,839 35,316,964 206,505

750K 150K | 108 | 2,296,757 39,959,428 42,256,185 149,546
750K 180K | 108 | 1,731,845 39,282,953 41,014,798 116,815
750K 210K | 108 | 1,447,288 46,590,740 48,038,028 98,804
750K 240K | 108 | 1,269,027 51,306,410 52,575,437 83,348
750K 300K | 108 | 1,015,055 55,693,427 56,708,482 68,297
750K 450K | 108 720,103 49,808,809 50,528,912 48,265
750K 600K | 108 614,273 49,255,159 49,869,432 39,933
750K 750K | 108 564,262 49,982,423 50,546,685 36,757

Table F.2: The pn? results for varying parameters a and b (continued).

Appendix G

The BTA results for

pn search

This appendix presents the results of the experiments with the pn-search algorithm
and its modifications described in Chapter 5. In Table G.1 the results of the 117 test
positions are listed for four pn-search variants with the same move ordering. The
numbers refer to the number of nodes searched. A dash signifies that no solution
was found due to the memory constraints (500,000 nodes). The first column lists
the test positions. Columns two to five show the results for the tree algorithm?, the
DAG algorithm, the DCG algorithm, and the BTA algorithm, respectively.

Tree DAG DCG BTA
K& - - - -
K3H 296 296 276 276
K37 35,724 25,737 17,981 19,886
K38 273 273 272 272
K40 - - - -
K44 — 274211 274,211 146,938
K60 - 310,251 372,634 487,969
K61 43,911 41,997 35,770 38,446
K78 - - - -
K192 | 22,525 15,429 14,252 15,767
K194 | 238,085 51,427 30,699 102,336

Table G.1: The results for four pn-search variants (continued on next page).

I The numbers differ from the numbers given in Appendix E, because there the tree algorithm
uses a different move ordering.

143

144 Appendix G. The BTA results for pn search

Tree DAG DeaG BTA

K195 - - - -
K196 | 318,276 97,717 88,069 93,447
K197 429 429 417 413

K198 | 333,165 262,255 171,720 177,929
K199 | 369,555 290,903 151,043 202,903
K206 | 11,931 11,543 9,483 9,191
K207 | 236,568 88,024 41,348 50,870

K208 | 72,468 65,279 31,648
K209 - - - -
K210 - - - -
K211 1,059 1,059 939 937
K212 | 83,413 59,983 52,946 55,290
K214 645 645 629 624
K215 | 124,984 94,108 - 74,967
K216 - 366,336 — 247,686
K217 - - 311,027 407,633

K218 | 122,058 109,308 124,868 107,215
K219 | 277,250 129,232 63,297 83,329

K220 - - - -
K261 414 388 388 424
K284 - 2,337 2,337 2,851

K317 | 157,424 120,358 103,033 94,043
K333 | 165,725 134,339 123,599 139,184
K334 | 145,201 88,430 74,375 82,889

rl 4,275 4,095 3,996 4,270
R4 82 82 82 82
RS 57 57 57 57
R6 96,059 32,953 11,703 13,179
RO 173 173 169 168
R12 99 99 99 99
R14 | 335,936 213,098 157,269 185,918
R27 77 77 77 77
rR35 597 559 371 522
R49 16,935 14,767 13,797 15,625
R50 399 383 369 408
R51 | 270,495 191,822 173,922 204,299
R54 256 256 256 256
R55 15,245 13,293 12,749 14,552
R57 287 287 287 287
R60 69 69 69 69
R61 78 78 78 78
R64 153 153 153 153

Table G.1: The results for four pn-search variants
(continued on next page).

145

Tree DAG DCG BTA
R79 152 152 152 152
R84 93 93 93 93
R8S 595 547 542 583
R96 - - - -
RO7 107 107 107 107
R99 31,767 31,302 27,264 27,290
rR102 199 199 199 199
r103 1,837 1,742 1,731 1,780
r104 5,042 4,660 4,658 4,870
R105 - - - -
R132 2,291 2,105 2,077 2,135
rR134 804 798 758 760
rR136 230 230 230 230
R138 | 192,886 164,106 118,729 137,030
rR139 182 182 182 182
rR143 521 520 520 519
R154 197 197 196 196
R156 82 82 82 82
R158 495 495 494 494
R159 | 403,797 253,108 274,275 263,275
R160 110 110 110 110
rR161 1,790 1,209 1,209 1,332
R167 923 901 813 810
R168 — 317,557 209,725 301,527
R172 99 99 99 99
rR173 419 418 404 402
R177 349 349 349 349
R179 156 156 156 156
R182 ~ 230,648 212,087 372,096
rR184 82 82 82 82
R186 108 108 108 108
R188 117 117 117 117
R191 | 22,830 20,480 17,858 17,046
R197 95 95 95 95
rR201 - - - -
R203 | 20,980 18,429 17,265 17,397
rR211 278 272 231 230
R212 545 545 543 543
rR215 164 164 164 164
R217 199 199 199 199
R218 | 270,277 225,638 160,720 210,311
R219 140 140 140 140

Table G.1: The results for four pn-search variants
(continued on next page).

146 Appendix G. The BTA results for pn search

Tree DAG DCG BTA
R222 | 60,855 48,209 22,827 49,934
R225 263 263 263 263
R241 | 365,495 254,998 195577 231,746
R244 323 323 323 323
R246 61 61 61 61
R250 1,102 1,101 1,076 1,071
R251 | 88,547 70,104 53,285 57,798
R252 - ~ 352,315 386,046
R253 2,709 1,189 1,176 2,477
R260 841 794 729 804
R263 654 621 621 651
R266 716 716 711 711
R267 1,136 1,001 1,001 1,089
R278 333 333 333 333
R281 | 316,252 93,578 ~ 46,033
R282 749 729 725 742
R283 | 14,787 14,530 14,070 14,165
R285 218 218 218 218
R290 408 408 408 408
R293 | 97,666 94,138 75,283 75,509
R295 134 134 134 134
R298 150 150 150 150

Table G.1: The results for four pn-search variants (continued).

References

Akl S.G. and Newborn M.M. (1977). The Principal Continuation and the Killer
Heuristic. 1977 Association for Computing Machinery Annual Conference, pp.
466-473. Association for Computing Machinery, Seattle WA, USA. (23)

Allen J.D. (1989). A Note on the Computer Solution of Connect-Four. Heuristic Pro-
gramming in Artificial Intelligence: The First Computer Olympiad (eds. D.N.L.
Levy and D.F. Beal), pp. 134-135. Ellis Horwood Ltd., Chichester, United King-
dom. (4)

Allis T.V. (1988). A Knowledge-based Approach of Connect-Four. Technical Report
IR-163, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Reprinted
(1992) by University of Limburg, Maastricht, The Netherlands. (4)

Allis L.V., Herik H.J. van den, and Herschberg 1.S. (1991). Which Games Will Sur-
vive? Heuristic Programming in Artificial Intelligence 2: The Second Computer
Olympiad (eds. D.N.L. Levy and D.F. Beal), pp. 232-243. Ellis Horwood TLtd.,
Chichester, United Kingdom. (3)

Allis L.V. and Schoo P.N.A. (1992). Qubic Solved Again. Heuristic Programming
in Artificial Intelligence 3: The Third Computer Olympiad (eds. H.J. van den
Herik and L.V. Allis), pp. 192-204. Ellis Horwood Ltd., Chichester, United
Kingdom. (3)

Allis TL.V., Herik H.J. van den, and Huntjens M.P.H. (1993). Go-Moku Solved by
New Search Techniques. Proceedings of the 1993 AAAI Fall Symposium on
Games: Planning and Learning. AAAI Press Tecnical Report FS93-02, Menlo
Park CA, USA. (4)

Allis L.V. (1994). Searching for Solutions in Games and Artificial Intelligence. Ph.D.
thesis, University of Limburg, Maastricht, The Netherlands. (4, 51, 52, 54, 58,
70, 72, 110, 139)

Allis L.V., Meulen M. van der, and Herik H.J. van den (1994). Proof-Number Search.
Artificial Intelligence, Vol. 66, No. 1, pp. 91-124. (13, 51, 54, 69, 87)

147

148 REFERENCES

Allis L.V., Herik H.J. van den, and Huntjens M.P.H. (1996). Go-Moku Solved by
New Search Techniques. Computational Intelligence, Vol. 12, No. 1, pp. 7-23.

(4)

Anantharaman T.S., Campbell M., and Hsu F.-h. (1988). Singular Extensions:
Adding Selectivity to Brute-Force Searching. AAAI Spring Symposium, Com-
puter Game Playing, pp. 8-13. Also published (1990) in Artificial Intelligence,
Vol. 43, No. 1, pp. 99-109. (27)

Anantharaman T.S. (1991). Confidently Selecting a Search Heuristic. ICCA Journal,
Vol. 14, No. 1, pp. 3-16. (28, 29)

Averbakh Y. (1987). Erfolg im Endspiel. Sportverlag Berlin, Berlin, Germany. In
German. (30)

Baum E.B. and Smith W.D. (1995). Best Play for Imperfect Players and Game
Tree Search. Accepted for publication in Artificial Intelligence. A preliminary
version is available from
http://wuw.neci.nj.nec.com/homepages/smith/works.html. (87)

Baum E.B. and Smith W.D. (1997). A Bayesian Approach to Relevance in Game
Playing. Artificial Intelligence, Vol. 97, Nos. 1-2, pp. 195-242. (69)

Beal D.F. and Smith M.C. (1996). Multiple Probes of Transposition Tables. ICCA
Journal, Vol. 19, No. 4, pp. 205-211. (19)

Berkey D.D. (1988). Calculus. Saunders College Publishing, New York NY, USA.
(71)

Berlekamp E.R., Conway J.H., and Guy R.K. (1982a). Winning Ways for your
Mathematical Plays. Volume 2: Games in Particular, pp. 670-671. Academic
Press Inc., London, United Kingdom. (3)

Berlekamp E.R., Conway J.H., and Guy R.K. (1982b). Winning Ways for your
Mathematical Plays. Volume 1: Games in General. Academic Press Inc., Lon-
don, United Kingdom. (41)

Berlekamp E.R. (1988). Blockbusting and Domineering. Journal of Combinatorial
Theory, Series A, Vol. 49, pp. 67-116. (41, 110)

Berliner H.J. (1974). Chess as Problem Solving: The Development of a Tactics
Analyzer. Ph.D. thesis, Carnegie-Mellon University, Pittsburgh PA, USA. (17,
22)

Berliner H.J. (1979). The B* Tree Search Algorithm: A Best-First Proof Procedure.
Artificial Intelligence, Vol. 12, pp. 23-40. (69)

Berliner H.J. (1984). Search vs. Knowledge: An Analysis from the Domain of Games.
Artificial and Human Intelligence (eds. A. Elithorn and R. Banerji), pp. 105-
117. Elsevier Science Publishers B.V., Amsterdam, The Netherlands. (4)

REFERENCES 149

Berliner H.J. and Ebeling C. (1990). Hitech. Computers, Chess, and Cognition (eds.
T.A. Marsland and J. Schaeffer), pp. 79-109. Springer-Verlag, New York NY,
USA. (17)

Berliner H.J., Kopec D., and Northam E. (1991). A Taxonomy of Concepts for Eval-
uating Chess Strength: Examples from Two Difficult Categories. Advances in
Computer Chess 6 (ed. D.F. Beal), pp. 179-191. Ellis Horwood Ltd., Chichester,
United Kingdom. (28)

Berliner H.J. and McConnell C. (1996). B* Probability Based Search. Artificial
Intelligence, Vol. 86, No. 1, pp. 97-156. (85)

Bonsdorff E., Fabel K., and Riihimaa O. (1978). Schach und Zahl. Walter Rau
Verlag, Diisseldorf, Germany, third edition. (10)

Bouton C.L. (1901). Nim, a Game with a Complete Mathematical Theory. Annals
of Mathematics, Vol. 2, No. 3, pp. 35-39. (3)

Bouwmeester H. (1966). Het FEindspel. Prisma-schaakboek 7. Het Spectrum N.V.,
Utrecht, The Netherlands. In Dutch. (30)

Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1994a). Replacement
Schemes for Transposition Tables. ICCA Journal, Vol. 17, No. 4, pp. 183-193.
(9, 31)

Breuker D.M., Allis L.V., and Herik H.J. van den (1994b). How to Mate: Applying
Proof-Number Search. Advances in Computer Chess 7 (eds. H.J. van den Herik,
I.S. Herschberg, and J.W .H.M. Uiterwijk), pp. 251-272. University of Limburg,
Maastricht, The Netherlands. (51, 59)

Breuker D.M. and Uiterwijk J.W.H.M. (1995). Transposition Tables in Computer
Chess. New Approaches to Board Games Research: Asian Origins and Future
Perspectives (ed. A.J. de Voogt), pp. 135-143. International Institute for Asian
Studies, Leiden, The Netherlands. (9, 31)

Breuker D.M., Uiterwijk JJW.H.M., and Herik H.J. van den (1996). Replacement
Schemes and Two-Level Tables. ICCA Journal, Vol. 19, No. 3, pp. 175-180.
(9, 31)

Breuker D.M., Herik H.J. van den, Allis L.V, and Uliterwijk J.W.H.M. (1997a). A
Solution to the GHI Problem for Best-First Search. Proceedings of the Ninth
Dutch Conference on Artificial Intelligence (eds. K. van Marcke and W. Daele-
mans), pp. 457-468. University of Antwerp, Antwerp, Belgium. (81)

Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1997b). Information in
Transposition Tables. Advances in Computer Chess 8 (eds. H.J. van den Herik
and J.W.H.M. Uiterwijk), pp. 199-211. Universiteit Maastricht, Maastricht, The
Netherlands. (9, 31)

150 REFERENCES

Breuker D.M., Herik H.J. van den, Allis L.V.; and Uiterwijk JJW.H.M. (1998a).
A Solution to the GHI Problem for Best-First Search. Submitted as journal
publication. Also published (1997) as Technical Report CS 97-02, Universiteit
Maastricht, Maastricht, The Netherlands. (81)

Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1998b). Solving Dom-
ineering. Submitted as journal publication. Also published (1998) as Technical
Report CS 98-05, Universiteit Maastricht, Maastricht, The Netherlands. (9,
31)

Brudno A.L. (1963). Bounds and Valuations for Abridging the Search of Estimates.
Problems of Cybernetics, Vol. 10, pp. 225-241. Translation of Russian original
in Problemy Kibernetiki, Vol. 10, May 1963, pp. 141-150. (17, 22)

Buro M. (1994). Techniken fiir die Bewertung von Spielsituationen anhand von
Beispielen. Ph.D. thesis, Universitat—-GH—-Paderborn, Paderborn, Germany. In
German. (2)

Buro M. (1995). ProbCut: An Effective Selective Extension of the a-8 Algorithm.
ICCA Journal, Vol. 18, No. 2, pp. 71-76. (17)

Buro M. (1997). The Othello Match of the Year: Takeshi Murakami vs. Logistello.
ICCA Journal, Vol. 20, No. 3, pp. 189-193. (2)

Campbell M. (1985). The Graph-History Interaction: On Ignoring Position History.
1985 Association for Computing Machinery Annual Conference, pp. 278-280.
(82, 83, 86, 105)

Chinchalkar S. (1996). An Upper Bound for the Number of Reachable Positions.
ICCA Journal, Vol. 19, No. 3, pp. 181-183. (10)

Clarke M.R.B. (1977). A Quantitative Study of King and Pawn against King. Ad-
vances in Computer Chess 1 (ed. M.R.B. Clarke), pp. 108-115. Edinburgh Uni-
versity Press, Edinburgh, United Kingdom. (3)

Conway J.H. (1976). On Numbers and Games. Academic Press Inc. Ltd., London,
United Kingdom. (26, 110)

Diepen P. van and Herik H.J. van den (1987). Schaken voor Computers. Academic
Service, Schoonhoven, The Netherlands. In Dutch. (19)

Ebeling C. (1986). All the Right Moves: A VLSI Architecture for Chess. Ph.D.
thesis, Carnegie-Mellon University, Pittsburgh PA, USA. (17, 30, 32, 33, 36,
38)

Elo A. (1978). The Rating of Chess Players, Past and Present. Arco Publishing Inc.,
New York NY, USA. (27)

REFERENCES 151

Feldmann R. (1993). Game Tree Search on Massively Parallel Systems. Ph.D. thesis,
University of Paderborn, Paderborn, Germany. (15, 21)

Feldmann R. (1994). Personal communication: response on a questionnaire. (19,

20)
Feldmann R. (1996). Personal communication. (45)

Feldmann R. (1997). Fail-High Reductions. Advances in Computer Chess 8 (eds. H.J.
van den Herik and J.W.H.M. Uiterwijk), pp. 111-127. Universiteit Maastricht,
Maastricht, The Netherlands. (17)

Feller W. (1950). An Introduction to Probability Theory. Wiley, New York NY,
USA. (21)

Fine R. (1941). Basic Chess Endings. David McKay Company, New York NY, USA.
(18, 30)

Fotland D. (1997). Personal communication. (40, 41)

Fraenkel A.S. (1996). Combinatorial Games: Selected Bibliography with a Succint
Gourmet Introduction. Games of No Chance. Combinatorial Games at MSRI,
1994 (ed. R.J. Nowakowski), pp. 493-537. Cambridge University Press, Cam-
bridge, United Kingdom. (3)

Gardner M. (1974). Mathematical Games. Scientific American, Vol. 230, No. 2, pp.
106-108. (26)

Gasser R.U. (1995). Harnessing Computational Resources for Efficient Exhaustive
Search. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.

(4)

Gillogly J.J. (1972). The Technology Chess Program. Artificial Intelligence, Vol. 3,
Nos. 1-3, pp. 145-163. (17)

Gillogly J.J. (1978). Performance Analysis of the Technology Chess Program. Ph.D.
thesis, Carnegie-Mellon University, Pittsburgh PA, USA. (17, 22, 28)

Gillogly J.J. (1989). Transposition Table Collisions. Workshop on New Directions on
Game-tree Search (pre-prints) (ed. T.A. Marsland), p. 12. University of Alberta,
Edmonton, Canada. (21)

Gillogly J.J. (1994). Personal communication. (21)

Ginsberg M.L. (1996). Partition Search. Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pp. 228-233. (110)

Goodman D. and Keene R. (1997). Man versus Machine: Kasparov versus Deep
Blue. H3 publications, Cambridge MA, USA. (2)

152 REFERENCES

Greenblatt R.D., Eastlake D.E.; and Crocker S.D. (1967). The Greenblatt Chess
Program. Proceedings of the AFIPS Fall Joint Computer Conference 31, pp.
801-810. Reprinted (1988) in Computer Chess Compendium (ed. D.N.L. Levy),
pp. 56-66. B.T. Batsford Ltd., London, United Kingdom. (13, 31)

Groot A.D. de (1946). Het Denken van den Schaker, een FExperimenteel-
psychologische Studie. Ph.D. thesis, University of Amsterdam, Amsterdam,
The Netherlands. In Dutch. Translated (1965) as Thought and Choice in Chess
by Mouton Publishers, The Hague-Paris-New York. (3)

Groot A.D. de and Gobet F. (1996). Perception and Memory in Chess. Van Gorcum,
Assen, The Netherlands. (With R.W. Jongman). (3)

Guy R.K. (1991). Combinatorial Games. American Mathematical Society, Provi-
dence. (41)

Herik H.J. van den (1983). Computerschaak, Schaakwereld en Kunstmatige Intel-
ligentie. Ph.D. thesis, Delft University of Technology. Academic Service, Den
Haag, The Netherlands. In Dutch. (2)

Herik H.J. van den (1991). Kunnen computers rechtspreken? Inaugural Address
University of Leiden. Gouda Quint, Arnhem, The Netherlands. Tn Dutch. (2)

Howard K.S. (1961). The Enjoyment of Chess Problems. Dover Publications Inc.,
New York NY, USA. (65)

Hsu F.-h., Anantharaman T.S., Campbell M.S., and Nowatzyk A. (1990). Deep
Thought. Computers, Chess, and Cognition (eds. T.A. Marsland and J. Scha-
effer), pp. 55-78. Springer-Verlag, New York NY, USA. (2)

Hyatt R.M., Gower A.E., and Nelson H.L. (1984). Cray Blitz. Advances in Computer
Chess 4 (ed. D.F. Beal), pp. 8-18. Pergamon Press, Oxford, United Kingdom.
(18)

Hyatt R.M., Gower A.E., and Nelson H.L. (1990). Cray Blitz. Computers, Chess, and
Cognition (eds. T.A. Marsland and J. Schaeffer), pp. 111-130. Springer-Verlag,
New York NY, USA. (16, 17, 31)

Hyatt R.M. (1994). Personal communication: response on a questionnaire. (19, 20,

31)

Junghanns A. and Schaeffer J. (1997). Sokoban: A Challenging Single-Agent Search
Problem. LJCAI-97 Workshop Proceedings: Using Games as an Experimental
Testbed for AI Research (ed. H. Tida), pp. 27-36. Nagoya, Japan. (38)

Junghanns A., Schaeffer J., Brockington M., Bjornsson Y., and Marsland T.A.
(1997). Diminishing Returns for Additional Search in Chess. Advances in Com-
puter Chess 8 (eds. H.J. van den Herik and J.W.H.M. Uiterwijk), pp. 53-67.
Universiteit Maastricht, Maastricht, The Netherlands. (36)

REFERENCES 153

Kazi¢ B., Keene R., and Lim K.A. (1985). The Official Laws of Chess and Other
FIDE Regulations. B.T. Batsford Ltd., London, United Kingdom. (82)

King D. (1997). Kasparov versus Deeper Blue: The Ultimate Man versus Machine
Challenge. B.T. Batsford Ltd., London, United Kingdom. (2)

Klingbeil N. and Schaeffer J. (1990). Empirical Results with Conspiracy Numbers.
Computational Intelligence, Vol. 6, pp. 1-11. (61)

Kmoch H. (1959). Pawn Power in Chess. David McKay Company, New York NY,
USA. (27)

Knuth D.E. (1973). The Art of Computer Programming. Volume 3: Sorting and
Searching. Addison-Wesley Publishing Company, Reading MA, USA. (14, 19,
20, 44)

Knuth D.E. and Moore R.W. (1975). An Analysis of Alpha-Beta Pruning. Artificial
Intelligence, Vol. 6, No. 4, pp. 293-326. (11, 14, 18)

Kopec D. and Bratko I. (1982). The Bratko-Kopec Experiment: A Comparison of Hu-
man and Computer Performance in Chess. Advances in Computer Chess 3 (ed.

M.R.B. Clarke), pp. 57-72. Pergamon Press, Oxford, United Kingdom. (27)

Krabbé T. (1985). Chess Curiosities. George Allen and Unwin Ltd., London, United
Kingdom. (58, 62, 63, 104, 129, 134)

Lang K.J. and Smith W.D. (1993). A Test Suite for Chess Programs. ICCA Journal,
Vol. 16, No. 3, pp. 152-161. (28)

Levenfish G. and Smyslov V. (1971). Rook Endings. B.T. Batsford Ltd., London,
United Kingdom. (30)

MacWilliams F.J. and Sloane N.J.A. (1977). The Theory of Error-Correcting Codes.
Elsevier Science Publishers B.V., Amsterdam, The Netherlands. (15)

Marsland T.A. and Rushton P.G. (1973). Mechanics for Comparing Chess Programs.
1973 Association for Computing Machinery Annual Conference, pp. 202-205.
(28)

Marsland T.A. and Campbell M.S. (1982). Parallel Search of Strongly Ordered
Game Trees. Computing Surveys, Vol. 14, No. 4, pp. 533-551. (17)

Marsland T.A. (1986). A Review of Game-Tree Pruning. ICCA Journal, Vol. 9,
No. 1, pp. 3-19. (16, 22, 24, 30, 31)

McAllester D.A. (1988). Conspiracy Numbers for Min-Max Search. Artificial Intel-
ligence, Vol. 35, No. 1, pp. 287-310. (51)

Michie D. (1980). Chess with Computers. Interdisciplinary Science Reviews, Vol. 5,
No. 3, pp. 215-227. (2)

154 REFERENCES

Minsky M. (1968). Semantic Information Processing. M.I.T. Press, Cambridge MA,
USA. (2)

Morita K. (1997). Personal communication. (40)

Nelson H.L. (1985). Hash Tables in Cray Blitz. ICCA Journal, Vol. 8, No. 1, pp.
3-13. (17)

Newborn M. (1997). Kasparov versus Deep Blue: Computer Chess Comes of Age.
Springer-Verlag, New York NY, USA. (2)

Newell A., Shaw J.C.; and Simon H.A. (1958). Chess-Playing Programs and the
Problem of Complexity. IBM Journal of Research and Development, Vol. 2, pp.
320-335. Reprinted (1988) in Computer Games I (ed. D.N.L. Levy), pp. 89-115.
Springer-Verlag, New York NY, USA. (3)

Newell A. and Simon H.A. (1972). Human Problem Solving. Prentice-Hall Inc.,
Englewood Cliffs NY, USA. (3)

Nielsen J.B. (1991). A Chess-computer Test Set. ICCA Journal, Vol. 14, No. 1, pp.
33-37. (27)

Nilsson N.J. (1971). Problem-Solving Methods in Artificial Intelligence. McGraw-
Hill Book Company, New York NY, USA. (3)

Palay A.J. (1985). Searching with Probabilities. Ph.D. thesis, Boston University,
Boston MA, USA. (82, 85)

Patashnik O. (1980). Qubic: 4x4x4 Tic-Tac-Toe. Mathematics Magazine, Vol. 53,
pp. 202-216. (3)

Pearl J. (1980). Asymptotic Properties of Minimax Game Trees and Game Searching
Procedures. Artificial Intelligence, Vol. 14, No. 2, pp. 113-138. (17)

Pearl J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, Reading MA, USA. (10)

Pijls W. and Bruin A. de (1994). Generalizing Alpha-Beta. Advances in Computer
Chess 7 (eds. H.J. van den Herik, I.S. Herschberg, and J.W.H.M. Uiterwijk),
pp. 219-236. University of Limburg, Maastricht, The Netherlands. (69)

Plaat A. (1996). Research Re:search & Re-search. Ph.D. thesis, Erasmus University
Rotterdam, Rotterdam, The Netherlands. (13)

Plaat A., Schaeffer J., Pijls W., and Bruin A. de (1996). Best-First Fixed-Depth
Minimax Algorithms. Artificial Intelligence, Vol. 87, No. 2, pp. 255-293. (13,
105)

Pronk T. (1987). Transpositietabellen in Schaakprogramma’s. M.Sc. thesis, Gemeen-
telijke HTS, Den Haag, The Netherlands. In Dutch. (19)

REFERENCES 155

Reinefeld A. (1983). An Improvement to the Scout Tree Search Algorithm. ICCA
Journal, Vol. 6, No. 4, pp. 4-14. (17, 22)

Reinefeld A. (1989). Spielbaum-Suchverfahren. Springer-Verlag, Berlin, Germany.
In German. (22)

Reinfeld F. (1958). Win at Chess. Dover Publications Inc., New York NY, USA.
Originally published (1945) as Chess Quiz by David McKay Company, New
York NY, USA. (27, 58, 64, 66, 129, 134)

Samuel A.L. (1959). Some Studies in Machine Learning Using the Game of Check-
ers. IBM Journal of Research and Development, Vol. 3, No. 3, pp. 210-229.
Reprinted (1963) in Computers and Thought (eds. E.A. Feigenbaum and J.
Feldman), pp. 71-105. McGraw-Hill Book Company, New York NY, USA. (1,
11)

Samuel A.L. (1967). Some Studies in Machine Learning Using the Game of Checkers
IT — Recent Progress. IBM Journal of Research and Development, Vol. 11, No. 6,
pp. 601-617. Reprinted (1970) in Human and Artificial Intelligence (ed. F.J.
Crosson), pp. 81-116. Appleton-Century-Crofts, Educational Division, Meredith
Corporation, New York NY, USA. (1)

Schaeffer J. (1983). The History Heuristic. ICCA Journal, Vol. 6, No. 3, pp. 16-19.
(23)

Schaeffer J. (1986). Experiments in Search and Knowledge. Ph.D. thesis, University
of Waterloo, Ontario, Canada. Also published (1986) as Technical Report TR
86-12, University of Alberta, Edmonton, Canada. (28)

Schaeffer J. (1989a). Conspiracy Numbers. Advances in Computer Chess 5 (ed.
D.F. Beal), pp. 199-217. Elsevier Science Publishers B.V., Amsterdam, The
Netherlands. (64)

Schaeffer J. (1989b). The History Heuristic and Alpha-Beta Search Enhancements
in Practice. IEEFE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 11, No. 11, pp. 1203-1212. (23, 30)

Schaeffer J. (1990). Conspiracy Numbers. Artificial Intelligence, Vol. 43, No. 1, pp.
67-84. (51, 64)

Schaeffer J. (1994). Personal communication: response on a questionnaire. (20, 32,

33, 45)

Schaeffer J. (1996a). Marion Tinsley: Human Perfection at Checkers? Games of
No Chance. Combinatorial Games at MSRI, 1994 (ed. R.J. Nowakowski), pp.
115-118. Cambridge University Press, Cambridge, United Kingdom. (2)

Schaeffer J. (1996b). Personal communication. (46)

156 REFERENCES

Schaeffer J. (1997). One Jump Ahead: Challenging Human Supremacy in Checkers.
Springer-Verlag, New York NY, USA. (1)

Schaeffer J. and Plaat A. (1997). Kasparov versus Deep Blue: The Rematch. ICCA
Journal, Vol. 20, No. 2, pp. 95-101. (2)

Schaeffer J. (1998). Personal communication. (63)

Schaeffer J., Culberson J., Treloar N., Knight B., Lu P., and Szafron D. (1992). A
World Championship Caliber Checkers Program. Artificial Intelligence, Vol. 53,
Nos. 2-3, pp. 273-290. (1)

Schijf M. (1993). Proof-Number Search and Transpositions. M.Sc. thesis, University
of Leiden, Leiden, The Netherlands. (87, 88, 102)

Schijf M., Allis L.V., and Uiterwijk J.W.H.M. (1994). Proof-Number Search and
Transpositions. ICCA Journal, Vol. 17, No. 2, pp. 63-74. (87, 88, 102, 104)

Schriifer G. (1989). A Strategic Quiescence Search. ICCA Journal, Vol. 12, No. 1,
pp. 3-9. (22)

Shannon C.E. (1950). Programming a Computer for Playing Chess. Philosophical
Magazine, Vol. 41, No. 7, pp. 256-275. (1, 10, 22)

Slate J.D. and Atkin L.R. (1977). CHESS 4.5: The Northwestern University Chess
Program. Chess Skill in Man and Machine (ed. P.W. Frey), pp. 82-118. Springer-
Verlag, New York NY, USA. Second Edition, 1983. (13, 14, 17, 29, 31)

Stanback J.S. (1994). Personal communication: response on a questionnaire. (19,

31, 45)

Stockman G. (1979). A Minimax Algorithm Better than Alpha-beta? Artificial
Intelligence, Vol. 12, pp. 179-196. (13)

Thompson K. (1982). Computer Chess Strength. Advances in Computer Chess 3 (ed.
D.F. Beal), pp. 55-56. Pergamon Press, Oxford, United Kingdom. (36)

)
Thompson K. (1995). Personal communication. (86)
Thompson K. (1996a). Personal communication. (45)

Thompson K. (1996b). 6-Piece Endgames. Advances in Computer Chess 8 (eds. H.J.
van den Herik, I.S. Herschberg, and J.W.H.M. Uiterwijk), pp. 9-26. Universiteit
Maastricht, Maastricht, The Netherlands. An abbreviated version is published
(1996) in ICCA Journal, Vol. 19, No. 4, pp. 215-226. (5)

Truscott T.R. (1981). Techniques Used in Minimax Game-Playing Programs. M.Sc.
thesis, Duke University, Durham NC, USA. (46)

REFERENCES 157

Turing A.M. (1953). Digital Computers Applied to Games. Faster than Thought (ed.
B.V. Bowden), pp. 286-297. Pitman, London, United Kingdom. (1)

Uiterwijk J.W.H.M., Herik H.J. van den, and Allis L.V. (1989). A Knowledge-Based
Approach to Connect-Four. The Game is Over: White to Move Wins! Heuristic
Programming in Artificial Intelligence: The First Computer Olympiad (eds.
D.N.L. Levy and D.F. Beal), pp. 113-133. Ellis Horwood Ltd., Chichester,
United Kingdom. (4)

Uiterwijk J.W.H.M. (1994). Personal communication: response on a questionnaire.

(20)

Uiterwijk J.W.H.M. (1996). The Kasparov — Deep Blue Match. ICCA Journal,
Vol. 19, No. 1, pp. 38-41. (2)

Warnock T. and Wendroff B. (1988). Search Tables in Computer Chess. ICCA
Journal, Vol. 11, No. 1, pp. 10-13. (15, 18)

Weill J.-C. (1994). Personal communication: response on a questionnaire. (19, 20)
Wendroff B. (1994). Personal communication: response on a questionnaire. (20)

West J. (1996). Championship-Level Play of Domineering. Games of No Chance.
Combinatorial Games at MSRI, 1994 (ed. R.J. Nowakowski), pp. 85-91. Cam-
bridge University Press, Cambridge, United Kingdom. (26)

Zermelo E. (1912). Uber eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels. Proceedings of the fifth International Congress of Mathematics,
Vol. 2, pp. 501-504. Cambridge, United Kingdom. (10)

Zobrist A.L. (1970). A New Hashing Method with Application for Game Playing.
Technical Report #88, Computer Science Department, The University of Wis-
consin, Madison WI, USA. Reprinted (1990) in ICCA Journal, Vol. 13, No. 2,
pp. 69-73. (15, 20)

9]

8

REFERENCES

Index

Al, see Artificial Intelligence
AL1IBABA, 22, 23, 33, 59
ancestor, 10

Andersson, 26

Artificial Intelligence, 1-3

B* algorithm, 69

base node, 89

BCH code, 15

birthday paradox, 21

bound value, 42

BPIP, 87

bridge, 167

BTA algorithm, 88-104, 109
BTM, 11

checkers, 1, 2
chess, 1-3, 5, 6, 10, 13-15, 17, 18, 20,
22, 26, 29, 33-40, 42, 43, 45,
47-49, 58, 61, 66, 82, 84, 88,
95, 102, 107, 110, 111, 113,
117, 121-128, 159, 160, 167
child, 10
CHINOOK, 1, 2
clash, see type-2 error
collision, see type-2 error
concept
Bug, 32, 107
Deep, 31, 108
New, 31
Old, 32
Two-level, 32
connect-four, 4
Cray BuiTz, 16, 18
crosscram, see domineering

DAG, see Directed Acyclic Graph
DCG, see Directed Cyclic Graph
Deepr BLUE, 2, 29

Deep THOUGHT, 29

depth
node, 10
tree, 11

descendant, 11

Directed Acyclic Graph, 87

Directed Cyclic Graph, 84

disproof number, 52

disproof set, 52

disproved, 52

Dowt, 26, 27, 41

domineering, 1, 3, 5, 15, 22, 26, 30,
33,34, 38,4042, 47, 48, 107,
110, 126, 127, 159, 161, 163,
165, 167

dominoes, see domineering

double hashing, 19

DucHEss, 46

Duck, 59

edge, 10
ELo rating, 27
endgame, 30
errors
expected number of, 21
probability of, 20
evaluation
delayed, 52, 70
immediate, 52, 54, 70
evaluation function, 11
evaluation problem, 82
exact value, 42

159

160

INDEX

fraction function, 72

game tree, 10
minimal, 10
game-theoretic value, 10
games, 1-3, 107
impartial, 30
partizan, 30
GHI problem, see graph-history-interaction
problem
go-moku, 4
graph-history-interaction problem, 6,

14, 81, 105, 109

hash index, 16
hash key, 16
hash table, 14
hash value, 14-16, 24
hashing

in chess, 15

in domineering, 15
history heuristic, 23

interior node, 10

Kasparov, 2, 29

knowledge, 3
directing, 4, 16, 17, 72, 108
terminal, 4

LAcHEX, 15
Lafferty, 2
leaf, 10

LoGISTELLO, 2
losing move, 27

memory, 1, 4, 107
additional, 47

middle game, 29

most-proving node, 54

move-generation problem, 82

MTD(f), 13

Murakami, 2

nim, 3
nine men’s morris, 4

node, 10
AND, 11
OR, 11
node expansion, 10

Othello, 2

overflow, 19

parent, 10

path, 10

ply, 11

possible-draw, 89

possible-draw depth, 89

principal variation, 11, 46

problem statement
first, 5, 9, 107
second, 5, 69, 108
third, 6, 83, 109

proof number, 52

proof set, 52

proved, 52

pseudo-code
BTA algorithm, 95

proof-number search, 54

qubic, 3
quiescence search, 22

real move, 26

refutation table, 23
replacement scheme, 20, 31, 107
root, 10

RSEARCH algorithm, 69

safe move, 26

schaken, 164

scheme
Bigl, 32
BicALL, 32
DEEP, 31
NEw, 31
OLDp, 32
one-level, 107
two-level, 107
TwoBIG1, 32

INDEX 161
TwoDEEP, 32 World Champion
search, 1, 3, 107 checkers, 1
af, b, 11, 22 chess, 2, 29
best-first, 4, 12 Othello, 2
breadth-first, 4, 11 wTM, 11

brute-force, 4
conspiracy-number, 51, 61, 64
depth-first, 4, 11
full-width, 4
pn, see proof-number search
pn?, 5, 69-79, 108
proof-number, 5, 13, 51-66

search tree, 10

sibling, 10

sokoban, 38

solved, 52

solving domineering, 40

SSS* algorithm, 13

subtree, 11

terminal node, 10

terminal position, 10

test set
chess, 29
domineering, 30
proof-number search, 58

THETURK, 63

tic-tac-toe, 3, 30, 88

time stamping, 33, 37

Tinsley, 1, 2

trade-off
knowledge versus search, 1, 3
memory versus search, 4, 109
space versus time, 3

transposition, 6, 13, 65, 81

transposition table, 5, 13, 107
implementation, 24
traditional, 17

twin node, 89

type-1 error, 20

type-2 error, 20

variation, 11

winning move, 27

ZUGZWANG, 15

162 INDEX

Summary

Memory versus search in games

In this thesis, research is presented on the trade-off between memory and search. The
domain under investigation is the domain of two-player zero-sum games, in particular
the games of chess and domineering. The trade-off between memory and search is
enhanced by the increase in availability of computer memory and the increase in
processor speed.

Currently, the prices of computer memory are decreasing. Therefore, acquiring
larger memory configurations is no longer an obstacle, making it easier to equip a
computer with more memory. A depth-first search algorithm (such as a3 search) uses
little memory. The large amount of remaining memory can be used, e.g., to prevent
the re-search of transpositions (identical positions in the tree). For this purpose, a
transposition table, holding the results of previous searches, is maintained in the
remaining memory. The trade-off transpires in more memory to be used, in favour
of less searching. This leads to the formulation of the first problem statement.

Problem statement 1: Which methods exist to improve the efficiency of a transpo-
sition table?

In Chapter 2 three methods for improving the efficiency of a transposition ta-
ble are described. The first method addresses the use of an adequate replacement
scheme. When a conflict arises, a replacement scheme decides which positions to
keep in the table, and which positions to discard. Experiments show that in this
area improvements can still be found. A new replacement scheme, called TwWoBIG1,
based on a two-level table and the number of nodes of the subtree investigated,
outperforms all other schemes. It enabled us to solve the game of domineering for
several boards, including the standard board. The second method addresses doubling
the number of positions in the transposition table. Experiments show that doubling
the number of positions is a good method for improving the efficiency of a trans-
position table. However, beyond a certain table size not much is to be gained from
doubling the number of positions. Therefore, the third method concentrates on using
the remaining memory not for doubling the number of positions of the table, but
for enlarging the size of an entry, by storing more information in an entry. A limited

163

164 Summary

set of experiments show that — beyond a certain table size — this method gains more
than doubling the number of positions in the table, although more experiments are
needed to substantiate this claim.

In Chapter 3 proof-number search (pn search) is described. This is a best-first
search algorithm, storing the complete search tree in memory. Experiments show
that pn search is suitable for solving mate problems in chess. However, there are two
drawbacks: (1) a solution cannot be found if the search tree takes up all memory, and
(2) identical positions in the search tree (and their subtrees) are doubly searched.
These drawbacks are taken care of in Chapters 4 and 5.

Every year there is a large increase in computer speed. Increasing computer
speed causes acceleration of search algorithms. A best-first search algorithm (such
as pn search) stores the complete search tree in memory. After a relatively short
search time no more memory is available since the fast search has generated too
many nodes. The increase in computer speed can also be used to do more search at
nodes, thereby gaining more knowledge per node. The trade-off transpires in more
searching, in favour of less memory to be used. This leads to the formulation of the
second problem statement.

Problem statement 2: Which methods exist for best-first search to reduce the need
for memory by increasing the search, thereby gaining more knowledge per
node?

In Chapter 4 the pn2-search algorithm is presented. The concept behind this al-
gorithm is that the leaves are not evaluated by an evaluation function, but by a sec-
ondary pn-search process. Several experiments with different sizes of the secondary
search tree show that much can be gained by choosing the right size of the secondary
search tree. The conclusion is that the pn?-search algorithm is a good method to
use the increase in computer speed for additional searching, thereby gaining a better
assessment of the values of the leaves.

As mentioned above, in pn search identical positions in the search tree (and their
subtrees) are doubly searched. In depth-first search algorithms the re-search of a
transposition is avoided by implementing a transposition table. A logical way to avoid
the re-search of a transposition in best-first search is to store a transposition only
once, thereby transforming the tree into a Directed Cyclic Graph (DCG). However,
an important aspect of a position is the path leading to it (the history). Ignoring the
history of a position introduces the graph-history-interaction (GHI) problem. This
leads to the third problem statement.

Problem statement 3: Is it possible to give a solution for the GHI problem for best-
first search?

In Chapter 5 the GHI problem is analyzed in the domain of pn search. A different
implementation of a DCG is suggested, and the pn-search algorithm is modified to
be able to search this DCG implementation. The new BTA (Base-Twin Algorithm)
algorithm is based on the distinction of two types of nodes, termed base nodes and

Summary 165

twin nodes. The purpose of these types is to distinguish between equal positions
with different history. Experiments with this pn-search algorithm for DCGs confirm
our solution of the GHI problem. In the test positions submitted the BTA algorithm
solves them all and hence outperforms other attempts to overcome the GHI problem
as well as the standard tree algorithm.

Summarizing, the main contributions of this thesis are as follows.

1. The discovery of a new replacement scheme (TwoBIG), based on a two-level
transposition table and number of nodes of the subtree investigated.

2. Solving the game of domineering.
3. The pnZ-search algorithm.

4. The BTA algorithm (implemented for pn search), solving the GHI problem.

166 Summary

Samenvatting

Geheugen versus zoeken in spelen

In dit proefschrift wordt onderzoek gepresenteerd betreffende de uitwisseling tussen
geheugen en zoeken. Het onderzoeksdomein is het domein van de tweepersoons nul-
som spelen, in het bijzonder de spelen schaken en domineering. De uitwisseling tussen
geheugen en zoeken wint aan belangrijkheid door het beschikbaar komen van meer
computergeheugen en meer processorsnelheid.

Computergeheugen wordt steeds goedkoper, en komt daardoor in steeds grotere
mate beschikbaar. Een depth-first zoekalgoritme (zoals a8 search) gebruikt weinig
geheugen. Het resterende geheugen kan bijvoorbeeld gebruikt worden om het heron-
derzoeken van identieke stellingen, de zogenoemde transposities, te vermijden. Daar-
toe kan een transpositietabel, die resultaten van voorgaande zoekprocessen bewaart,
in het resterende geheugen worden opgeslagen. De uitwisseling zien we terug in het
gebruik van meer geheugen, zodat minder hoeft te worden gezocht. Dit resulteert in
de formulering van de eerste probleemstelling.

Probleemstelling 1: Welke methoden bestaan er om de efficiéntie van een transposi-
tietabel te verbeteren?

In Hoofdstuk 2 worden drie methoden beschreven om de efficiéntie van een trans-
positietabel te verbeteren. De eerste methode betreft het gebruik van een adequaat
vervangingsschema. Deze methodiek bepaalt bij een conflict welke stellingen wel, en
welke niet opgeslagen worden. Experimenten tonen aan dat op dit terrein nog steeds
verbeteringen gevonden kunnen worden. Een nieuw vervangingsschema, genaamd
TwoBIG1, gebaseerd op een two-level tabel en het aantal knopen van de onder-
zochte subboom, presteert beter dan alle andere schema’s. Dit schema maakte het
mogelijk om het spel domineering op te lossen voor verscheidene borden, waaron-
der het standaard bord. De tweede methode betreft het verdubbelen van het aantal
stellingen in een transpositietabel. Experimenten tonen aan dat het verdubbelen van
het aantal stellingen een goede methode is om de efficiéntie van een transpositietabel
te verbeteren. Vanaf een bepaalde tabelgrootte valt echter weinig winst meer te be-
halen met het verdubbelen van het aantal stellingen. De derde methode gebruikt het
resterende geheugen daarom niet om het aantal stellingen in de tabel te verdubbe-
len, maar om het formaat van een tabelingang te vergroten, door meer informatie

167

168 Samenvatting

in een ingang op te slaan. Een beperkt aantal experimenten toont aan dat — vanaf
een bepaalde tabelgrootte — deze methode meer oplevert dan het verdubbelen van
het aantal stellingen in de tabel.

In Hoofdstuk 3 wordt proof-number search (pn search) beschreven. Dit is een best-
first zoekalgoritme, dat de gehele zoekboom in het geheugen opslaat. Experimenten
tonen aan dat pn search geschikt is voor het oplossen van matproblemen in schaken.
Er zijn echter twee nadelen: (1) er wordt geen oplossing gevonden als het geheugen
vol raakt, en (2) identieke stellingen in de zoekboom (en hun subbomen) worden
dubbel onderzocht. In Hoofdstukken 4 en 5 wordt op deze nadelen ingegaan.

De snelheid van computers wordt ieder jaar groter. Vergroting van de com-
putersnelheid betekent automatisch ook versnelling van het zoeken. Een best-first
zoekalgoritme (zoals pn search) slaat de gehele zoekboom op in het geheugen. Na een
relatief korte zoektijd is geen geheugen meer beschikbaar omdat het snelle zoekproces
teveel knopen heeft gegenereerd. De vergroting van de computersnelheid kan echter
ook gebruikt worden om meer te zoeken bij de knopen, waardoor meer kennis per
knoop wordt verkregen. De uitwisseling komt terug in meer zoeken, zodat minder
geheugen gebruikt hoeft te worden. Dit resulteert in de formulering van de tweede
probleemstelling.

Probleemstelling 2: Welke methoden bestaan er voor best-first zoekalgoritmen om
de vraag naar geheugen te verminderen, door meer te zoeken en daardoor meer
kennis per knoop te verkrijgen?

In Hoofdstuk 4 wordt het pn?-search algoritme gepresenteerd. Het concept achter
dit algoritme is dat de bladeren niet door een evaluatiefunctie worden geévalueerd,
maar door een tweede pn search proces. Verscheidene experimenten met verschillende
grootten van de tweede zoekboom tonen aan dat veel gewonnen kan worden door
de juiste grootte van de tweede zoekboom te kiezen. De conclusie is dat pn? search
een goede methode is om de vergroting van de computersnelheid te gebruiken om
meer te zoeken, waarbij een betere schatting van de waarden van de bladeren wordt
verkregen.

Zoals hierboven is genoemd worden in pn search identieke stellingen in de zoek-
boom (en hun subbomen) dubbel onderzocht. In depth-first zoekalgoritmen wordt
de heronderzoeking van een transpositie vermeden door het gebruik van een trans-
positietabel. Een logische manier om de heronderzoeking van een transpositie in
een best-first zoekalgoritme te vermijden is om de transpositie maar één keer op te
slaan, waardoor de boom wordt veranderd in een Gerichte Cyclische Graaf (DCG).
Een belangrijk aspect van een stelling is echter het pad dat tot deze stelling leidt
(de geschiedenis). Het negeren van van de geschiedenis van een stelling introduceert
het graph-history-interaction (GHI) probleem. Dit resulteert in de derde probleem-
stelling.

Problemstelling 3: Is het mogelijk om een oplossing te geven voor het GHI probleem
voor best-first zoekalgoritmen?

Samenvatting 169

In Hoofdstuk 5 wordt het GHI probleem geanalyseerd in het domein van
pn search. Er wordt een andere implementatie van een DCG geopperd, en het
pn search algoritme wordt gewijzigd om het mogelijk te maken om deze DCG im-
plementatie te onderzoeken. Het nieuwe BTA (Base- Twin Algorithm) algoritme is
gebaseerd op het onderscheid tussen twee typen knopen, genaamd base nodes en
twin nodes. Het doel van deze typen i1s om een onderscheid te kunnen maken tussen
knopen met verschillende geschiedenissen. Experimenten met dit pn-search algoritme
voor DCGs bekrachtigen onze oplossing van het GHI probleem. Het BTA algoritme
lost alle teststellingen op en presteert dientengevolge beter dan zowel andere pogin-
gen om het GHI probleem te overwinnen als het standaard algoritme voor bomen.

Samenvattend kunnen de hoofdbijdragen van dit proefschrift als volgt gefor-
muleerd worden.

1. De ontdekking van een nieuw vervangingsschema (TwoBIG), gebaseerd op een
two-level transpositietabel en het aantal knopen van de onderzochte subboom.

2. Het oplossen van het spel domineering.
3. Het pn?-search algoritme.

4. Het BTA algoritme (geimplementeerd in pn search), dat het GHI probleem
oplost.

170 Samenvatting

Curriculum Vitae

Dennis Michel Breuker was born in Amsterdam on Friday the thirteenth of January
1967. From 1979 to 1985 he attended the Christelijk Lyceum in Alphen aan den
Rijn. After graduation (Atheneum B) he began his study of Computer Science in
1985 at the University of Leiden, specializing in Artificial Intelligence. He worked
as a student assistant for the Department of Computer Science from 1987 to 1988.
From 1989 to 1991 he created a bidding program for the game of bridge, obtaining
his M.Sc. degree under supervision of prof. dr. A. Allongren and prof. dr. H.J. van
den Herik.

In 1991 he started working as a Ph.D. researcher at the Universiteit Maastricht,
then called the University of Limburg at the Department of Computer Science. The
subject of his research was synthesis of reliable information using the knowledge of
experts. Somewhat later he was accepted as NWO researcher (Netherlands Organi-
zation for Scientific Research). He started in the domain of automatic hyphenation,
but gradually shifted to the domain of computer games, in particular the games of
chess and domineering. The research resulted in several publications and this the-
sis. As of March 1998 he is employed at the division ATS (Advanced Technology
Services) of Cap Gemini Nederland B.V. in Utrecht.

171

172 Curriculum Vitae

SIKS Dissertatiereeks

In 1998 zijn de volgende STKS-dissertaties verschenen.

98-1

98-2

98-3

98-4

Johan van den Akker (CWI)
DEGAS — An Actiwe, Temporal Database of Autonomous Objects

promotor: prof. dr. M.L. Kersten (CWI/UvA)
co-promotor: dr. A.P.J.M. Siebes (CWT)
promotie: 30 maart 1998

Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information
promotores: prof. dr. ir. A. Hasman (UM)
prof. dr. H.J. van den Herik (UM/RUL)
prof. dr. ir. J.L.G. Dietz (TUD)
promotie: 7 mei 1998

Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective
promotores: prof. dr. ir. J.L.G. Dietz (TUD)
prof. dr. P.C. Hengeveld (UvA)
promotie: 22 juni 1998

Dennis Breuker (UM)

Memory versus Search in Games

promotor: prof. dr. H.J. van den Herik (UM/RUL)
promotie: 16 oktober 1998

