The stapedius muscle of the rat: developmental aspects and adaptive properties of stapedius muscle fibre composition

Citation for published version (APA):

Document status and date:
Published: 01/01/2008

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 22 Jul. 2019
Chapter 7

Summary

and Summary in Dutch
Summary

It is still a subject of debate in which manner the stapedius muscle (SM) modulates the acoustical energy in its way through the middle ear towards the cochlea and what its purpose may be. It is the aim of this thesis to contribute to the understanding of the function of the SM. Three major functions usually are attributed to the SM activity; they are incorporated in the injury preventing, interference and desensitization theory. The ossicular-chain fixation theory is also mentioned, which includes that middle ear (MEM) contraction serves to control the position of the ossicles for optimal sound transmission. The tensor tympani muscle is not part of the present thesis. Besides describing the aims and design of our study, the gross anatomy of the middle ear, auditory system and proposed functions of the SM are addressed in Chapter 1.

In Chapter 2 we present the myosin composition of SM fibres of the rat, using consecutive complete SM cross-sections, which were processed by enzymehistochemistry (EHC) to determine acid/alkali lability of myofibrillar adenosine triphosphatase (mATPase) or by immunohistochemistry (IHC) using myosin heavy chain (MHC) antibodies. Fibres were assigned to different mATPase categories on the basis of combinations of staining intensities. Fibres that did not meet the criteria of the mATPase categories type I, IIA, IIX or IIB were assigned to type 'Misc' (miscellaneous) categories. Method accuracy was determined in co-processed extensor digitorum longus (EDL). Per mATPase category the fibres were attributed to groups with specific MHC compositions. It was shown that IHC is complementary to EHC to detect amounts of myosin isoforms that are not detected by EHC. In turn, EHC is able to determine the MHC isoform expressed most dominantly. SM fibres were assigned to the mATPase type IIA category in about 25%, to the type IIX in 60% and 15% to a 'Misc' category (in which most fibres expressed MHC I). All SM fibres expressed two or more MHC isoforms, with a weak immunoreactivity (IR) to MHC IIB, and an intermediate to strong IR to MHC IIA and/or IIX in most fibres. These findings confirm the hypothesis that most SM fibres have the capacity to contract fast and have the better fatigue resistance.

In Chapter 3 we describe developmentally associated changes of myosin composition of SM fibres. We used consecutive complete SM cross-sections (taken from rats on post natal days (PNDs) 7, 14, 16, 21, 28, 42 and 84. The muscle fibre classification method applied was essentially the same as used in Chapter 2. Neonatal MHC expression could not be documented with the mAb used. Embryonal (Emb) MHC was expressed at PND 7, very little at PND 14 and none at later PND. Expression of MHC IIB, which was present in almost 50% of the fibres at PND 7 and 14, diminished to 3% at PND 84. A decrease in the number of MHC hybrid fibres was found. These results show that the SM is a precociously developing muscle, moreover that the expression of the adult MHC isoform phenotype coincides with the onset of auditory function in the third postnatal week.
In Chapter 4 we describe the effect of auditory sound deprivation and stimulation on brain stem auditory evoked responses (ABRs) during the maturation period of the rat auditory system. At PND 21, rats were categorized in 3 groups: an auditory deprivation group in which a bilateral average conductive hearing loss of 27 dB was surgically induced, an auditory activation group exposed to 65-90 dB sound pressure level and a control group. ABR recordings were performed on PND 84. No differences were observed in the inter peak latencies (IPLs) of peaks I-IV between the three groups. Possible confounding factors explaining the discrepancy between these results and those of other animal studies were reviewed. We conclude that the noise exposition did not cause injury to the cochlea nor did the sound deprivation hinder the maturation of the rat auditory system.

In Chapter 5 we report on investigations concerning adaptation of SM fibre type composition comparable to those in skeletal muscle; interventions unloading the skeletal muscle cause slow-to-fast MHC conversions, whereas fast-to-slow conversions occur when the muscle is engaged in resistance training and endurance exercise. We investigated the difference in myosin composition of muscle fibres from SMs of rats exposed to noise, from auditory deprived rats and from rats exposed to low-level ambient noise (control group). A slow to fast shift after sound deprivation (SM unloading) suggests that the SM needs a certain degree of daily activity evoked by environmental sound to sustain its normal composition. Findings are also supportive of the idea that the SM is frequently active in the control group, where ambient noise did not exceed the 80 dB sound pressure level (SPL). The injury preventing purpose of the SM was supported to some extent by showing changes of SM fibre composition when the rats were exposed to longstanding noise (SM training). Our results are in favour of another postulated function of the SM; the unmasking of high frequency signals in low frequency background noise in every day life.

Finally, Chapter 6 reflects on the method of identification of muscle fibres in the SM and on applying the most meaningful markers to address muscle fibre properties. Furthermore, peculiarities encountered when examining the SM, involving widespread MHC hybridism and presence or either absence of certain MHC isoforms, is discussed. We suggest a functional purpose of the complex SM fibre composition and MHC hybridism. The fast maturing of the neonatal rat SM, exemplifies the functional relevance of the SM, which is discussed relating it to the increased susceptibility to noise induced hearing loss (NIHL) in the premature human infant. The findings from the noise exposition and auditory deprivation studies compared to the control group are in favour of an SM having a high daily activity level even in the absence of high noise levels that is supportive of the interference and desensitization function. These sound modulating functions and the increased susceptibility to NIHL possibly caused by loss of SM function, as is documented in literature, are in favour of re-addressing the preservation of SM function in surgery for otosclerosis.
Samenvatting

Het is nog steeds een onderwerp van discussie op welke manier de musculus stapedius (SM) het geluid op zijn weg door het middenoor richting slakkenhuis moduleert en wat daar de bedoeling van kan zijn. Het is het doel van dit proefschrift om bij te dragen tot het beter begrijpen van de functie van de SM. Drie belangrijke functies worden gewoonlijk toegeschreven aan de activiteit van de SM; zij maakt deel uit van de theorie van preventie van binnenoorbeschadiging, interferentie en over-stimulatie in het kader van de perceptie van geluid. In de literatuur wordt ook de "gehoorbeentjes fixatie theorie" beschreven die inhoud dat contractie van de middenoorspieren de positie van de gehoorbeentjes controleert ten behoeve van optimale voortgeleiding van geluid. De musculus tensor tympani (TTM) maakt geen onderdeel uit van dit proefschrift. Naast de doelstellingen en de opzet van onze studie, zijn de globale anatomie van het middenoor, het auditieve systeem en de voorgestelde functies van de SM besproken in Hoofdstuk 1.

In Hoofdstuk 2 beschrijven we de spiervezelsamenstelling van de SM in de rat. Direct opeenvolgende dwarsdoorsneden van de SM werden bewerkt met mATPase enzymhistochemie (EHC), of met immunohistochemie (IHC). De nauwkeurigheid van de methodiek werd bepaald door synchroon met de coupes van de SM, coupes van een bekende spier, de extensor digitorum longus (EDL), te verwerken. De vezels werden op basis van combinaties van diverse myofibrillaire adenosine triphosphatase (mATPase) bewerkingen ingedeeld in verschillende mATPase categorieën. De vezels die niet voldeden aan de criteria van de mATPase categorie type I, IIA, IIX of IIB, werden toegewezen aan een mATPase categorie type 'Diverse' (in het Engels; miscellaneous, afgekort 'Misc'). In iedere mATPase categorie werden de spiervezels vervolgens ingedeeld in subgroepen met ieder een specifieke samenstelling van het soort zware keten van het myosine eiwit (in het Engels: myosin heavy chain, afgekort MHC). Van het MHC bestaan verschillende moleculaire vormen (isovormen); MHC I, IIA, IIX, IIB en meer. De in de spiervezel aanwezige MHC isovormen werden geïdentificeerd door de immunoreactiviteit (IR) van specifieke tegen verschillende MHC isovormen opgewekte monoklonale antilichamen (mAbs) te bepalen. De spiervezels van de SM werden in ongeveer 25% toegewezen aan de mATPase type IIA categorie, in 60% aan mATPase type IIX en in 15% aan een mATPase categorie 'Misc.' De SM spiervezels bevatten twee of meer MHC isovormen. De meeste vezels tonen een zwakke immunoreactiviteit (IR) voor de mAb tegen MHC IIB en een gemiddelde tot sterke IR voor de mAb tegen MHC IIA en/of IIX. Deze bevindingen bevestigen de hypothese dat de meeste SM vezels de capaciteit hebben snel te contraheren en dat ze een relatief groot uithoudingsvermogen bezitten.

In Hoofdstuk 3 beschrijven we de veranderingen in myosine samenstelling van spiervezels van de SM tijdens de postnatale ontwikkeling van de rat. Gebruikmakend van de eerder toegepaste methode uit Hoofdstuk 2 werd de spiervezeltype samenstelling beschreven van de SM van ratten op een aantal dagen.
na de geboorte (in het Engels postnatal day, afgekort PND); 7, 14, 16, 21, 28, 42 en 84. De neonale
MHC isovorm kon met het door ons gebruikte mAb niet worden aangetoond. De Embryonale (Emb) MHC
isovorm werd tot aan PND 14 gevonden. De op mATPase-gebaseerde classificatie toonde geen grote
wijzigingen na PND 21. Aanwezigheid van de MHC IIB isovorm, die in bijna 50% van de vezels bij PND 7
een aanwezig was, verminderde tot 3% bij PND 84, tevens zagen wij een daling van het aantal MHC
hybride vezels. Deze resultaten tonen aan dat de SM een relatief vroegrijpe spier is en dat de expressie
van het volwassen MHC isovorm fenotype van de SM samenvalt met het begin van de auditieve functie
in de derde postnatale week.

In Hoofdstuk 4 beschrijven we het effect van auditieve deprivatie en geluidsstimulatie op de auditief
opgewekte hersenstam potentialen (in het Engels auditory brainstem respons, afgekort ABR) tijdens de
rijingsperiode van het auditieve systeem in de neonale rat. Op PND 21, werden veertig pasgeboren
ratten ingedeeld in 3 groepen; een auditieve deprivatie groep, een lawaai expositie groep en een controle
groep. De ABRs werden verkregen op PND 84. Er werden geen verschillen waargenomen in interpiek
latentietijden (IPLs) van pieken I-IV tussen de drie groepen. Er is een discrepantie tussen de door ons
gevonden resultaten en die van vergelijkbare studies in de literatuur. De hiervoor mogelijk verantwoordelijke
factoren werden geëvalueerd. Wij constateren dat de lawaai-expositie geen beschadiging aan het
slakkenhuis heeft veroorzaakt (in het Engels noise induced hearing loss, afgekort NIHL) en ook dat de
geluidsdeprivatie de rijping van het auditieve systeem in de ratten niet heeft belemmerd.

In Hoofdstuk 5 rapporteren we over het onderzoek betreffende veranderingen van de spiervezeltype
samenstelling in de SM vergelijkbaar met veranderingen in skeletspieren, zoals die beschreven zijn
in de literatuur; het niet gebruiken van de skeletspier leidt tot een verschuiving van langzame naar
snellere MHC isovormen in de spiervezels, terwijl een verschuiving van snelle naar langzamere MHC
isovormen wordt gezien wanneer de spier intensief wordt gebruikt. Wij onderzochten het verschil in
spiervezeltype samenstelling tussen SMs afkomstig van ratten die aan lawaai werden blootgesteld,
van auditief gedepriiveerde ratten en van ratten die aan het normale omgevingsgeluid in de
proefdiervoorkiening werden blootgesteld (controle groep). De langzame naar snellere MHC isovorm
verschuiving na geluidsdeprivatie (ontlasten van de SM) pleit ervoor dat de SM een bepaalde mate van
dagelijkse activiteit, uitgelokt door extern omgevingsgeluid, nodig heeft om zijn normale spiervezeltype
samenstelling te behouden. Dit ondersteunt de veronderstelling dat de SM veelvuldig actief is in de
controle groep, waar het geluidsniveau de 80 dB niet overschred. De hypothese dat de SM bescherming
biedt tegen NIHL werd enigszins gesteund doordat de veranderingen die werden aangetoond in de SM
spiervezeltype samenstelling na langdurig lawaai expositie, overeenkomen met de veranderingen die in
skeletspieren beschreven zijn na trainingsexperimenten. Onze resultaten pleiten ook voor een andere al
eerder veronderstelde functie van de SM, namelijk het demaskeren van hoog frequente signalen in laag
frequent achtergrondgeluid.
Tot slot wordt in Hoofdstuk 6 ingegaan op de methodiek van identificatie van de spiervezels in de SM en op het gebruik van de enzym- en immunohistochemische parameters waarmee een weerspiegeling van de eigenschappen van de spiervezel werd verkregen. De combinatie van IHC en EHC verschafte een verfijning van de SM vezelclassificatie die geen van beide technieken alleén verstrekt kon hebben. Voorts werden onverwachte bevindingen van spiervezeltype samenstelling besproken zoals het wijdverspreide MHC hybridisme en de aanwezigheid van, of juist de afwezigheid van bepaalde MHC isovormen. De complexe spiervezeltype samenstelling van de SM heeft een functionele betekenis en het snelle rijpen van de SM in de pasgeboren rat, die zelfs voorloopt op de rijping van het auditieve systeem, lijkt de functionele relevantie van de SM te benadrukken. In dit verband is ook de verhoogde gevoeligheid voor NIHL in de humane premature neonaat besproken. Het vergelijken van de bevindingen in SMs van ratten die werden blootgesteld aan lawaai en in SMs van de auditief gedeprimeerde ratten met de bevindingen in de SMs van ratten in de controle groep duiden erop dat de SM dagelijks een hoog activiteit niveau heeft, zelfs bij het afwezig zijn van lawaai (geluidsniveau kwam niet boven de 60 dB SPL), zodat de functie van de SM ook goed past in de interferentie (demaskeren) en anti-over-stimulatie theorieën. Deze geluidsmodulerende functies van de SM en de verhoogde gevoeligheid voor NIHL die mogelijk door verlies van de SM functie na routine otosclerose chirurgie wordt veroorzaakt, zijn een reden om te streven naar het behoud van een functionerende SM tijdens de chirurgische behandeling van otosclerose.