Propositions of the thesis

Stress Resilience
Learning from imaging the brain

1. The iMAST is an excellent tool to systematically investigate the time-dependent mediating role of cortisol in the brain’s response to a stressor (Chapter 1).

2. Resting state functional connectivity (rsFC) is informative in characterizing the temporal trajectory of cortisol-induced changes in brain connectivity during stress adaptation.

3. Timing is important. This is certainly true in the realm of how stress affects memory formation (Chapter 3).

4. The moderating role of lateralised frontal activity on acute stress responses is state-dependent, with relatively more left-sided activation characterising resilience (Chapter 2 & 4).

5. Deriving frontal EEG asymmetry from the individual alpha band is key in accounting for lateralised individual differences in the processing of stressors by the brain (Chapter 4).

6. Ensuring reproducibility on the individual level is a fundamental challenge in neurofeedback studies (Chapter 5).

7. Placebo controlled studies and comparisons with other established therapies are necessary before any translation of neurofeedback to a more applied context is justified.

8. With modern society becoming increasingly more demanding and complex, knowledge about successful adaptation to stress also becomes progressively more important.

9. Running a neurofeedback study is an excellent intervention method to train your own stress resilience.

10. *Karakter wint van talent, als talent geen karakter heeft* (Frank de Boer).

Conny Quaedflieg, Maastricht, January 21st 2016