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Abstract

In this paper we consider several modified wild bootstrap methods that, additionally to

heteroskedasticity, can take dependence into account. The modified wild bootstrap meth-

ods are shown to correctly replicate an invariance principle for multivariate time series

that are characterized by general forms of unconditional heteroskedasticity, or nonstation-

ary volatility, as well as dependence within and between different elements of the time

series. The invariance principle is then applied to derive the asymptotic validity of the

wild bootstrap methods for unit root testing in a multivariate setting. The resulting tests,

which can also be interpreted as panel unit root tests, are valid under more general as-

sumptions than most current tests used in the literature. A simulation study is performed

to evaluate the small sample properties of the bootstrap unit root tests.
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1 Introduction

Many macroeconomic and financial time series exhibit changes in unconditional volatility; in

particular, there is a large body of empirical evidence for a general decline in unconditional

volatility in the shocks driving macroeconomic time series since the eighties in what is often

called the Great Moderation; see, among others, Kim and Nelson (1999), McConnell and

Perez Quiros (2000), Blanchard and Simon (2001), Stock and Watson (2003), Sensier and

Van Dijk (2004) and references therein. After the occurrence of the 2008 credit crisis and

the following financial turmoil and disruption of economic activity, many have argued that

the general decline in unconditional volatility has been reversed and a sharp rise has taken

place; in other words, that the great moderation has ended, see for example Taylor (2011).

Whether the recent increase is really permanent or not, the recent crisis only reinforces the

observation that unconditional volatilities have not remained constant over time.

It is therefore crucial to account for such unconditional heteroskedasticity when perform-

ing econometric inference. Nowadays many methods are available for this purpose. One

particularly successful method for robustifying inference with respect to unconditional het-

eroskedasticity is the wild bootstrap (cf. Davidson and Flachaire, 2008). However, the wild

bootstrap assumes independence of the innovations and is therefore not robust to serial cor-

relation in the data. In the presence of autocorrelation one can add a sieve, or recoloring,

component to the wild bootstrap, as advocated by Cavaliere and Taylor (2008, 2009a,b) for

the purpose of unit root testing. While this is generally a satisfactory solution to handle au-

tocorrelation in univariate time series, or small multivariate systems, this is not the case for

large multivariate systems or panel data. A multivariate autoregressive sieve bootstrap cannot

be applied if the dimension of the system is too large, and Smeekes and Urbain (2014) have

shown that a univariate autoregressive sieve bootstrap cannot correctly replicate dynamic

dependence structures among the different units in the system. However, many recent de-

velopments in macroeconometric modeling involve large multivariate systems, or panel data,

of macroeconomic time series typically collected over a number of countries; see for example

Canova and Ciccarelli (2013) and the references therein. As such time series can be subject

to the kind of volatility changes described above, appropriate methods are needed for dealing

with unconditional heteroskedasticity in large multivariate systems.

Recently several methods have been developed for dealing with heteroskedasticity in mul-

tivariate time series and panel data. Particularly worth mentioning in the context of panel

unit root testing is the approach of Demetrescu and Hanck (2012), that uses IV estimators,

and the approach by Westerlund (2014), who uses the cross-sectional dimension to consis-

tently estimate the time-varying volatility and adjusts the series accordingly. These methods

however do not utilize the bootstrap, even though in univariate time series the wild bootstrap

provides a nearly unrivaled success in delivering robust inference with respect to heteroskedas-

ticity; not only in the unit root setting but also for stationary time series (see e.g Gonçalves
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and Kilian, 2004, 2007).

In this paper we therefore try to preserve the good properties of the wild bootstrap while

adapting it for applications in multivariate time series. This we achieve by investigating mod-

ifications of the wild bootstrap that allow one to simultaneously deal with serial dependence

as well as heteroskedasticity in multivariate time series. These modified wild bootstrap meth-

ods can be seen as “block” versions of the original wild bootstrap, and therefore provide a

heteroskedasticity-robust analogue of the block bootstrap. The nonparametric block struc-

ture makes the methods particularly suitable for application in large multivariate systems

such as the ones encountered in typical macroeconometric applications where the dimension

is too large to estimate (semi-)parametric models for the serial dependence. While standard

block bootstrap methods have a similar advantage in large multivariate systems with respect

to the capturing of the serial dependence, those methods are not appropriate in the presence

of unconditional heteroskedasticity. As an additional advantage over traditional block boot-

strap methods, the modified wild bootstrap methods considered here are considerably easier

to apply if not all time series in the system are of equal length.

Some of the modifications to the wild bootstrap considered here have been proposed by

Shao (2010, 2011) in a different context, also see Leucht and Neumann (2013) and Doukhan,

Lang, Leucht, and Neumann (2014) for other applications of similar modifications. In this

paper we establish a multivariate invariance principle for the modified wild bootstrap meth-

ods applied to time series with general dependence structures and volatility processes. In

particular we demonstrate that the asymptotic behavior of the partial sums of the modified

wild bootstrap time series correctly mimics the asymptotic behaviour of the original time

series. This powerful result implies that the modified wild bootstrap methods yield asymp-

totically valid inference for multivariate time series in the presence of weak dependence and

unconditional heteroskedasticity.

We next apply the established bootstrap invariance principle to multivariate, or panel,

unit root testing. We propose unit root tests based on the modified wild bootstrap methods

and demonstrate these tests are asymptotically correctly sized and consistent. Their finite

sample performance is also investigated by the use of Monte Carlo simulations and contrasted

to tests based on a traditional block bootstrap as well as an autoregressive sieve bootstrap,

both of which are invalid (though for different reasons).

The structure of the paper is as follows. In Section 2 we derive the multivariate invariance

principle for the modified wild bootstrap methods. The invariance principle is applied to unit

root testing in Section 3. The finite-sample properties of the modified wild bootstrap unit

root tests are explored through Monte Carlo simulation in Section 4. Section 5 concludes.

All proofs are contained in the Appendix.

Finally, a word on notation. Weak convergence (convergence in distribution) is denoted

by ‘
d−→’, convergence in probability is denoted by ‘

p−→’. Bootstrap quantities, conditional on the
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original sample, are denoted with a superscript ‘∗’. Bootstrap weak convergence in probability

(cf. Giné and Zinn, 1990) is denoted by ‘
d∗−→p’. ‖A‖ applied to a matrix or vector A denotes its

norm ‖A‖ =
√

tr(A′A). bxc is the largest integer smaller than or equal to x. W (r) denotes a

standard N -dimensional Brownian motion. DRN×N [0, 1] denotes the space of N ×N matrices

of càdlàg functions on [0, 1].

2 Invariance Principle

2.1 The Model and Preliminary Results

We consider a multivariate process {ut}Tt=1, where

ut = (u1,t, . . . , uN,t)
′ = σtvt, (1)

where {σt} governs the shape of the volatility of {ut}, while {vt} is a weakly dependent sta-

tionary stochastic process. Specifically, we assume σt and vt satisfy the following conditions.

Assumption 1.

(i) vt is an N -dimensional strictly stationary strong mixing process, with E vt = 0, E vtv′t =

IN , E ‖vt‖(2+δ) < ∞ for some δ > 0, and with strong mixing coefficients α(m) sat-

isfying
∑∞

m=0 α(m)1/p−1/(2+δ) < ∞ for some 2 < p < 2 + δ. Furthermore, Λ =

limT→∞ E
(∑T

t=1 vt

)(∑T
t=1 vt

)′
is a positive semi-definite matrix.

(ii) σt is a deterministic N × N matrix such that σt = σ(t/T ), where σ(·) ∈ DRN×N [0, 1]

is piecewise Lipschitz with a finite number of discontinuities and Σ(u) = σ(u)σ(u)′ is

positive definite for all u ∈ [0, 1].

Assumption 1(i) is a standard mixing assumption that is commonly assumed in applica-

tions of the block bootstrap (cf. Lahiri, 2003). The assumption on the mixing coefficients

is very weak and essentially only guarantees absolute summability of the autocovariances of

{vt} and existence of a functional central limit theorem (cf. Hansen, 1992). This very general

assumption leaves the nature of the serial dependence unspecified, both within one variable

and between variables. As such, dynamic interdependencies, where the lag of one variable

affects the present of another variable (cf. Canova and Ciccarelli, 2013), but also common

factors, often of interest in macroeconomic applications, are allowed.

Assumption 1(ii) is similar to Assumption 2 of Cavaliere, Rahbek, and Taylor (2010) and

allows for a wide variety of volatility processes, including single and multiple shifts, trends

and smooth transitions in variance (cf. Remark 2.1 of Cavaliere et al., 2010). The requirement

that σ(·) is piecewise Lipschitz is a slight strengthening of Assumption 2 of Cavaliere et al.

(2010), required by the way we impose the nonstationary volatility on the mixing process {vt},
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rather than inside a linear process as Cavaliere et al. (2010) do.1 For practical purposes this

stronger assumption only rules out pathological cases, and all empirically relevant processes

such as the ones described above, remain admissible.

Remark 1. The assumption that Λ can have a reduced rank is not of particular interest

in the I(0) world, but is important in Section 3 when we consider I(1) processes, as this

assumption then allows for cointegration between variables. See Remark 9 for details.

Remark 2. Assumption 1(ii) allows for change in both variances and covariances, and as

such, the DGP also allows for time-varying correlation. This concept is often deemed impor-

tant in financial variables, for example in the context of contagion. Also, common volatility

shocks are a possibility that the DGP allows for (cf. Cavaliere et al., 2010, Remark 2.3).

Remark 3. Assumption 1(ii) excludes stochastic volatility processes. This allows for con-

siderable simplification of the theoretical arguments (also see Remark 2.2 in Cavaliere et al.,

2010). Cavaliere and Taylor (2009b) prove the validity of univariate unit root tests based

on autoregressive sieve bootstrap with a wild bootstrap component under a more general

assumption that allows for stochastic volatility processes. We believe that this result can be

extended to the methods developed in the current paper. However, given the high exposi-

tional cost, the formal validity of our methods under such an assumption is outside the scope

of this paper. We will return to this issue in our simulation study in Section 4.

Remark 4. Conditional heteroskedasticity such as produced by GARCH processes is allowed

under Assumption 1(i). The assumptions on stationarity, mixing and, in particular, the

existence of moments do place restrictions on the type of processes allowed; for example, see

Ling and McAleer (2002), Francq and Zaköıan (2010, Chapters 2 and 3) and the references

cited therein for the exact conditions on the parameters of GARCH processes that are needed

in order to satisfy Assumption 1(i).

As a first step of our theoretical analysis, we now present the invariance principle for {ut}
in Lemma 1.

Lemma 1. Let ut be generated by (1) and let Assumption 1 hold. Then, as T →∞,

MT (r) = T−1/2
bTrc∑
t=1

ut
d−→M(r), (2)

where M(r) =
∫ r
0 σ(s) dB(s), B(r) = λW (r) and λλ′ = Λ.

It is important to note that the vector partial sum process of {ut} does not converge

to a vector Brownian motion, but instead to the martingale M(·), which depends on both

1Compare to Assumption V in Cavaliere (2005), who uses a similar framework as ours.
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the volatility process σ(·) and the long-run covariance matrix Λ. In particular the complex

dependence on the volatility process σ(·) makes achieving pivotal inference problematic. A

second problem in achieving pivotal inference is correcting for the off-diagonal elements of

Λ, in particular when N is reasonably large. As such, while one may attempt to correct the

statistics of interest for these two sources of nuisance parameters, this is difficult in practice, in

particular if the form of the volatility process and the nature of the dependence are unknown.

We therefore do not go down this route, but instead attempt to mimic the influence of both

types of nuisance parameters by capturing them with our bootstrap methods.

2.2 Modified Wild Bootstrap (MWB) Methods

The wild bootstrap in its original form is designed to mimic the heteroskedasticity present in

the data. In particular, it generates the bootstrap sample {u∗t }Tt=1 as

u∗t = ξ∗t ut, (3)

where {ξ∗t }Tt=1 are identically distributed scalar random variables with E∗ ξ∗t = 0 and E∗(ξ∗t )2 =

1. Crucially, in the standard wild bootstrap {ξ∗t }Tt=1 are generated independently.2 These

conditions ensure that the unconditional heteroskedasticity is asymptotically correctly mim-

icked in the bootstrap sample, see e.g. Cavaliere et al. (2010, Lemma A.5) for a multivariate

bootstrap invariance principle. However, while contemporaneous correlation is automatically

captured by the fact that {ξ∗t } is a scalar, any serial correlation present in ut will be lost in

the bootstrap. As such, the long-run covariance matrix Λ is not correctly replicated by the

standard wild bootstrap. Therefore, unless the statistic for which the wild bootstrap is used

in a specific application can be corrected for serial correlation, for example by augmenting

with lags or estimating long-run covariances nonparametrically, the standard wild bootstrap

yields asymptotically invalid inference. Typically, for large multivariate systems such a cor-

rection is infeasible as the number of parameters to be estimated increases too quickly. Even

if asymptotically consistent corrections are available, their finite sample performance might

not be sufficient to eliminate the impact of serial correlation.

Therefore it is generally advisable to modify the wild bootstrap directly in such a way

that the serial correlation is mimicked by the wild bootstrap, rather than relying only on

successful corrections of the statistics. While this is already important in univariate time

series, in particular in small samples, it is is crucial in large multivariate systems, not just in

small samples, but often even asymptotically, as the construction of asymptotically pivotal

statistics is generally quite difficult for potentially complex forms of dependence.

2This still leaves several possibilities to generate {ξ∗t }. Apart from being asymptotically equivalent, in
the context of unit root testing these different options only have marginal finite sample effects. Therefore the
typical approach, as advocated by Cavaliere and Taylor (2008) or Shao (2010) for example, is generate them
as standard normal.
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One method of modification is to combine the wild bootstrap with an autoregressive sieve

component. Specifically, one applies the wild bootstrap to residuals from an autoregressive

model and builds the bootstrap series recursively using the estimated autoregressive parame-

ters. We label this approach the Sieve Wild Bootstrap (SWB). For the purposes of univariate

unit root testing this approach was proposed by Cavaliere and Taylor (2008, 2009a,b) and

Smeekes and Taylor (2012). A multivariate version of the SWB in the context of cointegration

testing can be found in Cavaliere et al. (2010), where the wild bootstrap is combined with

the estimation of a vector autoregressive (VAR) model.

In multivariate time series whose dimension is too large to estimate a VAR with sufficient

accuracy, the approach of Cavaliere et al. (2010) is infeasible. Instead, in such a setting

one can estimate an autoregressive model for each unit individually and then apply the wild

bootstrap to the residuals jointly. Smeekes and Urbain (2014) analyze such an approach for

homoskedastic time series, and demonstrate that it neglects dynamic cross-correlation that

is present between variables. As a result the off-diagonal elements of Λ are not replicated

correctly by the SWB, which may lead to invalid inference.

Given the inherent problems of estimating VAR models in large dimensions and the inva-

lidity of the SWB variant described above, we consider a modification of the wild bootstrap

along a different road. Rather than applying a sieve principle we modify the wild bootstrap

directly by allowing the random variables {ξ∗t }Tt=1 to be dependent, which can be seen as a

block version of the wild bootstrap. We consider three modifications here, collectively labeled

as Modified Wild Bootstrap (MWB).

Block Wild Bootstrap [BWB] The block wild bootstrap (BWB) was proposed as block-

wise wild bootstrap by Shao (2011). Define k = dT/`e and generate ν∗1 , . . . ν
∗
k as i.i.d. N(0, 1).

Then let

ξ∗t = ξ∗(m−1)`+s = ν∗m, t = 1, . . . , T,

where m = dt/`e and s = t − (m − 1)b. The tuning parameter ` = `T determines the block

length and as such how much of the dependence should be retained. As ξ∗t = ν∗1 for all

t = (m − 1)` + 1, . . . ,m`, we have that u∗t = ν∗1 ût for all t = 1, . . . , `, u∗t = ν∗2 ût for all

t = ` + 1, . . . , 2`, and so on. Hence dependence within one block is preserved completely,

but between blocks it is lost. This treatment of the dependence mirrors that of the non-

overlapping block bootstrap, with block length `, and the BWB can therefore be seen as the

wild bootstrap extension thereof.

Dependent Wild Bootstrap [DWB] The dependent wild bootstrap (DWB) was pro-

posed by Shao (2010). It aims to generate ξ∗1 , . . . ξ
∗
T such that Cov(ξ∗s , ξ

∗
t ) = K

(
s−t
`

)
, where

K(·) is a kernel function with K(0) = 1, K(x) = 0 for x ≥ 1, and
∫∞
−∞K(u)e− iuxdx > 0 for
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all x ∈ R. The parameter ` again determines the extent of the dependence that is retained.

As variables further than ` units apart are independent, it can again be interpreted as a

block length parameter. To implement the DWB we generate ξ∗1 , . . . , ξ
∗
T ∼ N(0,Σ), where

Σ =
(
K
(
i−j
`

))N
i,j=1

. For the choice of kernel we follow the recommendation of Shao (2010)

in Remark 2.1.

Just as the BWB has a block bootstrap interpretation, the DWB can also be interpreted

as a counterpart to a block bootstrap. However, while the BWB is the counterpart of the non-

overlapping block bootstrap, the DWB can be interpreted as the counterpart of the moving

block bootstrap (MBB) or the related tapered block bootstrap with overlapping blocks (see

Shao, 2010, Section 2). As such one could say that it provides a less “coarse” version of the

BWB. A related difference between the two methods is that the bootstrap variables {ξ∗t } are

stationary for the DWB, yet clearly not for the BWB.3

Autoregressive Wild Bootstrap [AWB] The third modification we consider is the au-

toregressive wild bootstrap (AWB). For this method generate ν∗1 , . . . , ν
∗
T as i.i.d. N(0, 1− γ2)

and let

ξ∗t = γξ∗t−1 + νt, t = 2, . . . , T, ξ∗1 ∼ N(0, 1).

where γ = γT ∈ [0, 1) is a tuning parameter that controls the persistence of the process. A

practitioner can select the value of γ itself as a tuning parameter, but as seen in Section 2.3, γ

has to increase to unity with the sample size to achieve asymptotic validity of the bootstrap.

The most straightforward way to achieve this is to write γ = θ1/`, where θ is a fixed parameter,

and ` is the same tuning parameter as in the previous methods. This parametrization makes

this method comparable to the previous two. Note that Cov(ξ∗s , ξ
∗
t ) = γ|s−t| = θ|s−t|/`. By

defining the family of kernels Kθ(x) = θ|x|, the AWB method can be put in the framework

of the DWB, where the choice of θ can be seen as the choice of the kernel. An important

difference though is that in the DWB method the bootstrap innovations more than ` units

apart are independent. This is not true for the AWB, where bootstrap innovations only

become independent asymptotically. Leucht and Neumann (2013) and Doukhan et al. (2014)

consider a similar type of modification for the analysis of (strictly stationary) time series in

the context of U - and V -statistics and the empirical process, respectively.

Remark 5. Conceptually all three modified wild bootstrap methods described above (and

by construction the standard, independent, wild bootstrap as well) can be seen as special

cases of one general wild bootstrap method that is defined by the equations E∗ ξt = 0 and

E∗ ξ∗sξ∗t = K̃ (s, t, `) for all s, t = 1, . . . , T . We keep treating the three methods separately

however. Our main reason is that in developing the theory, it is more convenient to treat

3Though this clearly does not mean that for the DWB {u∗t } is stationary conditional on the data.
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the methods separately. Though the proofs for the three methods are similar, the BWB in

particular requires a different approach than the other two methods as the variables {ξ∗t } are

not stationary for the BWB, in contrast to the DWB and AWB.

An additional motivation to treat the methods separately is that they all have separate

interpretations. First, the BWB has as much a different interpretation as the other two meth-

ods as the non-overlapping block bootstrap has compared with the moving block bootstrap.

Second, we maintain the DWB in its current form as Shao (2010) proposed it in the same

way, though for a different purpose. Third, while similar to the DWB, the AWB in its current

form has a very straightforward and in a time series context more natural interpretation than

the DWB. We therefore keep treating it separately as well.

Remark 6. The choice of the tuning parameter ` is a trade off between capturing more

dependence (by increasing `) and allowing for more variation in the bootstrap samples which

leads to a better approximation to the sampling distribution (by decreasing `). This trade off

is, unsurprisingly, very similar to the trade off faced when selecting the block length in the

block bootstrap. Choosing an optimal block length is a topic that has had much attention in

the bootstrap literature. Unfortunately, this is still an open topic, particularly in the context

of unit root testing. Palm, Smeekes, and Urbain (2011) provide an overview of different

methods and investigate their performance by simulation for panel unit root testing, but

theoretical results are still unavailable.

An additional complication arising in the presence of time-varying volatility is that the

tuning parameter ` has a direct effect on how much of the variation in the volatility is cap-

tured. As elaborated on in Section 2.3, the MWB methods have a close correspondence to

long-run variance estimation (also see Shao, 2010, Section 2), where the tuning parameter

determines how many auto-covariance are used in the estimation of the long-run variances. Us-

ing a large tuning parameter however also has the effect that volatility changes are smoothed

out in the bootstrap; see equation (5). Therefore, a small tuning parameter would be pre-

ferred if volatility changes are highly abrupt, highlighting the trade off with capturing serial

dependence further.

Given the close resemblance to long-run variance estimation one might consider using

rules for optimal bandwidth selection in the current context. However, it is unlikely that

those methods are optimal in this setting, as they do not take into account the changes

in volatility. To find an optimal tuning parameter selection method higher order asymptotic

theory is needed, but this is complicated by the “double nonstationarity” present and therefore

outside the scope of this paper.

Remark 7. The choice of γ (or equivalently θ and `) in the AWB should be seen as the

choice of a tuning parameter that is not a direct reflection of the form of the serial correlation

structure in the DGP (i.e. the true dependence does not have to be of AR(1) form). While it
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might appear to be an intuitively logical choice to choose the tuning parameter γ in such a

way that it matches the dependence found in the sample, at least in a univariate context, the

theoretical implications of such a scheme are not directly obvious; for example, it is difficult

to see how this could be matched with the required condition that γ has to increase to 1 with

the sample size.

2.3 Bootstrap Invariance Principle

We now derive the multivariate invariance principle for partial sum processes obtained from

modified wild bootstrap samples that allows one to establish asymptotic validity of the mod-

ified wild bootstrap methods. In order to derive the bootstrap invariance principle, we need

the following assumption on the tuning parameter `.

Assumption 2. ` = o(T 1/2) and `→∞ as T →∞.

This assumption is comparable to the block length assumption in Paparoditis and Politis

(2003) and Palm et al. (2011), as well as to the bandwidth assumption in De Jong and

Davidson (2000) needed for processes with stochastic trends (Assumption 4(ii)).

The bootstrap invariance principle is now given in the following theorem.

Theorem 1. Let the conditions of Lemma 1 and Assumption 2 hold. Let the bootstrap sample

{u∗t } be generated according to (3), where {ξ∗t } is generated using the BWB, DWB or AWB

method. Then as T →∞,

M∗T (r) = T−1/2
bTrc∑
t=1

u∗t
d∗−→p M(r). (4)

The proof of the bootstrap invariance principle evolves around two major steps. First,

it needs to be shown that, conditionally on the sample, M∗T (r) can be written as a Gaus-

sian process with independent increments. While this follows directly for the BWB, in the

Appendix it is shown that for the DWB and AWB one can derive that

M∗T (r) = T−1/2
bTrc∑
t=1

z∗t Ũt,r, where Ũt,r =

bTrc∑
s=t

cs,t,`us, (5)

and {z∗t }Tt=1 are independent standard normal variables. The specific form of the non-random

weights cs,t,` depends on the method used. For example, for the AWB we have cs,t,` = θ(s−t)/`,

so that a larger value for ` will ensure that Ũt,r becomes smoother. While this is beneficial

for capturing serial dependence, it is not for capturing abrupt changes in the volatility, and

therefore the choice of ` is a trade off as discussed in Remark 6.

The second major step in the proof shows that the MWB methods correctly replicate

both the diagonal and off-diagonal elements of the long-run variance-covariance matrix over
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all fractions of the sample. Define the long-run covariance matrix of a fraction r of the data

as

Ω(r) = lim
T→∞

ΩT (r) =

∫ r

0
σ(s)Λσ(s)′ ds, (6)

where

ΩT (r) = T−1 E

bTrc∑
t=1

ut

bTrc∑
t=1

ut

′ . (7)

The bootstrap variance process can then be expressed as

Ω∗T (r) = E∗M∗T (r)M∗T (r)′ = T−1
bTrc∑
s=1

bTrc∑
t=1

usut E∗ ξ∗sξ∗t . (8)

The duality between variance estimation and the modified wild bootstrap methods can then be

exploited by recognizing (8) as a kernel variance estimator for a fraction r of the sample, such

that results on such kernel variance estimators can be used to show that Ω∗T (r) consistently

estimates Ω(r) uniformly for r ∈ [0, 1].

3 Unit Root Testing

To illustrate the potential of the derived bootstrap invariance principle, in this section we

apply it to multivariate unit root testing. A univariate bootstrap unit root test simply follows

as a special case by taking N = 1 everywhere. As such we will not discuss this specific case

further but rather include it implicitly in our multivariate analysis.

Let the series yt = (y1,t, . . . , yN,t)
′ be generated as

yt = β′zt + xt, t = 1, . . . , T, (9a)

xt = ρxt−1 + ut, x0 = 0, (9b)

where ut is the same as in (1), zt = (1, t, . . . , tκ)′, β = (β1, . . . , βN ), where {βi}Ni=1 are 1 +

κ× 1 coefficient vectors, and ρ = diag(ρ1, . . . , ρN ), where ρ1, . . . , ρN are scalar autoregressive

parameters. If ρi = 1, the ith variable yi,t has a unit root, whereas it is I(0) if |ρi| < 1. We

consider both fixed alternatives, in which case ρi is independent of T , and local alternatives,

in which case ρ = ρT , and ρT = 1 − c/T , where c = diag(c1, . . . , cN ). The assumption that

the initial values x0 are equal to zero is made for simplicity only and can easily be dispensed

with.

A typical application of unit root testing in a multivariate framework is found in panel

unit root testing, where the goal is to test the panel null hypothesis that all variables, or
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cross-section units, have a unit root versus the alternative that there are some cross-section

units (not necessarily all) that are I(0). Clearly the qualification “some” is rather vague and

can be interpreted in different ways. This is done on purpose here as different alternative

hypotheses are appropriate for different applications. Formally we work here with the alter-

native hypothesis that a least one unit is stationary, so we test H0 : ρi = 1 for all i = 1, . . . , N

vs. H1 : ρi < 1 for some i = 1, . . . , N , though our framework easily lends itself to adap-

tation of different hypotheses. Pesaran (2012) provides a more extensive discussion of the

interpretation of panel unit root testing.

There is a large range of potential test statistics that one can employ to test these hy-

potheses. Each specific test statistic has its own quirks in the development of its theoretical

properties. This may concern specific calculations required for the type of detrending per-

formed to accommodating the proofs for parametric or non-parametric correction aimed at

accounting for serial correlation. To avoid losing the focus of our main investigation of the

bootstrap methods in a quagmire of unrelated technicalities induced by the choice of test

statistic, in the theoretical development we focus for illustrative purposes on a very simple

test statistic, namely the average, or group-mean, of ordinary least squares (OLS) detrended

Dickey-Fuller (DF) coefficient-tests:

τgm =
T

N

N∑
i=1

∑T
t=2 y

d
i,t−1∆y

d
i,t∑T

t=2(y
d
i,t−1)

2
, (10)

where ydt = yt − β̂′zt and β̂ = (β̂1, . . . , β̂N ), where {β̂i}Ni=1 is the OLS estimator of βi in

a regression of yi,t on zt. As mentioned above there are numerous ways in which this test

can be modified to suit one’s needs. For example, a different detrending method could be

used. Also, the test statistic could be modified to account for serial correlation by adding

lag augmentation or a nonparametric correction. The individual statistics could be combined

in a different way in the panel dimension as well, such as by considering a pooled test or

the median of the individual unit root test statistics (cf. Palm et al., 2011).4 Given that

none of these issues fundamentally change the setup nor the way the bootstrap should be

implemented, we leave all such issues aside and focus on the simple statistic in (10).

We next describe the general bootstrap algorithm to perform this test. Again, variations

in specific steps of the algorithm are possible; for example, in Step 1 the method of detrending

as well as the estimation method for ρ can vary. As long as these methods are chosen properly,

these do not affect any of our asymptotic results. Therefore we do not go into detail on the

different possibilities one has here. Methods of detrending are discussed in detail in Smeekes

(2013), while different ways to estimate ρ are discussed in Paparoditis and Politis (2003,

4As discussed in Di Iorio and Fachin (2009), the type of panel test should depend on the form of the alter-
native hypothesis. Smeekes (2011) expands on this concepts by considering a sequential bootstrap procedure
based on the theory in Palm et al. (2011) to determine the number of stationary units, also see Hanck (2009)
and Moon and Perron (2012).
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Remark 2.3).

Algorithm 1.

1. Let ydt = yt − β̂′zt for t = 1, . . . , T . Let ρ̂ = diag(ρ̂1, . . . , ρ̂N ), where

ρ̂i =

∑T
t=2 y

d
i,t−1∆y

d
i,t∑T

t=2(y
d
i,t−1)

2
, for i = 1, . . . , N,

and obtain residuals {ût}Tt=1 where û1 = yd1 and

ût = ydt − ρ̂ydt−1, for t = 2, . . . , T.

2. Generate scalar random variables ξ∗1 , . . . ξ
∗
T according to an MWB method and let

u∗t = ξ∗t ût.

3. Construct the bootstrap sample as x∗t = x∗t−1 + u∗t with x∗0 = 0 and let y∗t = x∗t .

4. For i = 1, . . . , N , calculate y∗di,t = y∗i,t − β̂∗′i zt, where β̂∗i is found by OLS estimation in a

regression of y∗i,t on zt, and obtain

τ∗gm =
T

N

N∑
i=1

∑T
t=2 y

∗d
i,t−1∆y

∗d
i,t∑T

t=2(y
∗d
i,t−1)

2
. (11)

5. Repeat steps 2 to 4 B times and select the bootstrap critical value, say c∗α,B, as the

α-quantile of the ordered bootstrap statistics. Reject H0 if τgm < c∗α,B.

To allow for a general form of detrending, some further notation is needed. Let δT =

diag(1, T−1, . . . , T−κ) and Z(r) = (1, r, . . . , rκ)′, such that δT zbTrc → Z(r) for all r ∈
[0, 1]. Then for an N -variate continuous martingale G(·) on [0, 1], let Gd(r) = G(r) −∫ 1
0 G(s)Z(s)′ ds

(∫ 1
0 Z(s)Z(s)′ ds

)−1
Z(r) be its “detrended” version. We can now state the

following theorem.

Theorem 2. Let yt be generated by (9) and let Assumptions 1 and 2 hold. Let c∗α =

plim∗B→∞ c
∗
α,B, where c∗α,B is defined in step 5 of Algorithm 1 and obtained using either the

BWB, DWB or AWB method. Then as T →∞, we have the following results:

(a) If ρ = ρT = 1− c/T with c ≥ 0,

P(τgm < c∗α)→ P
(
Yc < F−10 (α)

)
, for any 0 ≤ α ≤ 1, (12)
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where F−1c (α) is the α-quantile of the random variable

Yc ∼
1

N

N∑
i=1

Md
c,i(1)2 −Md

c,i(0)2 − σ̄i,i
2
∫ 1
0 M

d
c,i(r)

2 dr
, (13)

where Md
c,i(r) is the i-th element of Md

c (r), Mc(r) =
∫ r
0 e
−(r−s)c dM(s), and σ̄i,i is the

(i, i)-th element of Σ̄ =
∫ 1
0 Σ(s) ds.

(b) If ρ < 1 and ρ does not depend on T ,

P(τgm < c∗α)→ 1.

Part (a) establishes the asymptotic local power function of the bootstrap test. A particular

consequence of part (a) of Theorem 2 is that under H0, where c = 0, it follows that

P(τgm < c∗α)→ α, for any 0 ≤ α ≤ 1, (14)

and thus the bootstrap unit root test has the correct asymptotic size. Moreover, it follows

from part (a) that the bootstrap test has the same local power function as a size-corrected

asymptotic test, which is the best one can do for a given test statistic; that is, the local power

function cannot be improved while retaining the same test statistic. Part (b) considers fixed

alternatives and establishes that the test is consistent.

Remark 8. When one considers the asymptotic distribution of the test statistic given in

(13), it becomes clear that it is a functional of M(·) obtained in the invariance principle. As

such, the limit distribution contains nuisance parameters stemming from both the long-run

covariance matrix Λ and the volatility process σ(·). While many techniques exist to estimate or

correct for the elements of Λ, they are generally only applicable if N is rather small compared

for T . Even in typical macroeconomic panel data models, where N may be smaller than

T , but not much smaller, estimating the off-diagonal covariance elements is rather difficult

(though recently some methods have been explored for such panel data, see e.g. Pedroni,

Vogelsang, Wagner, and Westerlund, 2008, and Breitung and Cubadda, 2011). Second, the

limit distribution depends in a complicated way on the volatility process. Successful correction

for these parameters is complicated even in the univariate case. Bootstrap methods such as

the MWB that are able to successfully replicate both sources of nuisance, therefore remove

the need for corrections asymptotically.5

5In small samples it may still be beneficial to attempt to correct for the nuisance parameter. As is well
known from the bootstrap literature on asymptotic refinements, the bootstrap performs best on asymptotically
pivotal statistics. Also see Palm, Smeekes, and Urbain (2008) for Monte Carlo evidence that confirms this in
the context of univariate unit root testing.
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Remark 9. As mentioned in Remark 1, cointegration between units is allowed by allowing

a reduced rank of Λ. The specification considered here with ρ a diagonal matrix might

appear to be more restrictive than the usual vector error correction model (VECM) used

for cointegration analysis (see e.g. Johansen, 1995), but this is not so. Smeekes and Urbain

(2014) start from a typical VECM representation with linear process errors

∆xt = αβ′xt−1 + Ψ(L)εt

and show that one may equivalently write ∆xt = a(L)−1B(L)εt, where a(z) and B(z) are lag

polynomials defined in their paper. They also show that it follows from the common trends

representation (Johansen, 1995, Theorem 4.2) that the long-run covariance matrix of ∆xt has

reduced rank if cointegration is present. Hence, the usual VECM representation yields a very

similar representation to the one we use, the only (non-fundamental) differences being the

addition of non-stationary volatility here and mixing instead of linear process errors.

Remark 10. While the MWB methods are theoretically valid in the presence of cointegra-

tion, this result should be regarded with caution. If cointegration between units is present, Λ

and therefore Ω(r) are of reduced rank. However, as we do not impose the rank restriction in

the bootstrap, in finite samples the bootstrap data will have a full rank long-run covariance

matrix with probability 1. Therefore, we can still expect considerable size distortions in finite

samples if the units are cointegrated, which is confirmed by our simulation study. We there-

fore do not put major emphasis on the cointegration case in this paper. Palm et al. (2011)

provide an in-depth analysis of cross-unit cointegration which is appropriate for the current

paper as well.

Remark 11. The asymptotic validity of the SWB in a univariate framework is well known

(cf. Cavaliere and Taylor, 2009a,b; Smeekes and Taylor, 2012). However, in the multivariate

context considered here, the SWB when applied equation by equation, is not asymptotically

valid. Smeekes and Urbain (2014) prove the invalidity of the autoregressive sieve bootstrap

with i.i.d. resampling in a homoskedastic setting. They show that the cause of the invalidity

is the inability of the i.i.d. bootstrap to capture serial correlation across units, which is

unrelated to the treatment of heteroskedasticity. As the wild bootstrap only differs from the

i.i.d. bootstrap in its treatment of heteroskedasticity, and suffers from the same inability to

capture these dynamic correlations, their invalidity result directly extends to the SWB. If

the dependence between units is of contemporaneous nature only, the SWB is valid, but if

the dependence is of a dynamic nature as well, then asymptotic validity of the SWB is not

guaranteed. In particular, while there might be certain specific parameter combinations for

which the invalidity is not very severe, for other parameter combinations the SWB may fail

seriously. Smeekes and Urbain (2014) illustrate this by considering a simple DGP for which

analytical expressions of the asymptotic size can be derived, and demonstrate that in this
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model the extent of the asymptotic size violations depends crucially on the choices of the

parameter values in the model.

We note that in contrast to the equation-by-equation approach discussed above, the VAR

specification of the SWB is valid for these models (cf. Cavaliere et al., 2010). However, for

the typical applications that are considered in the nonstationary panel data literature, the

dimension of the system is too large to estimate a full VAR model. The MWB methods

therefore provide an attractive and valid alternative in this multivariate framework.

Remark 12. A different type of application can be found in cointegration analysis (cf. Jo-

hansen, 1995). We do not consider this here as the dimensions of the system (here denoted

by N) in which a full-blown cointegration analysis is possible are fairly small; typically no

much larger than 5. We believe the MWB methods have an added value in systems where N

is larger, so a cointegration analysis is not the most appropriate framework here. Obviously

though, the MWB methods can be applied in that framework as well.

Remark 13. In the literature often a distinction is made between multivariate time series

application with finite N and “true” panel applications with N increasing to infinity (usually

jointly with T ). According to this classification our method could not be classified as a panel

data method. In practice, however, the distinction between multivariate time series and panel

data is not clear cut, as there is no rule of thumb that describes what kind of asymptotics is

most appropriate for which combinations of, in practical applications inherently finite, N and

T . In particular, there is a large grey area, where both types of asymptotic frameworks may

be applicable, between the typical multivariate time series applications such as described in

Remark 12 and “proper” panel data studies where N is of the same order as T . As such,

in the recent nonstationary panel data literature quite a few contributions have adopted an

asymptotic framework with finite N , in particular when using resampling methods (cf. Palm

et al., 2011, p. 89). In our simulation study in Section 4.2 we investigate the applicability of

our methods to different combinations of N and T .

4 Monte Carlo Simulations

In this section we analyze the performance of the MWB in finite samples in a Monte Carlo

simulation study. As in the previous section we focus here on unit root testing. We consider

both univariate unit root testing and multivariate testing. The univariate setting serves as

a reference point for the MWB methods in comparison with well established alternatives, in

particular the sieve wild bootstrap. The major application of the methods however lies in

multivariate applications, which is investigated in a second simulation study involving panel

unit root testing.
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4.1 Univariate Unit Root Tests

We start by analyzing the performance of the methods in univariate time series. It is well

known from simulation studies that the SWB performs extremely well in univariate time

series. As such it provides a useful benchmark for the MWB methods. Our aim in this Monte

Carlo study is therefore to examine how close the MWB methods get to the benchmark.

We consider the DGP

yt = ρT yt−1 + ut, ut = φut−1 + vt + θvt−1,

vt = σtεt, εt ∼ N(0, 1),

where we take ρT = 1 − c/T with c = 0 to analyze size and c = 20 for power. Sample sizes

T = 50, 100, 250 are considered. All results are based on 1000 simulations and 199 bootstrap

replications and were obtained using GAUSS 12.6

We use the augmented Diecky-Fuller (ADF) t-test with OLS demeaning, where in the

bootstrap ADF tests lag lengths p and p∗ are selected using the rescaled modified Akaike in-

formation criterion (RSMAIC) developed by Cavaliere, Phillips, Smeekes, and Taylor (2012),

with a maximum lag length of b12(T/100)1/4c. We apply the four bootstrap methods DWB,

BWB, AWB and SWB to this test, and we also add the moving block bootstrap (MBB) test

of Paparoditis and Politis (2003) which is only valid under homoskedasticity. For the MBB,

DWB and BWB we take ` = 1.75T 1/3, while for the AWB we take γ = θ` with θ = 0.01.

This value for ` was considered in Palm et al. (2011) to lead to satisfactory results for their

analysis of the moving block bootstrap in multivariate unit root testing. As block length

selection methods remain largely undeveloped for nonstationary time series, we follow their

lead and choose this fixed function of the sample size. For the SWB we select q by RSMAIC,

with a maximum lag length of b12(T/100)1/4c. Obviously the data dependent specification of

the lag length in the sieve bootstrap gives it an advantage compared with the other methods;

however it also has this advantage in practical applications given the difficulties of selecting

block lengths in a data dependent way. We therefore do not believe the comparison to be

unfair, though of course it should be kept in mind when evaluating the results.

For the volatility we consider the following four specifications:

• Homoskedasticity [HOM]: σt = 1 for all t = 1, . . . , T .

• Single break in volatility: σ2t = σ20 + (σ21 − σ20)I(bτT c < t). We set σ0 = 1, σ1 = 3 and

τ = 0.8 to achieve a late positive break [LPB].

• Smooth transition: σ2t = σ20 +(σ21−σ20)St, where St = (1+exp(−γ(t−bτT c)/T ))−1. We

set σ0 = 3, σ1 = 1, τ = 0.3 and γ = 15 to achieve downward smooth transition [DST].

6Code to perform the BWB, DWB and AWB unit root tests developed in this paper is available at the
website researchers-sbe.unimaas.nl/stephansmeekes/research/.
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• Stochastic volatility: σ2t = ω2(t/T ) where ω2(s) = σ20 exp(νB(s)) and B(s) is a standard

Brownian motion. We set σ0 = 1 and ν = 4 to achieve integrated stochastic volatility

[ISV].

Note that none of the MWB methods have been shown to be valid for the ISV model. As

such this specification serves as a robustness check for the MWB methods. Clearly only

considering one specification of each of the volatility models is rather restrictive. However,

we do not strife to obtain a complete overview with this Monte Carlo study, but rather to gain

an initial understanding of how the methods perform. Within each of the three specifications

considered above one could consider numerous parameter combinations. Reporting many of

those would not result in a clearer picture we believe. Instead we therefore choose just one

parameter combination per model that we believe is representative for that heteroskedastic

model. Simulation results for a wider set of parameter combinations are available on request.

Table 1 presents the empirical rejection frequencies of the tests for the models described

above under homoskedasticity. The top panel reports size of the tests under homoskedas-

ticity. Here, five combinations of different values for φ and θ are considered, the values of

which are given in the table. While all five tests have very reasonable size properties under

homoskedasticity, there are still some noticeable differences, in particular for T = 50. The

MBB and BWB tend to be slightly oversized, while the SWB tends to be undersized.

The middle panel presents the corresponding power results for the local alternative c = 20.

For small sample sizes, the power for all tests is quite sensitive to the dynamic specification,

although this effect disappears for larger sample sizes. The SWB appears to be somewhat less

powerful than the MWB methods, in particular for the smaller sample sizes, which is most

likely due to its tendency to be undersized.

Finally, the bottom panel presents size results for the three heteroskedastic models. To

save space and to focus on the effect of the volatility process, we only report results for the case

where φ = θ = 0, as we already analyzed the effects of serial correlation for the homoskedastic

model. Also, we do not report powers for the heteroskedastic models as these are difficult

to interpret due to distortions in the size of the tests. As expected, the SWB method has

the best size properties under the heteroskedastic models. The MBB method suffers from

serious size distortions that do not decrease if the sample size increases. Of course, this is

to be expected as the MBB is not valid in the presence of unconditional heteroskedasticity.

The MWB methods control size fairly well. They do suffer from size distortions for small

sample sizes, but the size distortions clearly become smaller for larger sample sizes, which

one would expect from the results in Section 3. The AWB seems to control size best of the

MWB methods. For the AWB in particular, but also for the MWB methods in general, the

choice of the tuning parameter represents a trade off between controlling for serial correlation

and volatility changes. In particular, if ` (or θ for the AWB) increases, more serial dependence

can be captured, but, in attempting to replicate the variance of the partial sum, the volatility

18



changes get smoothed out, and are thus not mimicked perfectly. Unreported simulations with

the AWB clearly show that if θ is increased, performance in the models with serial correlation

improves while that in heteroskedastic models deteriorates, and vice versa. The choice of

θ = 0.01 represents a compromise between both effects.7

Concluding, our results show that the MWB methods are not far off the benchmark set

by the SWB. Under homoskedasticity the DWB and AWB even perform slightly better than

the SWB. The MBB also performs well under homoskedasticity, but it falters under the

heteroskedastic models considered. Under heteroskedasticity the SWB confirms its excellent

performance found in earlier literature, though the MWB methods are not far off, and in

particular the performance of the AWB is quite satisfactory. Overall little is lost, though also

not gained, when using the MWB methods rather than the SWB method for univariate unit

root testing. Therefore, to really appreciate the added value of the MWB methods, we now

turn to multivariate unit root testing, a setting in which the SWB is invalid asymptotically.

4.2 Multivariate (Panel) Unit Root Tests

In this section we study the application of the MWB methods to multivariate unit root testing

in a Monte Carlo experiment. In particular, we consider an application in the context of panel

unit root testing. As explained in Remark 11, the SWB is not valid if dynamic cross-sectional

dependence is present in the DGP, although as pointed out by Smeekes and Urbain (2014), the

invalidity of the sieve bootstrap is not always detectable in simulation studies. Regardless,

one should be very cautious about applying an invalid bootstrap method, in particular as

Smeekes and Urbain (2014) show that also in finite samples the oversize can be quite large

as the exact values of the parameters in the model determinate the extent of the invalidity of

the sieve bootstrap. As such the asymptotically valid MWB methods provide an appealing

alternative in this multivariate context.

We assume that yi,t, i = 1, . . . , N , t = 1, . . . , T , are generated by the following panel data

model:

yi,t = xi,t + λift, ft = ρfft−1 + ζt,

xi,t = ρixi,t−1 + ui,t, ut = Φut−1 + vt + Θvt−1,

vi,t = σtεi,t, εt, ζt ∼ N(0, 1),

(15)

where ft is a common factor with loadings λi, xi,t are idiosyncratic components, and σt

controls the potential heteroskedasticity. Sample sizes considered are combinations of T =

25, 50, 100 and N = 10, 25. The combination of the parameters ρ1, . . . , ρN and ρf determine

if the cross-section units have a unit root (see p. 86 of Palm et al., 2011, for more details).

We test the null hypothesis that all units have a unit root against the alternative that at

7As such, any successful method for selecting the tuning parameters should also take the shape of the
volatility process into account.
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Table 1: Empirical rejection frequencies of univariate bootstrap ADF
tests

VP c T φ θ MBB BWB DWB AWB SWB

HOM 0 50 0 0 0.054 0.068 0.042 0.046 0.038
0.5 0 0.057 0.044 0.041 0.053 0.030

-0.5 0 0.062 0.061 0.047 0.043 0.038
0 0.5 0.061 0.053 0.045 0.060 0.028
0 -0.5 0.083 0.077 0.062 0.062 0.058

100 0 0 0.066 0.060 0.051 0.061 0.050
0.5 0 0.060 0.060 0.055 0.063 0.042

-0.5 0 0.062 0.057 0.051 0.038 0.042
0 0.5 0.067 0.068 0.060 0.065 0.042
0 -0.5 0.072 0.075 0.055 0.049 0.061

250 0 0 0.066 0.075 0.070 0.073 0.059
0.5 0 0.061 0.059 0.057 0.061 0.047

-0.5 0 0.065 0.057 0.057 0.050 0.046
0 0.5 0.060 0.063 0.058 0.053 0.044
0 -0.5 0.065 0.067 0.051 0.059 0.056

HOM 20 50 0 0 0.614 0.543 0.522 0.555 0.544
0.5 0 0.132 0.156 0.128 0.146 0.101

-0.5 0 0.548 0.471 0.468 0.470 0.452
0 0.5 0.350 0.332 0.301 0.341 0.273
0 -0.5 0.598 0.575 0.554 0.569 0.542

100 0 0 0.633 0.568 0.568 0.589 0.593
0.5 0 0.337 0.315 0.329 0.391 0.324

-0.5 0 0.534 0.456 0.469 0.466 0.461
0 0.5 0.393 0.362 0.361 0.416 0.364
0 -0.5 0.497 0.477 0.440 0.462 0.439

250 0 0 0.713 0.688 0.661 0.704 0.689
0.5 0 0.608 0.574 0.563 0.588 0.588

-0.5 0 0.678 0.632 0.637 0.661 0.638
0 0.5 0.569 0.536 0.541 0.531 0.531
0 -0.5 0.586 0.559 0.541 0.573 0.534

LPB 0 50 0 0 0.030 0.048 0.042 0.046 0.046
100 0 0 0.023 0.045 0.048 0.055 0.050
250 0 0 0.026 0.051 0.050 0.047 0.047

DST 50 0 0 0.276 0.147 0.095 0.097 0.075
100 0 0 0.268 0.134 0.082 0.084 0.057
250 0 0 0.251 0.096 0.078 0.075 0.069

ISV 50 0 0 0.153 0.095 0.070 0.074 0.064
100 0 0 0.165 0.086 0.074 0.061 0.055
250 0 0 0.149 0.063 0.061 0.051 0.053

Notes: ‘VP’ refers the volatility process used to generate σt.

20



least one unit is I(0). To analyze size we either need ρi = 1 for all i = 1, . . . , N or ρf = 1

in combination with λi 6= 0 for all i = 1, . . . , N . For the power analysis we work under

the alternative hypothesis by letting ρi ∼ U [0.8, 1] for i = 1, . . . , N and ρf = 0.95. For the

volatility process σt we consider the same specifications as in the univariate simulation study.

Note that for simplicity we let the volatility process affect all units in an identical way.

In the panel data literature, specific attention is paid to dependence across units, or

to remain in panel data terminology, cross-sectional dependence. This can be of purely

contemporaneous nature but it can also be dynamic, for example of autoregressive kind where

lags of one unit affect the present of another units. The DGP in (15) is general and flexible

enough to generate all such forms of dependence. To keep the analysis manageable, we focus

on five intuitive dependence structures (DS):

• DS IID: there is no serial or cross-sectional correlation. Specifically, we take λi = 0 for

all i = 1, . . . , N and Φ = Θ = 0.

• DS VAR1: a “spatial”-type VARMA structure, where the highest dependence is on

closest neighbors. This generates both serial and dynamic cross-sectional dependence.

Specifically, we let λi = 0 for all i = 1, . . . , N and we generate Φ and Θ as Ξ and Ω

defined in Palm et al. (2011, p. 92).

• DS VAR2: there is one dominant unit that affects all units dynamically. Specifically,

we let λi = 0 for all i = 1, . . . , N , while we set Φ = (φi,j)
N
i,j=1 with

φi,j =


ξi if i = j,

ηj if i = 1 and j > 1,

0 elsewhere,

where ξ1, . . . , ξN ∼ U [−0.5, 0.5] and η2, . . . , ηN ∼ U [−0.8, 0.8]. Furthermore we let

Θ = Ω as for model VAR1.

• DS CF: there is one common factor generating cross-sectional dependence. Specifically,

we take λi ∼ U [−1, 3] for i = 1, . . . , N and Φ = Θ = 0.

• DS CC: there is an integrated common factor, but the idiosyncratic components are

stationary. This setup implies that units are cross-sectional cointegrated, where the

cointegration vectors are determined by their factor loadings. Specifically, we take

λi ∼ U [−1, 3] and ρi ∼ U [0.8, 1] for i = 1, . . . , N while setting Φ = Θ = 0.

DS IID is the most basic panel data setup. VAR1 and VAR2 represent two plausible

models for situations in which dynamic cross-sectional dependence is present, and for which

the SWB is asymptotically invalid. CF and CC are typical workhorse structures in the panel

unit root literature when cross-sectional dependence is of interest. Structure CF in particular
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is the standard model in the panel data literature for cross-sectional dependence. While it

does not have any particular significance in our analysis, it is considered here as well in order

to remain consistent with the existing panel unit root literature. DS CC is, like CF, a setting

that is often considered in simulation studies for panel unit root tests, as typically most panel

unit root tests fail for this case, either asymptotically or in finite samples). The multivariate

MBB test of Palm et al. (2011) is valid for CC (as well as for all four other models) under

homoskedasticity. However, as most other panel unit root tests, it still suffers from small

sample size distortions in this setting. While the MWB tests are asymptotically valid for

CC, we expect them to suffer from finite sample size distortions, for the same reason as the

MBB suffers; that is, while asymptotically the reduced rank of Λ can be replicated by the

bootstrap methods, in finite samples the long-run bootstrap covariance matrix will always be

of full rank (see Section 4.2 of Palm et al., 2011, for more details). As the cross-cointegration

setting is very peculiar to the panel unit root application, we believe that in general not too

much weight should be given to the performance of the tests in this case. However, to remain

consistent with the panel unit root literature, we do consider it here as well.

As test statistic we consider the average of ADF t-statistics with OLS demeaning, which

is the panel counterpart of the unit root test considered in Section 4.1. Again we select lag

lengths for the (bootstrap) ADF tests by RSMAIC. We consider the same bootstrap methods

as in the previous simulation study, where the considered multivariate SWB is essentially the

bootstrap procedure proposed in Smeekes and Urbain (2014) with the i.i.d. bootstrap in step 3

replaced by the wild bootstrap. The multivariate MBB unit root test was considered by Palm

et al. (2011) and shown to be asymptotically valid for homoskedastic models. However, just as

its univariate counterpart, it is not valid in the presence of unconditional heteroskedasticity.

The tuning parameters for the bootstrap methods are selected in the same way as in Section

4.1. Our results are again based on 1000 simulations and 199 bootstrap replications.

Table 2 presents the empirical sizes under homoskedasticity for the five structures de-

scribed above. In general all methods suffer from undersize, though it is particularly severe

for the BWB and DWB methods. The undersize of the tests is exacerbated when N increases,

but is diminished for increasing T . As the proof of asymptotic validity only assumes T in-

creases to infinity, these results are not at odds with the theoretical results. It is clear that

all methods work best if T is clearly larger than N . Still, if one considers the case where

T = 100 and N = 25, empirical sizes for AWB and SWB in particular are acceptable for

much larger values of N than those that allow a full-blown multivariate time series analysis

such as discussed in Remark 12.

Three further features are noticeable. First, the MBB does not suffer from undersize but

is considerably oversized instead. Remarkably, if one uses the ADF coefficient test rather

than the t-test such as Palm et al. (2011) do, the MBB has very reasonable size properties,

comparable with the AWB and SWB methods. We do not know what causes the MBB
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Table 2: Empirical rejection frequencies under H0 of bootstrap
group-mean ADF tests under homoskedasticity

VP N T DS MBB BWB DWB AWB SWB

HOM 10 25 IID 0.094 0.013 0.003 0.031 0.021
VAR1 0.126 0.027 0.012 0.062 0.037
VAR2 0.081 0.009 0.004 0.026 0.024

CF 0.131 0.042 0.021 0.067 0.054
CC 0.203 0.077 0.057 0.132 0.120

50 IID 0.081 0.007 0.004 0.030 0.018
VAR1 0.075 0.022 0.016 0.049 0.038
VAR2 0.114 0.040 0.028 0.080 0.061

CF 0.096 0.055 0.042 0.055 0.037
CC 0.209 0.132 0.103 0.160 0.142

100 IID 0.111 0.015 0.021 0.038 0.031
VAR1 0.098 0.040 0.032 0.068 0.077
VAR2 0.097 0.029 0.030 0.065 0.051

CF 0.126 0.064 0.057 0.070 0.053
CC 0.419 0.244 0.301 0.385 0.361

25 25 IID 0.075 0.000 0.000 0.011 0.007
VAR1 0.091 0.002 0.000 0.015 0.008
VAR2 0.044 0.000 0.000 0.006 0.004

CF 0.128 0.030 0.009 0.038 0.032
CC 0.181 0.083 0.043 0.129 0.090

50 IID 0.102 0.002 0.001 0.015 0.013
VAR1 0.090 0.003 0.003 0.022 0.020
VAR2 0.094 0.003 0.002 0.029 0.017

CF 0.147 0.051 0.036 0.070 0.052
CC 0.215 0.090 0.072 0.146 0.123

100 IID 0.114 0.004 0.002 0.022 0.025
VAR1 0.128 0.006 0.012 0.039 0.049
VAR2 0.126 0.008 0.017 0.046 0.049

CF 0.126 0.034 0.029 0.050 0.042
CC 0.291 0.209 0.210 0.271 0.266

Notes: ‘VP’ refers the volatility process used to generate σt;
‘DS’ refers to the specification used to generate the dependence
structure.
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method to deteriorate while using the t-test. Second, except from the undersize when N is

large relative to T , the SWB has good size properties, even for the models for which it is

asymptotically not valid. As mentioned above, Smeekes and Urbain (2014) already found that

the invalidity of the sieve bootstrap is not always detectable from simulation studies as the

extent of the invalidity of the sieve bootstrap depends on specific parameter combinations.

Third, as expected, all tests suffer from oversize for the CC specification.

Table 3 presents the corresponding power results under homoskedasticity. Note that here

only the first four models need to be considered: DS CC collapses to the same specification

as CF under the alternative. For all tests, the empirical power increases with both T and N .

Given that we consider fixed alternatives here, consistency requires that power increases with

T . It is reassuring that power also increases with N despite the increasing size distortions

found before. This does not mean that the undersize has no effect on power; the BWB and

DWB methods, which suffered from rather severe undersize, have considerably lower power

than the AWB and SWB methods. The MBB method has highest power of all, but this an

artifact of its too liberal size properties. The powers of the AWB and SWB methods are

similar, though the AWB seems to have slightly higher power on average.

Finally, empirical sizes under heteroskedasticity are presented in Table 4. As in the uni-

variate simulation study, to preserve space and to ensure that the results remain interpretable,

we do not report size results for specifications other than IID nor do we report power results.

The size results for the IID model show that the invalidity of the MBB becomes much more

severe in the multivariate setting, with empirical sizes approaching 1. The tendencies for the

MWB methods to display oversize for small T in the univariate setting are countered by the

undersize present for increasing N . This is particularly noticeable for the BWB and DWB.

The AWB maintains quite good size properties, and even shows smaller undersize than the

SWB.

The overall conclusion of the univariate simulation study that the SWB and AWB perform

best remains true in the multivariate case. In the multivariate case the BWB and DWB

methods suffer from severe undersize. The MBB is generally oversized, in particular under

heteroskedasticity where its empirical size can approach 1. The AWB method performs

reasonably well under both homoskedasticity and heteroskedasticity. The same is observed

for the SWB, though this may be an artifact of the particular DGPs used in this simulation

study, as it is known to be asymptotically invalid if dynamic dependence between units is

present. The AWB method however provides an asymptotically valid alternative with similar

finite sample properties.
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Table 3: Empirical rejection frequencies under H1 of bootstrap
group-mean ADF tests under homoskedasticity

VP N T DS MBB BWB DWB AWB SWB

HOM 10 25 IID 0.205 0.025 0.016 0.082 0.072
VAR1 0.239 0.059 0.031 0.165 0.148
VAR2 0.126 0.022 0.009 0.071 0.059

CF 0.175 0.055 0.035 0.102 0.090
50 IID 0.573 0.169 0.165 0.409 0.373

VAR1 0.488 0.190 0.186 0.393 0.340
VAR2 0.666 0.293 0.317 0.558 0.485

CF 0.174 0.134 0.114 0.139 0.124
100 IID 0.942 0.705 0.778 0.901 0.878

VAR1 0.936 0.700 0.763 0.906 0.909
VAR2 0.815 0.522 0.592 0.795 0.769

CF 0.609 0.448 0.451 0.559 0.567
25 25 IID 0.296 0.005 0.002 0.063 0.053

VAR1 0.281 0.002 0.001 0.073 0.063
VAR2 0.129 0.003 0.001 0.028 0.025

CF 0.217 0.034 0.015 0.109 0.098
50 IID 0.933 0.206 0.277 0.795 0.767

VAR1 0.599 0.083 0.080 0.450 0.489
VAR2 0.487 0.056 0.056 0.325 0.318

CF 0.256 0.137 0.114 0.196 0.174
100 IID 1.000 0.979 0.995 1.000 1.000

VAR1 0.995 0.789 0.874 0.986 0.986
VAR2 0.993 0.790 0.905 0.989 0.988

CF 0.395 0.304 0.303 0.352 0.346

Notes: see Table 2.
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Table 4: Empirical rejection frequencies under H0 of bootstrap
group-mean ADF tests under heteroskedasticity

VP N T DS MBB BWB DWB AWB SWB

LPB 10 25 IID 0.006 0.014 0.002 0.033 0.027
50 0.005 0.024 0.011 0.047 0.045

100 0.007 0.032 0.029 0.042 0.035
25 25 0.001 0.000 0.000 0.016 0.015

50 0.000 0.008 0.000 0.035 0.031
100 0.000 0.011 0.012 0.041 0.046

DST 10 25 0.859 0.083 0.025 0.080 0.051
50 0.889 0.059 0.029 0.067 0.037

100 0.891 0.047 0.040 0.064 0.044
25 25 0.974 0.020 0.003 0.025 0.022

50 0.993 0.013 0.005 0.032 0.026
100 0.999 0.014 0.008 0.027 0.027

ISV 10 25 0.302 0.061 0.029 0.052 0.048
50 0.301 0.051 0.030 0.050 0.033

100 0.309 0.049 0.049 0.055 0.052
25 25 0.341 0.037 0.014 0.037 0.022

50 0.345 0.034 0.018 0.038 0.026
100 0.347 0.030 0.024 0.039 0.038

Notes: see Table 2.

5 Conclusion

In this paper we developed a multivariate invariance principle for three modifications of the

wild bootstrap that are designed to capture serial dependence as well as unconditional het-

eroskedasticity. The bootstrap invariance principle was subsequently applied to multivariate

unit root testing and utilized to establish the asymptotic validity of unit root tests based on

the modified wild bootstrap methods. The modified wild bootstrap methods have as ma-

jor advantage over the autoregressive sieve wild bootstrap that it can also be applied if the

dimension of the system is relatively large, a setting in which the sieve wild bootstrap is inap-

propriate. Moreover, the modified wild bootstrap methods do not require the specification of

either the form of time-variation in the volatility or the form of the serial dependence, thereby

making it a convenient tool for practitioners.

We examined the finite sample performance of the MWB methods in two simulation stud-

ies involving univariate and multivariate unit root testing. For univariate unit root testing

the MWB methods performed very similar to the SWB, which is known for its excellent per-

formance in small samples. In the multivariate setting, where the SWB is invalid, the MWB

methods performed reasonably well, in particular the AWB method. Despite its asymptotic

invalidity the SWB did well in the simulations, yet it should not be routinely applied as the

good performance may be specific to our simulation DGP. Our simulation studies also clearly
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show that the moving block bootstrap is not appropriate in the presence of unconditional

volatility changes and can lead to massive size distortions.

The choice of the tuning parameter in the MWB represents a trade off between capturing

serial dependence and (abrupt) changes in the volatility. Its selection in practice remains an

open issue and is an important topic for future research, even though our simulation study

showed that an ad hoc specification of the tuning parameter can lead to satisfactory results

in finite samples, in particular for the AWB. Overall, it appears that the MWB methods have

much potential for dealing with serial dependence and unconditional heteroskedasticity in a

flexible and nonparametric manner.
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A Appendix: Proofs of Main Results

In order to prove the main results, we need the following preliminary lemmas. The proofs of

these lemmas are based on standard arguments; details can be found in Appendix B.

Lemma A.1. Let σt = σ(t/T ) satisfy Assumption 1(ii). Then the following hold:

1. For any h = 1, . . . , T − 1,
∑T−h

t=1 ‖σt+h − σt‖ ≤ C1h, where C1 < ∞ is a constant not

depending on T .

2. For any ` = 1, . . . , T and k = dT/`e, max1≤m≤k
∑`

s=1

∥∥σ(m−1)`+s − σ(m−1)`+1

∥∥ =

O(`2/T ).

Lemma A.2. Let vt satisfy Assumption 1(i) and define Γ(h) = E vtv′t+k. Then

∞∑
h=−∞

‖Γ(h)‖ <∞ and, as T →∞, T−1
T−1∑

h=−T+1

|h| ‖Γ(h)‖ = o(1).

Lemma A.3. Let ut satisfy Assumption 1 and let k = dT/`e, where ` satisfies Assumption

2. Then for all r ∈ [0, 1], we have that k−1
∑bkrc

m=1 UmU
′
m

p−→ Ω(r), where Ω(r) is defined in

(6).
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We can now prove the main results.

Proof of Lemma 1. The proof uses the same reasoning as the proofs of Lemma 1 of Cav-

aliere (2005) and Lemma 2 of Cavaliere et al. (2010). Define εt =
∑∞

k=0(Et vt+k −Et−1 vt+k).
It then follows from Theorem 3.1 of Hansen (1992) that

T−1/2
bTrc∑
t=1

σtεt = MT (r)− CT (r)
d−→
∫ r

0
σ(s) dB(s) = M(r),

where CT (r) = T−1/2
∑bTrc

t=1 (σt − σt−1)z
′
t − T−1/2σbTrcz

′
bTrc and zt =

∑∞
k=1 Et vt+k. As

T−1/2 sup1≤t≤T ‖zt‖ = op(1) (Hansen, 1992, p. 496), by Lemma A.1(a) we have that

CT (r) ≤ T−1/2 sup
1≤t≤T

‖zt‖
bTrc∑
t=1

‖σt − σt−1‖+ T−1/2 sup
1≤t≤T

∥∥σtz′t∥∥
≤ T−1/2 sup

1≤t≤T
‖zt‖C + σ̃T−1/2 sup

1≤t≤T
‖zt‖ ,

which implies that MT (r)
d−→M(r).

Proof of Theorem 1. We treat the three bootstrap methods in turn.

BWB: Define Mr = dbTrc/`e and Nr = min(`, bTrc−Mr) such that we can write M∗T (r) =

T−1/2
∑Mr

m=1

∑Nr
s=1 ν

∗
mu(m−1)`+s. We first show thatM∗T (r) = T−1/2

∑Mr
m=1

∑`
s=1 ν

∗
mu(m−1)`+s+

op(1) uniformly in r. For this purpose we show that

P∗
(

sup
r

∥∥∥∥∥T−1/2 ∑̀
s=Nr+1

ν∗Mr
u(Mr−1)`+s

∥∥∥∥∥ > ε

)
≤ P∗

T−1/2 max
1≤m≤k

max
1≤j≤`

∥∥∥∥∥∥
∑̀
s=j

ν∗mu(m−1)`+s

∥∥∥∥∥∥ > ε


= P∗

(
k−1/2 max

1≤m≤k
|ν∗m| bT,m > ε

)
p−→ 0,

where bT,m = max1≤j≤` `
−1/2

∥∥∥∑j
s=1 u(m−1)`+s

∥∥∥. Note that, for 2 < p < 2 + δ,

P∗
(
k−1/2 max

1≤m≤k
|ν∗m| bT,m > ε

)
≤

k∑
m=1

P∗
(
|ν∗m| > εk1/2b−1T,m

)
≤

k∑
m=1

ε−pk−p/2bpT,m E∗ |ν∗m|
p .

Write Sm,j =
∑j

s=1 v(m−1)`+s and let σ̃ = sup0≤r≤1 ‖σ(r)‖. Then

bT,m ≤ 2`−1/2σ̃ max
1≤j≤`

‖Sm,j‖+ 2`−1/2
∑̀
s=1

∥∥σ(m−1)`+s − σ(m−1)`+1

∥∥∥∥v(m−1)`+s∥∥
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and, defining C1 and C2 as finite constants not depending on T ,

E bpT,m ≤ C1`
−p/2 E

(
max
1≤j≤`

‖Sm,j‖
)p

+ C2`
−p/2 E

(∑̀
s=1

∥∥σ(m−1)`+s − σ(m−1)`+1

∥∥∥∥v(m−1)`+s∥∥
)p

.

By the stationarity of {vt} and Corollary 3 in Hansen (1991), we have that for all m = 1, . . . , k,

E
(

max
1≤j≤`

‖Sm,j‖
)p

= E
(

max
1≤j≤`

‖S1,j‖
)p
≤ C3`

p/2(E |vs|2+δ)p/(2+δ),

where C3 is a finite constant not depending on T . Furthermore, by Minkowski’s inequality,

the stationarity of vt and Lemma A.1(b), we have for all m = 1, . . . , k,

E

(∑̀
s=1

∥∥σ(m−1)`+s − σ(m−1)`+1

∥∥∥∥v(m−1)`+s∥∥
)p

≤ E ‖vt‖p
(

max
1≤m≤k

∑̀
s=1

∥∥σ(m−1)`+s − σ(m−1)`+1

∥∥)p = o(1).

It then directly follows that for all m = 1, . . . , k, E bpT,m < ∞, and consequently that

P∗
(
k−1/2 max1≤m≤k |ν∗m| bT,m > ε

) p−→ 0. Therefore, defining Um = `−1/2
∑`

s=1 u(m−1)`+s and

U∗T (r) = k−1/2
∑Mr

m=1 Umν
∗
m, it then follows directly that M∗T (r) = U∗T (r) + op(1) uniformly in

r.

We can then apply the same reasoning as in Cavaliere et al. (2010, proof of Lemma A.5). Con-

ditionally on {Um}km=1, S
∗
T (r) is a Gaussian process with independent increments and covari-

ance E∗[U∗T (r)U∗T (r)′] = k−1
∑Mr

m=1 UmU
′
m. Therefore, the result follows if k−1

∑Mr
m=1 UmU

′
m

p−→
Ω(r) uniformly for all r ∈ [0, 1], with Ω(r) as defined in (6). However, as k−1

∑Mr
m=1 UmU

′
m is

monotonically increasing in r and the limiting function is continuous in r, uniform convergence

is implied by pointwise convergence (cf. Hansen, 2000, proof of Lemma A.10). Now note that

k−1
∑Mr

m=1 UmU
′
m = k−1

∑bTrc
m=1 UmU

′
m + Op(`

−1), and, by Lemma A.3, k−1
∑bkrc

m=1 UmU
′
m

p−→
Ω(r) for each r ∈ [0, 1]. This completes the proof of (4) for the BWB.

DWB: By virtue of the Cholesky decomposition we have ξ∗t =
∑`−1

s=0wt,sz
∗
t−s, where {z∗t }Tt=1

are i.i.d. N(0, 1),
∑`−1

s=0wt,swt+h,s = K
(
h
`

)
for 0 ≤ h ≤ `− 1, and wt,s = 0 for s ≥ t. Then

M∗T (r) = T−1/2
bTrc∑
t=1

ut

t∑
s=t−`+1

wt,t−sz
∗
s = T−1/2

bTrc∑
t=1

z∗t

bTrc∧t+`−1∑
s=t

wt,s−tus.

Now, by defining Ũr,t =
∑bTrc∧t+`−1

s=t wt,s−tus for 1 ≤ t ≤ T , we can conclude that, con-

ditionally on the original sample, M∗T (r) = T−1/2
∑bTrc

t=1 z∗t Ũr,t is a Gaussian process with
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independent increments. As in the proof of the BWB it then remains to show that

E∗M∗T (r)M∗T (r)′ = T−1
bTrc∑
t=1

Ũr,tŨ
′
r,t = T−1

bTrc∑
s=1

bTrc∑
t=1

usu
′
tK

(
s− t
`

)
p−→
∫ r

0
Ω(s) ds

uniformly in r. However, as this is a monotonically increasing process in r and the limit

process is continuous, showing pointwise convergence again suffices. It follows directly from

Theorem 2.1 of De Jong and Davidson (2000) that T−1
∑bTrc

s=1

∑bTrc
t=1 usu

′
tK
(
s−t
`

) p−→ ΩT (r),

as T−1/2ut satisfies their Assumption 2, and Assumptions 1 and 3 are also trivially satisfied.

Note that they only prove the result for r = 1, but the proof can be straightforwardly adapted

for any r ∈ [0, 1]. As ΩT (r)→ Ω(r) this completes the proof of (4) for the DWB.

AWB: We may write ξ∗t =
∑t

s=1 γ
t−sv∗s = (1−γ2)

∑t
s=1 γ

t−sz∗s , and therefore we have that

M∗T (r) = T−1/2(1− γ2)
bTrc∑
t=1

ût

t∑
s=1

γt−sz∗s = T−1/2(1− γ2)
bTrc∑
t=1

z∗t Ǔr,t,

where Ǔr,t =
∑bTrc

s=t γ
s−tus. As for the DWB, conditionally on the sample M∗T (r) is a Gaussian

process with independent increments. Therefore it remains to show that E∗M∗T (r)M∗T (r)′ =

T−1
∑bTrc

s=1

∑bTrc
t=1 usu

′
tγ

(s−t)/` p−→ Ω(r) for all r. As the kernel K(x) = θ|x| satisfies Assumption

1 of De Jong and Davidson (2000), the proof of (4) is again completed by their Theorem 2.1

which provides the required convergence in probability to Ω(r).

Proof of Theorem 2. For part (a) we need to derive the limit distributions of τgm and

τ∗gm under local alternatives. The limit distribution of τgm follows straightforwardly from the

established invariance principle in Lemma 1. In particular (see e.g. Phillips, 1987, 1988), it

follows directly from Lemma 1 that T−1/2xbTrc
p−→Mc(r), and using the continuous mapping

theorem one finds that T−1/2ydbTrc
d−→Md

c (r) and consequently that

τgm
d−→ 1

N

N∑
i=1

Md
c,i(1)2 −Md

c,i(0)2 − σ̄i,i
2
∫ 1
0 M

d
c,i(r)

2 dr
. (A.1)

For the bootstrap methods we first need to adapt the bootstrap invariance principle of Theo-

rem 1 to acknowledge the fact that now {ût} is used to construct the bootstrap errors rather

than {ut}. That is, we need the bootstrap invariance principle

X∗T (r) = T−1/2x∗bTrc = T−1/2
bTrc∑
t=1

ξ∗t ût
d∗−→p M(r). (A.2)
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For τ∗gm it then follows straightforwardly that

τ∗gm
d∗−→p

1

N

N∑
i=1

Md
i (1)2 −Md

i (0)2 − σ̄i,i
2
∫ 1
0 M

d
i (r)2 dr

, (A.3)

by the bootstrap invariance principle (A.2) and the continuous mapping theorem. We now

again treat the three bootstrap methods in turn to prove (A.2).

BWB: We follow the same approach as in the proof of Theorem 1 to show that X∗T (r) =

T−1/2
∑Mr

m=1

∑`
s=1 ν

∗
mû(m−1)`+s+op(1) uniformly in r. Define b̂T,m = max1≤j≤`

∥∥∥`−1/2∑`
s=j û(m−1)`+s

∥∥∥
and note that as ût = ut − (ρ̂− ρ)xt−1 + (ρ̂− 1)x̄, we have that

b̂T,m ≤ bT,m + max
1≤j≤`

‖ρ̂− ρ‖

∥∥∥∥∥∥`−1/2
∑̀
s=j

x(m−1)`+s−1

∥∥∥∥∥∥+ ‖(ρ̂− 1)x̄‖ .

For the third term ‖(ρ̂− 1)x̄‖ = Op(T
−1/2), while for the second term we have that

max
1≤j≤`

∥∥∥∥∥∥`−1/2
∑̀
s=j

x(m−1)`+s−1

∥∥∥∥∥∥ ≤ 2 max
1≤j≤`

∥∥∥∥∥`−1/2
j∑
s=1

x(m−1)`+s−1

∥∥∥∥∥
≤ 2 max

1≤j≤`

∥∥∥∥∥`−1/2jx(m−1)` + `−1/2
j∑
s=2

su(m−1)`+s−1

∥∥∥∥∥
≤ 2`1/2

∥∥x(m−1)`∥∥+ 2σ̃`1/2
∑̀
s=1

∥∥v(m−1)`+s∥∥ = Op(`
1/2T 1/2) +Op(`

3/2).

As ‖ρ̂− ρ‖ = Op(T
−1), it then follows that k−p/2

∑k
m=1 b̂

p
T,m = k−p/2

∑k
m=1 b

p
T,m + op(1) and

consequently, along the lines of the proof of Theorem 1, that

P∗
(

sup
r

∥∥∥∥∥T−1/2 ∑̀
s=Nr+1

ν∗mû(m−1)`+s

∥∥∥∥∥ > ε

)
= P∗

(
k−1/2 max

1≤m≤k
|ν∗m| b̂T,m > ε

)
p−→ 0.

Define Ûm = `−1/2
∑`

s=1 û(m−1)`+s and S∗T (r) = k−1/2
∑Mr

m=1 Ûmν
∗
m, such that condition-

ally on {Ûm}km=1, S
∗
T (r) is a Gaussian process with independent increments and covari-

ance E∗[S∗T (r)S∗T (r)′] = k−1
∑Mr

m=1 ÛmÛ
′
m. The result then follows if we can show that

k−1
∑Mr

m=1 ÛmÛ
′
m

p−→ k−1
∑Mr

m=1 UmU
′
m for all r ∈ [0, 1], as uniform convergence is again

implied by pointwise convergence.
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Note that

k−1

∥∥∥∥∥
Mr∑
m=1

ÛmÛ
′
m −

Mr∑
m=1

UmU
′
m

∥∥∥∥∥ ≤ 2(k`)−1 ‖ρ̂− ρ‖
Mr∑
m=1

∥∥∥∥∥∑̀
s=1

u(m−1)`+s

∥∥∥∥∥
∥∥∥∥∥∑̀
s=1

x(m−1)`+s−1

∥∥∥∥∥
+ 2(k`)−1 ‖ρ̂− 1‖ ‖x̄‖

Mr∑
m=1

∥∥∥∥∥∑̀
s=1

u(m−1)`+s

∥∥∥∥∥+ (k`)−1 ‖ρ̂− ρ‖2
Mr∑
m=1

∥∥∥∥∥∑̀
s=1

x(m−1)`+s

∥∥∥∥∥
2

+ 2(k`)−1 ‖ρ̂− 1‖ ‖ρ̂− ρ‖ ‖x̄‖
Mr∑
m=1

∥∥∥∥∥∑̀
s=1

x(m−1)`+s

∥∥∥∥∥+Mr(k`
−1 ‖ρ̂− 1‖2 ‖x̄‖2 .

As
∥∥∥∑`

s=1 x(m−1)`+s

∥∥∥ = Op(`T
−1/2),

∥∥∥∑`
s=1 u(m−1)`+s

∥∥∥ = Op(`
1/2), ‖ρ̂− ρ‖ = Op(T

−1) and

‖x̄‖ = Op(T
1/2), it follows straightforwardly that k−1

∑Mr
m=1 ÛmÛ

′
m = k−1

∑Mr
m=1 UmU

′
m +

Op(k
−1/2), and (A.2) now follows directly from the proof of Theorem 1.

DWB: As for Theorem 1 we can write X∗T (r) = T−1/2
∑bTrc

t=1 z∗t
∑bTrc∧t+`−1

s=t wt,s−tûs. Then

by the same reasoning as for the BWB, for (A.2) to hold it remains to show that

E∗X∗T (r)X∗T (r)′ = T−1
bTrc∑
s=1

bTrc∑
t=1

ûsû
′
tK

(
s− t
`

)
= T−1

bTrc∑
s=1

bTrc∑
t=1

usu
′
tK

(
s− t
`

)
+ op(1)

for all r ∈ [0, 1]. Note that
∑bTrc

s=1

∑bTrc
t=1 ûsû

′
tK
(
s−t
`

)
=
∑`

h=0K
(
h
`

)∑bTrc−h
t=1 ûtû

′
t+h +∑`

h=1K
(
h
`

)∑bTrc−h
t=1 ût+hû

′
t. By applying the Cauchy-Schwartz inequality we have that

T−1

∥∥∥∥∥∥
∑̀
h=0

K

(
h

`

) bTrc−h∑
t=1

(ûtû
′
t+h − utu′t+h)

∥∥∥∥∥∥
≤ 2T−1 ‖ρ̂− ρ‖

∑̀
h=0

K

(
h

`

)bTrc−h∑
t=1

‖ut‖2
1/2bTrc−h∑

t=1

‖xt‖2
1/2

+ 2T−1 ‖ρ̂− 1‖ ‖x̄‖
∑̀
h=0

K

(
h

`

) bTrc−h∑
t=1

‖ut‖+ T−1 ‖ρ̂− ρ‖2
∑̀
h=0

K

(
h

`

) bTrc−h∑
t=1

‖xt‖2

+ 2T−1 ‖ρ̂− 1‖ ‖ρ̂− ρ‖ ‖x̄‖
∑̀
h=0

K

(
h

`

) bTrc−h∑
t=1

‖xt‖+ ‖ρ̂− 1‖2 ‖x̄‖2
∑̀
h=0

K

(
h

`

)
.

It then follows that T−1
∑bTrc

s=1

∑bTrc
t=1 ûsû

′
tK
(
s−t
`

)
= T−1

∑bTrc
s=1

∑bTrc
t=1 usu

′
tK
(
s−t
`

)
+Op(`T

−1/2).
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AWB: Analogously to the proof for the DWB we need to show that

E∗ Y ∗T (r)Y ∗T (r)′ = T−1
bTrc∑
s=1

bTrc∑
t=1

ûsû
′
tγ

(s−t)/` = T−1
bTrc∑
s=1

bTrc∑
t=1

usu
′
tγ

(s−t)/` + op(1)

for all r ∈ [0, 1]. Using that γ = θ1/`, we can write

T−1

∥∥∥∥∥∥
bTrc−1∑
h=0

θ
h
`

bTrc−h∑
t=1

(ûtû
′
t+h − utu′t+h)

∥∥∥∥∥∥
≤ 2T−1 ‖ρ̂− ρ‖

bTrc−1∑
h=0

θ
h
`

bTrc−h∑
t=1

‖ut‖2
1/2bTrc−h∑

t=1

‖xt‖2
1/2

+ 2T−1 ‖ρ̂− 1‖ ‖x̄‖
bTrc−1∑
h=0

θ
h
`

bTrc−h∑
t=1

‖ut‖+ T−1 ‖ρ̂− ρ‖2
∑̀
h=0

θ
h
`

bTrc−h∑
t=1

‖xt‖2

+ 2T−1 ‖ρ̂− 1‖ ‖ρ̂− ρ‖ ‖x̄‖
bTrc−1∑
h=0

θ
h
`

bTrc−h∑
t=1

‖xt‖+ ‖ρ̂− 1‖2 ‖x̄‖2
bTrc−1∑
h=0

θ
h
` .

As
∑bTrc−1

h=0 θ
h
` = 1−θbTrc/`

1−θ1/` = − `
ln θ + o(`), (A.2) follows straightforwardly.

For part (b), first note that it follows analogously to Lemma 6 of Palm et al. (2011) that

τgm diverges to −∞ under H1. Before we can derive the bootstrap distribution, we need a

reparametrization of our model that is better suited to deal with fixed alternatives. Let us

assume without loss of generality that for the first N1 units ρi < 1, while for the remaining

units ρi = 1. Then define ρ̃ = diag(ρ̃1, . . . , ρ̃N ), where ρ̃i = plim ρ̂i for i = 1, . . . , N1, where

ρ̂i is the estimator used in step 1 of Algorithm 1, and ρ̃i = 1 for i = N1 + 1, . . . , N . Next let

ũt = ut− (ρ̃−ρ)xt−1 such that xt = ρ̃xt−1 + ũt. Note that we can write ũt = σ̃tṽt such that it

satisfies Assumption 1. It then straightforwardly follows that T−1/2
∑bTrc

t=1 ũt
d−→ M̃(r), where

M̃(r) is defined implicitly.

To derive the bootstrap limit distribution we can then simply reproduce the proof of (A.2).

The only modification required is when the transition is made in the variance estimators

involving ût to the unobservable ut. In that proof simply replace ut by ũt and ρ by ρ̃ and

note that
∥∥∥∑`

s=1 x(m−1)`+s

∥∥∥ = Op(`
1/2),

∥∥∥∑`
s=1 ũ(m−1)`+s

∥∥∥ = Op(`
1/2), ‖ρ̂− ρ̃‖ = Op(T

−1/2)

and ‖x̄‖ = Op(T
−1/2), then the proof goes through straightforwardly. We then recover (A.3)

with M̃(r) replacing M(r), and the asymptotic power result follows directly.8

8The bootstrap may appear to reproduce a different distribution under the alternative than under the
null, but this is not so. It is purely an artefact of our specific parametrization; if a DF-type estimator of ρ̂i is
used in step 1 of the algorithm, ρ cannot be estimated consistently. This is no problem as ρ̃ can be estimated
consistently, and the properties of ũt under the alternative are identical to ut under the null. The exact value
of ρ under a fixed alternative therefore does not matter (also see Remark 7 of Palm et al., 2011).
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B Appendix: Proofs of Preliminary Lemmas

Proof of Lemma A.1. For the proof of (a), suppose that the M < ∞ discontinuities are

located at 0 < x1, . . . , xM < 1, and use these points to partition [0, 1] where we add the points

x0 = 0 and xM+1 = 1. Let Ti = bxiT c, then

T−h∑
t=1

‖σt+h − σt‖ =
M∑
i=1

Ti∧T−h∑
t=Ti−1+1

‖σt+h − σt‖

=
M+1∑
i=1

Ti−h∑
t=Ti−1+1

‖σt+h − σt‖+
M+1∑
i=1

Ti∧T−h∑
t=Ti−h+1

‖σt+h − σt‖ = R1,h +R2,h.

Note that by construction in the terms contained in R1,h no jumps occur. Therefore these

terms can be bounded using the Lipschitz condition. In particular, for some C <∞, we have

that

R1,h =
M∑
i=1

Ti−h∑
t=Ti−1+1

∥∥∥∥σ( t+ h

T

)
− σ

(
t

T

)∥∥∥∥ ≤ M∑
i=1

(Ti−Ti−1+1−h)C
h

T
= C(T−h+1)

h

T
≤ Ch.

On the other hand, all discontinuities occur inR2,T . Yet, as they are finite, σ̃ = sup0≤r≤1 ‖σ(r)‖ <
∞, and for each i the inner sum contains at most h items, we have that

R2,T ≤
M∑
i=1

Ti∧T−h∑
t=Ti−h+1

2σ̃ ≤ 2σ̃Mh.

The result then follows with C1 = C + 2σ̃M .

For (b) note that given the finite number of discontinuities and the right-continuity of σ(·),
there is a T ∗ such that for all T > T ∗ no break occurs between σ (r + ηT ) and σ (r) for any

sequence {ηT }∞T=1 such that ηT → 0 as T → ∞. Then taking ηT = `/T , there is a T ∗ such

that for all T > T ∗:

max
1≤m≤k

∑̀
s=1

∥∥σ(m−1)`+s − σ(m−1)`+1

∥∥ ≤ sup
0≤r≤1−`/T

∑̀
s=1

∥∥∥∥σ (r +
s

T

)
− σ

(
r +

1

T

)∥∥∥∥
≤ sup

0≤r≤1−`/T

∑̀
s=1

C
s− 1

T
≤ C`2/T.

Proof of Lemma A.2. By Proposition 3.1(b) of Lahiri (2003) and Assumption 1 we have

that, as 1/p− 1/(2 + δ) < δ/(2 + δ),

∞∑
h=−∞

‖Γ(h)‖ ≤ 8C1(N) (E ‖vt‖p)
∞∑

h=−∞
α(h)δ/(2+δ) ≤ C2(N)

∞∑
h=−∞

α(h)1/p−1/(2+δ) <∞,
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where C1(N) and C2(N) are constants not depending on T . Define QT such that QT → ∞
and QT = o(T ) as T →∞. Then

T−1
T−1∑
h=0

h ‖Γ(h)‖ = T−1
QT∑
h=0

m ‖Γ(h)‖+ T−1
T−1∑

h=QT+1

h ‖Γ(h)‖

≤ QTT−1
QT∑
h=0

‖Γ(h)‖+

T−1∑
h=QT+1

‖Γ(h)‖ = o(1),

as
∑QT

h=0 ‖Γ(h)‖ = O(1) by the first part of the lemma and
∑T−1

h=QT+1 ‖Γ(h)‖ = o(1) by

Theorem 2.25 of Davidson (2002).

Proof of Lemma A.3. Note that

k−1
bkrc∑
m=1

UmU
′
m − Ω(r) = k−1

bkrc∑
m=1

(UmU
′
m − EUmU ′m) +

k−1 bkrc∑
m=1

EUmU ′m − Ω(r)

 .

We first show that k−1
∑bkrc

m=1(UmU
′
m−EUmU ′m) using an adaptation of Theorem 3.1 of Lahiri

(2003) to the case of nonstationary volatility, and for the sum running up to bkrc instead of

k. Note that Define Vm,T = UmU
′
mI(‖Um‖ < (T/`)1/8). Also let Wm,T = UmU

′
m−Vm,T , then

k−1
bkrc∑
m=1

(UmU
′
m − EUmU ′m) = k−1

bkrc∑
m=1

(Vm,T − EVm,T ) + k−1
bkrc∑
m=1

(Wm,T − EWm,T ).

Define ‖f‖∞ = sup
{
|f(x)| : x ∈ RN

}
. By applying Lemma 3.1 of Lahiri (2003) element by

element, with fij,T (x) = xixjI(‖x‖ < (T/`)1/8), we have that

E

∥∥∥∥∥∥k−1
bkrc∑
m=1

(Vm,T − EVm,T )

∥∥∥∥∥∥
2

≤ k−2C ‖f‖2∞ k

1 +
∑

1≤m≤bkrc

α(m`)


= C(T/`)1/2k−1

1 +
∑

1≤m≤bkrc

α(m`)


≤ Ck−1/2

1 +

bkrc∑
m=1

α(m)

 = o(1),

as C <∞ does not depend on T . Hence, by the Markov inequality we have that k−1
∑bkrc

m=1(Vm,T−
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EVm,T ) = op(1). Furthermore,

E

∥∥∥∥∥∥k−1
bkrc∑
m=1

(Wm,T − EWm,T )

∥∥∥∥∥∥ ≤ k−1
bkrc∑
m=1

E ‖Wm,T − EWm,T ‖ ≤ 2k−1
bkrc∑
m=1

E ‖Wm,T ‖ .

As ‖Wm,T ‖ ≤ ‖Um‖2 for all T , then as Um = Op(1), we can conclude by the extended domi-

nated convergence theorem that k−1
∑k

m=1 E ‖Wm,T ‖ = o(1) and hence that k−1
∑bkrc

m=1(Wm,T−
EWm,T ) = op(1) by the Markov inequality. This completes the first part of the proof.

Next we show that k−1
∑bkrc

m=1 EUmU ′m
p−→ Ω(r) for r ∈ [0, 1]. First note that∥∥∥∥∥∥k−1

bkrc∑
m=1

EUmU ′m − Ω(r)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥k−1

bkrc∑
m=1

EUmU ′m − ΩT (r)

∥∥∥∥∥∥+ ‖ΩT (r)− Ω(r)‖

Then, noting that σ̃ = max1≤t≤T ‖σt‖ <∞, we have∥∥∥∥∥∥k−1
bkrc∑
m=1

EUmU ′m − ΩT

∥∥∥∥∥∥
=

∥∥∥∥∥∥T−1
bkrc∑
m=1

∑̀
s1=1

∑̀
s2=1

σ(m−1)`+s1Γ(s1 − s2)σ′(m−1)`+s2 − T
−1
bTrc∑
t1=1

bTrc∑
t2=1

σt1Γ(t1 − t2)σ′t2

∥∥∥∥∥∥
≤ T−1

k∑
m1=1

k∑
m2=1

(1− δm1m2)
∑̀
s1=1

∑̀
s2=1

∥∥∥σ(m1−1)`+s1Γ ([m1 −m2]`+ [s1 − s2])σ′(m2−1)`+s2

∥∥∥
≤ T−1σ̃2

k∑
m1=1

k∑
m2=1

(1− δm1m2)
∑̀
s1=1

∑̀
s2=1

‖Γ ([m1 −m2]`+ [s1 − s2])‖

≤ 2σ̃2
k

T

∑̀
m=1

m ‖Γ(m)‖+ 2ω̃2
T−1∑

m=`+1

T −m
T

‖Γ(m)‖ = o(1),

where the final equality follows from Lemma A.2.

To finalize the proof, define ΣT,0(r) = T−1
∑bTrc

t=1 σtσ
′
t and ΥT (r) = T−1

∑bTrc−1
h=1

∑bTrc
t=h+1 σtΓ(h)σ′t−h,

such that ΩT (r) = ΣT,0(r) + ΥT (r) + ΥT (r)′. Now let Υ̃T (r) = T−1
∑bTrc−1

h=1

∑bTrc
t=1 σtΓ(h)σ′t
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and note that, using Lemmas A.1 and A.2,

∥∥∥ΥT (r)− Υ̃T (r)
∥∥∥ ≤ T−1 T−1∑

h=1

‖Γ(h)‖

[
T∑

t=h+1

‖σt‖ ‖σt − σt−h‖+

h∑
t=1

‖σt‖2
]

≤ σ̃T−1
T−1∑
h=1

‖Γ(h)‖

[
T∑

t=h+1

‖σt − σt−h‖+ hσ̃

]

≤ σ̃(C1 + σ̃)T−1
T−1∑
h=1

h ‖Γ(h)‖ = o(1),

which confirms that ΩT (r)→ Ω(r).

40


	1 Introduction
	2 Invariance Principle
	2.1 The Model and Preliminary Results
	2.2 Modified Wild Bootstrap (MWB) Methods
	2.3 Bootstrap Invariance Principle

	3 Unit Root Testing
	4 Monte Carlo Simulations
	4.1 Univariate Unit Root Tests
	4.2 Multivariate (Panel) Unit Root Tests

	5 Conclusion
	A Appendix: Proofs of Main Results
	B Appendix: Proofs of Preliminary Lemmas

