Chapter 12

Summary
Summary

In Chapter 1, the history of IVF was reviewed and an outline about the results of IVF in different parts of the world was written. Different factors that resulted in improving IVF results were discussed with special emphasis on ovarian stimulation protocols, development of US in ovum pick-up techniques, improvement in fertilization due to ICSI, and the development in tissue culture media.

The aim of the work, as illustrated in chapter 2, is optimizing IVF results through the following: First, in patient preparation before starting an IVF cycle, focusing on the diagnosis and management of hydrosalpinges, performing dummy embryo transfers and studying different factors that may affect the embryo transfer. Second, experimenting with the technique of ICSI in an attempt to improve fertilization. The research was focused on modifying the technique of ICSI, studying the effect of different sperm parameters, and using testicular and epididymal spermatozoa in cases of azoospermia. Third, modification of the technique of multifetal pregnancy reduction in cases of high order multiple pregnancies in an attempt to improve the outcome.

In chapter 3, the presence of fluid in the uterine cavity in association with hydrosalpinges was reported as a hindrance to implantation and poor IVF outcome. This was the first report in the literature that was followed by several studies by other investigators and finally led to the conclusion that salpingectomy is recommended in patients with hydrosalpinges before performing IVF.

In chapter 4, we have demonstrated that performing a dummy embryo transfer significantly improved the IVF outcome. It helps in choosing the most suitable kind of catheter, evaluating the length and direction of the uterine cavity, and discovering any unanticipated difficulty.

In chapter 5, the research on the technique of embryo transfer was continued using methylene blue dye. The effect of different factors on the rate of extrusion of the dye was
studied. It was demonstrated that the rate of extrusion of the dye was significantly less when soft catheters were used as compared to more rigid ones and when the cervical mucous was aspirated.

In chapter 6, the effect of different sperm parameters on the outcome of ICSI was studied. It was demonstrated that the fertilization and pregnancy rates in ICSI were not affected by different sperm parameters as long as morphologically normal living sperm was used for the injection. It was also demonstrated that patients who previously failed fertilization with IVF had successful fertilization with ICSI.

In Chapter 7, a study was done on the use of epididymal and testicular spermatozoa in ICSI. It was demonstrated that ICSI using epididymal and testicular spermatozoa in cases of obstructive azoospermia is an efficient method in achieving fertilization and pregnancy.

In Chapter 8, a prospective randomized study was done on sibling oocytes to investigate performing ICSI without cytoplasmic aspiration. The study demonstrated that cytoplasmic aspiration before sperm injection was not essential for oocyte activation because it did not improve the fertilization rate. Moreover, aspiration significantly increased the rate of oocyte damage. The technique of no aspiration resulted in a significantly higher rate of good quality embryos as compared to performing cytoplasmic aspiration before injecting the spermatozoa.

In Chapter 9, a study of the outcome of ICSI was done in obstructive and non-obstructive azoospermia. It was demonstrated that ICSI using spermatozoa from patients with acquired obstructive azoospermia resulted in significantly higher fertilization and pregnancy rates as compared to congenitally absent vas deferens and non-obstructive azoospermia. There was no difference in the fertilization and pregnancy rates using epididymal or testicular spermatozoa in obstructive azoospermia. The results also demonstrated that the fertilizing ability of testicular spermatozoa obtained from non-obstructive azoospermia was significantly lower than those obtained from obstructive azoospermic cases. Finally it was demonstrated that spermatozoa
could be retrieved in 67% of the testicular biopsies obtained from non-obstructive azoospermic patients.

In Chapter 10, a modified technique was described for multifetal pregnancy reduction in cases of high order multiple pregnancy. The modified technique eliminated completely the use of any cardiotoxic substance such as KCl. It is done as early as 7-8 weeks of gestation by transvaginal US guided aspiration of the fetal echoes. Using the modified technique the outcome of the reduced twins was comparable to non-reduced twins.

In Chapter 11, an attempt was done to correlate these chapters with the literature and an overview was given about how to optimize IVF results. It was stressed that IVF is a delicate and complicated procedure that depends on many factors for success. The formation of a good team is the key to assure that every procedure of the IVF is conducted properly. Patient preparation before starting the IVF cycle is very important. Special attention should be given to the diagnosis and treatment of hydrosalpinges, and performing a dummy embryo transfer to choose the most suitable kind of catheter. One should use the most suitable protocol for ovulation induction to obtain an adequate number of high quality oocytes. Strict quality control and quality assurance is vital in any IVF program to produce viable embryos. Optimizing fertilization has been achieved through ICSI. The technique of embryo transfer has a significant impact on the results. Multiple pregnancy must be avoided, however, in cases of high order multiple pregnancy, the modified technique of multifetal reduction is an option to improve the outcome.

Further research should focus on studying distal tubal opening with or without proximal tubal ligation as compared to salpingectomy in patients with hydrosalpinges before undergoing IVF. For optimizing the technique of ET, future research should focus on investigating different drugs that may decrease uterine contractility during ET. Another area of research is the use of diploid spermatogenic cells to achieve fertilization in non-obstructive azoospermia patients in
whom no spermatozoa could be retrieved. The problem of high order multiple pregnancies should be completely solved and more research should be directed towards improving implantation and single embryo transfer.
SAMENVATTING

In hoofdstuk 1 wordt de geschiedenis van de in vitro fertilisatie (IVF) besproken en worden de resultaten van IVF in de diverse delen van de wereld beschreven. De diverse factoren die het resultaat van IVF beïnvloeden komen aan de orde met nadruk op ovariële stimulatie-protocollen, de ontwikkeling die plaatsvond in de technieken voor het verzamelen van eicellen, de verbetering van de laboratoriumresultaten met name wat betreft de fertilisatie en de ontwikkeling van weefselkweekmedia.

Het doel van dit promotie onderzoek is, zoals besproken in hoofdstuk 2, het optimaliseren van de IVF resultaten door de volgende aspecten extra aandacht te schenken: ten eerste het vooronderzoek van de patiënt en het voorbereiden voor de eerste IVF cyclus, waarbij met name de diagnostiek en de behandeling van hydrosalpingen aan bod komt, het uitvoeren van een dummy embryotransfer, en de diverse factoren die de uitkomst van de embryotransfer zouden kunnen beïnvloeden. Ten tweede de rol van Intra Cytoplasmatische Sperma Injectie (ICSI) bij het pogen de fertilisatieresultaten te verbeteren. Hierbij komt met name het modificeren van de ICSI techniek aan bod, het belang van de afzonderlijke semenparameters, en het gebruik van testiculair en epididymaal verzamelde spermatozoa in het geval van azospermie. Ten derde het bestrijden van een van de negatieve bijwerkingen van IVF, de meervoudige zwangerschap, met behulp van het reduceren van het aantal concepti, en het effect van die reductie op de uitkomst van de zwangerschap.

In hoofdstuk 3 wordt de aanwezigheid van vloeistof in het cavum uteri bestudeerd in relatie tot het voorkomen van hydrosalpingen. Dit lijkt een negatief effect te hebben op de implantatiekansen van het embryo na IVF. De conclusie die op basis van dit, en later in de literatuur gerapporteerd, onderzoek getrokken wordt is dat bij patiënten met hydrosalpingen een salpingectomie moet worden aanbevolen alvorens tot IVF over te gaan.
In hoofdstuk 4 wordt aangetoond dat het uitvoeren van een dummy embryotransfer de IVF resultaten significant verbetert. Het uitvoeren van een dummy embryotransfer stelt de arts in staat de beste katheter voor de transfer op voorhand te kiezen, de diepte van het cavum uteri te bepalen alsmede de hoek waaronder dit zich presenteert, terwijl tevens onvoorsien problemen bij de terugplaatsing kunnen worden opgespoord.

In hoofdstuk 5 wordt additioneel onderzoek beschreven naar de techniek van embryotransfer met behulp van methyleenblauw kleurstof. Het effect van diverse factoren op de expulsie van de kleurstof uit het cavum uteri werd bestudeerd. Er werd gevonden dat de mate van expulsie van de kleurstof significant minder was indien zachte katheters werden gebruikt, in vergelijking met meer rigide katheters, en indien het cervixslijm voor de transfer eerst werd geaspireerd.

In hoofdstuk 6 wordt het effect van de afzonderlijke semenparameters op de uitkomst van ICSI bestudeerd. Fertilisatie en zwangerschapscijfers na ICSI blijken niet te worden beïnvloed door de afzonderlijke semenparameters voorzover er morfologisch normale zaadcellen gebruikt worden voor de Intra Cytoplasmatische Sperma Injectie. Daarnaast wordt aangetoond dat patiënten die tevoren een mislukte fertilisatie bij reguliere IVF hadden, met vrucht gebruik kunnen maken van ICSI om een hernieuwde fertilisatiestoorns te voorkomen.

In hoofdstuk 7 wordt een studie beschreven naar het gebruik van epididymaal en testiculair verzamelde zaadcellen bij ICSI. Het bleek dat ICSI met epididymaal of testiculair zaad in gevallen van obstructieve azospermie een efficiënte methode is om fertilisatie en zwangerschap te bewerkstelligen.

In hoofdstuk 8 wordt een prospectief gerandomiseerde studie beschreven bij “sibling” eicellen om te bestuderen of cytoplasmatische aspiratie nodig is bij het uitvoeren van ICSI. De studie toont aan dat dit niet essentieel is voor eicelactivatie aangezien het de fertilisatiefrequentie niet verhoogt. Wel bestaat het risico dat cytoplasmatische aspiratie de mate van schade aan de eicel
verhoogt. De techniek zonder aspiratie resulteerde in een significant hogere frequentie van embryo’s van een goede kwaliteit in vergelijking met de techniek waarbij wel cytoplasma wordt geaspirereld voordat de zaadcel in de eicel wordt geï njec teerd. 

In hoofdstuk 9 wordt een onderzoek beschreven naar de uitkomst van ICSI bij obstructieve en non-obstructieve azospermie. ICSI bij patiënten met een verworven obstructieve azospermie bleek in een significant hogere fertilisatie- en zwangerschapsfrequentie te resulteren dan ICSI bij patiënten met een congenitale obstructieve of non-obstructieve azospermie. Er werd geen verschil gevonden in fertilisatie- en zwangerschapsfrequenties na ICSI wegens obstructieve azospermie tussen epididymale en testiculaire zaadcellen. De resultaten van dit onderzoek laten ook zien dat het fertilisatievermogen van testiculair verzamelde zaadcellen bij non-obstructieve azospermie significant lager is dan bij obstructieve azospermie. Tenslotte werd aangetoond dat zaadcellen konden worden gewonnen uit 67% van de testisbiopsieën bij patiënten met een non-obstructieve azospermie.

In hoofdstuk 10 wordt een gemodificeerde techniek beschreven om het aantal embryo’s te reduceren in geval van meerlingzwangerschappen. De gemodificeerde techniek bestaat uit het aspireren van embryonale delen en maakt het gebruik van KCL als cardiotoxische substantie overbodig. De techniek kan bij 7 tot 8 weken zwangerschap via transvaginale ultrageluïdsaspiratie van de foetale echo’s worden uitgevoerd. De na toepassing van deze techniek resterende tweelingzwangerschappen hadden een uitkomst die vergelijkbaar was met die van "gewone" na IVF ontstane tweelingzwangerschappen. Reductie van meerlingen tot tweelingen kan aldus veilig geschieden en de prognose van de zwangerschap verbeteren.

In hoofdstuk 11 worden de bevindingen van de voorgaande hoofdstukken geïntegreerd met literatuurbevindingen en wordt een overzicht gegeven van alle beschreven ontwikkelingen in het kader van het optimaliseren van de IVF resultaten. Het wordt benadrukt dat IVF een gevoelige en complexe procedure is waarvan het succes van vele factoren afhangt. Het belang
van een goed team wordt benadrukt, evenals het goed voorbereiden van de patiënt op de behandeling. De diagnostiek en behandeling van hydrosalpingen wordt in een breder kader geplaatst, evenals het uitvoeren van dummy embryotransfers in het kader van het kiezen van een optimale terugplaatskatheter. Ook komen in dit hoofdstuk de diverse ovulatie inductie protocollen aan de orde die tot doel hebben eicellen van voldoende hoge kwaliteit te verkrijgen. Quality Control and Quality Assurance zijn essentieel voor een goed IVF programma. ICSI kan de resultaten, met name bij patiënten met fertilisatiestoornissen, verbeteren. De techniek van embryotransfer verdient meer aandacht. Het is van groot belang meervoudige zwangerschappen te voorkomen, echter het reduceren van het aantal embryo’s is een efficiënte methode om de uitkomst van zulke zwangerschappen te verbeteren.

Toekomstig onderzoek zal zich moeten concentreren op alternatieve behandelingen voor hydrosalpingen dan salpingectomie. Tevens zal meer aandacht geschonken moeten worden aan het verbeteren van de embryo terugplaatstechniek, o.a. in relatie tot de inherente en de geïnduceerde contractilitéit van de (niet zwangere) uterus. Een ander toekomstig onderzoeksgebied is gelegen in het gebruik van diploïde spermatogene cellen die gebruikt kunnen worden om fertilisatie te bewerkstelligen bij patiënten bij een non-obstructieve azo spermie bij wie op geen enkele wijze zaadcellen kunnen worden gewonnen. Het ultieme doel van de moderne IVF dient het voorkomen van meerlingzwangerschappen te zijn. Het valt te verwachten dat meer onderzoek naar het verbeteren van de implantatiekansen van individuele embryo’s zal leiden tot electieve terugplaatsing van één enkel embryo.