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Abstract

In this paper we formalize the notion of lexicographic belief hierarchies in standard partitional

models (Aumann, 1976). We introduce the notion of epistemic equivalence between two be-

lief space, and show that the state space representation of lexicographic belief hierarchies is

equivalent to the usual type-space approach, even when the latter induces lexicographic belief

hierarchies which violate mutual singularity.

KEYWORDS: Standard state space models, lexicographic belief hierarchies, epistemic equiva-

lence.

JEL CLASSIFICATION: C70, D80, D81, D82.

1. Introduction

A belief hierarchy describes the individual’s beliefs, beliefs about others’ beliefs, and so on. Be-

lief hierarchies are an integral part of modern economic theory, often used for analyzing games

with incomplete information (Harsanyi, 1967-68), as well as for providing epistemic character-

izations for different solution concepts, such as, for instance, rationalizability (Bernheim, 1984;
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Pearce, 1984), Nash equilibrium (Aumann and Brandenburger, 1995), and correlated equilibrium

(Aumann, 1987).

Usual belief hierarchies are not sufficiently rich for characterizing other solution concepts,

such as iterated admissibility (Brandenburger et al., 2008), or perfect equilibrium (Selten, 1975),

where secondary theories (assessments) given zero probability events become crucial. Suppose,

for instance, that Ann assigns probability 1 to Bob playing b1 in a normal form game, without at

the same time ruling out the possibility that he chooses b2 or b3; she simply deems these choices

infinitely less likely than b1. This notion is not captured by usual belief hierarchies, which do

not describe Ann’s conditional beliefs given the (primarily) null event “b2 or b3”. Therefore, we

need to add more structure to Ann’s beliefs in order to capture the idea that Ann considers the

event “Bob playing b2” more likely than “Bob playing b3”, in case he does not end up playing

b1. This is typically done with the use of lexicographic beliefs, which enrich Ann’s state of mind

with a sequence of (secondary, tertiary, and so on) assessments, instead of a unique measure1.

The primary assessment, else called theory, coincides with the standard beliefs, which assign

probability 1 to b1, whereas the secondary theory can be thought as the beliefs Ann would hold

in case she was informed that Bob did not play b1.

This idea is naturally extended to an interactive setting, by generalizing belief hierarchies

to lexicographic belief hierarchies, which capture the idea that Ann’s k-th order beliefs are lex-

icographic over the space of Bob’s (k − 1)-th order lexicographic beliefs (Brandenburger et al.,

2008). Lexicographic belief hierarchies are typically represented by a generalized type space

model which maps every individual type to a lexicographic probability system over the prod-

uct of the fundamental space of uncertainty and the opponent’s types, thus extending Harsanyi’s

seminal structure to lexicographic beliefs.

In this paper we provide an alternative representation of lexicographic belief hierarchies using

Aumann’s partitional model of differential information (Aumann, 1976). The standard require-

ment, whenever we obtain two different representations of the same object – lexicographic belief

hierarchies in this case – is to make sure that the two are equivalent, and therefore interchange-

able. It turns out that the state space representation that we introduce, satisfies our epistemic

equivalence criterion, i.e., there is always a bijection between information sets (in the partitional

model) and types (in the type space model) that preserves lexicographic belief hierarchies, even

when mutual singularity is violated in the type space model.

The need for establishing invariance between different epistemic models has already been rec-

ognized in the literature: Brandenburger and Friedenberg (2010, p. 804) point out the equivalence

1For an axiomatic foundation of lexicographic beliefs, see Blume et al. (1991a).
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between lexicographic and conditional probability systems2, which is formally shown by Bran-

denburger et al. (2007) in a single-individual environment. They also discuss the importance of

exploring whether epistemically invariant models yield the same predictions. Similar exercises

have been carried out for standard belief hierarchies, by Brandenburger and Dekel (1993) who

mapped Harsanyi type space to epistemically equivalent standard space models, and Tan and

Werlang (1992) who constructed the converse mapping.

The paper is structured as follows: Section 2 presents some preliminaries on Polish spaces, lex-

icographic probability systems and conditional probability systems. In Section 3, we provide the

state space representation of lexicographic belief hierarchies, and prove our equivalence results).

Section 5 concludes.

2. Preliminaries

2.1. Polish spaces

We present some preliminaries on Polish spaces. For further reference see Kechris (1995). A

topological space (Z, T ) is called Polish if it is separable and completely metrizable. A subspace of

a separable metrizable space is also separable and metrizable. Examples of Polish spaces include

countable sets endowed with the discrete topology, Rn endowed with the usual topology and

closed subsets of Polish spaces endowed with the relative topology. The countable product of

Polish spaces, endowed with the product topology, is Polish. A closed subspace of a Polish space,

endowed with the relative topology, is also Polish. The topological sum of a countable collection

of Polish spaces, denoted by ⊕, is also Polish.

For any topological space Z, let ∆(Z) denote the set of all Borel probability measures, endowed

with the weak topology. If Z is Polish then so is ∆(Z) (Aliprantis and Border, 1994, p. 515). For

some p ∈ ∆(Z), let Γ(p) denote its support, i.e., the set of all points z ∈ Z such that every T ∈ T
with z ∈ T has positive measure: Γ(p) = {z ∈ Z : z ∈ T ∈ T ⇒ p(T) > 0}. The support is the

smallest closed subset of Z with measure equal to 1. If Z is separable and metrizable, the support

is unique (Parthasarathy, 1967, pp. 27–28).

2Conditional probability systems (Rênyi, 1955; Battigalli and Siniscalchi, 1999) are another way of modeling beliefs

given secondary conditional hypotheses. We formally define them later in the paper.
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2.2. Lexicographic probability systems

Definition 2.1. A lexicographic probability system (LPS) over a (Polish) space Z is a sequence of

probability measures p̃ := (pn)N
n=1 with N ≤ ∞. The space of all LPS’s is denoted by ∆̃(Z).

The measure p1 represents the individual’s primary theory, p2 her secondary theory, and so

on. We say that the LPS is finite whenever N < ∞. Let Γ( p̃) :=
⋃N

n=1 Γ(pn) denote the support of

the LPS: p̃ is full-support whenever Γ( p̃) = Z.

We say that p̃ satisfies mutual singularity whenever for every n = 1, .., N there is a Borel set Fn

such that pn(Fn) = 1 and pn(Fm) = 0 for all m 6= n (Brandenburger et al., 2008, p. 321).

The concept of weak assumption3 that we introduce here, extends (standard) confident belief

to LPS’s. We say that an event E ⊆ Z is weakly assumed under p̃ whenever pn(E) = 1 for all n.

This notion is weaker than assumption, as introduced by Brandenburger et al. (2008) which also

requires that for all open sets T with E ∩ T 6= ∅, there is some n such that pn(E ∩ T) > 0.

Lexicographic probability systems were introduced in the literature by Blume et al. (1991a),

who provided the corresponding axiomatic foundation. They also used LPS’s to epistemically

characterize equilibrium refinements, such as perfect equilibrium (Blume et al., 1991b).

2.3. Conditional probability systems

Let (Ω,F ) be a measurable space, where Ω is Polish, F is the Borel σ-algebra, and let G ⊂ F be a

collection of non-empty conditioning events (not necessarily an algebra).

Definition 2.2. A conditional probability system (CPS) on (Ω,F ,G) is a function π : F × G →
[0, 1] satisfies the following properties:

(C1) π(G|G) = 1, if G ∈ G,

(C2) π(·|G) is a probability measure over (Ω,F ) for every G ∈ G,

(C3) π(F|G) = π(F|E)× π(E|G), if F ⊆ E ⊆ G, and F ∈ F and G, E ∈ G.

Let P be a prior probability measure over (Ω,F ). Then, it follows from Ω being Polish that

there is always a CPS on (Ω,F ,G), which agrees with P whenever possible, i.e., π(F|G) =

P(F ∩ G)/P(G) for all G ∈ G with P(G) > 0 (Blackwell and Dubins, 1975; Blackwell and Ryll-

Nardzewski, 1963; Brandenburger and Dekel, 1987).

We say that an event E ∈ F is strongly believed in (Ω,F ,G) whenever π(E|G) = 1 for all

G ∈ G such that E ∩ G 6= ∅ (Battigalli and Siniscalchi, 1999, 2002).

3Perea (2010, p. 187) uses the term full belief to describe this notion.
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Conditional probability spaces first appeared in Rênyi (1955), and were introduced in a game

theoretic framework by Battigalli and Siniscalchi (1999).

3. Lexicographic belief hierarchies

Consider the (countable) fundamental space of uncertainty Σ with typical element σ, endowed

with the discrete topology. Examples of Σ include the set of payoff functions in an incomplete

information game, and the set of action profiles in a normal form game. Let I = {a, b} be the set

of individuals4, with typical elements i and j.

Consider the following sequence:

Θ0 := Σ

Θ1 := Θ0 × ∆̃(Θ0)
...

Θk := Θk−1 × ∆̃(Θk−1)
...

A hierarchy of lexicographic beliefs is a sequence of LPS’s, ( p̃1
i , p̃2

i , ...) ∈ ×∞
k=0∆̃(Θk), where p̃k

i =

(pk,1
i , ..., pk,N

i ) ∈ ∆̃(Θk−1) denotes i’s k-th order lexicographic beliefs, with pk,n
i ∈ ∆(Θk−1) being

the n-th theory of the k-th order lexicographic beliefs.

As usual, we restrict our focus to hierarchies that satisfy the standard coherency requirement.

We say that ( p̃1
i , p̃2

i , ...) is coherent if for all k > 1, margΘk−2
p̃k

i = p̃k−1
i , with margΘk−2

p̃k
i :=

(margΘk−2
pk,1

i , ..., margΘk−2
pk,N

i ) denoting the marginal lexicographic probability system. We con-

sider hierarchies that satisfy, not only coherency, but also common weak assumption of coherency.

For the time being, we have not defined coherency of the opponent as an event, and therefore

common weak assumption of coherency is not formally defined. We will formally do this in the

following sections.

3.1. Lexicographic belief hierarchies in type space models

Definition 3.1. A Σ-based lexicographic type space (LT-space) is a tuple (Σ, Ta, Tb, g̃a, g̃b), where

Ti is a countable space endowed with the discrete topology and g̃i := (g1
i , g2

i , ...) : Ti → ∆̃(Σ× Tj)

maps every ti ∈ Ti to an LPS over Σ× Tj.

4Our analysis can be generalized to any finite set of individuals.
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An LT-space induces a hierarchy of lexicographic beliefs for every LTi-type ti ∈ Ti as follows:

The first order lexicographic beliefs are given by the LPS b̃1
i [ti] ∈ ∆̃(Θ0), where

b1,n
i [ti](σ) = ∑

tj∈Tj

gn
i [ti](σ, tj), for all σ ∈ Θ0 and all n = 1, ..., Nti .

Let β1
j : ∆̃(Θ0)→ Tj ∪ {∅} associate every first order lexicographic beliefs to a type, whenever

possible: β1
j ( p̃1

j ) = {tj ∈ Tj : b̃1
j [tj] = p̃1

j } contains the types with first order lexicographic beliefs

given by p̃1
j . The second order lexicographic beliefs are given by the LPS b̃2

i [ti] ∈ ∆̃(Θ1) such that

b̃2,n
i [ti](σ, p̃1

j ) = ∑
tj∈β1

j ( p̃1
j )

gn
i [ti](σ, tj), for all (σ, p̃1

j ) ∈ Θ1 and all n = 1, ..., Nti .

Inductively, we define βk
j : ∆̃(Θk−1) → Tj ∪ {∅}, with βk

j ( p̃k
j ) = {tj ∈ Tj : b̃k

j [tj] = p̃k
j }. The

k-th order lexicographic beliefs are given by the LPS b̃k
i [ti] ∈ ∆̃(Θk−1) such that

b̃k,n
i [ti](σ, p̃1

j , ..., p̃k−1
j ) = ∑

tj∈
⋂k−1

l=1 βl
j( p̃l

j)

gn
i [ti](σ, tj), for all (σ, p̃1

j , ..., p̃k−1
j ) ∈ Θk−1 and all n = 1, ..., Nti .

The sequence (b̃1
i [ti], b̃2

i [ti], ...) is ti’s lexicographic belief hierarchy. It is straightforward veri-

fying that (b̃1
i [ti], b̃2

i [ti], ...) is coherent for all ti ∈ Ti, and every i ∈ {a, b}, implying that i weakly

assumes j’s coherency. However, i may still not assume that j’s lexicographic belief hierarchies

are coherent, as illustrated below.

Example 3.1. Let Σ := {σ1, σ2} and Ti := {t1
i , t2

i , ...} for each i ∈ {a, b} endowed with the discrete

topology. Let also gn
i [ti] assign probability 1 to (σ1, t2n

j ). Obviously, {(σ2, t1
j )} is open in Σ ×

Tj, while t1
j is associated with a coherent hierarchy. However, no theory of ti assigns positive

probability to {(σ, t1
j )}, implying that i does not assume that j’s beliefs are coherent. /

We say that an LTi-type satisfies mutual singularity whenever g̃i[ti] ∈ ∆̃(Σ× Tj) is mutually

singular. An LT-space satisfies mutual singularity whenever all all types of all individuals do.

Unlike Brandenburger et al. (2008), we allow types with lexicographic beliefs that violate mutual

singularity. We further discuss mutual singularity later in the paper.

3.2. Lexicographic belief hierarchies in standard state space models

Consider the measurable space (Ω,F ), where Ω is Polish and F denotes the Borel σ-algebra.

The continuous function s : Ω → Σ determines the realized value of the underlying space of

uncertainty at every state. Let S denote the partition of open subsets of Ω induced by s, with

S(ω) being the element of S that contains ω. Let Pi be a partition of open subsets of Ω containing

6



i’s (primarily) observable events: The set Pi(ω) is the element of Pi that contains ω, and denotes

i’s information set at ω, i.e., the states that i cannot distinguish from ω. This construction is due

to Aumann (1976), and is often called Aumann space.

Lemma 3.1. Pi is a countable partition.

Definition 3.2. The tuple (Ω,F ,S , {Pi}i∈I , {πi}i∈I) is called a Σ-based standard state space (Ω-

space), where (Ω,F ) is a Polish space together with the Borel σ-algebra, S and Pi are partitions

of open subsets of Ω, and πi is a CPS on (Ω,F ,Gi), where Pi ⊆ Gi.

Let Gi be constructed as follows: For ω ∈ Ω, we recursively define

Pn
i (ω) := Pn−1

i (ω) \ Γ
(
πi(·|Pn−1

i (ω))
)
, (1)

with P1
i (ω) := Pi(ω), and let Gi =

⋃
ω∈Ω Gω

i , with Gω
i := {Pn

i (ω) ; n = 1, ..., Nω} being the

collection of conditioning events that do not contradict the primarily observed hypothesis Pi(ω).

It is straightforward verifying that Gi ⊆ F , which follows from Γ
(
πi(·|Pn

i (ω))
)

being closed.

Let the vector of probability measures πi(·|Gω
i ) :=

(
πi(·|Pn

i (ω)) ; n = 1, ..., Nω

)
be the col-

lection of theories over (Ω,F ) corresponding to the different conditioning events in Gω
i . The fact

that πi(·|Gω
i ) is an ordered collection of measures, implies that it is an LPS over (Ω,F ), which

furthermore induces a lexicographic belief hierarchy at ω.

Construct the following LPS over Θ0 = Σ: Let µ̃1
i,ω ∈ ∆̃(Θ0) be i’s first order lexicographic

beliefs at ω, where

µ1,n
i,ω(σ) := πi({ω′ : s(ω′) = σ}|Pn

i (ω)), for all σ ∈ Θ0 and all n = 1, ..., Nω.

Obviously, {ω′ : s(ω′) = σ} is B0
j -measurable, where B0

j := S , implying that µ1,n
i,ω(σ) is a well-

defined probability.

Let the partition B1
j be the collection of j’s first order lexicographic beliefs equivalence classes,

i.e., two states ω and ω′ belong to the same element of B1
j if and only if µ̃1

j,ω = µ̃1
j,ω′ . Construct the

following LPS over Θ1 = Θ0 × ∆̃(Θ0): Let µ̃2
i,ω ∈ ∆̃(Θ1) be i’s second order lexicographic beliefs

at ω, where

µ2,n
i,ω(σ, p̃1

j ) := πi({ω′ : (s(ω′), µ̃1
j,ω′) = (σ, p̃1

j )}|Pn
i (ω)), for all (σ, p̃1

j ) ∈ Θ1 and all n = 1, ..., Nω.

The set {ω′ : s(ω′) = σ} is B0
j -measurable, while {ω′ : µ̃1

j,ω′ = p̃1
j } is B1

j -measurable, implying

that {ω′ : (s(ω′), µ̃1
j,ω′) = (σ, p̃1

j )} is (B0
j ∨B1

j )-measurable. Therefore, µ2,n
i,ω(σ, p̃1

j ) is a well-defined

probability.
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Likewise, inductively define the partition Bk
j , and construct the following LPS over Θk−1 =

Θ0× ∆̃(Θ1)× · · · × ∆̃(Θk−2): Let µ̃k
i,ω be i’s k-th order lexicographic beliefs over Θk−1 at ω, where

µk,n
i,ω(σ, p̃1

j , ..., p̃k−1
j ) := πi({ω′ : (s(ω′), µ̃1

j,ω′ ..., µ̃k−1
j,ω′ ) = (σ, p̃1

j ..., p̃k−1
j )}|Pn

i (ω)),

for all (σ, p̃1
j ..., p̃k−1

j ) ∈ Θk−1 and all n = 1, ..., Nω.

Finally, it is straightforward verifying that {ω′ : (s(ω′), µ̃1
j,ω′ ..., µ̃k−1

j,ω′ ) = (σ, p̃1
j ..., p̃k−1

j )} is (B0
j ∨

· · · ∨ Bk−1
j )-measurable. Therefore, µk,n

i,ω(σ, p̃1
j , ..., p̃k−1

j ) is a well-defined probability.

The sequence (µ̃1
i,ω, µ̃2

i,ω, ...) is i’s lexicographic belief hierarchy at ω. Let Bi :=
∨∞

k=1 Bk
i de-

note the coarsest common refinement (join) of the partitions Bk
i . It follows from Bi being itself a

coarsening of Pi that i has the same lexicographic belief hierarchy at all states in Pi(ω). Therefore,

Pi(ω) can be treated as one element, henceforth called i’s type in the Ω-space (Pi-type).

Since i forms a hierarchy of lexicographic beliefs at every state ω, coherency can be expressed

as an event in Ω. Likewise, weak assumption of coherency is an event. Therefore, we can itera-

tively define common weak assumption of coherency in the Ω-space.

Proposition 3.1. (µ̃1
i,ω, µ̃2

i,ω, ...) satisfies common weak assumption of coherency.

Similarly to the case illustrated in Example 3.1, the previous result cannot be extended to

common assumption of coherency. The event Cj, containing the states where j’s lexicographic

beliefs are coherent, is assumed by i at ω, whenever for every open F ⊆ Pi(ω) there is some

i = 1, ..., Nω such that πi(F ∩ Cj|Pn
i (ω)) > 0. Obviously, if the open set Pi(ω) ∩ Pj(ω) 6= ∅ is not

assigned positive probability by any theory of i at ω, then i does not assume j’s coherency. The

following example illustrates such a situation.

Example 3.2. Let Σ := {σ1, σ2} and Ωi := {ω1
i , ω2

i , ...} for each i ∈ {a, b}, and consider the

space Ω := Σ × Ωa × Ωb endowed with the discrete topology. Define Pi as follows: For each

(σ, ωi, ωj) ∈ Ω, let Pi(σ, ωi, ωj) := {(σ′, ω′i , ω′j) ∈ Ω : ω′i = ωi}. Let πi(·|Pn
i (σ, ωi, ωj)) assign

probability 1 to (σ1, ωi, ω2n
j ), implying that Pj(σ, ωi, ω1

j ) is assigned zero probability by all theories

of i at (σ, ωi, ωj), and therefore i does not assume that j’s lexicographic beliefs are coherent. /

3.3. Epistemic equivalence

The notion of epistemic equivalence between Ω-spaces and LT-spaces requires that

(i) there is a bijection between Pi-types and LTi-types, and

(ii) the corresponding types are associated with the same lexicographic belief hierarchy.

8



3.3.1. From state spaces to type spaces

In this section, we show that for every Ω-space there is an associated epistemically equivalent

LT-space, constructed as follows: We consider the set of Pi-types, and map every information set

in Pi to an LPS over (Ω, σ(S ∨Pj)). Finally, we show that this construction is a Σ-based LT-space,

which in addition is epistemically equivalent to the original Ω-space.

Formally, let Ti, endowed with the discrete topology, be bijective to Pi, and consider the natu-

ral mapping

fi : Ω→ Ti, (2)

such that fi(ω) = fi(ω′) if and only if Pi(ω) = Pi(ω′).

Proposition 3.2. Consider an Ω-space and the function fi : Ω → Ti. Then, there is an epistemically

equivalent LT-space (Σ, Ta, Tb, g̃a, g̃b), i.e., for all ω ∈ Ω,

(µ̃1
i,ω, µ̃2

i,ω, ...) = (b̃1
i [ fi(ω)], b̃2

i [ fi(ω)], ...).

3.3.2. From type spaces to state spaces

Let W := Σ × Ta × Tb, and for every w ∈ W, let Ωw be a countable space endowed with the

discrete topology, with typical element ωw. It follows from Ωw being Polish, that

Ω∞ := ⊕w∈WΩw

is Polish too (Srivastava, 1991, p. 52). Moreover, it follows from the definition of the topological

sum5 that every Ωw is open in Ω∞.

Consider the natural mapping fi : Ω∞ → Ti defined by fi(ωw) := projTi
w, where proj denotes

the projection. Let Pi be partition of type equivalent classes in Ω∞, with

Pi(ω) := {ω′ ∈ Ω∞ : fi(ω′) = fi(ω)}.

Likewise, let s : Ω∞ → Σ be defined as s(ωw) := projΣ w, and consider the partition S of Σ-

realization-equivalent classes, i.e.,

S(ω) := {ω′ ∈ Ω∞ : s(ω′) = s(ω)}.

It follows from S and Pi being coarsenings of {Ωw ; w ∈W}, that they are both partitions of open

subsets of Ω∞.
5An event E ⊆ ⊕w∈WΩw is open in Ω∞ if and only if E ∩Ωw is open in Ωw for all w ∈W.
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Proposition 3.3. Consider an LT-space and the Polish space Ω∞ together with the (discrete) Borel σ-

algebra F . Let the natural mappings fi : Ω∞ → Ti and s : Ω∞ → Σ induce the partitions of open sets Pi

and S respectively. Then, there is an epistemically equivalent Ω-space (Ω∞,F , {Gi}i∈I ,S , {Pi}i∈I , {πi}i∈I),

i.e., for all ω ∈ Ω∞,

(µ̃1
i,ω, µ̃2

i,ω, ...) = (b̃1
i [ fi(ω)], b̃2

i [ fi(ω)], ...).

In their seminal paper, Brandenburger and Dekel (1993) construct the canonical state space

of the universal belief space, as the product space Σ × Ta × Tb, implying that in their setting

every Ωw is a singleton. The reason for adopting a richer state space is in order to be able to

map LT-spaces that violate mutual singularity to Ω-spaces with conditioning events satisfying

Pn
i (ω) := Pn−1

i (ω) \ Γ
(
πi(·|Pn−1

i (ω))
)
. That would not have been possible if we had assumed

that all Ωw were singletons. We further discuss this issue in the following section.

4. Discussion

4.1. Mutual singularity

Recall the definition of a mutually singular LPS: We say that (pn)N
n=1 satisfies mutual singularity

in Z whenever for each n = 1, ..., N there is some Borel set Fn such that pn(Fn) = 1 and pn(Fm) = 0

for all m 6= n. An LT-space is mutually singular whenever, for all ti ∈ Ti the LPS g̃i[ti] satisfies

mutual singularity in Σ× Tj (Brandenburger et al., 2008).

Mutual singularity aims at capturing the idea that the different conditioning hypotheses,

which are associated with the different theories, overlap – roughly speaking – as little as pos-

sible. However, in an LT-space the different conditioning events are not clearly specified.

On the other hand, in an Ω-space, conditioning hypotheses are clearly defined in a very natu-

ral way (see Eq. (1)). We say that an Ω-space satisfies mutual singularity, whenever the epistemi-

cally equivalent LT-space (following from Proposition 3.2) is mutually singular. At a first glance,

this last definition seems to potentially contradict the fact that πi(·|Gω
i ) is an LPS satisfying mu-

tual singularity. However, if we take a closer look, it becomes clear that no such contradiction

exists, as πi(·|Gω
i ) is an LPS over (Ω,F ), whereas mutual singularity is defined over Σ × Tj,

which corresponds to the measurable space (Ω, σ(S ∨ Pj)). The following result provides suffi-

cient conditions for a mutually singular Ω-space. Let J := S ∨ Pa ∨ Pb be the coarsest common

refinement of the three partitions.

Proposition 4.1. If Pn
i (ω) is σ(J )-measurable at each ω ∈ Ω, for all i ∈ {a, b}, and all n > 0, then the

Ω-space satisfies mutual singularity.

10



The previous proposition also explains why taking every Ωw as a singleton does not suffice

for mapping an LT-space that violates mutual singularity to an Ω-space: It follows directly from

Proposition 4.1 that if the corresponding LT-space is not mutually singular then there is some

Pn
i (ω) which is not σ(J )-measurable, which cannot be the case when every Ωw is a singleton.

This follows from the fact that J = {Ωw ; w ∈W}.

4.2. Redundancies

Recall the standard definition of redundancy by Mertens and Zamir (1985, p. 6), generalized

from usual to lexicographic beliefs: An LT-space is redundant if there are two distinct types of

the same individual associated with the same belief hierarchy, i.e., there are ti, t′i ∈ Ti such that

(b̃1
i [ti], b̃2

i [ti], ...) = (b̃1
i [t
′
i], b̃2

i [t
′
i], ...). Friedenberg and Meier (2010) introduced a weaker form of

redundancy: An LT-space is measurably non-redundant whenever all types inducing the same

lexicographic belief hierarchy cannot be separated by measurable sets, and it is redundant other-

wise, i.e., i’s beliefs are measurably non-redundant whenever (b̃1
i [ti], b̃2

i [ti], ...) = (b̃1
i [t
′
i], b̃2

i [t
′
i], ...)

implies that for every measurable subset E of Ti, either {ti, t′i} ⊆ E or {ti, t′i} ⊆ Ti \ E. The latter

restricts attention only to redundancies which can be expressed with the language induced by the

corresponding σ-algebra on Ti. Obviously, if the language is fine enough to separate every type,

like for instance in the LT-spaces we consider where Ti is endowed with the discrete topology,

redundancy and measurable redundancy coincide. Henceforth, for the purposes of this paper,

we deem the two notions identical.

Extending the definition of redundancy to Ω-spaces is straightforward: An Ω-space is redun-

dant if there are two Pi-types inducing the same lexicographic belief hierarchy, i.e., there are

ω, ω′ ∈ Ω with Pi(ω)∩ Pi(ω′) = ∅ such that (µ̃1
i,ω, µ̃2

i,ω, ...) = (µ̃1
i,ω′ , µ̃2

i,ω′ , ...). The following result

characterizes redundancy in an Ω-space. Recall that Bi :=
∨∞

k=1 Bk
i , where Bk

i is the collection of

k-th order lexicographic belief equivalence classes, i.e., two states belong to the same element of

Bk
i if and only if they induce the same k-th order lexicographic beliefs.

Proposition 4.2. An Ω-space is non-redundant if and only if Bi = Pi.

It is straightforward verifying that the equivalences proven in Propositions 3.2 and 3.3 pre-

serve the belief redundancies, as the bijection between the types preserves the lexicographic belief

hierarchies.

4.3. Hierarchies of conditional beliefs

Battigalli and Siniscalchi (1999) defined the notion of a hierarchy of conditional beliefs, which is

11



conceptually very similar to a lexicographic belief hierarchy. Individuals start with a common col-

lection of non-empty conditioning hypotheses G. A hierarchy of conditional beliefs is a sequence

of conditional probability systems given the conditioning events: The first order conditional be-

liefs is a collection of measures, one for every G ∈ G, over the underlying space of uncertainty;

the second order beliefs is a collection of measures, one for every G ∈ G, over the product of the

underlying space of uncertainty and the space of the opponent’s first order conditional beliefs;

likewise the entire hierarchy is constructed.

Like most types of belief hierarchies, hierarchies of conditional beliefs can be represented by

a type space model (Battigalli and Siniscalchi, 1999): Each type is endowed with a CPS over the

product of the fundamental space of uncertainty and the opponent’s set of types. This construc-

tion associates every type to a hierarchy of conditional beliefs.

Similarly to lexicographic belief hierarchies, hierarchies of conditional beliefs represent prob-

abilistic assessments given a collection of conditioning hypotheses. The main difference between

the two approaches is that in the former different individuals condition with respect to different

events, whereas hierarchies of conditional beliefs restrict to a common collection of hypotheses. In

any case, the LPS πi(·|Gω
i ) associated with the type Pi(ω) in (Ω,F ), is also a CPS over (Ω,F ,Gω

i ),

and therefore if we allow for different conditioning events, the lexicographic belief hierarchy be-

comes a hierarchy of conditional beliefs.

4.4. Uncountable spaces

Our analysis, for the sake of presentation simplicity, is restricted to countable type spaces. We

could generalize most of our results to arbitrary structures, in which case we would need to

impose some additional topological assumptions, e.g., we would need to substitute information

partitions with σ-algebras (see, Brandenburger and Dekel, 1993, p. 196).

Appendix

Proof of Lemma 3.1. Since Ω is Polish, it is second countable, implying that it has a countable basis. It fol-

lows from Pi(ω) being open that it can be written as the union of elements of this basis. Since Pi partitions

Ω, it follows that the elements of the basis used to generated Pi(ω) are distinct to those used to generate

Pi(ω′), whenever Pi(ω) ∩ Pi(ω′) = ∅. Therefore, the cardinality of Pi at most equal to the cardinality of

the basis, implying that Pi is countable.

Proof of Proposition 3.1. It suffices to show that (µ̃1
i,ω, µ̃2

i,ω, ...) satisfies common weak assumption of co-

herency for all ω ∈ Ω and all i ∈ I. For any k > 1 and n > 0, and given an arbitrary (σ, p̃1
j , ..., p̃k−2

j ) ∈ Θk−2,
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we obtain

∑
p̃k−1

j ∈∆̃(Θk−2)

µk,n
i,ω(σ, p̃1

j , ..., p̃k−1
j ) = ∑

p̃k−1
j ∈∆̃(Θk−2)

πi({ω′ : (s(ω′), µ̃1
j,ω′ ..., µ̃k−1

j,ω′ ) = (σ, p̃1
j ..., p̃k−1

j )}|Pn
i (ω))

= πi({ω′ : (s(ω′), µ̃1
j,ω′ ..., µ̃k−2

j,ω′ ) = (σ, p̃1
j ..., p̃k−2

j )}|Pn
i (ω))

= µk−1,n
i,ω (σ, p̃1

j , ..., p̃k−2
j ),

implying margΘk−2
µk,n

i,ω = µk−1,n
i,ω , and therefore margΘk−2

µ̃k
i,ω = µ̃k−1

i,ω .

Proof of Proposition 3.2. Define gi : Ti → ∆̃(Σ× Tj) as follows,

gn
i [ fi(ω)](σ, tj) := πi

(
{ω′ : s(ω′) = σ} ∩ {ω′ : f j(ω′) = tj}|Pn

i (ω)
)
,

which is a well-defined probability as f j is continuous and therefore {ω′ : f j(ω′) = tj} is Borel. For any

ω ∈ Ω, k > 0 and n > 0, take an arbitrary (σ, p̃1
j , ..., p̃k−1

j ) ∈ ∆̃(Θk−1). Then,

bk,n
i [ fi(ω)](σ, p̃1

j , ..., p̃k−1
j ) = ∑

tj∈
⋂k−1

l=1 βl
j( p̃l

j)

gn
i [ fi(ω)](σ, tj)

= ∑
tj∈
⋂k−1

l=1 βl
j( p̃l

j)

πi
(
{ω′ : s(ω′) = σ} ∩ {ω′ : f j(ω′) = tj}|Pn

i (ω)
)

= πi
(
{ω′ : (s(ω′), µ̃1

j,ω′ , ..., µ̃k−1
j,ω′ ) = (σ, p̃1

j , ..., p̃k−1
j )}|Pn

i (ω)
)

= µk,n
i,ω(σ, p̃1

j , ..., p̃k−1
j )

completes the proof.

Proof of Proposition 3.3. For each w = (σ, ti, tj) ∈W, let Ωw := {ω1
w, ω2

w, ...}. Let also Iw,i := {I1
w,i, ..., I

Nti
w,i }

be a sequence of subsets of Ωw, such that every Iw,i ∈ Iw,i contains at most one ωn
w with gn

i [ti](σ, tj) > 0,

and is empty whenever gn
i [ti](σ, tj) = 0. Moreover, Iw,i covers Ωw. That is, roughly speaking, we construct

Iw,i as follows: Take the natural numbers satisfying gn
i [ti](σ, tj) > 0 and include them in the corresponding

In
w,i. Allocate the remaining states into these non-empty In

w,i ∈ Iw,i. The elements of Iw,i that have not been

filled with any state will remain empty. Obviously, if gn
i [ti](σ, tj) = 0 for all n = 1, ..., Nti , then all In

w,i ∈ Iw,i

remain empty. Formally, Iw,i satisfies

(i) In
w,i 6= ∅ if and only if gn

i [ti](σ, tj) > 0,

(ii) In
w,i ∩ Im

w,i 6= ∅ if gn
i [ti](σ, tj) > 0 and gm

i [ti](σ, tj) > 0, and

(iii)
⋃Nti

n=1 In
w,i = Ωw if Γ(g̃i[ti]) 6= ∅.

By construction Iw,i always exists. Define i’s sequence of conditioning events at w = (σ, ti, tj) as follows:

Pn
i (ω) := Pn−1

i (ω) \
( ⋃

w′∈W : projTi
w′=ti

In−1
w′,i

)
,

with P1
i (ω) = Pi(ω). Finally, as usual, let Gω

i := {Pn
i (ω) ; n > 0} and Gi :=

⋃
ω∈Ω∞

Gω
i .
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We define the CPS πi over (Ω∞,F ,Gi) as follows: For an arbitrary ω ∈ Ω∞, and for all w = (σ, ti, tj) ∈
W, let

πi(Ωw|Pn
i (ω)) =

 gn
i [ti](σ, tj) if Ωw ⊆ Pi(ω)

0 if Ωw ∩ Pi(ω) = ∅

Moreover, let πi(·|Pn
i (ω) ∩Ωw) be concentrated, e.g., uniformly distributed, on states in In

w,i. Obviously, if

In
w,i = ∅, which is the case when gn

i [ti](σ, tj) = 0 (see (i) above), then πi(·|Pn
i (ω) ∩Ωw) is “concentrated”

on the empty set, implying πi(F|Pn
i (ω) ∩Ωw) = 0 for all F ∈ F . Thus, let

πi(·|Pn
i (ω)) := ∑

Ωw⊆Pi(ω)
πi(·|Pn

i (ω) ∩Ωw)πi(Ωw|Pn
i (ω)).

It is straightforward verifying that Pn
i (ω) = Pn−1

i (ω) \ Γ
(
πi(·|Pn−1

i (ω))
)
.

Consider some (σ, p̃1
j , ..., p̃k−1

j ) ∈ ∆̃(Θk−1), and for each k > 0, and every n = 1, ..., Tti ,

µk,n
i,ω(σ, p̃1

j , ..., p̃k−1
j ) = πi

(
{ω′ : (s(ω′), µ̃1

j,ω′ , ..., µ̃k−1
j,ω′ ) = (σ, p̃1

j , ..., p̃k−1
j )}|Pn

i (ω)
)

= ∑
Ωw⊆Pi(ω)

πi(Ωw|Pn
i (ω))×

×πi({ω′ : (s(ω′), µ̃1
j,ω′ , ..., µ̃k−1

j,ω′ ) = (σ, p̃1
j , ..., p̃k−1

j )}|Pn
i (ω) ∩Ωw). (3)

Observe that {ω′ : (s(ω′), µ̃1
j,ω′ , ..., µ̃k−1

j,ω′ ) = (σ, p̃1
j , ..., p̃k−1

j )} is σ({Ωw ; w ∈W})-measurable, implying that

πi({ω′ : (s(ω′), µ̃1
j,ω′ , ..., µ̃k−1

j,ω′ ) = (σ, p̃1
j , ..., p̃k−1

j )}|Pn
i (ω) ∩Ωw) ∈ {0, 1}, where it is equal to 1 if and only if

ωw satisfies

(a) (s(ωw), µ̃1
j,ωw

, ..., µ̃k−1
j,ωw

) = (σ, p̃1
j , ..., p̃k−1

j ), and

(b) gn
i [ fi(ωw)](σ, tj) > 0.

Therefore, we rewrite (4) as follows:

µk,n
i,ω(σ, p̃1

j , ..., p̃k−1
j ) = ∑

w∈W:(s(ωw),µ̃1
j,ωw ,...,µ̃k−1

j,ωw )=(σ,p̃1
j ,...,p̃k−1

j )

πi(Ωw|Pn
i (ω))

= ∑
tj∈
⋂k−1

l=1 βl
j( p̃l

j)

gn
i [ fi(ω)](σ, tj)

= bk,n
i [ fi(ω)](σ, p̃1

j , ..., p̃k−1
j ),

which completes the proof.

Proof of Proposition 4.1. It follows by induction that, if Pn
i (ω) ∈ σ(J ) for all n > 0, then Γ

(
πi(·|Pn

i (ω))
)
∈

σ(J ) for all n > 0, implying that for every J ∈ J ,

either J ⊆ Γ
(
πi(·|Pn

i (ω))
)

or Γ
(
πi(·|Pn

i (ω))
)
∩ J = ∅. (4)

For some ω ∈ Ω, define the sequence of Borel sets in Σ× Tj,

Fn
i,ω :=

{
(σ, tj) : {ω′ : s(ω′) = σ} ∩ {ω′ : f j(ω′) = tj} ∩ {ω′ : fi(ω′) = fi(ω)} ⊆ Γ

(
πi(·|Pn

i (ω))
) }

.
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It follows from (4) and {ω′ : s(ω′) = σ} ∩ {ω′ : f j(ω′) = tj} ∩ {ω′ : fi(ω′) = fi(ω)} being σ(J )-

measurable that for all m > 0,

gn
i [ fi(ω)](Fm

i,ω) = πi

(
Γ
(
πi(·|Pm

i (ω))
) ∣∣∣ Pn

i (ω)
)

.

Consider the following cases:

(i) If m = n, then it follows from the definition of the support that gn
i [ fi(ω)](Fn

i,ω) = 1.

(ii) If m < n, then it follows from the definition of the conditioning events that Γ
(
πi(·|Pm

i (ω))
)
∩

Pn
i (ω) = ∅, implying that gn

i [ fi(ω)](Fm
i,ω) = 0.

(iii) Let m > n. It follows from Lemma 3.1 that J is a partition of open subsets, and therefore every σ(J )-

measurable event is closed. Hence, Pm
i (ω) is closed. Therefore, it follows, from Γ

(
πi(·|Pm

i (ω))
)
∈

σ(J ), that Γ
(
πi(·|Pm

i (ω))
)
⊆ Pm

i (ω), implying

πi

(
Γ
(
πi(·|Pm

i (ω))
) ∣∣∣ Pn

i (ω)
)
≤ πi

(
Pm

i (ω)|Pn
i (ω)

)
= 0.

That is, gn
i [ fi(ω)](Fm

i,ω) = 0.

It follows from (i)–(iii) that g̃i[ fi(ω)] satisfies mutual singularity, which completes the proof.

Proof of Proposition 4.2. It follows by construction that Bi is a partition, weakly coarser than Pi. First,

let Pi = Bi, and consider ω, ω′ ∈ Ω such that Pi(ω) ∩ Pi(ω′) = ∅. Then, it follows directly that ω and

ω′ belong to different elements of Bi, implying that they induce different lexicographic belief hierarchies,

and therefore Ω is non-redundant. For the converse, suppose that Ω is non-redundant, which implies that

every Pi-type yields a different belief hierarchy, which completes the proof.
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