Can internet infrastructure help reduce regional disparities?
Evidence from Turkey
Mehmet Guney Celbis and Denis de Crombrugghe
UNU-MERIT Working Papers
ISSN 1871-9872

Maastricht Economic and social Research Institute on Innovation and Technology, UNU-MERIT

Maastricht Graduate School of Governance MGSoG

UNU-MERIT Working Papers intend to disseminate preliminary results of research carried out at UNU-MERIT and MGSoG to stimulate discussion on the issues raised.
Can Internet Infrastructure Help Reduce Regional Disparities?
Evidence from Turkey*

Mehmet Guney Celbis† Denis de Crombrugghe‡

November 27, 2014

Abstract
This study presents novel evidence regarding the role of regional internet infrastructure in reducing regional per capita income disparities. We base our study on the assumptions that (1) the diffusion of information homogenizes regional economies through reducing the dissimilarities in institutions and culture, and (2) the telecommunication capacity, represented as the internet infrastructure of a region, facilitates this flow of information. Using the data from the twenty-six statistical regions of Turkey, we find evidence that internet infrastructure has contributed to regional convergence during the period 1999-2011. We also observe that the Turkish economic geography is defined by a strong core-periphery pattern and significant spatial clustering.

Key words: Convergence, Internet, Telecommunication, Infrastructure, Regions.
JEL Classifications: R12, L96, E20, H41, O18, O47.

*Another version of this study is available online as a conference paper presented at the UNU-MERIT conference “Future Perspectives on Innovation and Governance in Development” held on 26-28 November 2014 in Maastricht, the Netherlands, available at http://www.merit.unu.edu/wp-content/docs/25years/parallel1.php.
†UNU-Merit, Maastricht University. Email: celbis@merit.unu.edu.
‡School of Business and Economics, Maastricht University. Email: d.decrombrugghe@maastrichtuniversity.nl.
1 Introduction

According to the Solow (1956) neo-classical model of long-run growth, economies should eventually converge to a steady-state growth rate of per capita income. In other words, economies with relatively less income per capita should grow faster than richer ones until all economies converge to a steady-state per capita income growth rate of zero. On the other hand, in the presence of equally shared exogenous labour-augmenting technological progress, this process would imply convergence to a positive growth rate. If, in addition, the aggregate production functions of all economies are assumed to be identical, convergence should also occur in terms of per capita income level (Islam, 2003).

The assumptions of equal access to common technology, and identical production functions are not unreasonable in cases where the units of analysis are sub-national regions. Barro and Sala-i-Martin (2003) point out that even though technological and structural differences may exist between regions, these differences can be expected to be less than those between countries, and convergence to similar steady-states would be more likely. In this study on Turkish regions, while we do observe sufficient homogeneity that allows for regional convergence, we also see that the speed of this process is only considerable when region-specific conditions are accounted for.

The conditions that influence the process of convergence can be considered in two categories: those that influence convergence through their impact on regional economic growth, and those that play a similar role through enhancing the connections between economies. In this regard, the role of public and human capital have been highly emphasized in the growth literature among a large number of other variables (Leon-Gonzalez and Montolio, 2004). Stemming from growth models, convergence equations have been often augmented by these two types of capital. Examples of such convergence equations are found in Button (1998); Lall and Yilmaz (2001); Leon-Gonzalez and Montolio (2004); Ding et al. (2008); Del Bo et al. (2010), and Onder et al. (2010) among others, where the role of especially public capital is examined.

In this study, we focus on a specific class of public capital which is internet infrastructure, as an enhancing factor regarding regional telecommunications capacity. It can be seen that many studies, communication infrastructure is often grouped within the same infrastructure category with transportation public capital. However, within the encompassing definition of public capital, the role of communication infrastructure can be considered to be different from other infrastructure types (Robins and Gillespie, 1992; Carey, 2008). The distinction between communication and transportation increasingly needs to be taken into account as these two categories are becoming more and more distinct from each other with technological progress: while transportation capabilities reduce travel time and effective distance, communication is often argued to transcend space and time, at least to some extent, by allowing information to travel instantly. Carey (2008) suggests that it was
as early as the invention of the telegraph when communication and transportation first started to be clearly distinguished from each other, and observes a significant spatial economic consequence of this communication technology: the telegraph had lessened the gap in the market prices in different locations, reduced the “information gap” between stock markets, giving rise to “everywhere markets and everytime markets” Carey (2008, p. 169). In this regard, Dokmeci and Berkoz (1996) observe that telecommunications has a strong impact on financial services which stimulate capital flows, which in turn influence the economic geography. In more general terms, within the context of European regions, Tranos (2012) identifies information and communication technology (ICT) infrastructure as a necessary condition for economic development.

In order to further explore this proposed relationship between telecommunications and spatial differences, we focus on the σ-convergence and β-convergence1 of Turkish regions in relation to regional internet infrastructure. While it is common to use phone subscription data as an indicator of telecommunication infrastructure,2 we focus on a more modern medium of communication measured by the density of of asymmetric digital subscriber lines (ADSL’s). Previous evidence regarding the telecommunications-convergence relationship, especially from a modern technology perspective, is almost non-existent.3 In this regard, our study presents novel evidence on how improved internet capabilities of regions may help reduce regional disparities.4

We examine absolute and conditional β-convergence for the years 1999 through 2011 by taking two other connectivity-enhancing infrastructure categories into account along with internet infrastructure: air and land transportation infrastructure. On the other hand, σ-convergence is examined for a longer time period of 1990-2011.5

This study proceeds as follows: Section 2 elaborates on the mechanism of how modern telecommunications is expected to affect convergence, and reviews the theoretical foundations of the concepts of σ-convergence and β-convergence together with a discussion of spatial interactions. The regional patterns of the distribution of per capita income in Turkey, and the clustering of similar regions are discussed in Section 3. Section 4 discusses the empirical strategy. The explanation of the data used is presented in Section 5, and Section 6 elaborates on the estimation results. Finally, Section 7 makes the concluding discussion and policy recommendations.

1These concepts are summarized in Section 2.
2For example Ding et al. (2008); Del Bo et al. (2010) who examine income convergence as a response to telecommunications infrastructure among other factors.
3Forman et al. (2012).
4We further elaborate on the previous research results in Section 2.3.
5The reason for the time period used in the former case being shorter is the unavailability of data for all covariates except GVA per capita for the years before 1999, while for GVA per capita, data is available starting from 1990.
2 Theoretical background

2.1 The theory and analysis of convergence

When looking at the relationship between internet and convergence, we focus on the two well established concepts in the literature: \(\sigma\)-convergence and \(\beta\)-convergence where the latter can exist as absolute or conditional convergence. In the context of regional economies, Absolute convergence is observed if the output per capita of poorer regions grow faster than the richer ones without being conditional on other regional structural characteristics (Barro and Sala-i-Martin, 2003). Therefore, regions are treated as structurally homogeneous. Following Barro and Sala-i Martin, an absolute \(\beta\)-convergence equation can be stated as follows:

\[
\frac{1}{T} \ln \left(\frac{y_{i,t_0+T}}{y_{i,t_0}} \right) = \alpha - \left(1 - e^{-bT} \right) \ln(y_{i,t_0}) + \varepsilon_i \tag{1}
\]

where \(y\) is income per capita and the term on the left-hand-side is the average per capita income growth rate of economy \(i\). The subscripts \(t_0\) and \(t_0 + T\) index the initial and final years in the data respectively, and \(T\) is the number of years minus one. \(\alpha\) is a constant and \(\varepsilon_i\) is the error term. \(\beta\)-convergence is observed if a negative relationship, represented by the convergence factor \(\beta = - \left(1 - e^{-bT} \right) / T \), exists between the growth rate of per capita income and the initial income level (Sala-i Martin, 1996b). Therefore, a significant and negative \(\beta\) estimate would imply that regions with lower initial output levels generally have higher average growth rates, and provide evidence for absolute convergence.

In addition to testing the convergence hypothesis, two additional issues are of interest: (a) the speed of convergence which is defined as the rate an economy approaches its steady-state (Barro et al., 1991), represented by the term \(b\) in equation (1), and (b) the half-life of convergence which is defined as “the time span which is necessary for current disparities to be halved” Monfort (2008, p.4), and computed as \(\frac{\ln(2)}{b}\) (Arestis et al., 2007). Thus, for all estimation results that we present in this study, we report the associated convergence speeds and half-lifes and discuss their implications. Expressing equation (1) in levels leads to

\[
\ln(y_{i,t_0+T}) = \theta + (1 + \beta)\ln(y_{i,t_0}) + \nu_i \tag{2}
\]

where \(1 + \beta = e^{-bT}\). The constant \(\theta\) is \(\alphaT\) and the error term \(\nu_i\) equals \(\varepsilon_i/T\). Equation (2) is the base absolute convergence equation we estimate in the empirical analysis.

The existence of a steady-state conditional on economies sharing similar technologies and other structural parameters is referred to as conditional convergence (Mankiw et al., 1992). This type of convergence is observed if the relationship between \(y_{i,t_0}\) and the rate of per capita income growth

\(^6\)Barro et al. (1991); Barro and Sala-i Martin (1992) and Sala-i Martin (1996b).
varies across regions such that convergence exists only if they share similar structural characteristics. In other words, regions have different steady-state rates of growth towards which they converge (Barro et al., 1991). However, when estimating equation (1), structural differences between regions cannot be accounted for. Islam (1995) suggests the use of panel data methods in convergence models to control for unobserved individual effects and to avoid the omitted variable bias that may exist in cross-section regressions. Following this view, the expression of equation (2) in discrete form for all time periods in the data, together with the addition of time-varying covariates, leads to the conditional convergence model:

\[\ln(y_{i,t}) = \theta + (1 + \beta)\ln(y_{i,t-1}) + \sum_{k=1}^{m} \gamma_k x_{k,it} + \mu_i + \eta_t + \xi_{it} \]

(3)

where \(t \) indexes the discrete time periods in the data, \(\xi_{it} \) is the error term, and convergence is conditioned on \(x_{k,it} \), a set of \(m \) regional structural characteristics \(k \) for region \(i \) at time \(t \), and \(\mu_i \) and \(\eta_t \) which are the region-specific and year fixed effects respectively.\(^7\) The absolute convergence counterpart of equation (3) omits the region-specific conditions represented in the explanatory variables and the region fixed effects:

\[\ln(y_{i,t}) = \theta + (1 + \beta)\ln(y_{i,t-1}) + \eta_t + \xi_{it} \]

(4)

2.2 σ-convergence and its relation to β-convergence

Regarding the distinction between the two concepts of convergence Sala-i Martin (1996b, p. 1328) states that

“...the two concepts examine interesting phenomena which are conceptionally different: σ-convergence studies how the distribution of income evolves over time and β-convergence studies the mobility of income within the same distribution.”

The evolution of the distribution of income in a group of economies is represented by the trend in the cross-sectional variance of \(\ln(y_{it}) \), denoted by \(\sigma \), and σ-convergence is observed if this variance is decreasing between a given time \(t \) and any future period \(t + T \) over time, such that \(\sigma_t^2 > \sigma_{t+T}^2 \) (Sala-i Martin, 1996a). In this regard, since β-convergence asks whether poorer economies grow faster than the richer ones, its focus is on the behavior of the “relative locations within the income distribution” (Durlauf et al., 2005). On the other hand, as stated by Durlauf et al. (2005), the focus of the σ-convergence approach is on the shape of the distribution as a whole rather than the relative locations within it.

\(^7\)Random effects instead of fixed effects can be of interest in cases where units of observations are randomly drawn from a larger population. In this study, we only consider fixed effects as our data covers all Turkish regions.
Despite these conceptual differences, the following strong links exist between the two convergence approaches. Absolute β-convergence is a necessary condition for σ-convergence to occur: it must be due to poor economies growing faster if the income differences among regions lessen through time (Sala-i Martin, 1996a). This can be seen by taking the sample variance of equation (4) which yields the relation $\sigma^2_{t+1} = (1 + \beta)^2 \sigma^2_t + \sigma^2_\xi$ between σ_t and σ_{t+1} (Sala-i Martin, 1996b).\(^8\)

Sigma convergence can hold only if $-1 < \beta < 0$ since $\beta \geq 0$ implies divergence, and $\beta < -1$ implies a negative association between $ln(y_{it})$ and $ln(y_{i,t+1})$ which would result with a series that could oscillate between negative and positive values, making little economic sense (Young et al., 2008), a situation also known as “leapfrogging” or “overshooting” (Sala-i Martin, 1996b). Finally, if $\beta = -1$, then σ^2_t is equal to the constant σ^2_ξ at all time periods and σ-convergence does not occur.

It is important to note that β-convergence is not a sufficient condition for σ-convergence. Given β-convergence, the variance in the distribution of income among economies can either increase or decrease depending on an initial level of variance with respect to the variance in the steady-state (Sala-i Martin, 1996b; Islam, 2003), and β-convergence itself can lead to an increase in income dispersion if economies have different structural characteristics such that the convergence of economies to their own separate steady-states can lead to σ-divergence (Young et al., 2008). Therefore, as an increase in disparities between economies can still persist even if β-convergence exists, this type of convergence “cannot guarantee falling variance” (Islam, 2003).

2.3 Communications, geography, and convergence

The effects of the regional communication on inter-regional equity (or inequality) has been discussed in several studies. In a recent paper, Breuer et al. (2014) observe an absolute convergence of US states in the period 1929-2011 which they argue that can be explained by the explosion of the internet and the migration to cities, resulting in the homogenization of institutions and culture, and the elimination of regional distinctions. The authors refer to this phenomenon as the “globalization hypothesis.” This view is partly supported by Ding et al. (2008) who show evidence that a more traditional type of communication infrastructure measured by fixed and mobile telephone lines, has positively contributed to the conditional convergence of 29 Chinese regions from 1986 through 2002, and Del Bo et al. (2010) who observe a positive sign on their telecommunication infrastructure variable (mobile phone lines) in their conditional convergence equation for European regions during the period 1995-2006 where spatial dependence is considered. On the other hand, it can be argued that in many economics regions are satiated in terms of such traditional forms of communication infrastructure. The only study we are aware of which examines the relationship between telecommunications and convergence by focusing on a modern telecommunication technology is the county-level research on US firms by Forman et al. (2012), who observe that investments by firms

\(^8\)Our expression of the sample variance of the convergence equation is slightly different from the original formulation of Sala-i Martin (1996b) in which the coefficient on σ^2_t is $(1 - \beta)^2$.
on advanced internet capabilities has led to regional wage divergence in the period 1995-2000. It is clear that further evidence is needed regarding the internet-regional disparities relationship.

Within the context of Krugman’s New Economic Geography (NEG) model (Krugman, 1991), Tranos (2012) and Maignan et al. (2003) argue that ICT enhancement reduce the costs of communications, which in turn could change the NEG equilibrium defined by the centripetal and centrifugal forces. More specifically, the generally proposed mechanism of how telecommunication affects economic geography is through the increase in the speed, and the decrease in the cost of diffusion of information between markets. Goddard (1992) identifies information as a “key strategic resource on which the effective delivery of goods and services in all sectors of the world economy is dependent” and argues that “economic transformation is being underpinned by a technical transformation in the way in which information can be processed and distributed.” On the other hand, Ding et al. (2008) suggest that telecommunications infrastructure, as an input to the process of production, may positively contribute to the productivity of other inputs while “liberating economic activities from geographical restraints” (Ding et al., 2008, p.846). The authors also point out that telecommunication infrastructure can lead to resources from other regions to be attracted, contributing to economic growth. In this regard, Cellis et al. (2013) observe that telecommunications infrastructure has a significant and positive impact on the imports of an economy, which can be seen as a result of enhanced possibilities of accessing information regarding goods and resources from other economies.

On the other hand, even though it is a well accepted fact that modern modes of communication allow space to be transcended to some extent, “... space still exists and so does time” according to Castells et al. (2007, p. 178) who argue that “...wireless communication homogenizes space.” In this regard, Robins and Gillespie (1992) point out that information and communication technologies are essential to the future of cities, regions and nations, but on the other hand they refer to the geographical dimension of these technologies by stating that

“We need to acknowledge the spatial bias of new ICT’s, their contribution to new patterns of homogenization and differentiation, their tendency to underpin new geographical divisions and hierarchies” (Robins and Gillespie, 1992, p. 149).

In relation to this spatial bias of ICT’s, in their 1992 article, Robins and Gillespie (1992) argue that the restructuring of information and communication technologies is related to significant regional inequalities between regions. Supporting this argument, Goddard (1992) provides a real world example by arguing that the growth in information industries in the south-east UK in the eighties and early nineties has led to uneven regional development patterns. In this regard, Tranos and Gillespie (2009) draw attention to how information is distributed among settlements through “digital highways” and that being part of such networks creates locational advantages. Similarly, in their

9In the spatial context of the NEG model, centripetal forces pull economic activity together and the centrifugal forces push it apart, as put by Fujita and Krugman (2004).
assessment of wireless communications, Castells et al. (2007) point out that telecommunications infrastructure is dependent on access points in space, and that the ability to transcend time and space is determined by one’s location.

Another mechanism through which the availability of information from other economies may play a role in shaping the economic geography can be through affecting regional demand for variety which is put forward as a contributing factor to technological progress in endogenous growth models: consumers who observe a greater variety of goods and services available in other regions will demand the same for their own locations, which could in turn make the region more attractive for firms that operate elsewhere. To summarize, it can be argued that telecommunications can affect the economic geography through:

1. the reduction of the information gap between markets (Carey, 2008),
2. stimulating capital flows (Dokmeci and Berkoz, 1996),
3. creating new patterns of homogenization (Robins and Gillespie, 1992) and homogenizing of institutions and culture (Breuer et al., 2014),
4. generating productivity spillovers to other inputs of production (Ding et al., 2008),
5. attracting resources to a regional economy from other economies (Ding et al., 2008),
6. creating locational advantages as a result of being in digital networks (Tranos and Gillespie, 2009),
7. changing the NEG equilibrium through decreasing the costs of communication (Tranos, 2012), and
8. increasing the demand for product variety and attracting firms to the region.

3 Regional patterns of income per capita in Turkey

Our interest lies in the mobility of regions in terms of their per capita income rather than the general trend in the disparities among them. Therefore, we put greater emphasis on the \(\beta \)-convergence process, its speed, and half-life. On the other hand, as a useful first look, the \(\sigma \)-convergence process in Turkey relative to the country-wide regional connectivity-enhancing public capacity, represented by the transportation and communication public investments (TPI), is visualized in Figure 1. We use the coefficient of variation (CV) in GVA per capita, a common indicator for looking at \(\sigma \)-convergence. Certain sharp kinks in the two curves in Figure 1 are prominent: we can see the response of the investments to the 2001 crisis in the form of a sharp drop,\(^{10}\) followed by

\(^{10}\)This was arguably the heaviest financial crisis in Turkish history.
an increase with a change of government from coalition to a single-party structure. Moreover, we see a clear correspondence of rising TPI to falling regional disparities, especially after the government change.11 Therefore, a clear process of σ-convergence is apparent for Turkey for the period in question, possibly as a response to public investments targeted to enhance regional connections.

The spatial implications of this convergence process is of interest. As a preliminary exploration, we look at the Global Moran’s I statistic (Moran, 1950), and its local decomposition, the Local Moran’s I (Anselin, 1995), which are commonly used indicators for examining how regional interdependencies exist over space.12,13 The Global Moran’s I represents the degree of linear association between a variable and the weighted average of the same variable observed in neighboring regions (also referred to as its spatial lag) (Anselin, 1996) and can be seen as “... the simplest and most commonly used test statistics in the spatial econometric literature” (Arbia, 2006). Significant and positive global Moran’s I results would imply that regions that are closer to each other have more similar per capita GVA levels than to those that are further away from them (Elhorst, 2012).

For the per capita income of Turkish regions, the Global Moran’s I statistics for the years 1990, 1999, and 2011 for the per capita GVA values are respectively 0.202, 0.283, and 0.346 and highly significant (all results have p-values less than 0.001).14 Therefore, significant positive global spatial dependence is suggested; regions with similar GVA per capita tend to be clustered around each other. In order to identify how individual regions behave in this context, the Moran scatterplots (Anselin, 1996; LeSage and Pace, 2009) are presented in Figures A.1 to A.3.15 These scatterplots suggest that richer regions are close to richer ones, and poorer regions to poorer ones. A non-surprising result considering the long history of regional inequalities in Turkey.16,17

In order to identify local spatial clusters or “hot spots” as labeled by Anselin (1995), we calculate the Local Moran’s I results for all 26 regions. Local Moran’s I shows the extent of significant local spatial clustering around individual regions (Anselin, 1995). Using the Local Moran’s

11On the other hand, Celbis et al. (2014a) show that in Turkey, the regional allocation of public investments in transportation and communication have been subject to political bias (created due to a preference towards regions that are politically affiliated to the government) during the period 1999-2011.

12The Global Moran’s I statistic is calculated as $I = \frac{\sum_i \sum_j w_{ij} z_i z_j}{\sum_i z_i^2}$ while local Moran’s I statistic is $I_i = z_i \sum_j w_{ij} z_j$ where z_i are deviations from the mean GVA per capita, and w_{ij} measures the regional connectivity between i and j, usually in the form of contiguity or distance (could be either row-normalized or not) of the regions i and j (Anselin, 1995). The above given calculation of the Global Moran statistic is for a non-standardized spatial weight matrix W of which w_{ij} is its element.

13See also Varga (1998) for a comprehensive review of global and local Moran’s I.

141990 is the first year in our sample where we can calculate regional GVA per capita. 1999 is the first year where we have observations for all explanatory variables and therefore is the starting year for our estimations. 2011 is the final year in our data set.

15The calculations of the Moran’s I values and scatterplots were done using the SPATLSA and SPATGSA commands in Stata developed by Pisati (2012).

16See Gezici and Hewings (2004), who do not find evidence for convergence in Turkey for the period 1990-1997, for a comprehensive review of convergence studies on Turkey.

17In the rest of this study, we use the term “rich” for regions with higher than average per capita income, and the term “poor” for those that have a lower per capita income than the country average.
I statistics for each region, and the distribution of the regions among the four quadrants of the associated Moran scatterplot, a “Moran significance map” can be drawn (Anselin et al., 2006; LeSage and Pace, 2009).

The Moran significance maps are presented for the years 1990, 1999, and 2011 in Figures 2a to 2c. In building the Moran significance map, we define categories of regions based on the quadrants of the Moran scatterplot as in Le Gallo and Ertur (2003): regions labelled “High-High” are those that have higher than average GVA per capita and are surrounded by regions with also higher values. “Low-Low” stands for regions with lower than average income per capita surrounded by similarly poor regions. Regions with lower than average per capita income surrounded by rich regions are labelled “Low-High” while “High-Low” stands for regions that have the opposite kind of spatial association to their surrounding regions. We also include a fifth category labeled “not significant” for regions with Moran’s I p-values of greater than 0.10, such that only significant local clusters are colored (Le Gallo and Ertur, 2003).

Based on these figures, for all three years we observe significant patterns of spatial clustering around the largest regional economy of the country, Istanbul (TR10), in the north-west, which may be considered to include the capital Ankara in its extremity. Istanbul is a natural trade hub, connecting the maritime trade routes of the Black Sea and the Mediterranean Sea, the land trade routes from the rest of the country and the EU, and is also the commercial and financial center of Turkey. This clustering around Istanbul could also be interpreted from a core-periphery point of view (Krugman, 1991): a core economy exists in the North-West, with peripheral economies located around it.

The Moran significance maps also identify a High-High type of clustering in the south-west of the country. This is most probably due to the area being the tourism core of Turkey. Therefore, another spatially relevant observation could be regarding the clustering of specific industries.

An alarming and crucial suggestion of the Moran significance maps is the spatial clustering of poor regions in the east, underlining a strong spatial distinction from the rest of the country: this area, which is about one-third of Turkey, falls into the Low-Low category. To exacerbate the situation, regions that can be considered as core economies do not exist in the vicinity which can help reversing the trend of poor-poor spatial clustering, including beyond the international borders to the east and the south of this area. The opposite is true for the regions in the west, which share either land or maritime borders with the EU.

There are only two regions that fall into the remaining categories of High-Low and Low-High: the region of Ankara, named after the capital of the country in which it is located, is a rich economy surrounded generally by poorer ones (High-Low). This type of economy is referred to as “diamond in the rough” by Le Gallo and Ertur (2003). Ankara used to be a small village when

18 Areas under varying degrees of conflict exist outside of Turkey’s borders to the east such as Northern Syria, Northern Iraq, Nagorno-Karabakh, and Chechnya. Moreover, the eastern region of Turkey itself was under conflict during the recent decades.
it replaced Istanbul as the capital in 1923, suggesting a significant exogenous intervention to its regional economy that might have caused this outcome. On the other hand, by 2011, Ankara had moved into the category of High-High regional economies, leaving the “diamond” category. The other regional economy that is in a similar situation in terms of its dissimilarity to its surroundings, is TR71, a neighbor of Ankara. This region falls into the category Low-High, a poor region close to richer regions, a type of regional economy which is referred by Le Gallo and Ertur (2003) as a “doughnut.” On the other hand, the rest of the regions that are colored in white are those that do not yield significant local Moran’s I statistics on the 10% level, and therefore are not subject to a significant spatial clustering.

Since σ-convergence, and significant spatial clusters are apparent for Turkey, two questions that relate to these two findings can be asked: (1) how fast are poor regions catching up to the rich regions? and (2) what does the spatial distribution of income per capita look like? Figures 3 and 4 compare the per capita income levels of the regions to the growth rates of their per capita incomes for the years 1999 and 2011 respectively where darker colors represent higher per capita income. Clear correspondences of high incomes to low rates of growth can be seen for the earlier defined North-Western and South-Western clusters and the region TR31 in the West for the year 1999. Poorer regions who had high growth rates in this year are mainly grouped in the North-East, North, and Center-East. We can also observe that the region TR 71, consistent with the Moran Significance Maps, did not grow fast despite being a low income region. In the maps for 2011, it can be seen that certain poorer South-Eastern regions experienced higher growth. Region TR 71 which fell into the “doughnut” definition based on the Moran significance map also had high growth in this year. It is possible that if this region continued to experience high growth, it may have moved out (or moving out) from the Low-High category in the period after 2011. We also see that the rich regions in the South-Western cluster together with some regions from the North-Western cluster have behaved according to the high-income low-growth hypothesis.

To conclude this section, we suggest the existence of several stylized facts for Turkey for the period in focus: (1) an increasing trend in public investments in transportation and communication corresponds to a decreasing trend in regional per capita income disparities, (2) despite the decreasing trend in regional disparities, the spatial clustering of poor and rich regions is persistent. On the other hand, it should be noted that these maps are merely snapshots in time and are solely for giving preliminary descriptive information. Nevertheless, these two stylized facts set the stage for absolute and conditional β-convergence analyses which we present in the next section.

19This change in capital city is due to the replacement of the Ottoman state by the Republic of Turkey.
20Region TR 71 consists of the following provinces: Kirikkale, Aksaray, Nigde, Nevsehir, and Kırşehir.
21All maps are drawn using the Stata command SPMAP by (Pisati, 2007).
22The Stata command MERGEPOLY by Picard and Stepner (2012) for aggregating smaller scale spatial units to larger units were used to construct all maps as the original source map was in NUTS-3 level.
Figure 1.
Sigma convergence represented by the coefficient of variation, and TPI (millions), 1990-2011
Figure 2.
Moran significance map

(A) 1990

(B) 1999

(C) 2011
Figure 3.
GVA per capita and the growth rate of GVA per capita, 1999

(a) GVA per capita

(b) Growth rate
Figure 4.
GVA per capita and the growth rate of GVA per capita, 2011

(a) GVA per capita

(b) Growth rate
4 Empirical approach

As discussed in section 2.3, even though communication reduces the effect of the spatial barriers to the diffusion of information, space and location remain relevant. *Spatial effects* are commonly taken into account in convergence research as can be seen in Table A.1 which lists a sample of 18 convergence studies and the explanatory factors they consider. The table shows that there is a large diversity in the literature regarding the explanatory variables considered in convergence equations. Among these factors, spatial effects are commonly formalized as “spatial dependence” (Anselin, 1988) which is defined as representing “the continuity of economic phenomena in space” (Arbia, 2006, p. 16). In this perspective, Ertur and Koch (2007) argue that technological interdependence between economies exist and that the mechanism of these interdependencies is through spatial externalities and find evidence that these spatial externalities are important determinants of conditional convergence among countries. This type of dependence between economies is also highlighted by Armstrong and Taylor (2000) who point out that small economies can benefit from technical progress that takes place outside their borders due to diffusion across space.24

In the light of these views, and the suggestion of possible spatial dependence by our descriptive analyses, we begin by testing the absolute convergence hypothesis with estimating the cross-sectional equation (2) which does not take into account region specific characteristics. In order to see if our results are robust to the inclusion of the earlier discussed spatial effects, we augment equation (2) to account for spatial dependence. The *spatial autoregressive model* (SAR) (Anselin, 1988) adaptation of equation (2) takes the form

\[
\ln(y_{i,t_0+T}) = \alpha + \rho \sum_{j=1}^{N} w_{ij} \ln(y_{j,t_0+T}) + (1 + \beta) \ln(y_{i,t_0}) + \nu_i
\]

where \(w_{ij}\) is the element of the weight matrix \(W\) of inverse distances between regions with zeros in the diagonal \((w_{ii} = 0)\), and \(N\) is the number of spatial units. Therefore, the SAR model hypothesizes that the per capita income of region \(i\) is partly determined by the weighted average of the per capita incomes of the other regions, where the weight of a region is defined by its proximity to \(i\). The additional parameter \(\rho\) measures the magnitude of this spatial dependence. All other terms are the same as in equation (1).

An alternative augmentation to equation (2) is the *spatial error model* (SEM) (LeSage and Pace, 2009) where the spatial dependence is hypothesized to exist through the disturbances \(\nu_i\):
\[
\ln(y_{i,t_0+T}) = \alpha + (1 + \beta)\ln(y_{i,t_0}) + \nu_i
\]

where \(\nu_i = \lambda \sum_{j=1}^{N} w_{ij} \nu_j + \zeta_i \) \hspace{1cm} (6)

where \(\zeta_i \sim N(0, \sigma^2_\zeta) \) and the parameter \(\lambda \) captures the spatial error dependence: a significant \(\lambda \) could mean that there are spatially clustered relevant variables that are omitted in the model, resulting in error terms not independent from each other (Ward and Gleditsch, 2008). A third form is the General Spatial Model (GSM)\(^25\) and is a combination of the above SAR and SEM specifications Kelejian and Prucha (1998):

\[
\ln(y_{i,t_0+T}) = \alpha + \rho \sum_{j=1}^{N} w_{ij} \ln(y_{j,t_0+T}) + (1 + \beta)\ln(y_{i,t_0}) + \nu_i
\]

where \(\nu_i = \lambda \sum_{j=1}^{N} c_{ij} \nu_j + \zeta_i \) \hspace{1cm} (7)

where we assume \(w_{ij} = c_{ij} \) (i.e. the same spatial weight matrix \(W \) defines the connectivity between regions both in terms of their per capita incomes and their disturbances). The conditional convergence counterparts of the absolute convergence equations (5), (6), and (7), condition the convergence process on three regional connectivity-enhancing attributes: internet infrastructure together with air, and land transport infrastructure. Our variable of interest, internet infrastructure, is measured as the number of ADSL lines in regional post offices per capita and is denoted by \(c_i \). As discussed in Section 1, the connectivity between regions is not established only through communication, but also through transportation. Thus, we include two other variables that are expected to enhance inter-regional connectivity: air transport capacity per capita \((a_i) \), and an index of land transportation infrastructure density \((r_i) \). This set of explanatory variables correspond to the term \(\sum_{k=1}^{m} \gamma_k x_{k,it} \) in the panel conditional convergence equation (3) such that:

\[
\sum_{k=1}^{m} \gamma_k x_{k,it} = \gamma_1 \ln c_{it} + \gamma_2 \ln a_{it} + \gamma_3 r_{it}. \hspace{1cm} 26
\]

In order to explore how the rate in which a region approaches its steady-state depends on its internet infrastructure, we introduce an interaction term \(\ln y_{i,t-1} \times \ln c_{it} \) so that \(\sum_{k=1}^{m} \gamma_k x_{k,it} \) is now defined as \(\sum_{k=1}^{m} \gamma_k x_{k,it} = \gamma_1 \ln c_{it} + \gamma_2 \ln y_{i,t-1} \times \ln c_{it} + \gamma_3 \ln a_{it} + \gamma_4 r_{it} \). This implies that \(e^{-bT} \), which is the marginal effect of \(\ln y_{i,t-1} \) is now defined as \(e^{-b(\ln c_{it})} \) (i.e the speed of convergence is a function of \(\ln c_{it} \) and equals \((1 + \beta) + \gamma_2 \ln c_{it} \) where \((1 + \beta) \) is the estimated coefficient on

25This model is also labeled as SAC (LeSage and Pace, 2009).

26The land infrastructure index \(r_{it} \) does not appear in natural logarithms because, as will be detailed in Section 5, the components of this index are in natural logarithms.
\[\ln y_{it} = \alpha + \rho \sum_{j=1}^{N} w_{ij} \ln(y_{jt}) + (1 + \beta) \ln(y_{i,t-1}) + \sum_{k=1}^{m} \gamma_k x_{k, it} + \mu_i + \eta_t + \xi_{it} \]
\text{(SAR)} \quad (8)

\[\ln(y_{it}) = \alpha + (1 + \beta) \ln(y_{i,t-1}) + \sum_{k=1}^{m} \gamma_k x_{k, it} + \mu_i + \eta_t + \xi_{it} \]

where \(\xi_{it} = \lambda \sum_{j=1}^{N} w_{ij} \xi_{jt} + \vartheta_{it} \)
\text{(SEM)} \quad (9)

\[\ln(y_{it}) = \alpha + \rho \sum_{j=1}^{N} w_{ij} \ln(y_{jt}) + (1 + \beta) \ln(y_{i,t-1}) + \sum_{k=1}^{m} \gamma_k x_{k, it} + \mu_i + \eta_t + \xi_{it} \]

where \(\xi_{it} = \lambda \sum_{j=1}^{N} w_{ij} \xi_{jt} + \vartheta_{it} \)
\text{(GSM)} \quad (10)

where \(\vartheta_{it} \sim N(0, \sigma^2_\vartheta) \). The estimation results for each model are presented in Section 6 where the absolute convergence counterparts of all panel equations are also presented.

The growth-convergence panel equations (3), (4), (8), (9), and (10) are subject to the Nickell (1981) bias induced by the de-meaning of the data for each unit of observation for fixed effects estimation. This bias is of order \(1/T \) and therefore decreasing with larger time periods. Since our data is over a period of 13 years, we can expect a moderate degree of Nickell bias in our estimations. As will be presented in our results, since our estimates of \((1 + \beta) \) are positive in all models, this bias would be negative (Nickell, 1981).

Common approaches as a remedy for this bias are the Arellano and Bond (1991) estimator and the Arellano and Bover (1995)/Blundell and Bond (1998) GMM estimators. However, in the context of dynamic panel models with spatial effects, Elhorst et al. (2010) conduct a Monte Carlo simulation which implies that while an Arellano and Bond (1991) GMM approach would reduce the bias in the estimate of \((1 + \beta) \), it would yield an estimate of the spatial autoregressive parameter \(\rho \) with a larger bias compared to maximum likelihood estimation (MLE).\(^{27}\) Given that the time span in our study corresponds to 13 years, and the above implication regarding the trade-off between MLE and GMM approaches, a MLE approach is taken in estimating the SAR, SEM, and GSM based

\(^{27}\) Elhorst et al. (2010) suggest the use of a combination of GMM and MLE based on their simulation results.
specifications under the assumption that the data is distributed normally. While being a commonly employed method for dealing with bias and inconsistency issues in spatial models (Elhorst, 2003), MLE is also among the common approaches used to estimate growth-convergence equations (Islam, 2003). In addition, MLE provides advantages in terms of asymptotic efficiency, but on the other hand may not be robust to violations of assumptions regarding the distribution of the data. Recent studies using a MLE approach for estimating spatial panel models include Pfaffermayr (2012) who examines European regional convergence from 1980 through 2005, Baltagi and Bresson (2011) who use a panel of eighty districts of Paris from 1990-2003, Ertur and Musolesi (2012) who use a panel of 21 OECD economies and Israel over the years 1971-90, Elhorst and Freret (2009) who estimate a spatial Durbin panel model using data from ninety-three local government departments in France over the period 1992-2000, and by Lee and Yu (2010a), Lee and Yu (2010b), and Debarsy and Ertur (2010) in Monte-Carlo analyses.

5 Data

The variables used and their sources are defined as follows: we use the regional GVA series in constant 1998 national currency compiled by Celbis et al. (2014a). This GVA series is based on the Turkish Statistics office (TURKSTAT) data and it is corrected for changes in spatial scale and output collection methods of TURKSTAT that took place in the 2000’s. Additionally, two missing years in the data were imputed as the original data was available as NUTS-3 level GDP for the years 1987-2001 and NUTS-2 level GVA for 2004-2011. The regional population data is from OECDstat. The variable \(c_{it} \) is measured as the number of ADSL lines in regional post offices per capita and is collected from the publications of the General Directorate of PTT. The missing values for the number of ADSL lines for the years 1999-2002 and 2005 are predicted using the regional public investment in transportation and communication made in these years. Air transport capacity data is obtained from the interactive web-tool of the Republic of Turkey: Ministry of Transport, Maritime Affairs and Communication, and measured as the total passenger capacity in airports as reported after the establishment date of the specific airport(s) within a region, divided by regional population. The three components that are used to construct the land infrastructure density index are from TURKSTAT. The index is constructed using the first principal components.
of the natural logarithms of road length, highway length, and railway length in kilometers per 1000 km\(^2\). The distance weight matrix used in the spatial analyses is constructed as follows: the coordinates in decimal degrees of the city in a region with the highest population is taken as the “regional center.” This is done so that a more sensitive measure of regional connectivity, compared to using polygon centroids, can be achieved. The euclidean distances between regions are generated from these coordinates. The descriptive statistics of all variables used in the construction of model covariates are reported in Table 1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Q1</th>
<th>Q3</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVA (Billion TL)</td>
<td>3.03</td>
<td>4.08</td>
<td>0.44</td>
<td>1.12</td>
<td>3.27</td>
<td>27.44</td>
</tr>
<tr>
<td>ADSL</td>
<td>113.56</td>
<td>100.88</td>
<td>2</td>
<td>44</td>
<td>160</td>
<td>665</td>
</tr>
<tr>
<td>Population</td>
<td>2,707,646.58</td>
<td>1,981,422.14</td>
<td>732,790</td>
<td>1,617,820</td>
<td>3,048,651</td>
<td>13,255,685</td>
</tr>
<tr>
<td>Air capacity</td>
<td>1</td>
<td>1.12</td>
<td>0</td>
<td>0.18</td>
<td>1.44</td>
<td>5.18</td>
</tr>
<tr>
<td>Land infrastructure index</td>
<td>3.93</td>
<td>1.12</td>
<td>1.86</td>
<td>3.18</td>
<td>4.83</td>
<td>6.95</td>
</tr>
</tbody>
</table>

Observations: 26 regions, 13 years.

6 Estimation results

6.1 Cross-sectional estimation

Table 2 presents the estimation results for the absolute convergence equations (2), (5), (6), and (7). All models suggest the existence of absolute convergence of Turkish regions over the period 1999-2011, including those that take spatial effects into account. However, the estimated speeds of convergence range from about 0.8% to about 2.5%, which imply a very long half-life of at least about thirty years.

Estimates of \(\rho\) in the SAR and GSM models suggest the existence of positive spatial externalities: the current per capita income level of regions, \(\ln(y_{i,t_0})\) are positively impacted by the levels of \(\ln(y_{j,t_0})\) of the regions in their surroundings, implying that spatial proximity plays role in the growth and convergence of regions. The fastest rates of convergence are estimated by these two models (SAR: 2.46% with a half-life of about 28 years, and GSM: 2.19% with a half life of about 32 years). The GSM estimation does not find spatial correlation between model residuals but similar to SAR results, finds positive spatial dependence in \(\ln(y_{i,t_0})\).

On the other hand, the estimate of \(\lambda\) in the SEM suggests that the errors of the model are
negatively correlated in space, which could bias the estimates on the exogenous variables if this correlation is not taken into account. Additionally, the SEM estimates a lower (in absolute value) convergence factor β, a lower convergence rate of about 0.82%, and a much longer half-life of about 85 years compared to the results of the Base, SAR, and GSM results. The significant estimate of λ in SEM becomes insignificant when the spatial autoregressive term ρ is taken into account in the GSM estimation. In other words, spatially correlated error terms are only observed when the spatial lag of $ln(y_{i,t_0})$ is omitted. Finally, the base model, where spatial effects are not taken into account, estimate the convergence speed and half-life to be higher than those reported by the SAR and GSM, but lower than the SEM results.

In order to identify the specification with higher adequacy, aside of the log-likelihood values, we report Akaike’s Information Criterion (AIC), and the Bayesian Information Criterion (BIC) at the bottom of Table 2. While SAR and GSM models yield the highest log-likelihood values, the AIC and BIC results suggest that the SAR model fits our data better compared to the GSM specification. We also report separately the likelihood ratio (LR) and Wald test p-values where the GSM is the unrestricted model in part (a) of Table 6. In accordance with above results, the p-values of both tests suggest that while the GSM can be reduced to the SAR model (i.e. $\lambda = 0$), neither the base model or the SEM model are adequate, as $\rho \neq 0$.

Therefore, the SAR model is preferred regarding the cross-sectional results. The results of the SAR model suggest positive spatial dependence in $ln \ y_{i,t_0} + T$, implying that regional per capita incomes are positively affected by the per capita incomes of the other regions in proximity. This result is in line with our earlier observations of spatial clustering of similar economies in Turkey and affirms the earlier hinted existence of spatial effects.

6.2 Panel estimation

We extend the cross-sectional approach to a panel form and present the results of the absolute convergence models in Table 3. Regional fixed effects are included in all estimations except in the first column. When fixed effects are not included, the estimated convergence speed is about 1.3%, a result similar to those of the cross-sectional base model. This result, while in principle suggesting convergence, implies that this convergence is very slow with a half-life of around 55 years which can be seen as the non-existence of convergence. This slow convergence speed is observed even though the estimated coefficient on $ln \ y_{i,t-1}$ is 0.987 which is only about 0.17 percentage points higher than the corresponding elasticity estimated by the fixed effects base model in column 2.

A possible explanation to this result can be found in Arestis et al. who show that in the calculation of the speed of convergence is “extremely sensitive to small changes in the estimated regression coefficients and hence may be greatly influenced by a relatively small bias on these

35 The base model is a restricted specification of SAR, SEM and, GSM as follows: if $\rho = 0$ SAR reduces to the base model, if $\lambda = 0$ SEM reduces to the base model, and if $\rho = \lambda = 0$ GSM reduces to the base model (Elhorst, 2010).
estimates Arestis et al. (2007, p.214). It is likely that the omission of region-specific fixed effects resulted in the estimation of such a slow speed of convergence in column 1 which is more similar to its cross-section counterpart in the first column of Table 2 rather than the specification with fixed effects. Moreover, as ordinary least squares estimation (OLS) may lead to biased and inconsistent results if spatial effects exist but are not included (Anselin, 1988; Elhorst, 2003; Debarsy and Ertur, 2010), it is also likely that the omission of spatial effects may have played a role.

The estimated speed of convergence becomes much higher when region-specific fixed effects are taken into account as reported in the second column of Table 3. This high convergence speed of 20% corresponds to a half life of only about 3.5 years. Therefore, when conditioned on time-invariant region specific factors, we observe a conditional convergence speed that is hugely different than the earlier estimated absolute convergence speeds.

The remaining columns of Table 3 report the estimation results with spatial effects. For a better understanding of the results of these models, we draw attention to part (b) of Table 6, where the LR and Wald test p-values for the Base (FE), SAR, and SEM models (with the unrestricted model being the GSM) are presented. The test results suggest that the spatial lag parameter \(\rho \) is not significantly different than zero in the GSM, and that a SEM specification is valid. In other words, test results suggest, that the GSM cannot collapse to a SAR specification where \(\lambda \neq 0 \), or to the base model where both \(\rho \) and \(\lambda \) are zero.

The preferred SEM model, which controls for the region specific constant effects, finds evidence for conditional convergence (a negative and significant \(\beta \)). This model also yields a convergence speed of almost 20% and a half life of 3.5 years, similar to the base model results. These estimates of convergence speeds are much higher than the “legendary 2%” reported in the literature which is mostly based on national economies (Durlauf et al., 2005; De Groot and Florax, 2005). We also observe in the SEM results a significant \(\lambda \) which suggests that spatial correlation exists among omitted terms.

Table 4 presents the estimation results when the term including the explanatory variables \(\left(\sum_{k=1}^{m} \gamma k x_{k,i,t} \right) \) is included. The results are very similar in all models: all four specifications find conditional convergence, and estimate that internet infrastructure has a positive and significant effect on regional per capita income. Regarding how fast this convergence process is, the interaction term \(\ln y_{i,t-1} \times \ln c_{it} \) necessitates that different values for the convergence factor \(\beta \), the convergence speed, and the half-life should be estimated based on the level of internet infrastructure region \(i \) has. As the P-values of LR and Wald tests (where the GSM is the unrestricted model) reported in part (c) of Table 6, suggest that spatial effects do not play a significant role when the set of explanatory variables is included, we use the results of the base model for elaborating on how fast the convergence process is. The implied values by the base model are presented for several percentiles of \(c_{it} \) in Table 5.

The speed of convergence increases in \(c_{it} \): for instance, regions with internet infrastructure in
the fifth and ninety-fifth percentiles have about 10 percentage points of difference in the speed of convergence. This corresponds to a decrease of about one-thirds in the estimated half-life (from around four years to around 2.5 years). Therefore a regional economy benefits from internet infrastructure not only in terms of growth in per capita income, but also through a higher speed of convergence towards its steady state. Moreover, considering that the half-lives in the interquartile range reported in the third column of Table 5 are below the half-life estimated by the base model without the set of explanatory variables (about 3.5 in Table 3), we suggest that regional infrastructure including internet infrastructure, helps the individual steady-states of different regions to become more homogeneous, allowing for convergence towards similar per capita income levels. As a result, internet infrastructure can be seen as providing benefits to a regional economy through three different mechanisms: growth, faster convergence to the steady state, and the homogenization of region-specific steady-states.

Another important result is the additional finding in our study is that air transport capacity is also an important regional attribute that contributes to a regional economy: all models in Table 4 find a positive and significant effect of air transport infrastructure \(\ln a_{it} \) on \(\ln y_{it} \). In relation to this result, Celbis et al. (2014b) found in a study on Turkey for the period 2002-2010, that regional air transport capacity enhances the international export performances of regions. Therefore, it may be possible that the observed effect of this variable is due to better trade connections with the international markets.

Finally, we do not observe any significant result for the land infrastructure index, \(r_{it} \). One interpretation could be that regions rely more on other means of transportation rather than land routes. It is also possible that this variable simply does not provide enough variation. Moreover, as pointed out by (Celbis et al., 2014a), it common to observe decreases in road lengths within Turkish regions which correspond to improvements in road infrastructure and travel times. This is a general problem whenever road stock is used as an indicator of land infrastructure in empirical research. However, measures on the quality and efficiency of roads in a regional scale do not exist for Turkey.
Table 2.
Cross-sectional estimation results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base Model</td>
<td>SAR</td>
<td>SEM</td>
<td>GSM</td>
</tr>
<tr>
<td>$\ln y_0$</td>
<td>0.865***</td>
<td>0.744***</td>
<td>0.907***</td>
<td>0.769***</td>
</tr>
<tr>
<td></td>
<td>(0.0472)</td>
<td>(0.0695)</td>
<td>(0.0253)</td>
<td>(0.0714)</td>
</tr>
<tr>
<td>α</td>
<td>1.322***</td>
<td>-0.563</td>
<td>1.047***</td>
<td>-0.334</td>
</tr>
<tr>
<td></td>
<td>(0.318)</td>
<td>(0.890)</td>
<td>(0.167)</td>
<td>(0.741)</td>
</tr>
<tr>
<td>β</td>
<td>-0.135***</td>
<td>-0.256***</td>
<td>-0.0934***</td>
<td>-0.231***</td>
</tr>
<tr>
<td></td>
<td>(0.0472)</td>
<td>(0.0695)</td>
<td>(0.0253)</td>
<td>(0.0714)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.381**</td>
<td>0.325**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.174)</td>
<td>(0.164)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td></td>
<td></td>
<td>-1.403**</td>
<td>-0.856</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.596)</td>
<td>(0.757)</td>
</tr>
<tr>
<td>Convergence speed</td>
<td>0.0121</td>
<td>0.0246</td>
<td>0.00817</td>
<td>0.0219</td>
</tr>
<tr>
<td>Half-life</td>
<td>57.23</td>
<td>28.16</td>
<td>84.87</td>
<td>31.62</td>
</tr>
<tr>
<td>Observations</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>25.55</td>
<td>28.41</td>
<td>27.38</td>
<td>29.06</td>
</tr>
<tr>
<td>AIC</td>
<td>-47.11</td>
<td>-48.83</td>
<td>-46.76</td>
<td>-48.11</td>
</tr>
<tr>
<td>BIC</td>
<td>-44.59</td>
<td>-43.79</td>
<td>-41.73</td>
<td>-41.82</td>
</tr>
</tbody>
</table>

Stata module for spatial models: SPAUTOREG (see footnote 28).
SAR: Spatial Autoregressive Model.
SEM: Spatial Error Model.
GSM: General Spatial Model.
Standard errors in parentheses: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 3.
Panel estimation results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Model</td>
<td>Base Model</td>
<td>SAR</td>
<td>SEM</td>
<td>GSM</td>
<td></td>
</tr>
<tr>
<td>ln $y_{i,t-1}$</td>
<td>0.987***</td>
<td>0.819***</td>
<td>0.819***</td>
<td>0.822***</td>
<td>0.821***</td>
</tr>
<tr>
<td></td>
<td>(0.00503)</td>
<td>(0.0397)</td>
<td>(0.0325)</td>
<td>(0.0322)</td>
<td>(0.0325)</td>
</tr>
<tr>
<td>β</td>
<td>-0.0126***</td>
<td>-0.181***</td>
<td>-0.181***</td>
<td>-0.178***</td>
<td>-0.179***</td>
</tr>
<tr>
<td></td>
<td>(0.00503)</td>
<td>(0.0397)</td>
<td>(0.0325)</td>
<td>(0.0322)</td>
<td>(0.0325)</td>
</tr>
<tr>
<td>ρ</td>
<td></td>
<td></td>
<td>0.141</td>
<td></td>
<td>-0.0288</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.103)</td>
<td></td>
<td>(0.140)</td>
</tr>
<tr>
<td>λ</td>
<td></td>
<td></td>
<td></td>
<td>0.323**</td>
<td>0.343**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.128)</td>
<td>(0.157)</td>
</tr>
<tr>
<td>Convergence speed</td>
<td>0.0127</td>
<td>0.200</td>
<td>0.199</td>
<td>0.196</td>
<td>0.197</td>
</tr>
<tr>
<td>Half-life (years)</td>
<td>54.79</td>
<td>3.467</td>
<td>3.482</td>
<td>3.541</td>
<td>3.520</td>
</tr>
<tr>
<td>Observations</td>
<td>338</td>
<td>338</td>
<td>338</td>
<td>338</td>
<td>338</td>
</tr>
<tr>
<td>Observations per region</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>641.8</td>
<td>662.2</td>
<td>663.1</td>
<td>665.0</td>
<td>665.0</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Stata module for spatial models: XSMLE (see footnote 28).
SAR: Spatial Autoregressive Model.
SEM: Spatial Error Model.
GSM: General Spatial Model.
Standard errors in parentheses: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 4.
Panel estimation results

<table>
<thead>
<tr>
<th></th>
<th>Base Model</th>
<th>SAR</th>
<th>SEM</th>
<th>GSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln y_{i,t-1}$</td>
<td>1.002***</td>
<td>0.997***</td>
<td>1.001***</td>
<td>0.999***</td>
</tr>
<tr>
<td></td>
<td>(0.0702)</td>
<td>(0.0599)</td>
<td>(0.0601)</td>
<td>(0.0606)</td>
</tr>
<tr>
<td>$\ln y_{i,t-1} \times \ln c_{it}$</td>
<td>-0.0204***</td>
<td>-0.0199***</td>
<td>-0.0201***</td>
<td>-0.0200***</td>
</tr>
<tr>
<td></td>
<td>(0.00565)</td>
<td>(0.00472)</td>
<td>(0.00476)</td>
<td>(0.00482)</td>
</tr>
<tr>
<td>$\ln c_{it}$</td>
<td>0.145***</td>
<td>0.142***</td>
<td>0.143***</td>
<td>0.142***</td>
</tr>
<tr>
<td></td>
<td>(0.0377)</td>
<td>(0.0312)</td>
<td>(0.0316)</td>
<td>(0.0319)</td>
</tr>
<tr>
<td>$\ln a_{it}$</td>
<td>0.0795**</td>
<td>0.0784**</td>
<td>0.0767**</td>
<td>0.0768**</td>
</tr>
<tr>
<td></td>
<td>(0.0343)</td>
<td>(0.0306)</td>
<td>(0.0308)</td>
<td>(0.0308)</td>
</tr>
<tr>
<td>r_{it}</td>
<td>-0.0178</td>
<td>-0.0172</td>
<td>-0.0177</td>
<td>-0.0175</td>
</tr>
<tr>
<td></td>
<td>(0.0126)</td>
<td>(0.0129)</td>
<td>(0.0128)</td>
<td>(0.0129)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.0538</td>
<td></td>
<td>0.0243</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td></td>
<td>(0.126)</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>0.100</td>
<td>0.0808</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.154)</td>
<td>(0.185)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Observations: 338
- Observations per region: 13
- Log-likelihood: 681.3, 681.4, 681.5, 681.5
- Fixed effects: Yes, Yes, Yes, Yes
- Year Dummies: Yes, Yes, Yes, Yes

Stata module for spatial models: XSMLE (see footnote 28).
SAR: Spatial Autoregressive Model.
SEM: Spatial Error Model.
GSM: General Spatial Model.
Standard errors in parentheses: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 5.
Convergence factors, speeds, and associated half-lives (Base model)

<table>
<thead>
<tr>
<th>Percentile of c</th>
<th>Convergence factor</th>
<th>Convergence speed</th>
<th>Half-life (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>-0.138</td>
<td>0.148</td>
<td>4.671</td>
</tr>
<tr>
<td>5%</td>
<td>-0.158</td>
<td>0.172</td>
<td>4.019</td>
</tr>
<tr>
<td>25%</td>
<td>-0.199</td>
<td>0.222</td>
<td>3.126</td>
</tr>
<tr>
<td>50%</td>
<td>-0.213</td>
<td>0.240</td>
<td>2.893</td>
</tr>
<tr>
<td>75%</td>
<td>-0.224</td>
<td>0.254</td>
<td>2.734</td>
</tr>
<tr>
<td>95%</td>
<td>-0.235</td>
<td>0.268</td>
<td>2.588</td>
</tr>
<tr>
<td>99%</td>
<td>-0.241</td>
<td>0.276</td>
<td>2.510</td>
</tr>
</tbody>
</table>

Table 6.
Model comparison versus GSM

<table>
<thead>
<tr>
<th>(a) Absolute convergence cross-sectional models</th>
<th>Base model (FE)</th>
<th>SAR</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR test p-value</td>
<td>0.030</td>
<td>0.256</td>
<td>0.067</td>
</tr>
<tr>
<td>Wald test p-value</td>
<td>0.020</td>
<td>0.258</td>
<td>0.047</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Absolute convergence panel models</th>
<th>SAR</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR test p-value</td>
<td>0.059</td>
<td>0.836</td>
</tr>
<tr>
<td>Wald test p-value</td>
<td>0.035</td>
<td>0.837</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c) Conditional convergence panel models</th>
<th>SAR</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR test p-value</td>
<td>0.799</td>
<td>0.848</td>
</tr>
<tr>
<td>Wald test p-value</td>
<td>0.797</td>
<td>0.847</td>
</tr>
</tbody>
</table>

SAR: Spatial Autoregressive Model.
SEM: Spatial Error Model.
7 Concluding Remarks

Internet infrastructure is arguably a component which has become more important than the other types of telecommunication infrastructure in the last two decades. The purpose of this study was to examine its role in regional per capita income convergence. Our approach brings together the convergence theories and the theories regarding the diffusion of information in the context of economic geography. We have examined the process of σ-convergence, the spatial differences in regional per capita income and their growth rates in Turkey.

We have observed different results regarding absolute convergence and conditional convergence: when convergence was conditioned on region specific characteristics, the convergence speeds were estimated to be much higher, and the half-lives to be much shorter compared to when these factors were not taken into account. As a result, we have observed evidence for conditional β-convergence with reasonable speed among Turkish regions during the period 1999-2011.

As the descriptive analysis suggested that spatial effects may play a role in the convergence of Turkish regions, we modeled spatial dependence with alternative SAR, SEM, and GSM specifications. We found that internet infrastructure contributes to a regional economy in three ways: (1) by positively impacting on per capita income, (2) by increasing the speed of convergence of a region to its steady-state, and (3) by contributing to make region-specific steady-states more alike. Therefore, as internet infrastructure can reduce the time needed for regions to converge to their steady-states, we suggest that investing in this type of infrastructure in lagging regions is important for regional convergence.

While regional time-invariant structural characteristics are controlled through the use of fixed effects, two other connectivity-enhancing variables aside of internet infrastructure were considered (air and land infrastructure). Air transport capacity was also found to play a contributing role to a regional economy.

Finally, our analysis suggests that the economic geography of Turkey is defined by a strong core-periphery pattern and a significant clustering of regions that have lower than average income per capita levels. However, it is therefore remarkable that controlling for spatial effects did not change any of our main findings regarding the convergence process.
A Appendix
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Sample</th>
<th>Period</th>
<th>Explanatory factors</th>
</tr>
</thead>
</table>
Table A.1.
Examples of variable used in the analysis of convergence (cont’d)

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Sample</th>
<th>Period</th>
<th>Explanatory factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Title</td>
<td>Sample</td>
<td>Period</td>
<td>Explanatory factors</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Del Bo et al. (2010)</td>
<td>Regional Infrastructure and Convergence: Growth Implications in a Spatial Framework</td>
<td>EU regions</td>
<td>1995-2006</td>
<td>Spatial effects, transportation infrastructure, communication infrastructure, capital stock, employment, human capital, regional and time fixed effects.</td>
</tr>
</tbody>
</table>
Figure A.1.
Moran scatterplot: Per capita GVA, 1990 (Moran’s I: 0.249).
Moran scatterplot (Moran’s I = 0.283)

Figure A.2.
Moran scatterplot: Per capita GVA, 1999 (Moran’s I: 0.332).
Figure A.3.
Moran scatterplot: Per capita GVA, 2011 (Moran's I: 0.353).
References

39

The UNU-MERIT WORKING Paper Series

2014-01 The medium-term effect of R&D on firm growth by Marco Capasso, Tania Treibich and Bart Verspagen
2014-02 Diverse and uneven pathways towards transition to low carbon development: The case of diffusion of solar PV technology in China by Michiko Iizuka
2014-03 User innovators and their influence on innovation activities of firms in Finland by Jari Kuusisto, Mervi Niemi and Fred Gault
2014-04 Migration, remittances and household welfare in Ethiopia by Lisa Andersson
2014-05 Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy by Mario Coccia and Lili Wang
2014-06 Poor trends - The pace of poverty reduction after the Millennium Development Agenda by Richard Bluhm, Denis de Crombrugghe, Adam Szirmai
2014-07 Firms’ adoption of international standards: Evidence from the Ethiopian floriculture sector by Mulu Gebreeyesu
2014-08 School choice, segregation, and forced school closure by Cheng Boon Ong and Kristof De Witte
2014-09 Gender difference in support for democracy in Sub-Saharan Africa: Do social institutions matter? by Maty Konte
2014-10 Why are women less democratic than men? Evidence from Sub-Saharan African countries by Cecilia García-Peñalosa and Maty Konte
2014-11 Tipping points? Ethnic composition change in Dutch big city neighbourhoods by Cheng Boon Ong
2014-12 Technology life cycle and specialization patterns of latecomer countries. The case of the semiconductor industry by Giorgio Triulzi
2014-13 Patents as quality signals? The implications for financing constraints on R&D by Dirk Czarnitzki, Bronwyn H. Hall and Hanna Hottenrott
2014-14 Assessment of effectiveness of Chinese aid in competence building and financing development in Sudan by Samia Satti Osman Mohamed Nour
2014-15 Education, training and skill development policies in Arab Gulf countries: Macro-micro overview by Samia Satti Osman Mohamed Nour
2014-16 Structure of labour market and unemployment in Sudan by Samia Satti Osman Mohamed Nour
2014-17 Overview of knowledge transfer in MENA countries - The case of Egypt by Samia Satti Osman Mohamed Nour
2014-18 The impact of ICT in public and private universities in Sudan by Samia Satti Osman Mohamed Nour
2014-19 End-user collaboration for process innovation in services: The role of internal resources by Mona Ashok, Rajneesh Narula and Andrea Martinez-Noya
2014-20 Public investment and regional politics: The case of Turkey by Mehmet Guney Celbis, Denis de Crombrugghe and Joan Muysken
2014-21 Infrastructure and the international export performance of Turkish regions by Mehmet Guney Celbis, Peter Nijkamp and Jacques Poot
2014-22 Discovering and explaining work-family strategies of parents in Luxembourg by Nevena Zhelyazkova
2014-23 Parental leave take up and return to work of mothers in Luxembourg: An application of the model of nested dichotomies by Nevena Zhelyazkova
2014-25 One Europe or several? Causes and consequences of the European stagnation by Jan Fagerberg and Bart Verspagen
2014-26 The harmony of programs package: Quasi-experimental evidence on deworming and canteen interventions in rural Senegal by Théophile Azomahou, Fatoumata Diallo and Wladimir Raymond
2014-27 Country Terms of Trade 1960-2012: Trends, unit roots, over-differencing, endogeneity, time dummies, and heterogeneity by Thomas Ziesemer
2014-28 The structure and comparative advantages of China's scientific research - Quantitative and qualitative perspectives by Lili Wang
2014-29 Transition to knowledge-based economy in Saudi Arabia by Samia Satti Osman Mohamed Nour
2014-30 Challenges and opportunities for transition to knowledge-based economy in Arab Gulf countries by Samia Satti Osman Mohamed Nour
2014-31 Migration of international students and mobilizing skills in the MENA Region by Samia Satti Osman Mohamed Nour
2014-32 Beyond product innovation; improving innovation policy support for SMEs in traditional industries by René Wintjes, David Douglas, Jon Fairburn, Hugo Hollanders and Geoffrey Pugh
2014-33 The impact of innovation support programmes on SME innovation in traditional manufacturing industries: an evaluation for seven EU regions by Dragana Radicic, Geoffrey Pugh, Hugo Hollanders and René Wintjes
2014-34 Beliefs dynamics in communication networks by Théophile T. Azomahou and Daniel C. Opolot
2014-35 Stability and strategic diffusion in networks by Théophile T. Azomahou and Daniel C. Opolot
2014-36 Epsilon-stability and the speed of learning in network games by Théophile T. Azomahou and Daniel C. Opolot
2014-37 Afghan unaccompanied minors in the Netherlands: Far away from home and protected? by Carla Buil and Melissa Siegel
2014-38 Multinational production and trade in an endogenous growth model with heterogeneous firms by Hibret B. Maemir and Thomas Ziesemer
2014-39 The political economy of research and innovation in organic photovoltaics (OPV) in different world regions by Serdar Türkeli and René Kemp
2014-40 Towards the societal system of innovation: The case of metropolitan areas in Europe by Serdar Türkeli and René Wintjes
2014-41 To return permanently or to return temporarily? Explaining migrants' intentions by Özge Bilgili and Melissa Siegel
2014-42 Catching up and lagging behind in a balance-of-payments-constrained dual economy by Alejandro Lavopa
2014-43 An introduction to the economics of rare earths by Eva Bartekova
2014-44 The unequal effect of India's industrial liberalization on firms' decision to innovate: Do business conditions matter? By Maria Bas and Caroline Paunov
2014-45 Insurgents in motion: Counterinsurgency and insurgency relocation in Iraq by Pui-hang Wong
2014-46 Successive leadership changes in the regional jet industry by Daniel Vertesy
2014-47 Demand, credit and macroeconomic dynamics: A microsimulation model by Huub Meijers, Önder Nomaler and Bart Verspagen
2014-48 Accessibility analysis as an urban planning tool: Gas station location by D.A. Escobar, C. Cadena-Gaitán, F.J. García
2014-49 China’s economic embrace of Africa - An international comparative perspective by Tobias Broich and Adam Szirmai
2014-50 Mapping regional social enterprise ecosystems in India: Framework and indicators by Lina Sonne
2014-51 Does shelter assistance reduce poverty in Afghanistan? By Craig Loschmann, Christopher R. Parsons and Melissa Siegel
2014-52 How important is innovation? A Bayesian factor-augmented productivity model on panel data by Georges Bresson, Jean-Michel Etienne and Pierre Mohnen
2014-53 Does too much work hamper innovation? Evidence for diminishing returns of work hours for patent grants by Mehmet Güney Celbi, Serdar Türkeli
2014-54 Globalization, the rise of biotechnology and catching up in agricultural innovation: The case of Bt technology in India Michiko Iizuka and Ajay Thutupalli
2014-55 Where are innovation indicators, and their applications, going? by Fred Gault
2014-56 Productivity in services in Latin America and the Caribbean by Elena Arias-Ortiz, Gustavo Crespi, Alejandro Rasteletti and Fernando Vargas
2014-58 International R&D alliances by firms: Origins and development by Rajneesh Narula and Andrea Martínez-Noya
2014-59 Appropriability mechanisms, innovation and productivity: Evidence from the UK by Bronwyn H. Hall and Vanja Sena
2014-60 The size of patent categories: USPTO 1976-2006 by François Lafond
2014-61 Asset recombination in international partnerships as a source of improved innovation capabilities in China by Simon C. Collinson and Rajneesh Narula
2014-62 The viability of sustained growth by India’s MNEs: India’s dual economy and constraints from location assets by Rajneesh Narula
2014-63 The effect of unconditional cash transfers on adult labour supply: A unitary discrete choice model for the case of Ecuador by Andrés Mideros and Cathal O'Donoghue
2014-64 Giving in South Africa: Determining the influence of altruism, inequality aversion and social capital by Nyasha Tirivayi
2014-65 The impact of food transfers for people living with HIV/AIDS: Evidence from Zambia by Nyasha Tirivayi and Wim Groot
2014-66 Size and economies of scale in higher education and the implications for mergers by Nyasha Tirivayi, Henriette Maasen van den Brink and Wim Groot
2014-67 Widowhood and barriers to seeking health care in Uganda by Nyasha Tirivayi
2014-68 An individual-centered approach to multidimensional poverty: The cases of Chile, Colombia, Ecuador and Peru by Andrea Franco Correa
2014-69 Innovation and productivity in services: Empirical evidence from Latin America by Gustavo Crespi, Ezequiel Tacsir and Fernando Vargas
2014-70 Analysing global value chains using input-output economics: Proceed with care by Önder Nomaler and Bart Verspagen
2014-71 *The deposit financing gap: Another Dutch disease* by Huub Meijers, Joan Muysken and Olaf Sleijpen

2014-72 *Do remittances and social assistance have different impacts on expenditure patterns of recipient households? The Moldovan case* by Jennifer Waidler, Jessica Hagen-Zanker, Franziska Gassmann and Melissa Siegel

2014-73 *The role of industry and economic context in open innovation: Evidence from Nigeria* by Abiodun Egbetokun, Omolayo Oluwatope, David Adeyeye and Maruf Sanni

2014-74 *Means to improve access to justice and legally empower victims of domestic violence: An empirical legal study on legislation and legal offices in Buenos Aires, Argentina* by Julieta Marotta

2014-75 *Do remittances not promote growth? A bias-adjusted three-step mixture-of-regressions* by Maty Konte

2014-76 *Structural modernization and development traps: An empirical approach* by Alejandro Lavopa and Adam Szirmai

2014-77 *Democratizing intellectual property systems: How corruption hinders equal opportunities for firms* by Caroline Paunov

2014-78 *Can internet infrastructure help reduce regional disparities? Evidence from Turkey* by Mehmet Guney Celbis and Denis de Crombrugghe