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Abstract

In this paper, we model the impact of networks on knowledge growth in an in-
novating industry. Specifically, we compare two mediums of knowledge exchange;
random interaction, and the case in which interaction occurs on a fixed architec-
ture. In a simulation study, we investigate how the medium of knowledge exchange
contributes to knowledge growth under different scenarios related to the industry’s
innovative potential. We measure innovative potential by considering the extent to
which knowledge can be codified, and the available technological opportunities. Our
results tend to support the conjecture that spatial clustering generates higher long
run knowledge growth rates in industries characterized by highly tacit knowledge,
while the opposite is true when the degree of codification is important.
Key Words: Network, Network Industry, Clustering, Innovation, Knowledge.

1 Introduction

In recent years, work on technical change has emphasized the importance of information

flows and transfers. At the same time, research on the economics of knowledge has changed

our view from that of the early 1960s. We no longer think of knowledge as a public good,

easily reproduced and diffused; knowledge is now considered at best a quasi-public good,

and reproduction and diffusion are non-trivial activities. Thus there has been concern with

mechanisms and structures that impinge on knowledge transmission. These concerns have

prompted two important ideas about how to promote knowledge production and circulation,
∗Corresponding author: Müge Özman, E-mail: m.ozman@merit.unimaas.nl, Fax:(31) 43 388 49 05
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namely clustering or agglomeration of inventive activities; and the localization of technical

change. In a sense both of these approaches are driven by the same concerns regarding

critical masses of researchers, epistemic communities who can share knowledge easily, and

the importance of absorptive capacity for knowledge acquisition.

Knowledge spillovers, the existence of local factor endowments, specialized financial

and legal facilities all favour the localization of knowledge diffusion. Numerous studies

on clustering find that geographical proximity tends to facilitate innovation, and one of

the most important factors is knowledge spillovers [1]. Jaffe et al. [2], Baptista [3] and

Baptista and Swann [4] all show empirically that diffusion of knowledge is faster within

geographical clusters.1 But the value of clustering is also a function of the characteristics

of the knowledge base. The propensity to cluster tends to be higher in industries where

knowledge is more tacit, since in these situations the transmission of knowledge requires

repeated, face-to-face contacts [6]. This observation is connected with industry life cycles,

since it is generally accepted that in the early phases of the industry life cycle, knowledge

is less codified, so face-to-face interaction tends to facilitate its transmission [7]. Empirical

research also suggests that the propensity to cluster in the early stages of the life cycle can

be higher [8]. The key in both ideas has to do with the ability of an agent to learn and

integrate knowledge that is available. This “absorptive capacity” depends on factors like

the level of prior knowledge, the degree of codification, and the extent to which the sender

and receiver share tacit knowledge. (On these issues see for example Refs [9-11]).

The value of absorbing knowledge is two-fold. It increases an agent’s knowledge stock

directly, and it provides the agent with new knowledge that can be combined with his/her

existing knowledge.2 This fits with recent descriptions of the innovative process as recombi-

nation of a firm’s existing knowledge.3 But if recombination of a firm’s existing knowledge

can spur innovation, so much the more can the combination of new knowledge with existing

knowledge (on this, see Antonelli [18]). If innovation is driven by recombination, spurred
1For a survey on these issues, see Feldman [5].
2See Kogut and Zander [12] on what they refer to as “combinative capability”.
3A concrete manifestation of this process is the architectural innovation as defined by Henderson and

Clark [13]. As we use it here, however, the innovation process is more general in the sense that it en-
compasses generation of new knowledge, products or processes whereas architectural innovation is defined
by “reconfiguration of an established system to link together existing components in a new way”.(See for
example, Refs [13-17])
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by the diffusion of knowledge, it is clear why concern about improving knowledge flows

among innovating agents has increased in recent years, and has prompted interest in both

clustering and networking.

Positive externalities from agglomeration provide incentives for clustering, but negative

externalities, such as increased congestion, can also exist [19]. In addition, the rapid de-

velopments in information and communication technologies are clearly carrying knowledge

diffusion to a more global scale. The more codified is the knowledge base of the industry,

the weaker is the need for geographical proximity to ensure efficient diffusion of knowl-

edge and thus the efficient recombination in innovation. Thus localization of innovative

activity may not, in all cases, be the most effective way to guarantee efficient knowledge

transmission and in turn the innovative potential of agents.

Regardless of the scope of the diffusion, whether local or global, knowledge networks are

the main means through which diffusion is realised. Diffusion occurs through interaction,

and thus the structure of the network over which agents interact obviously influences the

extent of diffusion, and thus the innovative potential of the economy. If the system is

characterized as a network or a graph, communication structures that exhibit cliques of

agents can be interpreted to represent high clustering, whereas geographically random

networks connote diffusion on a more global scale. Empirical studies have found that

networks of innovators exist and have successfully characterized the structures of these

networks (Refs [20-22]). Further, simulation studies have shown that network structures can

have a significant impact on how rapidly knowledge grows in an economy [23]. Obviously

these features of networks interact with industry-specific factors, which should be taken

into account for developing regional policies.

In this paper we try to address all these aspects of the innovation process. We model

agents as located on a network and any agent receives knowledge from other agents with

whom he/she has direct links (that is, agents in his/her neighbourhood). Firstly, the

extent to which the receiver can increase his/her knowledge is a function of the relative

knowledge levels between him/her and the sender. We assume that the recipient of a

knowledge broadcast uses the new knowledge to increase his/her own knowledge stock.

However, if the recipient is too weak vis-á-vis the sender he/she has difficulties absorbing

that knowledge. By contrast, if his/her knowledge level is close to that of the sender,
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absorption is not an issue, but he/she receives little new which he/she can combine with

his/her existing knowledge. The functional form that we employ controls this concave,

non-monotone relationship between knowledge acquisition and relative knowledge levels

between the sender and the receiver. Secondly, how effective agents are in knowledge

acquisition is also a function of the features of the industry. In an industry, knowledge can

be weakly or strongly codified, which will affect average abilities to innovate. Similarly,

industries can be differentiated by their general level of technological opportunities, which

also affects average abilities to innovate. One parameter controls the extent of absorption

as a function of these industry features.

We look at the mean knowledge growth under different network architectures on which

agents transmit knowledge. At one extreme of the family of architectures that we consider

we have an entirely local network with high cliquishness (and thus clustering). At the other

we consider a network with no spatial structure, in which diffusion is global. We analyse

knowledge growth in the family of networks that lie between these two extremes. In this

framework we observe that the network architecture that performs best depends on the

properties of the knowledge base and the innovation process. The simulation results indicate

that clustering is only efficient when knowledge is difficult to absorb and technological

opportunities are higher, which we suggest is typical of industries in the early stages of

their life cycle.

2 The Model

We begin with a schematic description of the model, before giving the technical details of

the parameterization of the network architecture and the dynamics of knowledge creation,

distribution and acquisition. The issue of the agent rationality of broadcasting knowledge

is left aside: rather, observing that it exists, we are interested in the effects of the structures

over which it takes place (see [24] for a model in which knowledge sharing is an equilibrium

behaviour).
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2.1 A schematic description of the model

A large population of individuals is located on a graph, each agent having direct connections

with a small number of other agents. Each agent has a scalar knowledge endowment. At

random times, an agent is selected; he/she innovates, after which he/she broadcasts his/her

updated knowledge to his/her direct neighbours. Knowledge is received and (partially)

assimilated by agents in the broadcaster’s neighbourhood. Below we explain the two aspects

of the model; knowledge interaction and network structure.

2.1.1 Knowledge interaction

Consider n agents existing on an undirected, connected graphG (S,Γ), where S = {1, . . . , n}
is the set of agents (vertices) and Γ = {Γi,∀i ∈ S} the list of connections (the vertices to
which each vertex is connected). Specifically, Γi = {j ∈ S−{i} | d (i, j) = 1}, where d (i, j)
is the length of the shortest path (geodesic) from vertex i to vertex j on the graph. Only

agents separated by one edge can interact: when i broadcasts only those agents in Γi are

potential recipients. In expected value the network is of uniform degree: E[#Γi] = s. The

algorithm for constructing it is given in Section 2.1.3.

Each individual i ∈ S is characterized by a knowledge endowment which evolves over
time as the agent innovates and receives information broadcast by other agents. For-

mally, let vi,t denote agent i’s time t knowledge endowment. Though we employ the word

knowledge, vi,t should rather be seen as a form of human capital or competence, whose

accumulation results from individuals performing learning and innovative activities. To

clarify matters, the interpretation of having, for two agents i and j, the inequality vi,t > vj,t

is that i knows everything that j knows, and has some knowledge in addition.

We now consider four “axiomatic” assumptions that distinguish knowledge from other

sorts of human capital. In modelling increases in an agent’s knowledge as a result of receipt

of new information:

(A1) the resultant knowledge level is continuous in the initial level of the recipient;

(A2) if the recipient knows more than the broadcaster the knowledge level of the recipient

does not change (which also justifies the assumption regarding the knowledge overlap

above);
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(A3) when the recipient’s knowledge level is small relative to that of the broadcaster, the

increment to his/her knowledge decreases as he/she falls further behind;

(A4) it is in general possible for a recipient to leapfrog the broadcaster, achieving a higher

knowledge level than the broadcaster after the episode.

The first assumption needs little explanation. The second one seems reasonable in

that if what I tell you is already completely familiar to you, it is unlikely to provoke any

innovative activity on your part. The third assumption arises from the following idea. As

your knowledge outstrips mine more and more, it becomes increasingly difficult for me to

understand what you are telling me. Thus as the recipient’s knowledge level decreases

(relative to that of the broadcaster) his/her absorptive capacity, and thus his/her ability to

use what he/she hears effectively in innovation falls. The fourth hypothesis seems intuitively

obvious – a great part of the motivation for firms to innovate is to become the industry

leader, and this must be possible in a model of innovation.

These axioms are formalized in the following way. If agent i makes an exogenous

innovation in period t, his/her knowledge increases according to

vi,t+1 = vi,t (1 + βi) , (1)

where the βis are i.i.d. over some small interval (0,β].
4 Differences in individual innovative

abilities capture inter firm heterogeneity. Having innovated (increasing his/her knowledge

level from vi(t) to vi(t+1)), agent i then broadcasts to any agent j ∈ Γi.When i broadcasts,

the knowledge endowment of j increases as

vj,t+1 = vj,t [1 + g (vj,t, vi,t+1)] , (2)

where g (·, ·) satisfies the 4 axioms of absorption and innovation. In the numerical analysis
below, we define g (·, ·) as

g (vj,t, vi,t+1) = max
©
0; rγi,j

¡
1− rγi,j

¢ª
with

ri,j =
vj,t
vi,t+1

(3)

4In the simulations, increasing β did not influence the results, thus it is set equal to 0.0005.
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the ratio of the recipient’s to broadcaster’s knowledge level. Given the knowledge level of

the broadcaster, g(·, ·) is continuous in the level of the recipient (A1). The max operator
ensures that if the recipient already knows what is being broadcast, there is no benefit from

receiving it (A2). Given vi,t+1, g(·, vi,t+1) is decreasing in its first argument vj,t for small
vj,t (A3) and approaches zero as vj,t → 0. Finally for γ > 1, vj,t+1 > vi,t+1 for some values

of vj,t (A4) .

2.1.2 Innovative potential and knowledge flows

Figure 1 represents the ratio of the recipient’s new – in the sense of posterior to the

broadcast – knowledge level relative to that of the broadcaster, as a function of this ratio

before the transmission.

Horizontal axis: ri,j = vj,t/vi,t+1
Vertical axis: vj,t+1/vi,t+1

ri,j ri,j

(a) (b)
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1

1
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Figure 1: Absorption and innovation as functions of ri,j, the ratio of the recipient to the
broadcaster’s knowledge endowment; two polar cases are presented: on panel (a), γ = 1
corresponds to pure absorption, whereas on panel (b), γ = 4 displays both absorption
(vertical lines) and innovation (horizontal lines).

The 45◦ line on the right side of ri,j = 1 indicates that it is only possible to learn from

more advanced people; if the recipient has more knowledge than the sender, ri,j > 1 and

the knowledge of the receiver does not change. For ri,j ≤ rc, there is only imitation: the
recipient does not leapfrog the broadcaster. In this region, “total” knowledge creation can

be seen as the vertically shaded area on the left of rc. By contrast, for 1 > ri,j ≥ rc there is
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explicitly innovation and leapfrogging of the sender by the receiver. In this region, “total”

knowledge creation is the horizontally shaded area plus the vertically shaded area to the

right of rc. How these areas respond to changes in γ is depicted in Figure 2.

Figure 2: The various contributions to knowledge creation as functions of γ.

In Figure 2, consider first the behaviour of rc, the implicit solution to

rc [1 + r
γ
c (1− rγc )] = 1

which is in the interval [0, 1] . The critical rc (curve 1) first falls with γ, before slowly rising

again. As a consequence the total amount of knowledge creation from imitation (curve 3)

first increases weakly, before decreasing. Finally, total knowledge creation is given byZ 1

0

r [1 + rγ (1− rγ)]− r dr = 1

γ + 2
− 1

2 (γ + 1)
,

and is depicted as curve 2 in Figure 2. As can be seen, it peaks at γ =
√
2. Finally, Curve
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4 shows the contribution of innovation. It is an increasing function of γ.5

Thus, γ captures two effects that work in opposite directions.

First, the amount of knowledge accumulation attributable to imitation (curve 3 in figure

2) falls as γ increases. The second effect is that the amount of knowledge accumulation

due to imitation (in which the receiver leapfrogs the sender) increases with γ (curve 4). As

γ increases knowledge growth becomes concentrated on those agents with high ri,j values.

In a certain sense this creates selectivity in knowledge accumulation.

The precision in the argument above is based on an implicit assumption on the distri-

bution of knowledge among agents: for any broadcast, the ri,j values of the recipients are

uniformly distributed between 0 and 1. While in practice this will almost never be the

case, the two effects we discussed are real, and we expect the behaviour of the system to

be driven by their interplay.

One way of thinking about γ is that it captures the innovative potential of industries,

the extent of knowledge tacitness, technological opportunities, and relatedly the phase of

the industry life cycle. It is generally accepted that in the earliest phases of the industry

life cycles, technological opportunities are higher but knowledge is less codified (which

decreases the extent of absorption). The functional form that we employ in knowledge

creation permits us to model this aspect. We assume that highly tacit knowledge renders

the prior knowledge level of the recipient important, i.e. who gets the knowledge matters

more for innovation. This is why higher γ implies that knowledge flows are more selective,

in the sense that the agents in the high end of the knowledge spectrum benefit more from

the technological opportunities. Low levels of γ has the opposite effect. This could be

interpreted to mean that knowledge is more codified, yet technological opportunities are

lower. Thus, a wider range of agents can benefit from a broadcast (knowledge flow is less

selective), but the extent to which they can leapfrog the sender is limited.

Having specified a schematic description of knowledge interaction, the following section

analyses the network dynamics.
5To link Figures 1 and 2: for γ = 4 for example, the value of the imitation is equal to the vertically

shaded area in figure 1 panel (b); the value of innovation in Figure 2 is equal to the vertically shaded area
in Figure 1 panel (b). Consequently the value of total knowledge created is the total shaded area, which is
curve 2 in Figure 2, and which is the sum of curves 3 and 4.
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2.1.3 Interaction patterns

We aim to compare, in terms of aggregate knowledge levels, two different cases. In the first

case, holding the architecture of the network fixed throughout a single simulation, we run

simulations for different architectures, and investigate whether the network architecture

matters. In the second case, each time the randomly selected agent broadcasts, he/she

does so to a different set of agents (we call this case homogeneous mixing), so that there

is no network within a single simulation. We investigate how diffusion over a network

compares to the homogeneous mixing case. Below each of the two cases is explained in

detail.

Network In the case of fixed networks, the network structure on which agents interact

is held fixed in a single simulation, i.e. every time a particular agent broadcasts, the

same set of agents – his/her neighbours – receive information. In different simulations,

however, we vary the structure of this network by the following re-wiring procedure. The

agents are located at fixed, regular, intervals around a circle. At one extreme of the space

of network structures, we have a regular structure: each agent is connected to his/her s

nearest neighbours, s/2 on each side. 6At the other extreme each agent is connected to,

on average, s agents located at random on the circle. To interpolate, we use the following

algorithm. Create the regular structure. With probability p rewire each edge of the graph.

That is, sequentially examine each edge of the graph; with probability p disconnect one of

its vertices, and connect it to a vertex chosen uniformly at random. By this algorithm, we

tune the degree of randomness in the graph with parameter p ∈ [0, 1].7
The structural properties of these graphs can be captured by the concepts of average

path length and average cliquishness. To illustrate, in friendship networks, the path length

is the number of friendships in the shortest chain connecting two agents, whereas cliquish-

ness reflects the extent to which friends of one agent are also friends of each other. Formally,

defining d(i, j) as the length of the shortest path between i and j, the average path length
6While this algorithm does not produce a scale-free network [25] it is a standard way to explore this

family of networks.
7See Watts and Strogatz [26] in the context of small worlds, and Cowan and Jonard [23] for an appli-

cation.
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L(p) is

L(p) =
1

N

X
i∈S

X
j 6=i

d(i, j)

N − 1
and average cliquishness C(p) is given by

C(p) =
1

N

X
i∈S

X
j,l∈Γi

X(j, l)

#Γi(#Γi − 1)/2 ,

where X(j, l) = 1 if j ∈ Γl and X(j, l) = 0 otherwise.

Homogeneous mixing In the homogeneous mixing case, there is no network on which

interaction is mediated. Agents interact in a totally random manner, and broadcast each

time to different set of s agents. For all i ∈ S who is called to broadcast, Γi is randomly
constructed each period by drawing s vertices in the population S without replacement.

3 Results

We consider an economy with n = 500 agents, each agent being connected to, on average,

s = 10 other agents. Each agent is endowed with a knowledge scalar, initialized randomly

at the outset from a uniform distribution U [0, 1]. Two separate families of histories are

run.

First, network structure is fixed. In this case, within a single simulation run, composed

of τ = 30, 000 periods, we hold the value of p fixed, and compute the resulting knowledge

levels. In each period, one randomly selected agent innovating according to (1) and then

broadcasting his/her knowledge. The receivers are those who are directly connected to

him/her, specified at the beginning of the run, and their knowledge levels are updated

according to (2). Each agent is therefore selected 60 times on average to broadcast his/her

knowledge. A simulation run consists in setting a p value, creating the network, setting

the value of γ and so creating the innovation function, and then iterating the process for τ

periods. For each p, γ pair we preform 100 repilications. We vary p from p = 0 (a perfectly

regular structure) to p = 1 (a purely random graph), and use 15 values of γ ranging from

1 to 5.

Second we perform simulations under homogeneous mixing. As in the previous case, 100

replications are recorded. Every period an agent is selected randomly to broadcast, he/she
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innovates according to (1), and broadcasts his/her knowledge to a randomly selected set of

agents. The receivers’ knowledge levels are updated according to (2).

We measure the aggregate performance of the system by the long run growth rates of

the mean knowledge levels. The average knowledge in the economy, for a particular value

of p, at time t is

µt (p) =
1

n

X
i∈S
vi,t (4)

The one-period growth rate at time t is measured by

ρt (p) =
µt (p)

µt−1 (p)
− 1,

and will be evaluated close to the end of the simulation horizon. Obviously, there is no p

value for the homogeneous mixing case, denoted H. To understand the effect of having a

fixed network structure, we also examine normalized growth rates, that is, we compute

ρ∗t (p) =
ρt (p)

ρt(H)
(5)

We are interested in the influence of two parameters. The first is p ∈ [0, 1], which
determines the network structure. The second is γ ∈ [1, 5] which measures the selectivity
and leapfrogging effects, as explained above.

3.1 Homogeneous mixing

The results for the case of homogeneous mixing are given in Figure 3, which provides a

box-plot representation of growth rates as a function of γ.

Knowledge growth is lowest when γ = 1. This is no surprise as the complete absence

of leapfrogging implies (see Figure 1, panel 1) absorption until nothing remains to absorb,

and knowledge levels remain constant thereafter. From Figure 3, it is clear that there is a

critical level of γ that yields maximum growth, and after which growth falls. Considering

the discussion above, this fall can be explained very simply: randomness reinforces the

effect of selectivity. Consider cliquishness. Cliquishness generates similarity in knowledge

levels, so in a non-cliquish world, knowledge levels are dispersed. This implies that in a

non-cliquish world, the range of people who can leapfrog is relatively small and so is the

growth of knowledge attributable to leapfrogging. Obviously there is no world having lower
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Figure 3: The distribution of growth rates under homogeneous mixing.

cliquishness than a world of homogeneous mixing. Hence knowledge generation is weak in

the presence of high selectivity effects (large γ), even though those who leapfrog make very

large gains.

This is also directly visible from Figure 2, in which we see that the relative importance

of selectivity and leapfrogging vary with γ, and the best overall growth is achieved for

γ ≈ 3. Just like the expected amount of knowledge creation, the simulated growth rate
also has an interior peak.

3.2 Knowledge dynamics in the network

Figure 4 shows the relationship between network architecture, characterised by the dis-

order in the network (the parameter p), and knowledge growth for different values of γ.

We present both the original data points and, for each p-value, the corresponding non-

parametric kernel estimate. This convention applies to all the following figures.

Broadly speaking, at any p-value, the relationship between γ and knowledge growth is
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only weakly increasing: knowledge growth increases and then flattens out. For p close to

1, we get slightly more: a pattern similar to the one reported in the previous paragraph

in the case of homogenous mixing, with an increase followed by a decrease, the peak being

around γ = 3. More interesting, however, is that for low values of γ knowledge growth

rates increase with p, whereas for high γ values, knowledge growth rates decrease with p.

In other words, when relative contribution of imitation to total knowledge creation is high

(low γ), a random world (high p) dominates other structures. At the other extreme, when

innovation is relatively important (high γ) a cliquish world (low p) performs best.

Figure 4: Growth rate of knowledge as a function of p, for a set of γ-values.

When γ is low, rc approaches 1. Leapfrogging disappears as an important part of

knowledge growth, since there are few agents able to leapfrog, and the extent to which

they overtake the broadcaster is very small. Thus imitation becomes the driver of knowl-

edge accumulation, and short paths will contribute to rapid growth. At the same time,

since leapfrogging is not important, and agents far beneath the broadcaster can still ab-

sorb significant amounts of knowledge, similarity becomes unimportant and the value of
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cliquishness, which creates similarity among neighbours’ knowledge levels (see Figure 5),

disappears.8 When short paths are valuable, and cliquishness is not, a random graph,

which has small diameter, will be most efficient in producing knowledge.

On the other hand, when γ is high, leapfrogging becomes important, and agents who

leapfrog make big advances. Thus, a weak agent (one whose knowledge level puts him/her

below rc), is unable to leapfrog, and further learns little by imitating (the g(·, ·) function
lies close to the 45 degree line for low r < rc). Such agents will rapidly be “left behind”.

What connects this observation to the result above is that in a cliquish world, agents tend

to have knowledge levels similar to their neighbours. This is shown in Figure 5. In a

cliquish world, when an agent broadcasts, most of his/her neighbours will be above the rc

threshold, and thus can leapfrog him/her, making big advances. Thus relatively few agents

get “left behind” and aggregate knowledge levels grow rapidly. When γ is high, cliquish

structures produce rapid knowledge growth.

Figure 5: Neighbourhood dissimilarity as a function of network architecture.

8If γ falls below 1, the bulk of knowledge accumulation shifts to those agents far below the broadcaster.
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3.3 Comparison of random mixing and network cases

Figure 6 shows the re-scaled growth rates, ρ∗t , using the growth rates in the homogeneous

mixing model as the norm. The pattern is essentially the same as for the non-normalized

growth rates in Figure 4. There is, though, observable value from a networked structure

when γ is high, while there is observable cost from networks when γ is low. The value of

a network, however, changes with the structure of the network. We observe in Figure 6

that as p approaches 1, the value (positive or negative) of a network disappears (ρ → 1).

This clearly implies that in this model the random network most closely approximates

a homogeneous mixing model. At the other extreme, we observed above that for low γ

cliquishness has a strong negative impact on growth. A homogeneous mixing model is in

a sense the least cliquish situation possible, and so we see (Figure 6) that ρ(0) < ρ(H).

Conversely for large γ the opposite is true, and thus ρ(0) > ρ(H).

Figure 6: Normalized growth rates.

What this suggests is that in industries wherein imitation is important a policy favouring
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networking and perhaps clustering may be misplaced. Important in interpreting this remark

is the condition implied by Figure 1, namely that all agents, regardless of their prevailing

knowledge stocks, can learn significant amounts from a broadcaster. This could be the

case, for example, in a relatively mature industry in which knowledge tends to be highly

codified. On the other hand, when a recipient must be highly knowledgeable to use the

information he/she receives in an effective way, we see that networks, and in particular

cliquish networks or industrial clusters are structures to foster.

4 Conclusion

In this paper, we have focused on the knowledge sharing and creation within a population

of agents and how the medium of interaction contributes to the long run knowledge growth

rates. We distinguished between two mediums of interaction; the first in which there is

no network structure; agents interact and share knowledge randomly, and the second in

which interaction is facilitated by a certain fixed network. We also considered different

network architectures, at one extreme we took the case of completely regular network in

which there is high cliquishness and average path lengths are high. At the other extreme

we took a completely random network structure, characterized by low path length and low

cliquishness. We considered the cases that fall between these two extremes.

In the process of new knowledge creation, we modelled ongoing innovation in a com-

munity of actors, based on the idea that innovation is largely a result of knowledge sharing

among a small group of agents. In doing so, we distinguished between industries according

to the extent of innovative potential. We took into account the tacitness of knowledge and

technological opportunities in assessing innovative potential. Especially in the early stages

of the industry life cycle, the industries are characterized by high technological opportuni-

ties, yet knowledge is tacit, which decreases the extent of absorption. The functional form

that we employ in knowledge creation permits us to model this aspect, with the parameter

γ, which measures both the creation of knowledge and the distribution of it. We assumed

that highly tacit knowledge renders the prior knowledge level of the recipient important,

i.e. who gets the knowledge matters more for innovation. In this sense, high γ implies that

knowledge flow is more selective, i.e.; the agents in the high end of the knowledge spectrum

17



benefit more in terms of leapfrogging the sender and thus make better use of the available

technological opportunities. Low levels of γ has the opposite effect. Here, knowledge could

be seen as more codified, yet technological opportunities are lower. Thus, a wider range

of agents can benefit from a broadcast (knowledge flow is less selective), but the extent to

which they can leapfrog the sender is limited.

Our results reveal that the existence of network structure can significantly increase the

long run knowledge growth rates. But this result depends on the innovative potential of the

industry. Increased regularity in the network increases long run growth rates for high values

of γ. This implies that regularity and cliquishness is better in industries characterized by

more tacit knowledge, and higher technological opportunities. On the other hand, the case

with no network structure proved to be better for low γ values; i.e. when the knowledge

is more codified, but there are fewer opportunities to leapfrog the sender. The difference

between the no-network and network cases diminishes as the network architecture becomes

more random. Our results tend to support the hypothesis that spatial clustering is better

in industries where knowledge is highly tacit, and there are large amounts of technological

opportunities to explore.
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