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Chapter 1

General Introduction



Studying the Complexity in Biology

In 1958 Francis Crick first presented the central dogma of molecular biology to
describe the flow of sequential information within a biological system [1, 2]. It
states that information passes from DNA (deoxyribonucleic acid) to proteins via
RNA (ribonucleic acid), but proteins cannot pass the information back to RNA
or DNA. Although the principles of the central dogma are still valid today, reality
is much more complex (see Figure 1.1). Every step in this sequential informa-
tion transfer is highly regulated by many different players and it is important to
study the complete system in all its complexity to gain better insights into the
mechanisms of living systems.

Figure 1.1: Regulation of the Central Dogma of Molecular Biology. DNA stores our
genetic information and is replicated during every cell division. The process of transcribing DNA
into mRNA is called transcription. This process is sometimes reversible. RNA can be replicated
as well. The step from mRNA to protein is called translation and it is not reversible. Each step
in the dogma is highly regulated by many different factors (shown on left side).

The central dogma of molecular biology is the foundation of biological complex-
ity. Genes encoded in DNA, messenger RNA (mRNA) and proteins together with
small molecules, often metabolites, are the functional elements in a biological sys-
tem. Together they participate in metabolic and signalling pathways which are
the building blocks of the large complex networks describing the logic of a bio-
logical system. Pathway diagrams have been used by researchers for many years
to visually describe biological processes. With the advances in high-throughput
measurement as well as computational technologies we can now look beyond sin-
gle biological processes and start investigating interactions on a system-wide level.
Figure 1.2 shows the complexity pyramid illustrating the different levels in biolog-
ical systems [3].
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Figure 1.2: Life’s Complexity Pyramid by Oltvai and Barabasi [3]. The central dogma
of molecular biology represents the foundation of the complexity pyramid. Genes store the
genetic information, they are processed into mRNA and further into proteins which together
with metabolites execute functions in the cell. However the next layer shows that to be able to
perform all their tasks it is important that they work together in metabolic or signalling pathways.
The complexity is increased when we study how those different processes are interlinked and
connected in larger networks.

In summary, the machinery in a living cell is very complex and the wish to better
understand, model and in the end simulate a complex system like a cell gave rise
to a flourishing new research field called Systems Biology. The goal of this
emerging field is the study of interactions between the components in a system
and their influence on function and behaviour of that system. Pathway models
were the first use case to study specific processes in more detail. They describe the
sequence of events in a visual diagram and they have become immensely useful for
computational analysis. While pathways are very focused and zoomed in on one
specific process, networks tend to look at the larger, holistic view of a biological
system.
Biological pathways and networks are the central concepts in this thesis. In this
introductory chapter, I will discuss the definition and importance of biological
pathways and networks in biomedical research and how they are used to store,
integrate, visualize, analyze and interpret biological data.

Biological Pathways

For many years biologists have been drawing pathway diagrams to gain a better
understanding of the processes in a living cell. The diagrams are found everywhere:
in textbooks, research articles, posters, lab journals or presentations and they have
proven themselves as powerful tools to organize, share and discuss knowledge.
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A pathway represents the current knowledge about a biological process in a vi-
sual, comprehensive and easy to understand format. Pathway diagrams drawn
with state-of-the art pathway editors are much more than just images. Each
biomolecule and interaction in the pathway is linked to external online databases
containing additional detailed information. This also enables the automatic inte-
gration and visualization of experimental data on the pathway. Additionally every
element in the pathway can be linked to scientific literature creating a comprehen-
sive reference collection for a specific biological process.

In most cases pathway diagrams are drawn with hardly any standardization. The
same graphical symbols might be used to describe different elements or relation-
ships in the pathways which leads to confusion and misinterpretation. Although
pathways are network-like in nature, there are specific expectations on how the
elements in such a network should be represented. Graphical notation standards,
like SBGN (Systems Biology Graphical Notation [4]) or MIM (Molecular Interac-
tion Maps [5]), have been developed and are slowly adopted by the different online
pathway databases, like WikiPathways [6], Reactome [7] and KEGG [8].

The most common types of biological pathways are metabolic and signalling path-
ways, which will be described in more detail below.

Metabolic Pathways

Metabolic pathways describe the biochemical reactions that are needed to build
up new molecules (biosynthesis) or break down molecules (degradation). Many
molecular transformations are performed in a multi-step process which are then
combined in one metabolic pathway. Each step is regulated by proteins called en-
zymes that speed up the biochemical reactions or even invest energy to make them
go in the reverse direction from normal. Glycolysis is the first metabolic pathway
discovered and represents a ten-step conversion of one glucose molecule into two
pyruvate molecules (see Figure 1.3). In response to changes in the environment the
enzymatic activity in the cell can be controlled to balance the level of metabolites
in the cell. This is important for cellular maintenance and cell survival.

Signalling Pathway

Receptors are proteins located inside a cell or on the cell surface. Their task is to
receive chemical signals from outside the cell. In response to such an extracellular
signal the receptor initiates an intracellular signal transduction pathway. Multiple
pathways might be active and intersecting with each other at any time point. The
signal can be amplified in every step of the transduction cascade, enzymes might
be activated or inhibited to regulate metabolic pathways or gene transcription
might be influenced by the presence or absence of transcription factors (TFs). As
an example, Figure 1.4 shows the Wnt signalling pathway from KEGG.
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Figure 1.3: Glycolysis Pathway. This pathway from WikiPathways
(http://www.wikipathways.org/instance/WP534) describes the 10-step breakdown of glu-
cose (C6H12O6) into two pyruvate (CH3COCOO−) molecules. This pathway contains
metabolites (blue boxes) and enzymes (black boxes) as well as links to other pathways (green
boxes).
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Figure 1.4: Wnt Signalling Pathway. This pathway from KEGG
(http://www.genome.jp/kegg/pathway/hsa/hsa04310.html) describes the effects of the binding
of Wnt proteins to their receptors. Wnt proteins are secreted lipid-modified glycoproteins.

Biological Networks

Before being applied in biology, networks have been used in many different areas.
Transportation systems, social connections, the power grid systems and even the
internet are represented as networks. Those are all large systems with hundreds
of thousands of interacting components. The elements in a network are called
“nodes” and the links between them “edges”. As an example, in a protein-protein
interaction network the nodes represent proteins and the edges between them show
known physical interactions between two proteins. In the past, we were not able
to handle the large amount of data behind such networks but with the emergence
of the internet and the increase in computational power, it became possible to
collect, assemble, share and analyze such large networks.

Network biology can build on several hundred years of experience and develop-
ments in graph theory, a sub-field of mathematics that focused on networks since
1736 [9]. Therefore most algorithms and approaches used in network biology are
based on previously defined network properties like the shortest path between two
nodes, the node degree to find hub nodes in the network or node betweenness to
calculate the importance of the node for the connectivity of the network.
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Figure 1.5: Network of 27 Diabetes Mellitus Related Genes. The network was created
with GeneMania [10] using the 27 genes (yellow nodes) associated with diabetes mellitus in
the Diseasome [11]. 50 related genes were added to the network (white nodes). The interactions
represent physical interactions (protein-protein interactions; red edges) and pathway interactions
(blue edges). No interactions were found for IPF1, TCF1 and TCF2.

In network biology we distinguish a number of different network types, for example:

Protein-protein interaction networks consist of known intentional phys-
ical contacts between pairs of proteins. The latest updates from the Human
Interactome Project [12] reported a total of 17,000 unique binary interactions
(HI-II-14, prepublication, http://interactome.dfci.harvard.edu/).

Regulatory networks are collections of elements that regulate the expres-
sion level of mRNA or proteins. The main players in regulatory networks are
TFs that regulate the transcription of a gene into mRNA. In recent years,
post-transcriptional regulators like microRNAs (miRNAs) or small interfer-
ing RNAs (siRNAs) are often also included in regulatory networks.

Metabolic networks are maps of connected metabolic pathways. Recon
2 is a global reconstruction of the known human metabolic network [13].
The current map contains 1,789 enzyme-encoding genes, 7,440 reactions and
2,626 unique metabolites.

Signalling networks show how extracellular signals are transducted in the
cells. They consist of multiple signalling pathways but often also integrate
regulatory and metabolic networks.
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Co-expression networks are constructed based on experimental data. The
edges in the network represent the correlation between the transcript abun-
dances of pairs of genes or proteins. These networks are widely used to
identify co-expression modules and hub genes.

An example network including protein-protein interactions and pathway informa-
tion is shown in Figure 1.5. It is apparent that the types of pathways and networks
are very similar which highlights that pathways really are the building blocks of
larger complex biological systems. A metabolic pathway describes a specific pro-
cess while a metabolic network links the different pathways to each other. This
makes it possible to move beyond single genes, single pathways, single studies, and
make full use of all information and knowledge generated thus far, providing an
invaluable framework for deciphering molecular mechanisms of health and disease
in their entire complexity.

Managing Biological Data

In recent years biomedical research has been experiencing a rapid growth in vol-
ume and heterogeneity of biological data. This presents an increasing challenge
for biologists and bioinformaticians. Biological data covers experimental data
(measurements) but also structured knowledge that has been inferred from exper-
imental data and is usually published in literature and online databases. In the
systems biology approaches described in this thesis, the goal is often to integrate
existing knowledge with experimental data to verify known mechanisms, generate
new hypotheses or study the molecular effects of a disease or treatment.

In this thesis we are looking at four key aspects about “managing biological data”
from a systems biology point of view: (1) data structure and storage, (2) data
integration, (3) data visualization and (4) data analysis and interpretation.

Data Structure and Storage

Experimental data. Nowadays experimental data can be made publicly avail-
able through one of the online data repositories like ArrayExpress [14] or Gene Ex-
pression Omnibus (GEO) [15] which contain nearly 50,000 experiments. Although
the focus still lies on large scale functional genomics experiments, the number of
available proteomics and metabolomics experiments are increasing. The European
Bioinformatics Institute (EBI) also maintains repositories for proteomics (PRIDE
[16]) and metabolomics (MetaboLights [17]) experiments.

Biological knowledge. There are many online databases structuring and stor-
ing information about single biological entities, like Ensembl [18] for genes and
transcripts, UniProt [19] for proteins or ChEMBL [20] for metabolites. In systems
biology the focus shifts from looking at one single entity to the relationships and
interplay between those entities. Biological relationships are very diverse and are
often stored as interactions between two entities in interaction databases. They
can encompass physical protein-protein interactions (IntAct [21] or STRING [22]),
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drug-target interactions (DrugBank [23] or ChEMBL [20]) or even disease-gene as-
sociations (DisGeNet [24] or OMIM [25]). Pathway databases on the other hand
store pathways that contain a connected set of interactions relevant in a biological
process. Commonly used pathway databases are WikiPathways [6], Reactome [7]
and KEGG [8]. There is a wide variety of biological online database and the list
of databases mentioned in this section is not exhaustive.

Data Integration

A crucial aspect in bioinformatics is the integration of existing knowledge and the
large amount of experimental data. Biological data is diverse, complex and dis-
tributed in many different resources. Data integration allows researchers to make
better informed and faster decisions about their research and enables them to also
include the areas surrounding their experiments to see the bigger picture [26].

Several chapters in this thesis demonstrate and discuss the integration of data.
We differ between three major types of data integration:

Integration of data from multiple online databases. Because of the
large variety of biological databases it is often necessary and advantageous
to combine and integrate data from multiple databases in an analysis. As
an example, there are several databases storing miRNA-target gene interac-
tions. Some of the databases contain validated interactions, like miRTarBase
[27] and miRecords [28], and others provide predicted interactions, like mi-
croCosm Targets or TargetScan [29]. In practise researchers often integrate
data from several of these databases or in the case of predicted interactions
they only consider interactions predicted by multiple algorithms.

Integration of multiple experimental datasets. The large amount of
available experimental data allows bioinformatics to integrate and combine
experiments studying the same or similar conditions. If consensus between
the different datasets is shown the confidence in the results is increased. The
integration of different experimental datasets is also relevant when compar-
ing different settings, like different tissues, cell types, disease states. Fur-
thermore, the integration of different types of experimental data is crucial to
investigate the biological system as a whole, for example the combination of
transcriptomics and proteomics data to study the correlation between gene
expression and protein abundance levels.

Integration of experimental data with biological knowledge. When
analyzing experimental data the integration of existing knowledge is crucial
to make sense of the data. GeneOntology (GO [30]) annotations help to
investigate the functions of the genes affected by a toxin or pathway analysis
allows researchers to combine expression data with pathway information to
analyze changes in metabolic and signalling pathways in a disease.
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Data Visualization

Nowadays biological data is almost exclusively visualized with computer-based vi-
sualization tools and the advances in computer hardware and network access make
the wide range of visualization tools amenable to non-experts. However, because
of the complexity and heterogeneity in biology, the visualization of biological data
is still one of the biggest challenges. Friedman [31] summarizes the importance
and role of data visualization:

“The main goal of data visualization is to communicate information
clearly and effectively through graphical means. It doesnt mean that
data visualization needs to look boring to be functional or extremely so-
phisticated to look beautiful. To convey ideas effectively, both aesthetic
form and functionality need to go hand in hand, providing insights into
a rather sparse and complex data set by communicating its key-aspects
in a more intuitive way.”

Modern methods of data generation and the integration of many different data
types make it harder to visualize data in a concise and meaningful way. Pathways
are a very useful tool to reduce the complexity and visualize the data for a specific
biological process. In network biology it is often necessary to apply algorithms to
find the relevant parts in a hairball network and highlight those parts visually.

Data Analysis and Interpretation

The emergence of high-throughput technologies brought incredible possibilities for
new discoveries but the analysis and interpretation of data became much more
difficult and time-consuming. The focus in this thesis lies on the analysis and
interpretation of experimental data using pathway and network analysis.

Pathway analysis groups genes, proteins and other biological molecules based on
their involvement in biological pathways and therefore reduces the size of the
problem. Instead of looking at thousands of genes, pathway analysis explores
hundreds of pathways. As mentioned before, biological pathways are models of
well studied biological processes and therefore the result of a pathway analysis has
a higher explanatory power than a simple gene list.

Outline of this Thesis

The aim of the work described in this thesis is to show the power of biological
pathways and networks to store, integrate, analyze, visualize and interpret biolog-
ical data.

The first half of the thesis will focus on the applicability of biological pathways.
Chapter 2 introduces PathVisio, a biological pathway editor, analysis and visu-
alization software which is widely adopted in the research community. Its third
version provides a new extensible toolbox for pathway creation, data visualiza-
tion and pathway analysis. Chapter 3 acts as a proof-of-principle study, showing
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the capability of pathway models to collect biological knowledge about a biological
process and present it in an intuitive, visual way. In this study, we investigated the
function and regulation of sterol regulatory element-binding proteins (SREBPs)
by reviewing more than 50 scientific articles and integrating the information in
one biological pathway. This pathway was created in PathVisio and published in
the pathway database WikiPathways. Chapter 4 demonstrates the visualization
of multi-omics data on biological pathways based on a published mouse study.
Transcriptomics data was combined with proteomics data to show transcript and
protein levels together on a pathway diagram. In like manner, metabolomics or
other biological data, numeric and nonnumeric, can be visualized on pathways.

The second half of the thesis will move from the focused, smaller pathway models to
larger, more complex biological networks. Chapter 5 will not only show the bridge
between pathways and networks but also the link between two large open source
communities, WikiPathways and Cytoscape [32]. Cytoscape is a popular net-
work visualization and analysis software which can be extended by so-called apps.
The WikiPathways app in Cytoscape allows users to open biological pathways as
networks in Cytoscape to then perform advanced network analysis. Another Cy-
toscape app, CyTargetLinker, will be presented in Chapter 6. The integration of
regulatory interactions like TF-gene, miRNA-target or drug-target interactions is
crucial to study biological systems in their entire complexity. CyTargetLinker not
only provides an easy-to-use interface to integrate such interactions but also allows
to combination of different resources together. The final publication in this thesis,
Chapter 7, will demonstrate the combination and application of the in previous
chapters described systems biology approaches studying the biological rewiring in
the diabetic liver. This study will combine pathway and network analysis in a real
biological use case and emphasize the usability and immense potential of systems
biology approaches to better understand disease mechanisms.

Finally, it will end with a General Discussion about the importance of data
curation of pathway and interaction data, the challenges of data integration and
the role of open data, open access and open source in biomedical research.

General Introduction 17



Bibliography

[1] F Crick. Ideas on Protein Synthesis, October 1956.
[2] F Crick. Central dogma of molecular biology. Nature, 227(5258):561–3, August 1970.
[3] ZN Oltvai and AL Barabási. Systems biology. Life’s complexity pyramid. Science (New York,

N.Y.), 298(5594):763–4, October 2002.
[4] N Le Novère, M Hucka, H Mi, S Moodie, F Schreiber, A Sorokin, E Demir, K Wegner, MI Aladjem,

SM Wimalaratne, FT Bergman, R Gauges, P Ghazal, H Kawaji, L Li, Y Matsuoka, A Villéger,
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Abstract

For many years biologists have been drawing pathway diagrams to gain a better
understanding of the underlying biology. The diagrams are found everywhere: in
textbooks, research articles, posters, lab journals or presentations and they have
proven themselves as powerful tools to organize, share and discuss knowledge. In
2008, we presented the first version of our pathway visualization and analysis tool
PathVisio. Since then, PathVisio has been used extensively in different studies to
draw biological pathways, perform pathway statistics or visualize biological data
on pathways. A light-weight applet version of PathVisio is integrated in the com-
munity curated pathway database WikiPathways to provide an online pathway
editor that allows users to directly edit and curate the pathways.

In the last six years, PathVisio has been substantially extended and the core ap-
plication was refactored using the OSGi framework to achieve a better, modular
system that can be easily extended with so called plugins. The new plugin repos-
itory and manager bring the functionality of the plugins to all users by offering a
simple and user-friendly interface for plugin installation.

PathVisio is a freely available, open-source pathway editor, visualization and anal-
ysis software that runs on all major operating systems. The focus points for this
new, third version of PathVisio are modularity, extensibility and improved us-
ability. PathVisio 3 introduces a wide variety of new features including support
for different pathway drawing standards, advanced multi-omics data visualization,
statistical methods, support for import and export of different file formats and the
integration of data from online databases. More than 3,000 downloads between
January and June 2014 show that PathVisio is widely adopted in the research
community.
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Introduction

A picture says more than a thousand words. For many years biologists have been
drawing pathway diagrams to gain a better understanding of the underlying biol-
ogy. These diagrams are found everywhere: in textbooks, research articles, posters,
lab journals or presentations and they have proven themselves as powerful tools
to organize, share and discuss knowledge. Pathway diagrams have also become
immensely useful for computational analysis and interpretation of large-scale ex-
perimental data when properly modelled. Complex diseases like cancer or heart
failure are known to be caused by malfunctioning pathways instead of individual
genes, so the study and collection of biological pathways is crucial to get insights
into complicated disease mechanisms. Nowadays, computers allow researchers to
use tools to draw pathway diagrams that are much more than just pictures; they
contain annotations, literature references and comments for each element and in-
teraction in a pathway. These enriched pathway diagrams open the possibilities
to perform advanced pathway analysis and data visualization to get a more com-
prehensive understanding of experimental data.

In 2008, we presented the first version of our pathway visualization and analysis
tool PathVisio [1]. Since then, PathVisio has been used in numerous studies to
draw biological pathways, perform pathway statistics or visualize biological data
on pathways [2–10].
PathVisio has undergone active development and grown beyond a simple tool into
a comprehensive and extendable pathway analysis toolbox. Besides its standalone
graphical desktop version, PathVisio is often used as a library to read, write,
store, convert and model pathway information. It is also used in different websites
and workflows to act as a pathway editor and visualization tool. For example, a
light-weight applet version of PathVisio is integrated in the community curated
pathway database WikiPathways [11] and ProfileDb, a resource for proteomics and
cross-omics biomarker discovery, uses PathVisio to visualize differential expression
results on pathway diagrams [12].
In previous versions PathVisio provided a simple but limited interface for exten-
sions through plugins. A plugin is a small software component that adds a specific
feature to an existing application. In the case of PathVisio, a plugin could provide
for example a new statistical method, a new drawing standard or additional in-
formation about elements in the pathway. The usage of available plugins enables
users to refine the pathway analysis workflow in PathVisio and build an applica-
tion with all the necessary modules relevant for their research.

Here we introduce the third version of the pathway visualization and analysis
tool PathVisio. The aim is to present the newest additions and improvements of
the application, especially the new plugin extension system, as well as the plugin
repository and the integrated plugin manager. PathVisio is a freely available,
open-source tool allowing independent developers to contribute plugins to provide
new functionality. PathVisio is implemented in Java and thus runs on all major
operating systems. The focus of this new version of PathVisio lies on modularity,
extensibility and improved usability.
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Design and Implementation

In the last six years, PathVisio has been substantially extended and the core
application was refactored using the OSGi framework (Open Service Gateway ini-
tiative) to achieve a better, modular system that can be easily extended with so
called plugins [13]. OSGi also allows plugins to depend on each other to avoid
code redundancy and promote code reusability. Such modular systems keep the
core of an application stable and maintainable while the functionality can be easily
extended allowing users to build an application designed for their needs [14].

First, we will discuss the new modular structure of PathVisio 3, then the plugin
repository will be introduced, and last the usability and advantages of the new
plugin manager will be shown.

Modularisation with OSGi

PathVisio 3 consists of eight OSGi modules that build the core application, each
being responsible for one crucial part of the application. As illustrated in Figure
2.1, the modules nicely separate the different parts of the application.

Figure 2.1: Transitive Dependency Structure of PathVisio 3. The application consists of
eight modules each providing specific functionality. The modules core and data are independent
modules (coloured in blue) that function as libraries that can be reused outside of PathVisio (PV).
Especially the core module is often used as a PV library for reading and writing of pathway files.
Other modules in red, gui, desktop and visualization, provide functionality that is used by other
modules. Green modules, gex, statistics and plugin manager, are not used by other PV modules
but can be used by PV plugins. The PV JavaApplet version integrated in WikiPathways uses
the core and gui module.

The core module of PathVisio 3 contains the non-user interface backend, including
the data model, import and export functionality and general settings and prefer-
ences. This module can also be used as a library by other software tools for reading,
editing and writing pathway files in PathVisio’s native GPML (Graphical Pathway
Markup Language, http://www.pathvisio.org/gpml) format. The gui (graphical
user interface) module implements the basic user interface which is shared be-
tween the standalone and the applet version of PathVisio. The applet version is
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integrated in WikiPathways as an online pathway editor. The more advanced,
full-powered graphical user interface for the standalone application is provided by
the desktop module. It is also the central connecting point for plugins. The plu-
gin manager module handles the connection to the plugin repository as well as
installing and uninstalling plugins. The gex module contributes the functionality
for importing experimental data together with the data module which defines the
interfaces for storing and handling experimental data. The visualization module
then provides a simple but flexible way to visualize the experimental data on the
data nodes in the pathways. To identify significantly altered pathways in an exper-
imental dataset, the statistics module contributes a standard over-representation
analysis algorithm based on a hypergeometric test [15].

PathVisio Plugin Repository

The new PathVisio plugin repository consists of two separate parts, (i) the repos-
itory itself which stores all necessary plugin files as well as their dependencies and
(ii) the PathVisio plugin database and front-end.
The PathVisio repository is located at http://repository.pathvisio.org. It contains
all plugin files and third-party dependencies. The RepoIndex library
(https://github.com/osgi/bindex) builds a complete dependency structure of the
repository and writes it in an XML file named repository.xml.

The PathVisio plugin database is an independent mySQL database containing
location information and metadata, e.g. description, authors and release notes,
about each plugin. The database is integrated into the WordPress framework
(http://wordpress.org) to take advantage of some of the built in functionalities of
WordPress, like capabilities to tag, browse, search, comment and evaluate plugins.

Plugin Manager

To make it easier for users to find and install plugins, PathVisio 3 incorporates a
plugin manager that connects to the repository and enables a one-click installation
of plugins from within the application. The plugin manager allows users to browse
plugins by categories and provides additional information about the plugin when
selected, like description or author information.

Figure 2.2 shows the connections between the different components that are used
by the plugin manager. This new plugin manager module retrieves data from two
different files, the repository.xml file and the pathvisio.xml file. The repository.xml
file is created by the RepoIndex library and stores the complete dependency struc-
ture of the repository. Additional metadata about the plugin, like developers,
description or categories, are retrieved from the pathvisio.xml file which is created
from the PathVisio plugin database.

Consequently, the new extension system takes care of the installation of plugins
and all required dependencies. If a plugin depends on another plugin or a third
party library, the plugin manager makes sure that all required OSGi bundles are
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Figure 2.2: Plugin Extension and Installation System of PathVisio 3. The plugin
repository stores all plugin files and their dependencies. The RepoIndex library is used to create
a repository.xml file which contains the dependency indexes of all plugins. Metadata about
plugins is stored in the PathVisio plugin database which is then exported into a pathvisio.xml
file. The PathVisio 3 plugin manager retrieves data from both files to facilitate the installation
of plugins in PathVisio 3.

downloaded, installed and started. Therefore the complex dependency structure
is hidden from the user and installation is much easier and faster.

Results

PathVisio has been used in a substantial number of publications in the last six
years and the analysis workflow has been further developed and improved. PathVi-
sio 3 also provides several interfaces allowing plugins to integrate tightly into the
application. The new plugin repository and manager finally bring the functional-
ity of the plugins to all users by offering a simple and user-friendly interface for
plugin installation.

In this section, we will first highlight the new features of PathVisio in an updated
feature table, then the standard pathway analysis workflow in PathVisio will be
demonstrated and lastly show how plugins can hook into the application and
provide new functionality to the user.
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Feature Table

In Table 2.1 the most important features of PathVisio 3 are summarized.

Table 2.1: PathVisio 3 Feature Table

Feature Description
File import Default: GPML (http://www.pathvisio.org/gpml)

Plugins: MIMML ([16], MIM plugin), SBGNML ([17],
SBGN plugin), SBML ([18], PathSBML), BioPAX ([19],
BioPAX plugin), gene list (MAPPBuilder)

File export Default: GPML, PNG, PDF, SVG, TIFF, Eu.Gene [20],
datanode list
Plugins: MIMML (MIM plugin), SBGNML (SBGN
plugin), SBML (PathSBML), HTML (HTMLexporter),
BioPAX (BioPAX plugin)

Pathway drawing
standards

Default: Basic GPML style
Plugins: SBGN, MIM

Identifier map-
ping

Integrated BridgeDb framework [21] for advanced identi-
fier mapping for pathway elements and interactions in the
pathways. All major database identifiers including probe
ids for genes, proteins and metabolites are supported.

Pathway statis-
tics

Default: Over-representation analysis (Z-Score)
Plugins: Gene set enrichment analysis (GSEA plugin)

Data visualiza-
tion

Pathway nodes: gradient-based visualization for numeric
data, rule-based visualization for numeric and nonnu-
meric data
Interactions: color and line thickness visualization
(IntViz plugin)

Plugin extension
system

Plugin manager allows one-click installation of plugins
from central plugin repository to enable additional fea-
tures.

Pathway
database con-
nection

WikiPathways: searching, browsing, updating, uploading
biological pathways (WikiPathways plugin)

Workflow inte-
gration

The core module can be used as a library to read, write,
store, convert and model pathway information
Calling PathVisio functionality from other programming
languages through XML-RPC server (PathVisioRPC)

Online data ac-
cess

Several plugins provide connections to other online re-
sources to give more information about the individual el-
ements in the pathway, like BiomartConnect about gene
products, MetInfo about metabolites or PathwayLoom
about known interaction partners.
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Pathway Analysis Workflow in PathVisio

The core application has three main features: (1) pathway drawing, (2) data visu-
alization and (3) pathway statistics. The integrated identifier mapping framework
BridgeDb [21] allows pathway authors to annotate the elements in their pathways
with their identifier system of choice and automatically takes care of the mapping
when e.g. experimental data with another identifier system is loaded.

The data visualization and pathway statistics modules have been first introduced
in PathVisio 2 and further improved and extended in PathVisio 3.

(1) Pathway Drawing

Biological pathway diagrams represent the sequence of events in biological pro-
cesses. They often contain different biological entities, like genes, proteins or
metabolites, and interactions between them, like conversion, stimulation or inhibi-
tion. As illustrated in Figure 2.3, PathVisio is a full pathway editor which allows
users to draw the biological events, add graphical elements like shapes or labels
and annotate all the biological entities and interactions with external database
identifiers.

Figure 2.3: PathVisio 3, A Full-Powered Pathway Editor. (A) The basic drawing palette
contains data nodes, interactions, graphical elements, cellular compartments and a few templates.
Simple drag-and-drop mechanism allows users to add the elements in the pathway diagram. (B)
The ACE inhibitor pathway on WikiPathways (http://www.wikipathways.org/instance/WP554)
was drawn in PathVisio describing the downstream effects of angiotensin-converting-enzyme
(ACE) inhibtors. (C) The entities and interactions in the pathways can be annotated with
external identifiers. In this example the pathway author annotated the KNG1 gene with the
Entrez Gene [22] identifier 3827. PathVisio utilizes the BridgeDb identifier mapping framework
to free the user from manual identifier mapping steps.
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The drag-and-drop mechanism for adding new elements is used similar as in Pow-
erPoint and other drawing tools. Besides the external database annotation, users
can also add publication references to each entity or interaction in the pathway
establishing the pathway as a complete literature reference collection for the bio-
logical process described.

(2) Data Visualization

The visualization of experimental and other data is a crucial aspect in the analysis
and investigation of biological pathways. PathVisio allows users to import their
experimental data and visualize it on the data nodes and interactions in the path-
way. The integrated identifier mapping framework takes care of mapping the data
points to the intended pathway elements, therefore the user is not restricted to a
specific identifier system. In integrative studies, transcriptomics, proteomics and
metabolomics data can be visualized simultaneously to provide a more complete
view of the underlying biology [6].

Figure 2.4: Multi-omics Visualization in PathVisio. Two transcriptomics datasets are
visualized together with a metabolomics dataset on the Kennedy pathway from WikiPathways
(http://www.wikipathways.org/instance/WP1771). The log2FC is visualized in the first column
of the data node boxes using a gradient from blue over white to red. In the second column three
levels of p-values are visualized (p-value < 0.01, < 0.05 and > 0.05). The expression data for a
selected gene or metabolite is shown in the “Data” tab on the right side. In the red rectangle the
expression data for the selected Cept1 gene is shown. There are two measurements for the gene
from the two transcriptomics datasets, therefore the gene box in the pathway is split horizontally
into two rows.

As detailed in Figure 2.4, the visualization interface in PathVisio enables users to
visualize multiple data points on the data nodes in the diagram. The boxes are
split up in separate columns and for each column the user can define a gradient
or color rule visualization. A gradient is used for a continuous visualization of
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numeric values like the log2FC or an activity measurement in an experiment. The
color rules are used to define colors for discrete categories like p-value levels (p-
value < 0.01, p-value < 0.05, p-value > 0.05) or discrete categories. The example
dataset visualized in Figure 2.4 is a combined dataset of two transcriptomics and
one metabolomics experiments. The first column in the datanode boxes repre-
sents the log2FC and the second column the p-value. The log2FC is visualized
with a gradient from blue over white to red, while p-value is visualized with a dis-
crete color rule. If the dataset contains multiple measurements for one data node,
the box is split horizontally into separate rows each representing one measurement.

The visualization options in PathVisio 3 can be used to visualize time-series data
(one column for each time point) [2], tissue expression comparisons (one column
for each tissue) [23] and other complex multi-omics experiments.

(3) Pathway Statistics

The goal of pathway statistics is to find pathways that are altered in an experimen-
tal dataset. The basic pathway statistics implementation in PathVisio is an over-
representation analysis based on the statistical methods used in the MAPPFinder
tool [15].

First, the user defines a criterion to select the differentially expressed genes in
the dataset. In Figure 2.5A, the criteria filters genes with an absolute log2FC >
1 and a p-value < 0.05. The mouse pathway collection from WikiPathways was
downloaded and selected.

The statistics module calculates the total number of genes measured in the dataset
(N) and the number of genes meeting the criterion (R). All genes in N and R
are present in at least one pathways. Genes that are not found in any pathway
are ignored in the analysis. The Z-Score is calculated for each pathway in the
collection. Therefore the statistics module counts the total number of elements in
the pathway (total), the number of genes measured in the experiment (measured
→ n) and the number of genes meeting the criterion (positive → r) (see Figure
2.5B).
A commonly used score for overrepresentation analysis is the Z-Score. The Z-Score
is the score calculated by a standard statistical test under the hypergeometric
distribution. It indicates if a particular pathway shows a difference in the ratio of
genes meeting the criterion as compared to the complete dataset. It is calculated by
subtracting the expected number of genes meeting the criterion from the observed
number divided by the standard deviation of the observed number of genes:

Z-Score =
(r−n R

N )√
n( R

N )(1− R
N )(1− n−1

N−1 )

The pathways are ranked based on their Z-Score. A positive Z-Score indicates a
pathway with more genes meeting the criterion than expected by chance. A nega-
tive Z-Score indicates that less genes meet the criterion than expected by chance.
In the example in Figure 2.5 pathways with a high Z-Score have more significantly
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Figure 2.5: Pathway Statistics Result in PathVisio. The user defines the criterion for
significantly changed genes with an absolute log2FC > 1 (A). A Z-Score is calculated for each
pathway in the pathway collection and in the result table the pathways are ranked based on their
Z-Score (B). A high Z-Score indicates that the pathway is more affected than expected based
on the overall dataset. The user can click on each pathway to open the pathway with the data
visualized on it.

up- or down-regulated genes than expected based on the complete dataset. There-
fore those processes are highly affected in the experiment and should be further
analyzed. Overrepresentation analysis does not take the pathway topology into
account, so it is important that the users look at the pathway diagrams by clicking
on the rows in the table and visualize the experimental data on the diagram to
interpret the biological outcome.

Plugins in PathVisio

PathVisio provides a powerful and flexible way for plugins to integrate new func-
tionality into the application. The variety of plugins shows that PathVisio can be
extended in a lot of different ways and although initially PathVisio started as a
pathway editor, it grew into an advanced and extendable pathway visualization
and analysis toolbox.

The implementation of different pathway related standards is crucial to fulfil the
requirements of a state-of-the-art pathway editor. BioPAX [19] is a standard lan-
guage to exchange biological pathway data. The BioPAX3 plugin allows users
to import and export pathways in BioPAX level 3 which is the latest release of
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the BioPAX format. Furthermore, there are two plugins providing functionality to
draw pathways in the commonly used SBGN [17] and MIM [16] drawing standards.
The PathVisio-Validator plugin [24] assists users in creating biological pathway di-
agrams with the SBGN or PathVisio-MIM [25] plugins. It validates the diagrams
and highlights possible warnings and errors in the pathway.

Pathway databases still only cover 47% of all human protein-coding genes. There-
fore the creation and curation of biological pathways is still of high importance.
Recently we released the WikiPathways plugin for PathVisio which enables users
to search and browse the database directly from within PathVisio but also allows
the uploading and updating of pathways through the full pathway editor. Inte-
grating this functionality in PathVisio 3 enables pathway curators to use all the
available plugins while creating new pathways or curating existing ones. Since the
release of this plugin several curation related plugins have been developed to fa-
cilitate the curation of the WikiPathways pathways. Furthermore plugins focused
on data integration can be used to facilitate the exploration and understanding of
biological pathways. As an example, the pathway curator could use the PathVisio-
Faceted Search plugin [26] to integrate experimental data and data from publicly
available online resources. Another useful plugin is PathwayLoom which provides
known interaction partners for a selected node in the pathway. This can help the
curator to select the next element in the pathway.

Also the integration of additional data about the elements in the pathway is use-
ful when creating and curating biological pathways. The BiomartConnect plugin
queries the Ensembl database for additional information about gene products,
like chromosomal position, %GC content or known variants. The MetInfo plugin
provides more data about the metabolites in a pathway, like InChI key or pre-
dicted MS and NMR peaks. Plugins connecting to UniProt, PDB and interaction
databases are under development.

Integration of PathVisio in Workflows and other Applications

To be able to integrate PathVisio in an automated workflow, we developed PathVi-
sioRPC (http://projects.bigcat.unimaas.nl/pathvisiorpc) to be able to call PathVi-
sio from other programming languages through an XML-RPC server. It enables
users to programmatically draw pathways, visualize data on pathways and perform
pathway statistics. This is especially convenient and time-saving when studying
multiple datasets or datasets with many different comparisons.

Furthermore PathVisio is often used as a library to read, write, store, convert
and model pathway information. The nice separation of the different modules in
PathVisio 3 enables developers to integrate this functionality in other application
simply by including the core module of PathVisio 3. This module is also used
in the WikiPathways App for Cytoscape [27]. Cytoscape is a popular network
analysis and visualization tool [28] and the WikiPathways app allows users to load
pathways as networks in Cytoscape to perform network analysis.
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Availability and Future Directions

PathVisio 3 is a freely available, open source pathway editor, visualization and
analysis toolbox implemented in Java. It runs on all major operating systems as
a Java webstart program or as a binary installation.

Download: http://www.pathvisio.org/downloads
Documentation and tutorials: http://www.pathvisio.org
Instructions for core and plugin developers: http://developers.pathvisio.org
Plugin repository: http://www.pathvisio.org/plugins/plugins-repo
Source code: http://svn.bigcat.unimaas.nl/pathvisio
Integrated identifier mapping framework: BridgeDb (http://www.bridgedb.org)
GPML file format: http://www.pathvisio.org/gpml

Future Directions

Future development will focus on (1) more advanced pathway analysis methods,
(2) improved data integration and visualization and (3) automated update mech-
anisms.

(1) Advanced pathway analysis methods: The default pathway anal-
ysis method in PathVisio 3 is a simple over-representation analysis. Users
can also use the GSEA plugin which implements a functional class scoring
method which does not require a specific threshold for splitting up signifi-
cant and nonsignificant measurements. This method uses all the molecular
measurements and their expression levels. The next step for PathVisio is
the implementation of an topology-based pathway analysis method. While
over-representation analysis and functional class scoring only consider the
number of genes in the pathways, topology-based methods also look at the
interactions between the elements in the pathways [29].

(2) Improved data integration and visualization: PathVisio 3 supports
the visualization of transcriptomics, proteomics and metabolomics data on
the elements in the pathways. Recently a plugin has been developed to
allow visualization of fluxomics data on the interactions in the pathways.
Integration of other experimental data like genetic variation, methylation or
phosphorylation states is needed to be able to study biology in all its com-
plexity. For most of these additional data types new advanced visualization
methods are needed.

(3) Automated update mechanisms: In the next major release of PathVi-
sio, we are planning an automated update mechanism for the main applica-
tion and the installed plugins. The application can be upgraded as soon as
a new release is available. We will provide installers for all major operating
systems that will facilitate the installation of new PathVisio versions.
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Abstract

The essential function of sterol regulatory element-binding proteins (SREBPs) in
cellular lipid metabolism and homeostasis has been recognized for a long time, and
the basic biological pathway involving SREBPs has been well described; however,
a rapidly growing number of studies reveal the complex regulation of these SREBP
transcription factors at multiple levels. This regulation allows the integration of
signals of diverse pathways involving nutrients, contributing to cellular lipid and
energy homeostasis. This review attempts to integrate this knowledge. The de-
scription of the SREBP pathway is web-linked as it refers to the online version of
the pathway on WikiPathways (http://www.wikipathways.org), which is interac-
tively linked to genomics databases and literature. This allows a more extensive
study of the pathway through reviewing these links.
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Introduction

Sterol regulatory element-binding proteins (SREBPs) play an important role in
the regulation of the intracellular cholesterol concentration and in overall lipid
homeostasis. Since lipids and cholesterol are important components of cellular
membranes and precursors for steroid hormones, bile salts, and essential signal-
ing molecules, a tight regulation is vital. SREBPs provide a negative feedback
mechanism by sensing the intracellular levels of cholesterol. SREBPs function
as transcription factors, and upon activation, by low levels of cholesterol, they
stimulate the expression of genes coding for proteins involved in the synthesis of
cholesterol and fatty acids and in the uptake of lipoproteins [1]. The basic signaling
pathway affected by SREBPs has been elucidated in great detail. However, regu-
lation of SREBPs themselves is proven to be very complex. In the last few years,
research has brought new insights regarding this regulation and the interaction
with other nutrients and hormones that play a role in energy homeostasis. Recent
studies also implicated the SREBP pathway to be important in the development of
a range of pathological conditions, associated with obesity and the metabolic syn-
drome, like liver steatosis and hyperlipidemia [2]. It has also been described that
SREBP has a role in several physiological cellular processes not directly related
with lipid homeostasis, like cell growth and innate immunity [3]. As the insight in
the SREBP pathway becomes more and more complex, integration of the different
aspects of this knowledge is vital. We will describe the SREBP protein and its
isoforms, to continue with a description of the current view on the molecular basis
of the SREBP pathway, its complex regulation and its physiological function. In
this review, we are applying a pathway approach to investigate the function and
regulation of the SREBP proteins in lipid-metabolism-related pathways.

SREBP Pathway

The description of the SREBP pathway in this review will especially focus on the
role of the SREBP proteins in lipid-metabolism-related pathways. A graphical rep-
resentation of the SREBP pathway (see Figure 3.1) can be found on WikiPathways,
a platform for community-based curation of biological pathways [4, 5]. This path-
way is a mammalian meta-pathway combining data from mouse, rat, and human
studies. The description of the SREBP pathway will refer to this new pathway rep-
resentation on WikiPathways. The interactive pathway viewer on WikiPathways
enables the user to zoom, pan, and browse to get detailed information on pathway
elements in external databases and thereby allowing a more extensive study [5].
The pathway can be found at: http://wikipathways.org/instance/WP1982.

The specific version we used for this review is:
http://wikipathways.org/instance/WP1982 r59430.

Various elements of the pathway (gene products, metabolites, interactions, and
the pathway as a whole) are linked to literature references using Pubmed IDs.
The gene products are among others linked to genomics databases like Ensembl
[6], Entrez Gene [7] and UniProt [8] and to databases providing information on
biological function and the role in diseases, including GeneOntology (GO) [9] and
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OMIM [10]. The metabolites are linked to metabolite databases like HMDB [11]
and ChEBI [12].

Figure 3.1: The SREBP Pathway on WikiPathways.

The SREBP Family

The SREBP family consists of three subtypes: SREBP-1a and SREBP-1c, which
are the result of alternative promoter usage and transcription start sites in the
SREBF1 gene, and SREBP-2. All three subtypes were identified by cDNA cloning
[13, 14]. SREBPs are transcription factors that bind to the sterol regulatory ele-
ment (SRE) [13]. They are synthesized as endoplasmic reticulum (ER) membrane
proteins. The SREBP protein consists of three domains: a N-terminal domain
which has approximately 480 amino acids, in the middle a hydrophobic region
of 80 amino acids containing two membrane-spanning domains and a C-terminal
regulatory domain of 590 amino acids [1]. They are oriented in a hairpin fashion
in the membranes of the ER and the nuclear envelope, in which the N-terminal
and C-terminal project into the cytoplasm.

The N-terminal domain is a basic-helix-loop-helix leucine zipper (bHLH-Zip). This
domain is the functionally active portion of the SREBP and functions as the
transcription factor. The N-terminal domain starts with an acidic domain that
clusters acidic residues and functions as a transactivation domain. Deletion of this
acidic domain converts SREBP-1 from an activator to an inhibitor of transcription
[15]. The acidic domain is followed by a region of which the function is unknown.
In SREBP-1, this region is proline and serine rich, and in SREBP-2, this region
is proline, serine, glutamine, and glycine rich. This region is then followed by
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the bHLH-Zip domain [1]. Figure 3.2 gives an overview of the different protein
domains of the SREBP isoforms.

Figure 3.2: Protein Domains of the SREBP Isoforms. The structure of SREBP-1c is
highly similar to SREBP-1a; SREBP-1c has a shorter transactivation domain in the N-terminus
[1].

The high similarity among the N-terminal domains of the isoforms of SREBP re-
sults in the ability of all isoforms to activate all of the target genes identified so far,
but with different efficiencies [16]. Given that SREBP-1c has a shorter transactiva-
tion domain, this isoform is a less potent transcription factor than SREBP-1a and
SREBP-2 [17]. Several in vivo studies obtained insight in the distinct roles of the
SREBP isoforms. In transgenic mice that overexpress a truncated, active nuclear
form of SREBP-2 in liver and adipose tissue, it was shown that SREBP-2 is a
relatively selective activator of cholesterol synthesis, as opposed to fatty acid syn-
thesis in these tissues [18]. SREBP-1 knockout mice showed a significant decrease
in mRNA coding for fatty acid synthesis enzymes. There was also a significant
increase in cholesterol synthesis, but this was due to activation of SREBP-2, which
compensated for the lack of SREBP-1 [19]. In general, SREBP-1 is relatively se-
lective for lipogenic genes and SREBP-2 for cholesterogenic genes. This is due to
differences among the SREBP isoforms in specificity for SREBP target promoters
[20, 21].

Activation of SREBP

Since SREBP is bound to the ER membrane, the N-terminal domain must be
released before SREBP can activate its target genes in the nucleus. This requires
a two-step proteolytic process, which takes place in the Golgi apparatus. There-
fore, the SREBP is first transported to the Golgi apparatus. Important for the
regulation of the cleavage of SREBP is another ER membrane-embedded protein
named SREBP cleavage-activating protein (SCAP). In mice with a SCAP-deficient
liver, no nuclear form of SREBP was found, and they showed an 80% decrease in
basal rates of cholesterol and fatty acid synthesis in the liver [22]. SCAP has an
N-terminal domain of 730 amino acids which has eight membrane-spanning re-
gions separated by short hydrophilic loops, which include a sterol-sensing domain
(SSD). This domain is similar to the sterol-sensing domain found in other pro-
teins which interact with sterols: 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG
CoA) reductase, the Niemann-Pick disease type C1 protein and Patched [23]. The
C-terminal domain is a hydrophilic region of 546 amino acids containing 4 repeats
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of a tryptophanaspartate repeat, WD. Both SREBP-1 and SREBP-2 form a com-
plex with the SCAP protein on the ER membrane by binding of the WD region in
SCAP to the C-terminal domain of SREBP. When there are enough sterols present
in cells, cholesterol can bind directly to the sterol-sensing domain of SCAP, which
then undergoes a conformational change. This conformation favors the binding
of SCAP to another ER membrane protein named insulin-induced gene (Insig),
which blocks translocation of the SREBPSCAP complex to the Golgi apparatus,
where the proteolytic activation takes place [24]. This can be seen in the upper left
corner of the pathway representation. The red arrow indicates the negative effect
of cholesterol on SREBP stimulation by stimulating the binding of Insig to the
SREBPSCAP complex. Metabolites, like cholesterol, are indicated in blue boxes
in the pathway representation.

There are two Insig isoforms, Insig-1 and Insig-2, which are both polytopic ER
membrane proteins. They play an important role in the control of lipid synthe-
sis, not only by binding to the SCAP protein. Insigs also bind to HMG-CoA
reductase, which is the rate-limiting enzyme in the synthesis of cholesterol. The
binding of Insig to HMG-CoA reductase induces the ubiquitination and proteolysis
of this enzyme, whereas binding of Insig to SCAP leads to ER retention [25, 26].
The dual function of Insig in cholesterol metabolism is discussed in more detail in
[27]. Insig-1 and Insig-2 demonstrate an amino acid identity of 59% and are both
embedded in the ER membrane by six membrane-spanning domains [28]. The
regulation and the relative stability of the two isoforms differ. Insig-1 is itself a
target of SREBP, whereas Insig-2a has been shown to be suppressed by insulin in
hepatic cells [29, 30]. The exact mechanism of the regulation of Insig by insulin
remains unclear and is therefore visualized in the WikiPathways pathway using a
dashed arrow. The Insig-1 protein is quite unstable and is degraded by the ubiq-
uitinproteasome pathway, whereas Insig-2 is a relatively stable protein, which is
constitutively expressed at low levels. In transgenic mice that overexpress human
Insig-1 in the liver, the levels of all nuclear SREBPs (nSREBPs) were reduced,
which shows that Insig inhibits SREBP processing [31].

Upon sterol deprivation, the SREBPSCAP complex dissociates from Insig and
moves to the Golgi apparatus, a process that is discussed in more detail in the
next section. Insig-1 is then ubiquitinated on lysines 156 and 158 by the membrane-
bound ubiquitin ligase gp78. This ubiquitin ligase has a high affinity for Insig-1,
and degradation of Insig-1 in a cholesterol-rich environment is probably prevented
by binding competition between gp78 and SCAP [32]. Insig-1 is subsequently de-
graded in proteasomes, providing a positive feedback mechanism on the activation
of SREBP. nSREBPs activate the genes for cholesterol synthesis and uptake and
stimulate the production of Insig-1. This upregulation can be seen in the pathway
on the right in blue arrows. The new cholesterol and Insig-1 bind the SREBP-
SCAP complex and the complex remains in the ER [33].

The cholesterol regulatory system is controlled not only by its end product choles-
terol but also by oxysterols. Oxysterols are derivatives of cholesterol which have
extra keto- or hydroxyl groups. Oxysterols were proven to regulate the interaction
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of SCAP and Insig, but they do so by a different mechanism than cholesterol.
Cholesterol binds to SCAP, while oxysterols bind to Insigs. This induces SCAP
to bind to Insig, which inhibits the movement of the SREBPSCAP complex to
the Golgi apparatus [34]. Oxysterols are also ligands of the nuclear liver X recep-
tors (LXRs), which also play an important role in the cholesterol synthesis. Upon
activation by oxysterols, LXR forms a heterodimer with the retinoid X receptors
(RXRs) which binds to the LXR response element (LXRE) on target genes. An
LXRE has been found in the proximal promoter region of the rat cytochrome P450
7A1 (CYP7A1) gene, which codes for an enzyme responsible for the rate-limiting
step in the conversion of cholesterol to bile acids [35]. However, in the human
gene promotor of CYP7A1, the LXRE appears to be not conserved. In addition,
in human primary hepatocyte cultures, it has been shown that activation of the
LXR represses CYP7A1 expression, indicating a species-specific difference in the
regulation of cholesterol homeostasis [36]. In addition, LXRs have been implicated
in the upregulation of genes involved in efflux of cholesterol from the cell, as ATP-
binding cassette A1 (ABCA1). LXR/RXR can also bind the SREBP-1c promoter
and induce SREBP-1 activation of fatty acid synthesis [37].

ER to Golgi Transport

If there are not enough sterols present in the cell, the SREBPSCAP complex
moves to the Golgi apparatus through COPII-coated vesicles. The sorting of the
complex in a COPII vesicle is depending on an amino acid sequence in the SCAP
protein. SCAP has a long loop, which projects into the cytoplasm between the
membrane-spanning helices 6 and 7. In this loop, the hexapeptide MELADL is
found, which is required for the binding of the COPII proteins Sec23 and Sec24 to
the SREBPSCAP complex. Clustering of the SREBPSCAP complex into a COPII
vesicle is initiated by Sar1, a small GTPase that binds to the ER membrane GTP
dependent. This binding is visualized on WikiPathways by a green arrow, which
shows that this is the first step in the cascade toward activation of transcription
by SREBPs. The binding of Sar1 initiates the binding of Sec23/24, which then
recruits Sec13/31. This heterodimer forms the coat of the vesicle and the vesicle
can bud from the ER membrane [38]. Interaction of SCAP with Insig causes a
conformational change in SCAP which inhibits the interaction of MEDADL with
Sec23/24.

An ER membrane protein named ring finger protein 139, also called TRC8, shown
in the upper right corner on WikiPathways, was identified as a regulator in the
SREBP pathway. The protein contains a SSD and a RING finger motif, which
encodes for an E3 ubiquitin ligase. It is shown that the overexpressing of TRC8 in-
hibits SREBP-2 processing. TRC8 is capable of binding both SREBP-2 and SCAP
and a TRC8SREBPSCAP complex is formed. This inhibits the binding of SCAP
to Sec23/24 and blocks transport of the SREBPSCAP to the Golgi apparatus.
The TRC8 protein in itself is highly unstable because of self-ubiquitination, which
leads to degradation. When cells were cultured with a lipoprotein-deficient serum,
the TRC8 protein became stable [39]. It is thus likely that when the SSD senses a
decline in lipoprotein, it will downregulate the E3 ligase activity. It could provide
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a brake on the SREBP processing in conditions of sterol depletion, preventing too
much processing of SREBP [40].

Proteolytic Cleavage

After fusion of the COPII vesicle with the Golgi apparatus, the N-terminal of the
SREBPs is released by intramembrane proteolysis. The processing of SREBP-
nSREBP is shown in the bottom left corner on WikiPathways. The process is
executed by two proteases, membrane-bound transcription factor peptidase site 1,
or Site-1 protease (S1P), and Site-2 protease (S2P). The process is initiated when
S1P, a membrane-bound serine protease, cleaves the leucineserine bond in the se-
quence RSVLS within the luminal loop of SREBP [41]. This separates the two
membrane-spanning segments. The next step is cleavage by S2P, which hydrolyzes
a leucinecysteine bond in the sequence DRSRILLC. This sequence lies within the
N-terminal membrane-spanning domain, and cleavage occurs in three residues in
this domain [42]. The result is that the N-terminal domain is released from the
SREBP and functions as an active nSREBP, which migrates to the nucleus to
activate target genes [43]. It has been proposed that the cleavage of S1P is re-
quired for the cleavage of S2P, because the separation of SREBP into two halves
causes a conformational change in the first membrane-spanning domain which al-
lows S2P to be exposed to its target sequence, thus favoring the cleavage of S2P
[44]. In addition, it has been demonstrated that caspase 3, a cysteine protease
that is involved in the induction of apoptosis, releases mature SREBP from the
ER membrane, probably in a sterol-independent manner [45].

SREBP Target

The nSREBPs released during the cleavage reaction travel into the nucleus. This
nuclear transport is mediated by karyopherin (importin) beta, which interacts with
the bHLH-Zip motif [46] . Important genes involved in lipid metabolism that are
activated by SREBP are listed individually on WikiPathways. Besides activating
these target genes, SREBPs also induce transcription of the SREBP gene itself,
which contains a SRE, and thus stimulate production of new SREBPs and provide
a positive feedback loop. Although SREBPs mainly activate target genes, genes
with a SRE sequence have been reported which are repressed by SREBPs. These
genes are, for example, microsomal triglyceride transfer protein (MTTP) [47] and
caveolin [48]. Since SREBP is active in cases of cholesterol depletion, it is likely
that SREBPs repress these genes, which are involved in the efflux of cholesterol
and the secretion of lipoproteins [16]. The inhibition of genes by SREBP could be
due to an indirect effect, namely through activation of repressors. For example,
in human myotubes, it has been shown that the transcriptional repressor genes
BHLHB2 and BHLHB3 are SREBP-1 target genes, negatively regulating skeletal
muscle development [49].

Activation of the target genes by SREBP requires several cofactors. Usually, nu-
clear transcription factor γ (NF-γ), Sp1 transcription factor, and CREB-binding
protein (CBP) act as cofactors for SREBP. Binding sites for these factors are
often found in the SREBP target gene promoters and they are involved in the
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assembly of the transcription machinery [50]. The activator recruited-cofactor
(ARC)-mediated co-activator complex, a large complex that associates with RNA
polymerase II, has also been found to interact with SREBPs. They have been
shown to use ARC105 to activate target genes [51]. The peroxisome proliferator-
activated receptor-γ coactivator-1 (PGC-1) family functions as important regula-
tors of lipid metabolism. PGC-1β has been found to interact with SREBPs and
works as a transcriptional co-activator in the transcription of lipogenic genes [52].

Another transcription factor named the YY1 transcription factor seems to be neg-
atively involved in the regulation of SREBP target gene activation. It is shown
that the promoters of the HMG-CoA synthase, farnesyl diphosphate (FDP) syn-
thase, and the low-density lipoprotein (LDL) receptor contain YY1 binding sites.
YY1 seems to repress SREBP activation by the displacement of NP-Y from the
promoter [53]. Other studies suggest YY1 acts by inhibiting the interaction be-
tween Sp1 and SREBP [54]. The physiological role of YY1, however, is yet to
be identified. On WikiPathways, the cofactors are drawn on a cofactor-binding
site in the promoter of the target genes. The green colored boxes show activators,
whereas the red colored boxes represent repressors.

Interestingly, the SREBF-1 and SREBF-2 gene loci contain, respectively, miR33b
in intron 17 and miR33a in intron 16. The mature microRNAs (miRNAs) dif-
fer in only two nucleotides, but are thought to have a largely overlapping target
gene set [55, 56]. These miRNAs appear to work synergistically with SREBP in
increasing fatty acid synthesis and cholesterol synthesis and uptake [57–59]. Inter-
estingly, rodents lack the miR33b gene in the SREBF-1 gene [57]. Both miR33a
and miRNA33b seem to inhibit the expression of genes involved in fatty acid degra-
dation, e.g., carnitine O-octanoyltransferase (CROT), and genes that negatively
regulate fat production, e.g., insulin receptor substrate 2 (IRS2) [56]. In addition,
they also repress expression of ATP-binding cassette transporter A1 (ABCA1),
which normally promotes the efflux of cholesterol from cells to apolipoprotein A1
(APOA1), leading to high-density lipoprotein (HDL) formation [58].

Regulation of the SREBP Pathway

Expression and processing of the isoforms of SREBP in vivo was found to be very
complex. The SREBP pathway is not just regulated on cell level by the intracel-
lular level of cholesterol, but it can be affected by the nutritional and hormonal
status of the body as a whole.

Several studies provided a link between insulin, glucose, and SREBPs. It is known
that glucose and insulin stimulate fatty acid synthesis through activation of hep-
atic lipogenic genes. It has been recognized the PI3K/AKT pathway plays an
important role in the regulation of SREBP by insulin. A range of studies has
been done on exploring the effect of the PI3K/AKT pathway on SREBP, and ef-
fects on transcription, activity, processing, and stability have been found [60]. A
possible mechanism is that insulin increases the migration of the SREBPSCAP
complex from ER to Golgi. Insulin stimulates Akt/PKB-dependent phosphory-
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lation of serine and threonine residues of SREBP-1c. This leads to an increased
affinity of the SREBPSCAP complex for de COPII proteins, Sar1 and Sec23/24,
and a decreased affinity for Insig, which retains the SREBPSCAP complex in the
ER membrane [61]. It has also been shown that insulin enhances processing of
SREBP-1c in hepatic cells by stimulation of the degradation of Insig-2a mRNA,
reducing Insig-2a protein levels [30]. The PI3K/AKT pathway inhibits glycogen
synthase kinase 3 (GSK3) through phosphorylation. It has been proposed that
this diminishes degradation of mature SREBP-1, since GSK3 has been shown
to promote ubiquitination and proteasomal degradation of SREBP-1 through a
phosphorylation cascade; GSK3 phosphorylates SREBP-1 at Ser-434, whereby it
increases its own affinity for Ser-430 and Thr-426 in SREBP-1, leading to GSK-
3-dependent phosphorylation of these sites and a binding site for the ubiquitin
ligase Fbw7 [62]. One of the major downstream regulators of the PI3K/AKT
pathway is the mammalian target of rapamycin (mTOR). In the past, it has been
shown that the mTOR complex-1 (mTORC1) positively regulates the processing
of SREBP-1. It was thought this activation was mediated by the ribosomal protein
S6 kinase (RPS6K2), which is phosphorylated by mTORC1 [63]. It has recently
been shown that insulin-mediated stimulation of SREBP-1c processing required
mTOR, studied in a hepatic system in which the effect of insulin on SREBP-1c
processing could be dissected from the effect of insulin on SREBP-1c transcrip-
tion, described below. This stimulation of SREBP processing by insulin could be
inhibited by using an inhibitor of p70 ribosomal S6K, leading to an increase in
nSREBP-1c, which was more likely due to an increased production of nSREBP-1c
then decreased degradation. The mechanisms by which S6K can lead to increase
in nSREBP-1c require further investigation [64, 65].

In addition, it has been suggested that the regulation of SREBP-1 is achieved
by the regulation of the nuclear entry of phosphatidate phosphatase lipin 1 by
mTORC1. Lipins are involved in triacylglycerol biosynthesis and have a second
function as transcriptional co-activators. Lipins are sequestered in the cytosol in
a hyper-phosphorylated state, and phosphorylation is induced by mTORC1. Loss
of mTORC1-mediated lipin 1 phosphorylation promotes the nuclear entry of lipin
1, and this promotes downregulation of nSREBP, of which the exact mechanism
is unknown [66].

Also, insulin can increase basal transcription of the SREBP-1c gene. The liver X
receptor has been reported to have a central role in this insulin-mediated activa-
tion of SREBP-1c transcription. In the mouse promoter of SREBP-1c, two LXR
elements have been found. In rat primary hepatocytes, it was shown that dis-
ruption of both LXREs blunts the effect of insulin on transcription of SREBP-1c
[67]. In contrast, another study did not find a major involvement of the LXREs in
the response to insulin, but insulin requires the presence of SRE in the SREBF-1
promoter and enhanced the binding of SREBP-1 to its own promoter. However, it
should be noticed that this study made use of a different system based on HEK293
cells [68]. cAMP, which can be activated by glucagon, and the cAMP-dependent
kinase, protein kinase A (PKA) have been shown to suppress SREBP-1c tran-
scription by phosphorylation of LXR, which inhibits the DNA binding activity
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by inhibiting LXR/RXR dimerization, decreases recruitment of a coactivator, and
enhances the recruitment of a corepressor [69]. In addition, it has been shown
in HepG2 cells that PKA can phosphorylate SREBP-1a at Ser338, which reduces
DNA binding of SREBP-1c [70]. These results indicate a role for the cAMP/PKA
pathway in mediating SREBP-1 and hepatic lipogenesis.

It has been shown that the increase in SREBP-1 expression stimulated by insulin
can be inhibited by wortmannin and rapamycin, indicating the PI3K-mTORC1
pathway is involved. In contrast to the stimulation of SREBP-1c processing by
insulin, the increase in SREBP-1 expression by insulin could not be blocked by in-
hibiting S6K. This suggests that the regulation of SREBP-1c by insulin bifurcates
downstream of mTORC1, with one arm controlling the processing of SREBP-
1c and the other the gene expression [64, 65]. Furthermore, it has been shown
that upstream of this in the liver, by using liver-specific rictor knockout mice,
insulin stimulates mTOR complex-2 (mTORC2), which phosphorylated Akt at
serine 473, leading to SREBP-1c activation [71]. Other studies showed that a
glucose-dependent increase in SREBP-1c protein, shown in the lower right cor-
ner of the pathway, was due to an increase in SREBP-1 mRNA, suggesting that
glucose regulates the expression of SREBP-1c at transcriptional level [72]. In a
human renal proximal tubular cell line, it was shown the glucose-dependent acti-
vation of SREBP was potentially mediated through the PI3K/AKT pathway [73].
SREBP-2 levels remained unchanged when treated with insulin and glucose in the
liver. That insulin only stimulates hepatic SREBP-1, and not SREBP-2, matches
the fact that insulin and SREBP-1 have both been shown to induce lipogenesis.
However, in the brain, it has been shown that in insulin-deficient diabetic mice,
there is a reduction in the expression of SREBP-2, suggesting that in the brain,
insulin upregulates SREBP-2 expression [74]. A complete picture of the regula-
tion of SREBP by insulin and glucose requires additional studies. In addition,
cyclin-dependent kinase 8 (CDK8) and its regulatory partner cyclin C (CycC),
which are part of the coactivator mediator complexes in mammalian cells, have
been identified as regulators of de novo lipogenesis in Drosophila. Site-specific
phosphorylation of nuclear SREBP-1c by CDK8 results in an enhanced ubiquiti-
nation and degradation of nSREBP-1c. Insulin and feeding decreased the levels of
CDK2 and CycC and enhanced the levels SREBP-1c, indicating CDK8CycC acts
downstream of insulin in the regulation of de novo lipogenesis [75].

A crosstalk between SREBP and carbohydrate responsive element-binding protein
(ChREBP) has been found. These transcription factors appear to work synergis-
tically to regulate glycolytic and lipogenic gene expression. The phosphoryla-
tion of glucose to glucose-6-phosphate by hepatic glucokinase (GK) was found to
be essential in the induction of glycolytic and lipogenic genes [76]. SREs have
been found in the GK promoter, which is an indication that SREBP can activate
GK expression after activation by insulin. In the presence of high glucose, xylu-
lose 5-phosphate (X5P) can be formed, which can activate protein phosphatase
2A (PP2A). This phosphatase can dephosphorylate ChREBP, leading to nuclear
translocation of this transcription factor, where it binds to carbohydrate response
element (ChRE) in the promoter of glycolytic and lipogenic genes. In addition,
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SREBP-1c can stimulate glycolytic and lipogenic gene transcription after stim-
ulation by insulin. Thus, in the presence of high glucose and insulin, ChREBP
and SREBP can work synergistically to activate glycolytic and lipogenic genes [77].

Activating transcription factor-6 (ATF6) has also been found to interact with
SREBP-2. ATF6 is also an ER membrane-bound transcription factor, which upon
stimulation is translocated from ER to Golgi, where proteolytic cleavage by S1P
and S2P occurs [78]. ATF6 is stimulated by the accumulation of misfolded or
unfolded proteins and this ER stress could be caused by glucose deprivation. The
cleaved ATF6 translocates to the nucleus and binds to nSREBP-2 bound to tar-
get genes promoters. The nuclear ATF6 recruits histone deacetylase 1 (HDAC1),
which downregulates SREBP-2 gene expression. The physiological relevance could
be that when glucose is depleted, lipogenesis and cholesterogenesis are downregu-
lated to save energy [79].

Alternative regulators of the SREBP pathway are polyunsaturated fatty acids
(PUFAs), another example of how diet influences the activation of SREBP. PU-
FAs have been known as negative regulators of hepatic lipogenesis and have an
inhibitory effect on the SREBP pathway. PUFAs appear to suppress the pro-
teolytic processing of SREBP-1c. Suppression of the proteolytic processing of
SREBP in turn leads to a decrease in SREBP-1c transcription through lowering
SREBP-1c binding to SRE on its own promoter. The exact molecular mechanism
underlying this suppression still remains unknown, which is shown by the dashed
arrow in the pathway. PUFAs do not seem to affect the functioning of SREBP-2
[80]. There are several reports suggesting LXR is involved in transcriptional reg-
ulation of SREBPs by PUFA [81, 82]. However, several other studies did not find
an involvement of LXR in the regulation by PUFA, which could be due to different
study systems being used [80, 83]. In addition, it has been shown that unsaturated
fatty acids inhibit proteosomal degradation of Insig-1. Membrane proteins of the
ER can be degraded by the ubiquitination-proteasome system in a process called
ER-associated degradation (ERAD). In this process, valosin-containing protein
(VCP) extracts ubiquitinated proteins from the membrane making the proteins
accessible for degradation in the proteasome. Another protein, named Ubxd8,
recruits VCP to Insig-1. Unsaturated fatty acids (UFAs) appear to block to inter-
action between Ubxd8 and VCP, thereby inhibiting the extraction of Insig-1 from
the membrane [84].

Recent findings suggest the amino acid glutamine is also involved the regulation
of the gene expression and processing of SREBPs, suggesting another link be-
tween amino acid metabolism and lipid metabolism. Glutamine seems to increase
mRNA levels of several SREBP targets. Glutamine aids in the gene expression of
SREBP-1 by increasing the binding of the transcription factor Sp1 to the SREBP-
1a promoter. Glutamine also increases the processing of the SREBP protein,
presumably by stimulating the transport of the SREBPSCAP complex from ER
to the Golgi apparatus [85].
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The NAD+-dependent deacetylase SIRT1 has been shown to directly deacetylate
SREBP-1c, leading to a decreased stability of the protein and a reduced association
of SREBP-1c with its target genes [86]. Furthermore, SIRT1 has been shown to
downregulate target gene expression by SREBP-1c in vivo under fasting conditions
[87]. Whereas these studied focuses on the liver, recently, it has been shown that
SIRT1 also regulated SREBP-1c expression in skeletal muscle. Interestingly, the
effect of SIRT1 on SREBP-1c expression was completely abolished when the LXR
response elements in the SREBF-1 promoter were deleted, which suggest SIRT1
regulates SREBP-1c expression in muscle by deacetylation of LXR transcription
factors [88]. In addition, AMP-activated protein kinase (AMPK) has been shown
to directly phosphorylate SREBP-1c and thereby directly inhibit SREBP-1c pro-
cessing and translocation to the nucleus in the liver [89]. Interestingly, there is
evidence that AMPK and SIRT1 stimulate each other and share targets [90].

A link has also been found between fibroblast growth factor 21 (FGF21) and
SREBP-1c in hepatocytes. FGF21 has been identified as a regulator of energy
homeostasis, glucose, and lipid metabolism. However, little is known about the
regulation or activity of this FGF. It was found that FGF21 downregulated the
transcription of SREBP-1c, but the processing of SREBP-1c to its mature form
was also diminished. Interestingly, it was found that SREBP-1c could also inhibit
FGF21 expression. Molecular mechanisms and biological relevance of this link
remain unclear for the time being [91].

Recently, the role of retinol binding protein 4 (RBP4) in lipogenesis has been ex-
plored. In HepG2 cells, human RBP4 induces an increase in mature SREBP-1
and its nuclear translocation, which was also confirmed in an in vivo experiment.
In addition, treatment of HepG2 cells with RBP4 leads to a strong upregulation
of the expression and protein levels of PGC-1β. This suggests that RBP4 induces
SREBP-1 activation through induction of PGC-1β, leading to an increase in hep-
atic lipogenesis [92]. Earlier, it was already reported that retinoic acid and retinal
can synergize with insulin to induce the expression of SREBP-1c in primary rat
hepatocytes. This was mediated via the retinoid X receptor. This indicated a role
of retinol in regulating hepatic lipogenesis [93].

Other Roles of SREBP

The important function of SREBP in lipid metabolism led to these proteins be-
ing involved in a variety of pathological conditions related to lipid metabolism, as
steatosis and hyperlipidemia [2]. However, several other functions of SREBP, not
directly related to lipid metabolism, have emerged recently. SREBPs have been
found to regulate several cellular processes, including autophagy, phagocytosis,
membrane biogenesis, immunity, hypoxia, and the cell cycle. SREBP-2 has been
found to occupy promoters of genes that are involved in mediating autophagy
and knockdown of SREBP-2 decreases autophagosome formation in cholesterol-
depleted cells, indicating a role for SREBP-2 in autophagy [94]. Phagocytosis
occurs especially within the phagocytic cells of the innate immune system to en-
gulf exogenous particles. Phagocytosis can promote membrane biogenesis via the
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activation of SREBP-1a and SREBP-2 [95]. In addition, it has been reported
that bacterial pore-forming toxins can trigger cleavage and activation of SREBP-1
and SREBP-2, probably through caspase-1, which could aid in membrane repair
[96]. Furthermore, it has been found that SREBP-1a can induce expression of the
anti-apoptotic gene Api6 when toxin is present, which promotes cell survival [97].
In fission yeast, it was found that SREBP homologs stimulated transcription of
genes that are involved in adaption to hypoxia in response to low oxygen levels
[98]. Several reports found SREBP to be involved in cell cycle control. nSREBP-1
appears to be hyperphosphorylated by cyclin-dependent kinase (CDK)1/Cyclin B
during mitosis, which stabilizes nSREBP. Furthermore, inactivation of SREBP-1
arrested the cells in the G1 phase of the cell cycle [99]. In addition, expression
of the major CDK inhibitor p21 was found to be induced by SREBP-1 [100]. In-
terestingly, miR33, located in the SREBP gene locus, also appears to be involved
in the regulation of the cell cycle. miR33 inhibits CDK6 and cyclin D1 and thus
reduces cell cycle progression, with overactivation of miR33 even leading to a cell
cycle arrest in the G1 phase [101]. The roles of SREBP beyond lipid metabolism
have been reviewed in more detail in recent reviews [3, 102].

Conclusion

We previously described how literature review can be used to obtain highly curated
pathways for biological processes [103, 104], which can be used for data analysis in
PathVisio [105]. The new interactive browsing functionality of WikiPathways now
allows the pathways themselves to be used as interactive means to study relevant
literature and database information on the reactions and entities involved, their
known roles in biology and disease, relevant genetic variation, chemical properties,
etc. The SREBP pathway on WikiPathways described here is an example that
makes full use of this functionality.
The basic pathway of SREBP signaling has been well described. When sterol lev-
els are high, Insig retains the SREBPSCAP complex within the ER membrane. In
case of sterol depletion, the SREBPSCAP complex interacts with COPII proteins
and migrates in COPII vesicles to the Golgi apparatus. In the Golgi apparatus,
SREBP is cleaved and active nuclear SREBP is released. This nSREBP migrates
to the nucleus to activate target genes involved in lipid metabolism. However, the
regulation of the pathway proves to be very complex and there are still many unan-
swered questions, especially regarding target genes and regulation. Increasingly,
links are being found between the SREBP pathway and other regulators of lipid,
protein, and carbohydrate metabolism and overall energy homeostasis: PUFAs
are an example how diet influences the SREBP pathway, the link found between
glutamine and SREBP suggests another link between amino acid metabolism and
lipid metabolism, the interaction of ATF6 and SREBP-2 could imply that the
synthesis of cholesterol is slowed in case of energy stress through SREBP-2 inhi-
bition. Especially important to recognize are the links between insulin, glucose,
and SREBP, suggesting an important role for SREBP in the pathology of cur-
rent diseases, as obesity and the metabolic syndrome. Combining and integrating
the growing knowledge on the SREBP pathway is essential, in which biological
pathway creation and curation can play a major role.
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Y Suárez, EC Lai, and C Fernández-Hernando. miR-33a/b contribute to the regulation of fatty
acid metabolism and insulin signaling. Proceedings of the National Academy of Sciences of the
United States of America, 108(22):9232–7, May 2011.
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Preface

Chapter 4 is included in this thesis to show how different omics datasets can be
integrated, analyzed and visualized together using pathway analysis in PathVisio.
In the described study, we are using transcriptomics and proteomics data from
a mouse study to validate how the integration of different kinds of experimental
data can enhance our understanding of complex biological processes.

Proteomics and metabolomics technologies are improving rapidly and soon more
large scale measurements of the proteome and metabolome will be available. As
shown in Figure 1.1 in the General Introduction, proteins and metabolites are
the functional elements in a biological system. Transcriptomics and proteomics
levels do not always correlate because of post-transcriptional and translational
regulation. Therefore it is crucial to include all different measurements when
studying biological processes in all their complexity.

Abstract

Our understanding of complex biological processes can be enhanced by combining
different kinds of high-throughput experimental data, but the use of incompatible
identifiers makes data integration a challenge. We aimed to improve methods for
integrating and visualizing different types of omics data. To validate these meth-
ods, we applied them to two previous studies on starvation in mice, one using
proteomics and the other using transcriptomics technology.

We extended the PathVisio software with new plugins to link proteins, transcripts
and pathways. A low overall correlation between proteome and transcriptome
data was detected (Spearman rank correlation: 0.21). At the level of individual
genes, correlation was highly variable. Many mRNA/protein pairs, such as fruc-
tose biphosphate aldolase B and ATP Synthase, show good correlation. For other
pairs, such as ferritin and elongation factor 2, an interesting effect is observed,
where mRNA and protein levels change in opposite directions, suggesting they are
not primarily regulated at the transcriptional level. We used pathway diagrams
to visualize the integrated datasets and found it encouraging that transcriptomics
and proteomics data supported each other at the pathway level.

Visualization of the integrated dataset on pathways led to new observations on
gene-regulation in the response of the gut to starvation. Our methods are generic
and can be applied to any multi-omics study. The PathVisio software can be
obtained at http://www.pathvisio.org.
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Introduction

The intestine plays an important role in the response of the body to (prolonged)
starvation. In two previous publications, the transcriptome [1] and the proteome
[2] of the murine intestine were studied after 0, 12, 24 and 72 hours of starvation.
In the present study we combine and compare data from the two earlier studies.
The goal is twofold. First, to develop bioinformatics tools needed to make an
integrated omics approach feasible. Second, to get a more comprehensive view of
regulation of pathways involved in the starvation response of the gut.

“Omics” Integration

Microarray technology can be used to measure the expression of thousands of genes
at the same time. Methods for processing, analyzing and interpreting microarray
data are well established, and off-the-shelf microarrays are available with enough
capacity to measure the majority of the genes in a genome.

Not transcripts but proteins are directly involved in biological activities. Microar-
ray studies usually assume implicitly that there is a correlation between transcript
and protein abundance, but only moderate levels of correlation have been reported
[3–7]. A lack of correlation could have several causes such as variation in protein
turnover rates and post-transcriptional regulation [8]. This lack of correlation be-
tween transcript and protein levels is an important argument for measuring pro-
tein expression directly. Two-dimensional gel electrophoresis (2DE), still one of
the most common techniques for quantitative proteomics, has continued to mature
in recent years and has achieved higher standards of data quality, reproducibility
and protein identification [9].

Proteomic technologies have, nevertheless, a number of disadvantages. In a stan-
dard 2DE proteomics experiment in mammals, typically only 100 proteins are
identified and measured, or roughly 0.5% of the genome, far less than what is typ-
ical for microarray studies. Moreover, 2DE studies suffer from problems of bias.
Proteins vary more widely than mRNA molecules in physical properties such as
hydrophobicity, electric charge and size. The subset of measured proteins is bi-
ased towards proteins that are easily separable by 2DE and abundant enough to be
identified. Furthermore, the spots that show the clearest response to experimental
conditions are picked first. Protein identification is, therefore, a bottleneck in 2DE.
New gel-free proteomics techniques measure a wider range of protein chemistries
and abundances and suffer less from bias problems [10]. In spite of these issues,
2DE remains commonly used for its maturity and relative simplicity [9].

As both proteomics and transcriptomics methods have their advantages, it could
be beneficial to combine them. It appears that only some genes are primarily
regulated at the transcriptional level, showing higher transcript/protein correlation
than what would be expected from global correlation levels [3], whereas other
genes are regulated post-transcriptionally, showing much lower correspondence.
Therefore, we believe that integrated analysis of omics datasets must take into
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account a-priori knowledge about the regulation of genes and proteins, for example
in the form of pathway diagrams. Pathway diagrams contain biological context,
such as which entities are related, what is their cellular location, which proteins
are interaction partners, and what is the nature of those interactions (stimulation
or repression). By visualizing the combined dataset on a pathway diagram one
can interpret the biological context more easily. As part of this study we aimed
to develop easy-to-use software to make this possible.

Regulation of the Intestinal Response to Fasting

We combined two experimental datasets to validate our data integration methodol-
ogy. The experimental data relates to the intestinal changes in response to fasting.
A better understanding of fasting could lead to better understanding of malnour-
ishment and better treatment of cachexia (wasting syndrome) caused by chronic
disease [11].

Based on the rate of weight loss, nitrogen excretion, concentration of plasma
metabolites and resting metabolic rate, the body passes through three succes-
sive adaptive phases during fasting, often defined as postabsorptive, coping and
preterminal [12]. In mammals, these phases have been associated with the primary
fuel that is putatively available to the tissues [13–16]. Based on whole-body en-
ergy expenditure, the “sugars-fats-proteins” succession of energy substrates during
fasting was proposed [11, 13], and this model was then extrapolated to all organs
separately. However, transcriptomic studies in rodents that have prospected the
adaptive response to fasting of different organs [1, 17–22] reveal a different sce-
nario. These studies have shown that already in the postabsorptive phase organs
liberally increase protein and lipid catabolism, fuelling hepatic and renal gluconeo-
genesis and ketogenesis. Only during prolonged fasting (≥ 24h in mice) is protein
catabolism minimized.

It is clear that the various organs (liver, intestine, adipose tissue, muscle, kid-
ney, brain) play different roles in this response, but the whole picture is not yet
completely elucidated. The small intestine contributes to the bodys adaptation to
fasting by a biphasic response of carbohydrate metabolism, which peaks during
short and again after prolonged fasting [1]. Early changes are associated with
glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate
catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-
acid oxidation and ketone-body synthesis. Changes upon continued fasting implied
the production of glucose rather than lactate from carbohydrate backbones and
downregulation of fatty-acid oxidation. In addition, cell turnover is progressively
downregulated by inhibiting cell cycling and apoptosis to reduce the high energy
costs of constant enterocyte turnover [1].

The question that this study tries to answer is whether protein expression data
reinforce the picture that arises from transcriptomics pathway analysis, and to
what extent post-transcriptional regulation plays a role in these pathways.
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Methods

The experimental procedure for treatment of animals, microarray and 2DE was
described before [1] [2], but is briefly summarized here.

Animals. Male FVB mice from Charles River (Maastricht, The Netherlands)
were housed at 20-22◦C, 50-60% humidity on a 12 hours light/dark cycle. They
ingested food and water ad libitum until the age of 6 weeks. Groups of 6 mice
were fasted for 0, 12, 24, and 72 hours, after which the animals were killed by cer-
vical dislocation. The small intestine was removed and separated from adjacent
tissue, and both protein and RNA were isolated. The same mice were used for
both microarray and proteomics experiments.

Microarrays. Samples of the intestine were applied to 60-mer Mouse Devel-
opment 22k Oligo Microarray G4120A (Agilent). Three arrays per experimental
condition were used. Per microarray, 20 µg mRNA, pooled from 2 intestines, was
labeled with Cy3. RNA pooled from 6 fed animals was labeled with Cy5 and
used as a common reference across all arrays. After hybridization the arrays were
scanned with Agilent’s dual-laser microarray slide scanner and processed with Ag-
ilents Feature Extraction software 6.1.1. Quantile normalization was applied to
background-subtracted intensities.

2DE. The procedure for generating 2D protein gel images was as described before
[23]. Protein samples were isolated from equal quantities of proximal and distal
parts of the intestine, pooled per mouse. 1 gel was made for each mouse. 100 µg
of total protein was separated by isoelectric focusing using IPG strips, and then
placed onto 12.5% SDS-polyacrylamide gels for protein separation in the second
dimension. Gels stained with SYPRO Ruby Protein stain were scanned with the
Molecular Imager FX (Bio-Rad Laboratories). Analysis of differentially expressed
proteins was performed using PDQuest 7.3 (Bio-Rad Laboratories). A number of
spots were selected for identification, with a preference for spots with a significant
intensity difference. Selected spots were excised and subjected to tryptic in-gel
digestion and MALDI-TOF MS (Waters, Manchester, UK), generating peptide
mass fingerprints which were subsequently identified using the MASCOT search
engine against the SwissProt database.

Microarray annotation. The microarray type used was the 60-mer Mouse De-
velopment 22k Oligo Microarray G4120A (Agilent). The microarray contains
20,280 probes of 60 nucleotides each. The annotation file provided by Agilent
(Version of Dec.16 2009) associates only 9,616 probes to Ensembl gene identifiers.
The probes were designed based on a 5-year old genome build, which could have
diverged in the intervening years. On the assumption that 60-mer probes do not
require a complete sequence match to hybridize to transcripts, we investigated if a
BLAST search with less stringent settings would increase probe annotation cover-
age. We selected the best BLAST hits against a more recent Ensembl (release 57)
Mouse cDNA database, with a minimum e value of 1.0e-6. The BLAST resulted in
annotation for 10,696 probes, an increase of 11%. We opted to employ the BLAST
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results instead of Agilent annotations for all further analysis. Identifiers in both
data sets were mapped to pathways using the BridgeDb framework [24]. Because
none of the standard identifier mapping resources included in BridgeDb contained
mappings for the Agilent array, we prepared a custom mapping table that allowed
proper interpretation of the BLAST results by BridgeDb.

Analysis and Pathway visualization. Correlation and expression plots were
created with R/BioConductor. Pathway visualization was performed using the
pathway editing and visualization tool PathVisio which was first published in
2008 [25]. We developed two new plugins for PathVisio: the Gex plugin, which
manages data import and visualization, and the BridgeDb-Config plugin, which
enables configuration of identifier mapping resources.

The Gex plugin handles the import of expression data in PathVisio and the map-
ping of the provided identifiers in the dataset to the identifiers used in the path-
ways. This plugin is now a core module and does not need to be installed sepa-
rately. To enable more advanced options of identifier mapping, e.g. the usage of
different identifier mapping tables together, the BridgeDb-Config plugin was de-
veloped. The HTML export plugin allows the export of a single pathway diagram
as an HTML page as well as the export of a complete pathway statistics result
including the colored pathway diagrams. Since PathVisio 3, the plugin manager
provides a fast and simple way to install plugins from a central plugin repository.
The BridgeDbConfig plugin and the HTML export plugin are available in the cen-
tral plugin repository since March 2013.

The mouse pathway set, obtained from WikiPathways [26] March 2010, was used
for visualization. This pathway set covers 3,975 unique genes, or 14% of the
whole mouse genome (using all genes and pseudo genes of Ensembl release 57 as
the reference). We counted the overlap between the list of measured genes and
proteins and the list of genes occurring in at least one pathway. 66% of measured
proteins occur in at least one pathway (51 out of the 77 unique measured proteins).
24% of measured genes occur in at least one pathway (2,083 out of 8,648 unique
measured genes).

Results

Identifier Mapping

A prerequisite for integration of multiple omics studies is the ability to map iden-
tifiers from various sources [27]. Each data point in the microarray dataset was
identified with an Agilent probe identifier (such as A 65 P03556), and each protein
was associated with a UniProt identifier (such as P09528). One of the difficulties
in identifier mapping is that there is a one-to-many relation between genes and
measurements. Because microarray designs often include some redundancy, there
could be more than one probe identifier per gene. Similarly, one protein might
give rise to multiple spots on the 2D gel, depending on the protein modification
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state [9], so there are frequently multiple spot numbers per gene.

The BridgeDb framework [24] was used to map probe and protein identifiers to
gene identifiers and integrate the two datasets. This framework was used both in
the PathVisio pathway visualization software [25] and in the correlation analysis
in R.
Three sources of information were used for identifier mapping. By using BridgeDb,
the three resources were unified into a single mapping resource. First, the results of
BLAST of microarray sequences for mapping Agilent probes to genes in the tran-
scriptomics dataset; second, a regular BridgeDerby database for mapping proteins
to genes; and third, a manual override table to fix three errors in the protein
dataset.

Three proteins were annotated with erroneous protein identifiers by the identifica-
tion software (in one case a GenBank accession number, in another an identifier for
the human homologue, and in the third a deprecated UniProt identifier). Rather
than fixing the original data, BridgeDb allowed us to create a separate “manual
override” mapping table and combine it with the rest of the mapping resources.
The advantage of doing so, rather than simply fixing up the original dataset, was
that the modifications remained separated and could be re-examined and adjusted
later.

Correlation

The proteomics dataset contained 130 identified spots. Since more than one spot
may arise from the same protein in different modification states, those 130 spots
corresponded to only 77 unique protein identifiers. Moreover, due to limitations of
the microarray used, for some of them no mRNA data was available, resulting in
only 59 having both the mRNA and protein abundance determined. For each of the
59 pairs, the base-2 logarithm (log2) of the ratio relative to 0 hours was calculated
for 12, 24 and 72 hours of fasting, and correlations between the two types of data
were calculated. Taken together, there was very little overall correlation, with a
Spearman rank correlation coefficient of 0.21 (Figure 4.1). The positive value of
the coefficient nevertheless points to a slight positive overall correlation between
changes in mRNA and protein levels.
The picture was very different for specific genes. There were highly correlating,
differentially expressed transcript-protein pairs, such as Aldob and Atp5h (Figure
4.1) and Vim (not shown). Others, on the other hand, showed a negative corre-
lation, with the transcript changing in the opposite direction of the protein. In
most of these cases, the transcript was up- and the corresponding protein down-
regulated. Examples are Eef2 (elongation factor 2, Figure 4.1), Aldh1b1, Arhgdia,
Hnrnpa2b1 and Uqcrc1. For Eef2, a similar divergence of mRNA and protein lev-
els upon fasting was reported earlier in liver and muscle [28].
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Figure 4.1: Combined mRNA and Protein Expression Plots. In the top-left plot, the
fold-change of protein and mRNA expression are plotted against each other. Fold-changes are
calculated for each time point against t=0. In cases where multiple protein spots correspond to
the same gene, the average was used. The overall correlation plot shows that there was very little
agreement between protein and gene expression. The five other plots show individual genes in
detail. Each dot represents a measurement of a spot or probe. Lines connect the average of each
probe or spot per time point. Solid lines represent transcripts, dashed lines represent proteins.
The average intensities at 0 hours have been normalized to 1; all other values are relative to this
average. Top-right: Ferritin heavy (Fth1 ) and light chain (Ftl1 ), showing opposite trends for
transcript and protein expression levels. Center-left: Triose phosphate isomerase (Tpi1 ), which
is down-regulated at 72 hours with the exception of one protein spot. Center-right: Elongation
Factor 2 (Eef2 ), an example of a gene that shows opposite effects of fasting on transcript and
protein expression. Bottom-left: ATP synthase D chain (Atp5h) and bottom-right: fructose
biphosphate aldolase B (Adlob), are examples of two genes that show good correlation between
protein and transcript levels.
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Some of the proteins identified in multiple spots showed variable expression of dif-
ferent isoforms, indicating that post-translational modifications could play a role in
regulation of their activity. The proteins that were potentially post-translationally
modified included metabolic enzymes (TPI1 and ATP5H), proteins related to
protein folding (CALR, HSPA8 and HSPA5) and cytoskeletal proteins (KRT19,
ACTB, ACTG2 and VIL1).

Pathway Visualization

To visualize protein and gene expression data side-by-side in pathway context, we
used the PathVisio program [25]. High-throughput datasets in tab-delimited text
format are imported using the expression data import wizard plugin. Data should
be normalized and preferably log-transformed before import.
During data import, the user can select a column that contains gene or protein
identifiers. PathVisio allows direct import of mixed identifiers without the need
to pre-process the data. After the import step, the user can configure the color
representation of the data. PathVisio provides rule-based and color gradient-based
visualization options. In the rule-based visualization the user defines a Boolean
expression to specify a color for elements that evaluate as true. The gradient-based
visualization maps numerical values to a color gradient. Colors are displayed in
the gene boxes. Multiple conditions can be displayed side-by-side, and asterisks
can be added to the diagram to indicate significantly changed measurements.

A feature of particular interest for omics integration is the fact that if multiple data
points map to the same box, it can be divided horizontally for each corresponding
row in the dataset. Thus, the box is used as a small heat map representation
of a subset of the data, where each column represents a condition, and each row
represents a probe. The problem of a variable number of data points per box
occurs when visualizing data from microarrays that have more than one probe per
gene, but it is especially important for omics integration, which often deals with
two datasets of very unequal size (in this case 130 proteins versus 10,696 tran-
scripts), which automatically means that some boxes have more data than others.
Although this subdivision means that the boxes can get cramped, we find this
approach superior to summarization, which inevitably means discarding data. In
the example of TPI1 (Figure 4.2), the two rows are clearly differentially expressed,
but this insight would be lost if the average value of these measurements was used.
If needed, the boxes can be manually enlarged. Data can be visualized together
for direct comparison, but it is also possible to create separate visualizations and
toggle between them using a drop-down list. Visualizing different time points sep-
arately can prevent confusion and decrease the chance of an erroneous comparison
of a gene at one time point with another gene at a different time point. Separating
the time points into different visualizations also helps to combat the information
overload in a single box.
The resulting images of pathways with overlayed data can be exported as a set
of HTML image maps, which can be viewed in any browser without the need to
install PathVisio.
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Figure 4.2: Glycolysis and Gluconeogenesis. Visualization of expression data on the
glycolysis / gluconeogenesis pathway. Each colored box represents a gene product. Blue indicates
decreased expression levels, yellow increased. Each box is a heat map with rows representing
probes or spots, and columns representing time points. The rightmost column is a flag that
indicates if the given row is a protein spot (green) or microarray probe (pink). The asterisks
denote significance. Multiple probes and/or spots can be shown in a box. Tpi1 is marked with
the letter A.
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Figure 4.3: Amino Acid Metabolism. Visualization of expression data on the amino acid
metabolism pathway. Coloring is identical to Figure 2. The genes Otc2, Arg2 and Oat, mentioned
in the main text, can be found in the bottom-left quadrant of the image. Gls, Glns and Pycs
can be found in the bottom-right quadrant.

Integration at the Gene / Protein Level

The combination of proteomics and transcriptomics data provides us more infor-
mation than just one of the two datasets on its own. Global correlation is not
high, but on a gene-by-gene level we see a very varied picture. Gene/protein
pairs that do not show high correlation present leads for investigation into post-
transcriptional regulation.

Although proteomics data have fewer data points than transcriptomics data, there
are a few instances where important transcripts were not measured, due to absence
of a corresponding probe on the array. In those cases, protein measurements
can fill important gaps in pathways. For example, no mRNA expression levels
were measured for Otc2 and Arg2 due to absence of probes for these genes on
the microarray, but their protein concentrations were measured and show a clear
down-regulation, in particular in the early (12 hours) response. This is consistent
with suppression of citrulline synthesis without an additional increase in arginine
catabolism and with glutamine conservation via suppression of Oat, Pycs and Gls,
and the upregulation of Gln (see Figure 4.3).

Similarly, the down-regulation of ACAA2 (only measured as protein) is completely
consistent with the reduction of fatty acid biosynthesis, also supported by the
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down-regulation of genes such as Hadh1. Additionally, down-regulation of the
GAPDH protein, indicating an overall decrease in glycolytic and gluconeogenic
activity, is entirely consistent with lower expression of other genes in the same
pathway, such as Pgam1 and Eno3 (Figure 4.2).
Analysis of the transcriptome has revealed strong effects on cell cycle and apop-
tosis, by down-regulation of cyclins and upregulation of their inhibitors, cyclin-
dependent kinases ([1]). Cell turnover in intestine is thought to be a major source
of energy expenditure, and its (down)regulation in fasting is in good agreement
with a need for energy preservation. Unfortunately, no cyclins or other proteins
related to cell cycle regulation and apoptosis could be identified, most likely be-
cause their level of expression was too low for detection by the 2DE technique.
The comparison of the two datasets underlines the problem of bias in proteomics
techniques. Proteomics analysis alone would have missed a major regulatory effect
of starvation in the gut.
The importance of glucose metabolizing pathway in fasting (Figure 4.2) is stressed
by sheer number of genes differentially expressed. Out of 11 gene/protein couples
found in the pathway, only in 4 both transcript and protein were significantly
differentially expressed (Pgam1, Ldha, Aldob and Mdh1 ). In all 4, interestingly,
the direction of the change was the same. The direction was also the same in
case of Got2 and Mdh2, in which changes occurred in both data types, but have
not reached significance. For two glyceraldehyde dehydrogenases only changes in
protein expression were detectable, while for Aldoa and Eno1 the direction of the
change differed between gene and protein. Tpi1 had different direction of change
between different protein isoforms (discussed in more detail below). Data integra-
tion and visualisation convey therefore a clear message that in fasting some of the
proteins in this pathway must be regulated by other means than just transcription
rate.

A difference in any of 500 known posttranslational modifications [29] (e.g. phos-
phorylation states) can lead to different spots in a 2D gel. Such a change could
then mean either that the experimental condition has led to a change in total
quantity of the corresponding protein, or to a change in the functional state of the
protein (or both), but due to the incompleteness of proteomics technology, these
two possibilities can hardly be distinguished. Unfortunately, a decrease at the spot
level can therefore not be straightforwardly interpreted as a decrease in functional
activity. A clear example of differentiation at the spot level is TPI1, an important
enzyme of the gluconeogenesis pathway, which is increased in spot 3,220 but de-
creased in spots 6,307 and 7,312 throughout the fasting period (Figure 4.1). From
the estimated mass as well as the mass spectrum it appears that the protein in spot
3,220 lacks an N-terminal fragment. Alternative splicing or proteolysis could play
a role in the regulation of this protein. Assuming that the partial TPI1 protein
has a reduced activity, this finding is consistent with a reduced activity in the gly-
colytic pathway. However, to determine the exact nature of the observed change in
TPI1 and its consequence for enzyme activity, follow-up experiments are necessary.

Another protein affected in an interesting way was ferritin, a protein necessary
for the storage of iron in tissues. Ferritin was down-regulated at the gene level,
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but up-regulated at the protein level throughout starvation (Figure 4.1), and this
was the case for both its heavy and light chain. Though dietary iron is unavail-
able in fasting, the prevention of iron release from the existing stores would limit
its availability to the invading microorganisms, especially in the small intestine.
The need for such a response is accentuated by the impressive downregulation of
immune response seen in the intestine in our recent study [22]. The increased pro-
tein abundance in spite of lower transcript levels is harder to explain. It has been
shown that mRNA turnover, regulated by the iron responsive element binding pro-
tein (Ireb2, not measured in this study), has a strong effect on ferritin [30], which
could explain the discrepancy between protein and mRNA abundance. Another
possible explanation is that the increased values are caused by a change occurring
in erythrocytes, which can never be fully excluded from the protein sample. Other
possibilities, such as the presence of other ferritin spots in the gel that have not
yet been identified, cannot be ruled out.

Discussion

A number of existing applications can perform visualization of high-throughput
datasets, such as KEGG Atlas [31], ProMeTra [32], Vanted [33] and Reactome
SkyPainter [34], and reviewed in [35, 36]. Some of those have demonstrated the
capability to perform pathway visualization with multiple omics datasets together
in one pathway, such as ProMeTra, which is focused on combining metabolomics
and transcriptomics data. The automated mapping of mixed identifiers is a dis-
tinguishing feature of PathVisio that makes it particularly suited for integration
and simultaneous visualization of datasets from different sources.
Our examples showed that proteomics data can reinforce the conclusions de-
duced from transcriptomics data, and simultaneously indicate areas where post-
transcriptional regulation plays a role. The 2DE technique by itself does not
provide enough data for an overview on systems biology level. In this study, if
only proteomics data had been available, important pathways such as apoptosis
and cell cycle regulation would have been missed entirely. Nevertheless, protein
expression data do provide interesting insights into regulation on a gene-by-gene
basis. The proteins that do not correlate well are of particular interest, at the very
least for generating hypotheses for follow-up experiments. With the maturation of
proteomics (and metabolomics) technology, the issue of number of measurements
will lose the impact and significance, only increasing the importance of being able
to visualize the different datasets simultaneously.
The interpretation is not straightforward, and the correlation of gene and protein
expression levels (or lack thereof) must be interpreted on a case-by-case basis.
Pathway visualization can serve as a useful aid, given the role of pathways as a
knowledge base of biological information. Flexible identifier mapping is essential
for data integration. The relation between genes, microarray probes and protein
spots is not straightforward, which makes software support for automated identi-
fier mapping essential.
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Abstract

In this paper we present the open-source WikiPathways app for Cytoscape
(http://apps.cytoscape.org/apps/wikipathways) that can be used to import bio-
logical pathways for data visualization and network analysis. WikiPathways is
an open, collaborative biological pathway database that provides fully annotated
pathway diagrams for manual download or through web services. The WikiPath-
ways app allows users to load pathways in two different views: as an annotated
pathway ideal for data visualization and as a simple network to perform compu-
tational analysis. An example pathway and dataset are used to demonstrate the
functionality of the WikiPathways app and how they can be combined and used
together with other apps. More than 2000 downloads between its first release in
August 2013 and the submission of the paper in May 2014 highlight the importance
and adoption of the app in the network biology field.
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Introduction

Pathways are commonly used as models for understanding biological processes.
WikiPathways [1] is an open, collaborative, wiki-based website for the curation of
biological pathways that are more than just images. WikiPathways provides easy-
to-use drawing and annotation tools to capture identities, relationships, comments
and literature references for each pathway element and interaction. Contributed
pathways are displayed like articles at WikiPathways and can be downloaded man-
ually or programmatically through web services. This opens the possibility for
pathway information to be accessed by other software tools for data visualization,
computational analysis and the interpretation of large-scale experimental data.

Utilizing WikiPathways web services, we developed an app for Cytoscape [2], a
network visualization and analysis software platform. The app queries and imports
pathways from WikiPathways within the Cytoscape environment. Cytoscapes
core concepts are networks (nodes and edges), tables (rows and columns) and
styles, which map table values to the visual properties of networks. Cytoscape
leverages a rich ecosystem of apps to provide additional domain-specific semantics
and data types, as well as custom visualization and analysis capabilities. With
the WikiPathways app, we implemented two ways to represent a pathway as a
Cytoscape network. In the first way, pathways are loaded with the complete visual
appearance of the original at WikiPathways, including graphical annotations and
labels. Once in Cytoscape, experimental data can be loaded as tables and visually
mapped onto these pathway-style networks to provide biological context. In the
second way, pathways are loaded as simplified networks, focusing on the biological
entities and their interactions without any of the graphical elements of the original
pathway diagram. The basic network style is ideal for topological analyses, network
merging and automatic layout.

In this paper we present the implementation and usage of the WikiPathways app
for Cytoscape. By bringing pathways into Cytoscape using the WikiPathways
app, it is possible to make full use of pathway models with custom visualizations
and computational analyses.

Implementation

The WikiPathways app was developed for Cytoscape 3, which introduced a com-
pletely new software architecture. The new architecture is built on top of Open
Service Gateway Initiative (OSGi) [3], a software framework of pluggable modules
and services. To be able to take advantage of the new architecture (Cytoscape
API version 3.0.0), the predecessor to the WikiPathways app, the GPML Plugin,
had to be rewritten.

Pathway Import

The WikiPathways app employs the new architecture of Cytoscape in two ways.
First, the app exports a user interface that can query and import pathways from
the WikiPathways web service. Thanks to the service architecture in Cytoscape,
this interface is seamlessly incorporated into Cytoscapes “Import from Public

WikiPathways App for Cytoscape 75



Databases” dialog. Second, the app provides an API for programmatic access
to the WikiPathways web services and the GPML file importer. Other apps can
use the API to make queries to the WikiPathways web services and import GPML
files without having to bundle the WikiPathways app. When the WikiPathways
app is loaded in Cytoscape, the app registers the implementation of its API with
the OSGi module system. Other apps can then request the API implementation
through OSGi.

Visualization

The new architecture also posed new challenges that required us to innovate with
respect to visual styles. The new architecture includes a revamped model to repre-
sent networks. This model decouples the network topology and table data from its
visual style. Visual styles constitute Cytoscapes view model. When a node or edge
is created in the network model, its view object is only created after a triggering of
an event. Cytoscape does this to avoid redrawing of the network canvas while an
app is still in process of building the network. Indeed, as the WikiPathways app
reads a GPML file, it creates a series of nodes and edges in a network to represent
the pathway. During this process, the app needs to assign visual styles to the nodes
and edges it creates. However, as new nodes and edges are being added to the
network, their view objects do not exist yet, making it impossible to assign their
visual styles. To address this issue, we created a class called DelayedVizProp that
stores our desired visual styles for nodes and edges. Once the network has been
fully built, the app tells Cytoscape to create the view objects for the new nodes
and edges. After that, the app looks through the DelayedVizProp instances and
assigns nodes and edges their desired visual style.

Dependencies

The app relies on the PathVisio core library [4] to read GPML files. The PathVi-
sio library is included in the app. In previous versions of Cytoscape, apps that
included libraries often conflicted with each other. Users had to painstakingly
uninstall conflicting apps for Cytoscape to become usable again. OSGi solves this
problem by insulating Cytoscape modules and apps from each other. Due to OS-
Gis architecture in Cytoscape 3, the integrated PathVisio library is hidden from
other apps and modules in Cytoscape and cannot conflict with them.

The app also uses the Apache HTTP Client library to make HTTP requests to
the WikiPathways REST server. We avoided the Java built-in HTTP client class
(java.net.HttpURLConnection), which is used frequently in Cytoscape and other
apps. This class does not support cancellation. Proper cancellation is important
for a responsive user interface. Users behind an interrupted internet connection
should be able to back out of a WikiPathways request and return to Cytoscape.
Each HTTP request is wrapped in a task, a unit of work in Cytoscape. When the
user clicks cancel during the task execution, the app terminates the underlying
HTTP request by calling the abort method in the Apache HTTP Client library.
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Results

The WikiPathways app in Cytoscape provides convenient access to the community-
curated collection of biological pathways at WikiPathways. The functionality of
the app is demonstrated here using the human Cardiac Hypertrophic Response
pathway from WikiPathways (http://wikipathways.org/instance/WP2795) com-
bined with an unpublished RNA-seq dataset that reflects gene expression lev-
els during differentiation of cardiac stem cells. The logFC from timepoint 6 hrs
vs control is visualized on the pathway. The human Cardiac Hypertrophic Re-
sponse pathway contains gene products and metabolites involved in the intracellu-
lar signal-transduction pathways that coordinate Cardiac Hypertrophic Response.
As described above, the WikiPathways app allows users to load pathways in two
different views, as an annotated pathway and as a simple network (see Figures
5.1 and 5.2). The example dataset and pathway will be used to explain how both
views can be used in Cytoscape.

Figure 5.1: The Cardiac Hypertrophic Response Pathway Loaded as a Pathway.
LogFC values are visualized as node fill color with a color gradient from blue over white to red.
Significant measurements (adjusted p-value < 0.05) are highlighted with a green border color.
Elements in the pathway without a measurement are colored gray.

When loaded as a pathway, the precise layout of elements is identical to its rep-
resentation at WikiPathways. The graphical elements, like labels and shapes, are
included in the model in Cytoscape. As a pathway diagram, the full representation
of biological information is visually preserved, which is ideal for providing a mean-
ingful context for data visualization. Figure 5.1 shows the Cardiac Hypertrophic
Response pathway loaded as an annotated pathway in Cytoscape. The Entrez
Gene identifiers in the pathway were mapped to Ensembl using another app called
BridgeDb ([5], http://apps.cytoscape.org/apps/bridgedb) to match the identifiers
used in the example dataset. The cardiac stem cell tissue development expression
data can then be loaded, integrated and visualized on the pathway nodes.
When loaded as a network, all graphical annotations are removed and redundant
nodes in the pathway are merged into one unique node in the network. Groups and
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Figure 5.2: The Cardiac Hypertrophic Response Pathway Loaded as a Network. (A)
The simple network does not contain graphical annotations of the pathway. (B) NetworkAnalyzer
was used to visualize node degree and betweenness of the nodes in the network to identify
important hub nodes. (C) The logFC of the example dataset is visualized as node fill color
with a gradient (blue over white to red) and the adjusted p-value < 0.05 is highlighted with a
green border color. (D) jActiveModules finds active subnetworks (highlighted in purple) that are
affected by varying gene expression.

complex interactions are visualized as very small nodes and a forced directed layout
is applied. As an abstracted network graph, the same molecular relationships in
the pathways can be made available for network analysis and augmentation. Fig-
ure 5.2A shows the Cardiac Hypertrophic Response pathway loaded as a network
in Cytoscape. This simple network structure enables researchers to use other Cy-
toscape features and apps to merge two pathways, apply different layouts to the
network or extend the pathway, for example, with regulatory interactions (Cy-
TargetLinker [6], http://apps.cytoscape.org/apps/cytargetlinker). It also enables
users to investigate the topology of the network, like calculating degree and be-
tweenness of the nodes with Cytoscapes built-in NetworkAnalyzer tool to identify
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important hub nodes, see Figure 5.2B. Cytoscape also allows the visualization of
experimental data in the network, as in Figure 5.2C which shows the cardiac stem
cell tissue development expression data. There are several apps available for Cy-
toscape that provide methods that use experimental data to cluster nodes in the
network (clusterMaker2, http://apps.cytoscape.org/apps/clustermaker2) or find
subregions in the network affected by varying gene expression (jActiveModules,
http://apps.cytoscape.org/apps/jactivemodules) as highlighted in Figure 5.2D.

Conclusions

In this paper we presented the WikiPathways app for Cytoscape, which allows
the import of biological pathways as curated diagrams or as basic node-and-edge
networks into Cytoscape. As shown in some examples, the app enables users to
make full use of the pathway models by performing computational analyses and
custom visualizations based on experimental data and network topology.

Software Availability

App website:
http://apps.cytoscape.org/apps/wikipathways

Source code:
https://github.com/wikipathways/cytoscape-wikipathways-app

License:
Lesser GNU Public License 3.0 (https://www.gnu.org/licenses/lgpl.html)
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Abstract

Introduction: The high complexity and dynamic nature of the regulation of
gene expression, protein synthesis, and protein activity pose a challenge to fully
understand the cellular machinery. By deciphering the role of important players,
including transcription factors, microRNAs, or small molecules, a better under-
standing of key regulatory processes can be obtained. Various databases contain
information on the interactions of regulators with their targets for different organ-
isms, data recently being extended with the results of the Encyclopedia of DNA
Elements project. A systems biology approach integrating our understanding on
different regulators is essential in interpreting the regulation of molecular biologi-
cal processes.

Implementation: We developed CyTargetLinker, a Cytoscape app, for inte-
grating regulatory interactions in network analysis. Recently we released CyTar-
getLinker as one of the first apps for Cytoscape 3. It provides a user-friendly and
flexible interface to extend biological networks with regulatory interactions, such
as microRNA-target, transcription factor-target and/or drug-target. Importantly,
CyTargetLinker employs identifier mapping to combine various interaction data
resources that use different types of identifiers.

Results: Three case studies demonstrate the strength and broad applicability
of CyTargetLinker, (i) extending a mouse molecular interaction network, contain-
ing genes linked to diabetes mellitus, with validated and predicted microRNAs, (ii)
enriching a molecular interaction network, containing DNA repair genes, with EN-
CODE transcription factor and (iii) building a regulatory meta-network in which a
biological process is extended with information on transcription factor, microRNA
and drug regulation.

Conclusions: CyTargetLinker provides a simple and extensible framework for
biologists and bioinformaticians to integrate different regulatory interactions into
their network analysis approaches. Visualization options enable biological inter-
pretation of complex regulatory networks in a graphical way. Importantly the
incorporation of our tool into the Cytoscape framework allows the application of
CyTargetLinker in combination with a wide variety of other apps for state-of-the-
art network analysis.
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Introduction

Completion of the human genome project in 2003 generated a wealth of informa-
tion about the human genetic code [1]. Approximately 25,000 gene coding regions
were defined. However, understanding of the regulation of gene expression, pro-
tein synthesis and activity is far from complete. Recently, the ENCODE project,
whose main goal was to identify all the functional elements in the human genome
sequence, revealed novel insights in genetic regulation [2, 3]. It still remains a
challenge to combine the new insights with existing knowledge and to understand
the regulation of biological processes in detail. Many known biological processes
are represented in various online repositories, like WikiPathways [4] and Reactome
[5]. These processes contain genes, proteins and/or metabolites, their molecular
interactions and reactions, but little regulatory information is present.

Regulation of gene expression, protein synthesis and activity occurs at different
levels. Whereas gene expression is influenced by epigenetic factors and/or tran-
scription factor (TF) binding, protein synthesis can be regulated by microRNAs
(miRNAs). TFs are proteins that bind to a specific DNA sequence, i.e., the tran-
scription factor binding site (TFBS). They either activate or repress transcription.
miRNAs are small, non-coding RNA molecules that bind to miRNA-target re-
gions in the mRNA. Upon binding miRNAs either repress translation or cleave
the mRNA sequence. They are able to influence the synthesis of many proteins
or even those involved in entire pathways, making them important molecules in
harmonised regulation. Another group of regulatory effects are post-translational
modifications which can influence protein activity. These modifications include
phosphorylation, acetylation, palmitoylation and many more. In addition, small
molecules such as metabolites or drugs can play a role as regulators in cellular
pathways.

A systems biology approach in which interactions from different resources are com-
bined, visualised and analysed together is an intuitive way to decipher complex bi-
ological processes. A commonly used framework to visualise and analyse biological
networks is Cytoscape [6]. Its modular structure and possibilities to extend with
additional functionalities through apps (formerly known as plugins) is discussed in
“A travel guide to Cytoscape plugins” [7]. At the moment a few Cytoscape apps
are available that either extend networks with other types of molecular interaction
data or focus on one specific type of regulatory interaction. However, a user-
friendly tool to combine and integrate various types of regulation is still needed.
In this paper, we present a new Cytoscape app, CyTargetLinker, to automatically
add regulatory interactions to biological networks to allow their inclusion in the
network analysis process. CyTargetLinker is not restricted to one specific organ-
ism or regulatory interaction type and it leaves the selection of relevant and/or
preferred interaction databases entirely to the user. The incorporation of our tool
into the Cytoscape framework allows its application in combination with several
community-contributed apps for data visualization and advanced network analysis.
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Implementation

CyTargetLinker is an open source app developed for the network visualization and
analysis tool Cytoscape [6] and can be installed through the app manager in Cy-
toscape 2.8 or 3.x. The source code is available on Github
(https://github.com/mkutmon/cytargetlinker).

CyTargetLinker allows users to build regulatory networks to obtain a more com-
plete view of biological systems. The regulatory interactions used in CyTar-
getLinker are derived from so called regulatory interaction networks (RegINs) that
are either provided on the CyTargetLinker website or can be created by the user.
The creation, application and content of RegINs is explained below. All function-
alities of CyTargetLinker are described in the “CyTargetLinker workflow” section.

Regulatory Interaction Networks

A RegIN is a network containing regulatory interactions that are often derived
from online interaction databases. The networks are stored in XGMML (the eX-
tensible Graph Markup and Modelling Language) format, which is supported by
Cytoscape. Each regulatory interaction consists of two nodes, a source (regulatory
component) and target biomolecule, connected through one directed edge. A col-
lection of RegINs for different species and interaction types is provided on the Cy-
TargetLinker website (http://projects.bigcat.unimaas.nl/cytargetlinker/regins),
and is described in more details in Table 6.1. In addition, we provide documen-
tation on how to create your own RegIN. The app is not restricted to the RegINs
provided and the user can choose which interaction types and databases should
be used in the integration process.

Table 6.1: Regulatory Interaction Files Subset of the RegINs (regulatory interaction
networks) available for download on the CyTargetLinker website. All RegIN networks
support the following identifier systems: (i) for genes/proteins → Ensembl, NCBI gene,
UniProt, (ii) for miRNAs → miRBase accession number and ids, and (iii) for drugs →
DrugBank. (* Redistribution of data not allowed, but RegIN can be created with our
provided conversion script)

Database version Type Human Mouse Rat Zebrafish
MicroCosm 5 predicted MTI 541,039 494,822 511,057 121,992
TargetScan 6.2 predicted MTI 511,040 186,431 - -
miRTarBase 3.5 validated MTI 3,597 712 278 104
miRecords* 4 validated MTI 1,752 395 161 48
ENCODE 2012 proximal TF-target 24,111 - - -
ENCODE 2012 distal TF-target 18,240 - - -
TFe 2012 TF-target 1,531 847 - -
DrugBank 3 drug-target 14,070 - - -

A set of RegINs can be seen as a collection of online interaction databases that are
formatted in the same way so they can be combined in the integration and analysis
process. For the available RegINs, in order to be able to jointly use them, one
unifying identifier system was used: the Ensembl gene identifier [8] was chosen for
genes, the miRBase [9] accession number for miRNAs and DrugBank [10] identifiers
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for drugs. The identifier mapping was performed using the BridgeDb mapping
framework [11]. In addition to the main identifier system, the RegINs contain
additional systems (e.g. NCBI gene [12] and UniProt [13] for genes/proteins) to
give the user more freedom to choose the identifier system in the initial network
which has to match to that used in the RegIN. In case the identifier system is not
supported by the RegINs to be used, the user can use the BridgeDb [14] app in
Cytoscape to map the identifiers to one of the supported systems.

CyTargetLinker Workflow

CyTargetLinker enables the enrichment of biological networks with regulatory in-
formation in a user-friendly and flexible manner. The CyTargetLinker workflow
will now be discussed in detail and is illustrated by an example in Figure 6.1.

The first step is to load or create a biological network in Cytoscape. Starting from
a protein-protein network, a biological pathway or unconnected gene nodes, the
initial network that will be extended with regulatory information can be very dif-
ferent. In each case the elements in the network should be annotated using one of
the supported identifier systems. The second step is to download or create RegINs,
as described in the next section. In the third step the CyTargetLinker integra-
tion process is started in Cytoscape. In the dialog the user selects the biological
network, the node identifier attribute and the local directory containing the down-
loaded RegIN files. Thereafter, the direction of the interaction should be selected.
It is possible to only add targets, regulators or both (default). CyTargetLinker
will extract only those regulatory interactions from the provided RegINs, in which
one of the nodes in the initial network is a participant, either regulator or target.
This reduces the amount of memory needed, speeds up the integration process,
and makes CyTargetLinker scalable to large regulatory networks.

After the extension of the network the initial network nodes are visualised as grey
circles whereas the added nodes are shown as pink hexagons (see Figure 6.1B).
Moreover, the edge colour defines in which RegIN an interaction is present. If
an interaction is supported by more than one RegIN, CyTargetLinker will add
one differently coloured edge for each RegIN. In the accompanying control panel
the interaction colour can be changed and the number of added interactions per
RegIN is listed. In the fourth step the visualization of the regulatory network
can be adapted by using the hide/show and/or overlap threshold function. The
hide/show functionality enables the temporary removal of specific RegINs and
thereby showing only the interactions from a subset of the loaded RegINs (see
Figure 6.1C). The overlap threshold functionality makes it possible to show only
the interactions that are supported by a defined number of RegINs or more (see
Figure 6.1D). Both functions can be applied and restored in the same network
window.
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Figure 6.1: CyTargetLinker Workflow. Step 1: Four miRNAs known to be in-
volved in prostate cancer [15] are visualised in a Cytoscape network (A). The miRNAs
are annotated with miRBase accession numbers and ids. Step 2: The regulatory in-
teraction networks (RegINs) harbouring miRNA-target interactions (MTIs), either validated
(miRecords and miRTarBase) or predicted (microCosm and TargetScan), are downloaded from
http://projects.bigcat.unimaas.nl/cytargetlinker/regins. Step 3: Known targets are integrated
(B) after specifying the miRBase accession number column, the RegINs directory and the di-
rection “Add Targets” in the CyTargetLinker dialog. In the resulting network miRNAs and
target genes are defined as grey circles and pink hexagons, respectively. The predicted MTIs are
visualised in orange (TargetScan: 4239) and blue (microCosm: 2800) and the validated MTIs
in red (miRTarBase: 59) and purple (miRecords: 24), as shown in the control panel. Step
4: The hide/show and overlap threshold functions were used to visualise validated interactions
exclusively or to show the overlap in MTI coverage. In the validated network only the MTIs in
miRecords and miRTarBase are visualised by hiding MTIs in TargetScan and microCosm (C). In
the overlap network the MTIs present in two or more RegINs are shown by setting the threshold
to 2 (D).
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Results

The strength and broad applicability of CyTargetLinker will be demonstrated by
three different case studies. In these studies the currently available RegINs will be
used for extending biological networks. In Table 6.1, a subset of the downloadable
RegINs present at the CyTargetLinker website is shown. The RegINs are generated
from the latest database version and will be updated once a new version is available
and accessible. The older versions will stay available in an archive.

Use Cases

Case Study 1: Enrichment of a Mouse Molecular Interaction Network, Contain-
ing Genes Linked to Diabetes Mellitus, with miRNA Information.

The first case study demonstrates that CyTargetLinker is not limited to human
networks, but can be used for other species as well. The threshold functionality is
applied to show only interactions that are supported by at least two miRNA-target
interaction (MTI) databases.

Diabetes mellitus is a group of metabolic diseases. The two major types are type 1
and type 2 which are characterised by impaired insulin production or insulin resis-
tance, respectively. Worldwide the prevalence of type 2 diabetes mellitus (T2DM)
is increasing dramatically. Although a strong environmental component is present,
there is compelling evidence that genetic factors are involved in the pathogenesis
of T2DM [16]. It is important to decipher the genes involved and to understand
their regulation. Diabetic mouse models are often used to measure gene expression
on a large scale in tissues like adipose, skeletal muscle and liver. The genes linked
to diabetes mellitus can be functionally annotated using the terms in the disease
category of MeSH (Medical Subject Headings) [17]. CyTargetLinker can be used
to examine the possible role of miRNA regulation of genes known to be linked to
diabetes mellitus.

A mouse molecular interaction network of genes linked to the MeSH term diabetes
mellitus was obtained from Gene2MeSH [18] and the STRING database [19]. In
total 18 proteins are associated with diabetes mellitus and are known to interact
with each other. To get a better insight in how the genes are regulated by miRNAs,
validated and predicted miRNAs were added and the overlap of the MTIs present
in two or more databases was selected with CyTargetLinker (see Figure 6.2). After
applying overlap threshold, 50 MTIs remain in the extended network originating
from miRecords (1), miRTarBase (2), microCosm (24) and TargetScan (25). In the
extended molecular interaction network only 6 out of 18 genes interact with mostly
predicted miRNAs that were present in 2 or more interaction databases. Whereas
LEPR (leptin receptor) and SLC2A2 (GLUT2) interact with only one miRNA,
INSR (insulin receptor) and PPARa (peroxisomal proliferator activated receptor
alpha) are highly regulated by 7 and 10 miRNAs, respectively. It is well known
that the activation of the nuclear receptor, PPARalpha, has beneficial effects in
T2DM. PPAR agonists are used as antidiabetic drugs to treat the symptoms of
T2DM. Identifying which miRNAs interact with PPARalpha could lead to novel
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(a) The Original Network from STRING. (b) The Extended Network.

Figure 6.2: MiRNA Regulation of Genes Associated with Diabetes Mellitus.
The genes linked to the MeSH term diabetes mellitus were obtained using Gene2MeSH
(http://gene2mesh.ncibi.org/). The molecular interactions between the genes were obtained
from the STRING database (a). In the extended network (b), genes and miRNAs are visualised
as grey circles and yellow rounded rectangles, respectively. The names of the genes and miRNAs
are displayed on the nodes. The MTIs originate from microCosm (486), TargetScan (207), miR-
TarBase (5) and miRecords (2), and are coloured in blue, orange, red and purple, respectively.
The overlap threshold function was applied to show only MTIs present in at least two RegINs.

pharmacological targets. In this use case CyTargetLinker can be used to either
identify miRNAs of interest or to confirm recent findings. For example, the regu-
lation of PPARalpha by miR-21, present in the extended network, was published
in 2011 in a liver study [20]. The other highly regulated gene, the insulin receptor,
plays a key role in the insulin signalling pathway. Most miRNAs interacting with
the insulin receptor in the extended network belong to the let-7 miRNA family
(see Figure 6.2). Interestingly, Forst and Olson [21] showed that the let-7 family
controls glucose homeostasis and insulin sensitivity in mice. Their study confirms
that in liver and muscle the let-7 family regulates the insulin receptor as shown in
the extended network.

Case Study 2: Extension with ENCODE TF Regulation Information of a Molec-
ular Interaction Network of Human DNA Repair Genes and Its Analysis.

The second case study demonstrates how CyTargetLinker can be applied in com-
bination with other Cytoscape apps. Moreover, it shows that published regulatory
interaction data can be easily converted into a RegIN and implemented into the
CyTargetLinker workflow. By using the available core functionalities of Cytoscape
is it possible to adjust the colour and size of a node and to perform commonly
used network analyses in the extended network.

The ENCODE project aims to delineate all functional elements encoded in the
human genome [2]. Since 2003 it has generated a wealth of information on regu-
latory elements. Gerstein and colleagues used the recently published TF binding
data to analyse differential patterns in promoter proximal and distal regulatory
regions [3]. TFs bind to specific sites, TFBS, that can be proximal or distal to a
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Figure 6.3: Extend a GeneMANIA Network with TF Data from the ENCODE
Project. A set of known DNA repair genes (grey circled nodes) were used as input for the
GeneMania app in Cytoscape. Physical interactions (black) between the query genes were added
by GeneMania. Every node in a GeneMania network has an attribute “Entrez gene identifier”
which was used by the CyTargetLinker app to extend the network with TF-gene interactions from
the ENCODE networks. The integration direction was selected as “Add regulators”, indicating
that the app should look for interactions that target the input genes. The colours and shapes
of the TFs are based on the provided TF family information in the ENCODE project [3]. The
ENCODE project studied proximal and distal TF regulation which are indicated in this figure
as blue and red edges.

transcription start site [22]. Distinguishing these two types of TF-regulation gives
a more distinctive view on how gene expression can be influenced.
We used the proximal and distal regulatory interaction data provided by Ger-
stein and generated RegINs for both. A set of known DNA repair genes were
used as input for the GeneMANIA app [23] in Cytoscape to create a molecular
interaction network. GeneMANIA identifies the most related genes to a query
gene set using a guilt-by-association approach. With CyTargetLinker the DNA
repair network was enriched with the two types of regulatory data. Next, we used
Cytoscape’s VizMapper to shape and colour the TF nodes according to their TF
family. To identify the genes highly regulated by TFs, the indegree was calculated
and represented as the size of the gene nodes, see Figure 6.3. From the network
it is immediately clear that the H2AFX (H2A histone family, member X) gene
is highly regulated by proximal TFs. Moreover, the NBN and MSH2 genes are
regulated by both proximal and distal TFs.
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Case Study 3: Enrichment of a Human Pathway from WikiPathways with miR-
NAs, TFs and Drugs Targeting the Genes and Gene Products in the Pathway.

Case study 3 highlights the power of CyTargetLinker to build an extensive regu-
latory interaction network integrating a wide range of known interactions. This
network can be used as a starting point for various network analysis approaches
to filter out regulatory interactions that are relevant in a given context. The in-
tegration of different regulatory elements together allows the researcher to get a
more complete view of possible regulatory mechanisms happening in a biological
process.
The initial network represents the ErbB signaling pathway which was loaded
through the WikiPathways web service provided by the WikiPathways app [24]. In-
sufficient ErbB signaling may cause the development of neurodegenerative diseases,
such as multiple sclerosis and Alzheimer’s disease. Furthermore, excessive ErbB
signaling is associated with the development of various types of solid tumours [25].
The pathway contains 69 genes, proteins and metabolites (plus 13 group nodes
representing grouped genes or proteins in the original pathway diagram) and 93
edges, see Figure 6.4. The network was extended with three different types of
regulatory interactions, (i) drug-target interactions from DrugBank, (ii) proximal
and distal TF-gene interactions from ENCODE and (iii) validated miRNA-target
interactions from miRTarBase and miRecords, see Figure 6.5. In total, 558 regu-
latory interactions were integrated in the network, including 138 drug-target, 136
proximal TF-gene, 122 distal TF-gene and 162 validated miRNA-target interac-
tions.

Figure 6.4: ErbB Signaling Pathway. The ErbB signaling pathway
(http://wikipathways.org/instance/WP673) from WikiPathways.
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Figure 6.5: Meta Network of the ErbB Signaling Pathway Containing miRNA,
TF and Drug Regulation. The ErbB signaling pathway was extended with TFs, miRNAs
and drugs regulating the elements in the pathway. The nodes from the original pathway are
coloured in white, TFs in green, miRNAs in yellow and drugs in purple. 258 TF-gene interactions
from ENCODE, 162 miRNA-target interactions from the two validated miRNA-target RegINs
(miRTarBase and miRecords) and 138 drug-target interactions from DrugBank were added to
the network. The edges are coloured based on the RegIN source, purple and orange for ENCODE
(proximal and distal), blue and red for miRTarBase and miRecords, and green for DrugBank.

There are a few nodes that are mostly targeted by drugs, e.g. GSK3 or SRC and
other nodes that are targeted by all types of regulators, e.g. ERK or HRAS. In
terms of transcription factor regulation, some nodes are regulated in a proximal
setting, e.g. ERK or ABL and others mostly in a distal way, e.g. ERBB3 or
STAT5. Some TFs regulate different genes in different ways, e.g. TCF12 reg-
ulates FAK distal and SRC proximal. Since a few TFs were already present in
the initial network, typical network motifs can be found, e.g. four feed forward
loops regulating ERBB3 over Myc by CTCF, SMC3, RAD21 and GATA2. In this
integration process the direction was set to include only regulators, so the target
genes of MYC and JUN, two major TFs that are present in the pathway, are not
added.

Related to miRNAs our analysis shows that p21 is mostly regulated by miRNAs
and all the interactions are experimentally validated (references provided in edge
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attributes). Furthermore with the overlap threshold functionality, it can be vi-
sualised that only 30 out of 130 miRNA-target interactions are present in both
miRTarbase and miRecords.

Discussion

CyTargetLinker enables quick and extensive enrichment of biological networks with
regulatory information. It encapsulates all the manual integration steps which
include several tasks that require advanced programming knowledge. Therefore it
can be used by researchers from different fields with or without prior knowledge
in programming and network analysis. CyTargetLinker is open source and freely
available through the app manager for Cytoscape 2.8 and 3.x. As mentioned
in the introduction, there are a few other Cytoscape apps that provide partial
similar functionality. miRScape, CluePedia [26], ConReg, and BioNetBuilder [27]
are most related to CyTargetLinker, see Table 6.2.

Table 6.2: Comparison of Available Cytoscape Apps. Overview of four Cytoscape apps
that are most related to CyTargetLinker. This table provides a comparison of the availability
and data used in the apps.

App name Cytoscape
version

Availability Data Organisms

miRScape 2.6 only by con-
tacting devel-
oper

data from miRo’
knowledge base [28]
(last updated in 2009)

Human

CluePedia 3.0 app manager
but can only
be used with a
license key

microCosm (miRanda)
and miRecords

Human

ConReg 2.8 plugin manager databases, text-mining
and TFBS predictions

8 model or-
ganisms

BioNetBuilder 2.6 plugin manager DIP, BIND, Pro-
links, KEGG, HPRD,
BioGrid, GO

> 1000 organ-
isms

CyTargetLinker 3.0 app manager not restricted, user can
provide RegINs

not restricted

miRScape identifies function, disease or process associations between genes by us-
ing miRNA-target information. CluePedia integrates experimental data to identify
gene interrelations revealed by correlation weights, miRNAs regulatory aspects,
protein-protein interactions as well as the functional context, in conjunction with
ClueGO [29]. ConReg visualises TF-target gene networks with data from regula-
tory databases, text-mining approaches and TFBS predictions. It stores regula-
tory relations for 8 model organisms and investigates their level of conservation in
related species. Lastly, BioNetBuilder focusses on the creation of biological net-
works using interaction data from DIP, BIND, Prolinks, KEGG, HPRD, BioGrid
and GO.

BioNetBuilder and miRScape have not been maintained since version Cytoscape
2.6 (released in 2010). While CluePedia is also available as a Cytoscape 3.x app,
it requires a license key. CyTargetLinker is generic and does not focus on one spe-
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cific regulatory interaction type like miRScape and CluePedia. ConReg focuses
only on TF-gene interactions, especially the conversion of regulatory relations in
other eukaryotic model organisms and it produces a predicted conserved network.
BioNetBuilder and CyTargetLinker can be used for several different species, how-
ever BioNetBuilder does not include regulatory interactions. While BioNetBuilder
focusses on the creation of biological networks, CyTargetLinker extends biologi-
cal networks with regulatory information. One of the advantages of the CyTar-
getLinker app is that it is easily expandable, a new RegIN can be added at any
time and it is even possible to include a new interaction type without updating
the app. Thereby, the user can use self-created RegINs in addition to the ones we
provide and he can select the set of RegINs that are most suitable for his research
focus. CyTargetLinker is an open source project which allows the contribution
and input of other scientists to better tackle their research questions.

Conclusion

CyTargetLinker, our new Cytoscape app, enables scientists to integrate regulatory
interactions into biological networks in a user-friendly and flexible manner. Various
interactions, such as miRNA-target, TF-gene or drug-target, can be added, by
themselves or combined. CyTargetLinker is not restricted to any organism and the
commonly used identifiers for genes, proteins, and miRNAs are supported. The
graphical representation in Cytoscape facilitates the identification of important
regulatory interactions and can lead to new research hypotheses. The integration
of CyTargetLinker into Cytoscape enables advanced network analysis and data
visualization using functionality from other apps. This helps researchers to get a
better understanding of the regulation of biological processes.

Future Developments

Future work, by us or other contributing groups, will include the development of
new app features and conversion scripts for more publicly available databases, as
well as allowing the connection to online graph databases (e.g. Neo4j) and RDF
triple stores directly. This would even further simplify the integration process
because the user does not need to download the RegINs beforehand.
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[16] SA Schäfer, F Machicao, A Fritsche, H-U Häring, and K Kantartzis. New type 2 diabetes risk genes
provide new insights in insulin secretion mechanisms. Diabetes research and clinical practice, 93
Suppl 1:S9–24, August 2011.

[17] SJ Nelson, M Schopen, AG Savage, J-L Schulman, and N Arluk. The MeSH translation mainte-
nance system: structure, interface design, and implementation. Studies in health technology and
informatics, 107(Pt 1):67–9, January 2004.

[18] AS Ade, ZC Wright, and DJ States. Gene2MeSH, 2007.
[19] A Franceschini, D Szklarczyk, S Frankild, M Kuhn, M Simonovic, A Roth, J Lin, P Minguez,

P Bork, C von Mering, and LJ Jensen. STRING v9.1: protein-protein interaction networks, with
increased coverage and integration. Nucleic acids research, 41(Database issue):D808–15, January
2013.

[20] K Kida, M Nakajima, T Mohri, Y Oda, S Takagi, T Fukami, and T Yokoi. PPARα is regulated
by miR-21 and miR-27b in human liver. Pharmaceutical research, 28(10):2467–76, October 2011.

[21] RJA Frost and EN Olson. Control of glucose homeostasis and insulin sensitivity by the Let-7
family of microRNAs. Proceedings of the National Academy of Sciences of the United States of
America, 108(52):21075–80, December 2011.

94



[22] WW Wasserman and A Sandelin. Applied bioinformatics for the identification of regulatory
elements. Nature reviews. Genetics, 5(4):276–87, April 2004.

[23] J Montojo, K Zuberi, H Rodriguez, F Kazi, G Wright, SL Donaldson, Q Morris, and GD Bader.
GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics
(Oxford, England), 26(22):2927–8, November 2010.

[24] M Kutmon, S Lotia, CT Evelo, and AR Pico. WikiPathways App for Cytoscape: Making biological
pathways amenable to network analysis and visualization. F1000Research, 3, July 2014.

[25] MA Olayioye, RM Neve, HA Lane, and NE Hynes. The ErbB signaling network: receptor het-
erodimerization in development and cancer. The EMBO journal, 19(13):3159–67, July 2000.

[26] G Bindea, J Galon, and B Mlecnik. CluePedia Cytoscape plugin: pathway insights using inte-
grated experimental and in silico data. Bioinformatics (Oxford, England), 29(5):661–3, March
2013.

[27] I Avila-Campillo, K Drew, J Lin, DJ Reiss, and R Bonneau. BioNetBuilder: automatic integration
of biological networks. Bioinformatics (Oxford, England), 23(3):392–3, February 2007.
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Abstract

Background Nowadays a broad collection of transcriptomics data is publicly
available in online repositories. Methods to analyse these data often aim at de-
ciphering the influence of gene expression at process level. Biological pathways
describing known processes capture the interactions of gene products and metabo-
lites and are essential for computational analysis and interpretation of transcrip-
tomics data.

The present study describes a comprehensive network biology workflow integrating
differential gene expression in the human diabetic liver with pathway information
by building a network of interconnected pathways. Worldwide the incidence of
type 2 diabetes mellitus is increasing dramatically and to better understand this
multifactorial disease more insight in the concerted action of the disease-related
processes is needed. The liver is a key player in metabolic diseases and diabetic
patients often develop non-alcoholic fatty liver disease.

Results A publicly available transcriptomics dataset from the liver of diabetic
patients was selected after a thorough analysis. Pathway analysis revealed seven
significantly altered pathways in the WikiPathways human pathway collection.
These pathways were then merged into one combined network with 408 gene prod-
ucts, 38 metabolites and 5 pathway nodes. Further analysis highlighted 17 nodes
present in multiple pathways, and therefore connecting different pathways in the
network. The integration of transcription factor-gene interactions from the EN-
CODE project identified new links between the pathways on a regulatory level.
The extension of the network with known drug-target interactions from DrugBank
allows a more complete study of drug actions and the identification of other drugs
targeting proteins up- or downstream that might interfere with the action or effi-
ciency of a drug.

Conclusions The described network biology workflow uses state-of-the-art path-
way and network analysis approaches to study the rewiring of the diabetic liver.
The integration of experimental data and knowledge on disease affected biolog-
ical pathways, including regulatory elements like transcription factors or drugs,
leads to improved insights and a clearer illustration of the overall process. It also
provides a resource to build new hypotheses for further follow-up studies. The
approach is highly generic and can be applied in different research fields.
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Background

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic
hyperglycemia with disturbances of carbohydrate, lipid and protein metabolism
resulting from defects in insulin secretion, insulin resistance, or both. Obesity,
the excess accumulation of lipids in the body, is a major risk factor for T2DM.
Metabolism in liver, adipose tissue and skeletal muscle is of key importance for the
pathogenesis of T2DM. The current study will focus on the liver. It is well known
that lipid accumulation in liver contributes to insulin resistance, hyperglycemia
and hyperlipidemia [1]. The hepatic lipid accumulation is the main characteristic
of non-alcoholic fatty liver disease (NAFLD) and NAFLD is strongly associated
with T2DM. In T2DM one of the key liver functions, the postprandial insulin-
mediated uptake of glucose, is impaired [2]. Moreover, gluconeogenesis is affected
because of the disturbed insulin inhibition of glucose production [3]. Published
studies of gene expression in liver of patients with NAFLD suggest both increase of
de novo lipogenesis and lipid oxidation [4, 5]. Although studies in NAFLD identi-
fied genes, proteins and processes that are important, not all biological mechanisms
involved in the human diabetic liver are deciphered [6].

Modern technology enables global analysis of gene expression in liver tissue. Ex-
ploring published transcriptomics datasets available in online repositories revealed
only one transcriptomics study investigating the human diabetic fatty liver. Pih-
lajamäki et al [7] measured gene expression with microarray technology in liver
biopsies of lean, obese and obese, diabetic subjects.

Instead of only investigating the individual gene expression, nowadays analysis
methods often aim at deciphering the biological function at process level. Gen-
erally, gene set enrichment analysis and pathway analysis are applied to find bio-
logical processes of interest [8]. In the original study, these approaches identified
a relationship between thyroid hormone action and the altered gene expression
pattern. The present study uses state of the art pathway and network analysis
methods to integrate differential gene expression with pathway information by
building a network of interconnected pathways.

Pathway analysis was used to find significantly altered biological processes. Path-
way databases like WikiPathways [9] provide pathway collections commonly used
in pathway analysis. Next, network analysis was applied to i) identify genes link-
ing pathways relevant in the diabetic fatty liver, ii) investigate the transcriptional
regulation within the pathways and iii) identify known drugs targeting genes in the
pathways and their effects. The open-source and popular pathway and network
visualization and analysis tools PathVisio [10] and Cytoscape [11] were used in a
comprehensive network biology approach.

Although biological pathways are usually seen as independent processes, they do
interact with and depend on each other. Our workflow combines and integrates
relevant pathways into one biological network which allows researchers to study the
effects of a disease or treatment in the pathway of interest but also in downstream
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or related pathways. Further extending the network with additional information,
like transcription factor (TF) regulation, provides a more complete picture of the
complex biological processes and will help to better understand the mechanisms
of diseases.

Methods

Transcriptomics Dataset

In this study a published and publicly available transcriptomics dataset generated
by Pihlajamäki [7] was used. The dataset is available from the Gene Expression
Omnibus (accession number GSE15653). 18 individuals, 5 lean and 13 obese, un-
dergoing elective surgery for obesity or gallstones participated in the study. Based
on a preoperative oral glucose tolerance test the obese subjects were diagnosed for
T2DM. The percentage of liver fat content was significantly (p<0.05) increased in
obese, diabetic subjects compared to lean subjects indicating the development of
NAFLD in these subjects. Gene expression was measured in surgical liver biopsies
from 4 obese subjects, 9 obese subjects with T2DM and 5 lean control subjects
during fasting using Affymetrix Human Genome U133A microarrays. We selected
the 5 lean and 9 obese, diabetic subjects to study the molecular changes in the
diabetic fatty liver.

Affymetrix Microarray Analysis

The raw data for 9 obese, diabetic subjects and 5 lean control subjects was re-
analyzed with ArrayAnalysis.org, an online microarray quality control and pre-
processing pipeline [12]. The data was normalized using the GC-RMA method
and further evaluated.
The ArrayAnalysis.org statistics module uses the Limma package [13] of Biocon-
ductor in R which applies linear regression models to make the statistical compari-
son between obese, diabetic subjects vs. control lean group. Genes were considered
to be differentially expressed when their (1) absolute log2 fold change (FC) > 1
and (2) p-value < 0.05.

Gene Ontology Analysis

Gene Ontology (GO) analysis was performed using the GO-Elite web-interface
[14] to identify biological processes for the differentially expressed genes in the
dataset. The following settings were used: (1) 2000 permutations, (2) Z-score
pruning algorithm, (3) Z-score threshold > 1.96, (4) p-value threshold < 0.05 and
(5) minimum number of changed genes is 3.

Pathway Analysis

Pathway analysis was performed in PathVisio 3.1.3 (http://www.pathvisio.org) to
interpret and visualize the molecular changes on a pathway level. The human
pathway collection containing 262 pathways was obtained from WikiPathways
(http://www.wikipathways.org). An overrepresentation analysis was performed
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using differentially expressed genes. The pathways are ranked based on a stan-
dardized difference score (Z-score) using the expected value and standard deviation
of the number of differentially expressed genes in a pathway under a hypergeomet-
ric distribution. A positive Z-score indicates pathways with a greater number of
significantly changed genes than is expected by chance [15]. Pathways were con-
sidered significantly changed when (1) Z-score > 1.96, (2) permutated p-value <
0.05 and (3) minimum number of changed genes is 3. Additionally, the log2FC and
p-value were visualized on pathways with the visualization module in PathVisio.

Network Analysis

First, all significantly changed pathways were combined and visualized with Cy-
toscape 3.1.1. The pathways were loaded as networks using the WikiPathways app
[16] and an identifier mapping step was performed with the BridgeDb App [17] to
unify the identifiers to Ensembl for gene products and HMDB for metabolites. By
applying the network merge functionality in Cytoscape the pathways were com-
bined into one integrated network.
Second, the gene expression data was visualized on the nodes of the network.
Third, the integrated network was extended with information on transcriptional
regulation derived from the ENCODE project [18] using the CyTargetLinker app
[19]. Finally, drug-target interactions from DrugBank version 4 [20] were inte-
grated in the network.
The comprehensive visualization functionality in Cytoscape was applied to further
explore the complex regulatory mechanisms.

Results

A network biology workflow was developed to decipher the biological processes
involved in the human diabetic liver. The results obtained with pathway and
network analysis will be explained in more detail.

Differential Expression

In the selected human diabetic fatty liver dataset 11,878 genes were measured and
annotated in both lean and obese, diabetic subjects. Statistical analysis showed
that 181 genes were differentially expressed (absolute logFC > 1 and p-value <
0.05), of these were 118 up-regulated and 63 down-regulated in the obese, diabetic
subjects compared to the lean control group.

The GO analysis was performed with GO-Elite and showed relevant processes for
T2DM being over-represented, e.g. triglyceride metabolic process (GO:0006641),
cholesterol metabolic process (GO:0008203), glucose metabolic process (GO:0006006),
response to glucose stimulus (GO:0009749), cholesterol homeostasis (GO:0042632) and
complement activation, classical pathway (GO:0006958). Furthermore, processes re-
lated to one-carbon metabolism, humoral immune response, protein-lipid complex
subunit organization and organic anion transport were found.
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Pathway Analysis

Biological processes in which differentially expressed genes are enriched were identi-
fied by performing pathway analysis in PathVisio. The statistical analysis resulted
in seven significantly changed pathways (Z-score > 1.96, p-value < 0.05, minimum
of three changed genes) (see Table 7.1). Most of these pathways are processes rele-
vant for T2DM but there are also some bigger pathways included, like Proteasome
Degradation or Adipogenesis. To illustrate the visualization of the analyzed gene
expression data two pathways known to be important in drug treatment of T2DM
were selected, i.e. the AMPK Signaling and the Statin pathway (Figure 7.1A and
7.1B).

Table 7.1: Seven Pathways Changed in the Diabetic Liver. Pathway statistics in PathVi-
sio revealed seven significantly altered pathways (Z-score > 1.96, P-value < 0.05, minimum of 3
changed genes). The number of genes (# Genes) represent the number of differentially expressed
genes in the pathway compared to the total number of measured genes in the pathway. The
arrows indicate up (↑) and down-regulation (↓).

Pathway Z-score P-value # Genes Genes

Triacylglyceride Syn-
thesis

3.78 0.001 3 / 19 ↑ AGPAT2, GPD1, DGAT1

Proteasome Degrada-
tion

3.32 0.006 5 / 53 ↑RPN1, PSMB3, HLA-B, HLA-

E, HLA-J

Statin Pathway 3.10 0.006 3 / 25 ↑DGAT1, APOA4, CYP7A1

Fluoropyrimidine Ac-
tivity

2.84 0.013 3 / 28 ↑SLC22A7

↓ABCG2, DPYD

Pathogenic Escherichia
coli infection

2.76 0.011 4 / 46 ↑ ARPC1A, ARPC1B, ACTB

↓ ROCK1

Adipogenesis 2.41 0.016 7 / 121 ↑ SREBF1, CDKN1A, NR1H3,

PNPLA3, AGPAT2

↓ CISD1, ZMPSTE24

AMPK Signaling 2.38 0.029 4 / 54 ↑ SREBF1, P21

↓ LEPR, PFKFB3

In the AMPK Signaling pathway the gene expression of the upstream regulating ki-
nases of AMPK, i.e, CAMKK, LKB1, MO25 and STRADA, were significantly up-
regulated. Moreover, the expression of the glucose transport protein 4 (GLUT4)
is significantly increased together with an increase in the GLUT4 enhancer factor
(GEF; p-value = 0.057). Most downstream AMPK targets were up-regulated, i.e.,
HNF4A, SREBF1, eEF2, TSC2, p21 and some are down-regulated, like PFK2 and
TSC1.
In the Statin pathway the inhibitory action of statin, a cholesterol-lowering drug,
on HMG-CoA reductase (HMGCR) is depicted. The expression of HMGCR re-
mains unaltered in the diabetic fatty liver compared to lean controls. Moreover,
cholesterol synthesis is described in the pathway and almost all differentially
expressed genes are up-regulated, like DGAT1, CYP7A1, SCARB1, LCAT and
APOA4.
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Figure 7.1: Visualization of Two Pathways Relevant for Drug Treat-
ment of T2DM. Gene expression is visualized on (A) AMPK Signaling path-
way, http://www.wikipathways.org/instance/WP1403 and (B) Statin pathway,
http://www.wikipathways.org/instance/WP430 from WikiPathways. The visualization of
the gene product boxes in the pathways is split into two parts, (1) the log2 FC in the left part
of the box (blue is down-regulated over white is not changed to red is up-regulated) and (2)
the p-value in the right part of the box (green when significant). Pathway elements including
metabolites that have not been measured in the selected dataset are gray.

Network Analysis

Pathway integration.
Pathway analysis revealed seven pathways with a Z-score > 1.96 (see Table 7.1)
which were then combined into one biological network and analyzed in the net-
work visualization and analysis tool Cytoscape, see Figure 7.2. The created net-
work contains 642 edges connecting 580 nodes, consisting of 408 gene products, 38
metabolites and 5 pathway nodes. 129 nodes are visualized as very small nodes to
represent groups and complexes as well as complex interactions in the pathways.
Pathways from WikiPathways can contain pathway nodes that link to other path-
ways. The created network has therefore links to five other pathways: Glycolysis
(WP534), DNA Repair (WP1805), Fatty Acid Oxidation (WP143), Fatty Acid
Synthesis (WP357) and Apoptosis (WP254).
Fourteen genes in the network are significantly up regulated in obese, diabetic
subjects including three genes linking two or more pathways such as AGPAT2,
CDKN1A and SREBF1. Seven genes, all present in only one pathway, are signifi-
cantly down regulated.

Figure 7.3 shows how fourteen genes and three metabolites are linking two or
more of the selected pathways to each other. The transcriptomics dataset com-
paring obese, diabetic subjects with lean subjects is visualized in the network. The
log2FC is indicated by a color gradient on the nodes and significance (p-value <
0.05) is represented by a light-green border. Nodes including metabolites without
a measurement in the dataset are colored gray.
In the liver of obese, diabetic subjects, the gene expression of three of the linker
genes, i.e. AGPAT2, CDKN1A and SREBF1, is significantly (p < 0.05) up-
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Figure 7.2: Integrated Network of Seven Interconnected Pathways that are Changed
in the Diabetic Fatty Liver.

Figure 7.3: Nodes Linking the Seven Significantly Changed Pathways. Each pathway
is represented as a yellow rounded rectangle. Gene products and metabolites are visualized as
ellipses and octagons, respectively. The transcription dataset is visualized on the gene nodes in
the network using a color gradient from blue (down-regulated) over white (not changed) to red
(up-regulated). Nodes with a significant p-value (< 0.05) have a light-green border color. Most
nodes linking multiple pathways are either up-regulated (e.g. SREBF1, CDKN1A, AGPAT2) or
not altered significantly (e.g. LPL, HMGCR).
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regulated. AGPAT2 is an enzyme that plays an important role in the production
of glycerophospholipids and triacylglycerols. It is known to be relevant to the liver
and development of hepatic steatosis [21]. CDKN1A is a potent cell cycle inhibitor
important for the induction and maintenance of cellular senescence. SREBF1 is a
TF regulating genes required for glucose and fatty acids metabolism and lipid pro-
duction. Studies showed a clear link between mutations in CDKN1A and SREBF1
and the risk of developing NAFLD [22, 23] strengthening the involvement of these
genes in diabetic fatty liver.

Extension with transcriptional regulation.
The integrated network was extended with transcriptional regulation to obtain
a better insight in how biological processes affected in the human fatty liver are
regulated. The CyTargetLinker app in Cytoscape was used to extend the network
with proximal TF-target interactions from the ENCODE project [24]. The app
identified sixteen nodes in the network as TFs, most of which are nodes present in
only one pathway, except for SREBF1. All TFs are present in either the AMPK
Signaling pathway or the Adipogenesis pathway.

Figure 7.4 shows a network containing the sixteen TFs as diamonds and 90 of their
targets which are present in one of the selected seven pathways. The interactions
in this network are not present in the pathways but have been reported in the EN-

Figure 7.4: TF Regulation in the Diabetic Fatty Liver Pathways. Using CyTar-
getLinker, sixteen TFs have been identified in the seven pathways. TFs are visualized as rounded
rectangles and their target genes as circles colored based on their presence in different pathways.
56 genes are targeted by only one TF and 33 genes are targeted by 2 or more TFs. Light-blue
edges indicate regulation of TFs by other TFs.
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CODE regulatory network derived by Gerstein et al. [18]. In the initial network,
pathway elements were not present in more than three out of seven pathways, how-
ever with the CyTargetLinker app, TFs were identified that target genes in up to
six out of seven different pathways, like SP1 or HNF4A. This approach also found
some TFs regulating other TFs (highlighted as light-blue edges) and discovered
typical network motifs like feed-forward loops (e.g. STAT1 → STAT3 → STAT2
→ STAT1) or self-regulation (e.g. SP1, GATA2 or CEBPB). Three of the TFs in
the network are up-regulated in obese, diabetic subjects, SREBF1 (log2FC: 1.05,
p-value: 0.03), STAT3 (log2FC: 0.88, p-value: 0.008) and CEBPB (log2FC: 0.41,
p-value: 0.01). All three have been reported to play a role in the development of
NAFLD [25–27]

Extension with drug-target information.
CyTargetLinker provides a regulatory interaction network for drug-target interac-
tions from DrugBank. The combined network was extended only with approved
drugs leaving out the ones that are withdrawn or experimental. In total 280 drugs
were added targeting 76 gene products in the pathways, see Figure 7.5. Based
on the categories used in DrugBank the drugs associated with the treatment of
diabetes (= antidiabetic and hypoglycemic agents; colored in red), dietary sup-
plements/micronutrients (colored in green), immune response related (colored in
orange) and anticholesteremic agents (colored in purple) are highlighted in Figure
7.5. In the extended network, the amount of drug targets related to diabetes is
significantly higher than expected by random.

The insulin receptor (INSR) is targeted by nine drugs of which eight are categorized
in DrugBank as antidiabetic and/or hypoglycemic agents and the ninth, Mecaser-
min, is an insulin-like growth factor used for long-term treatment of growth failure
in children with severe primary IGF-1 deficiency [28]. The INSR is activated by
insulin binding and after activation it phosphorylates and thereby activates in-
sulin receptor substrate 1 (IRS1) which in turn activates the PI3-kinase and AKT
signalling pathways. Insulin is a natural hormone produced by beta cells in the
pancreas and has many functions, e.g. promotion of cellular uptake of glucose and
energy storage via glycogenesis. T2DM patients who are unable to control their
glucose levels can be treated with insulin analogues, like Insulin Aspart, Detemir
or Glargine and these are indeed drugs targeting the INSR in the drug-target
network. Insulin Aspart is a fast-acting analogue simulating the insulin spikes
following meals in non-diabetic subjects. Insulin Detemir, on the other hand, is a
long-acting analogue used to maintain the basal insulin level in diabetes patients.
Insulin Glargine is released in small doses from microprecipitates to achieve a long
duration of action.
Furthermore, two diabetes related drugs, Phenformin and Metformin, target the
two subunits of AMPK, PRKAA1 and PRKAB1. Both subunits are also activated
by the dietary supplement, adenosine monophosphate (AMP). The network shows
that several hypoglycemic agents, like Rosiglitazone, Glipizide or Pioglitazone, are
known to target PPARG, a receptor which regulates fatty acid storage and glu-
cose metabolism. All these drugs are known to be prescribed to T2DM patients
depending on the state of the disease.
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Figure 7.5: Significant Amount of Antidiabetic Drugs Targeting Gene Products in
the Network. The network has been extended with drug-target interactions from DrugBank
4 using CyTargetLinker. Nodes present in only one pathway and not targeted by any drugs
have been grouped in pathway nodes (yellow rounded rectangles). Drugs targeting genes in
the network are indicated as blue rectangles, drugs associated with diabetes are colored in red,
micronutrients/dietary supplements in green, drugs related to immune response in orange and
anticholesteremic agents in purple. Diabetes related drugs target 7 gene products in the network:
INSR (8 drugs), PPARG (5 drugs), RB1 (2 drugs), ABCA1 (1 drug), CPT1A (1 drug), PRKAA1
(1 drug), PRKAB1 (1 drug).

Discussion

It has been shown that insulin resistance conditions like obesity and T2DM are
strongly associated with accumulation of lipids in the liver which is the main
characteristics of NAFLD [29, 30]. Although it is known that impaired substrate
metabolism is involved in the development of the fatty liver in T2DM, the exact
mechanisms remain unclear. In this study we applied a network biology approach
to investigate the molecular mechanisms in the diabetic fatty liver.

Biological pathways are useful to better understand the mechanism affected in a
disease state. As illustrated in this study researchers can investigate pathways
in diseased subjects compared to control subjects to gain more insights into the
causes of a disease and the mechanisms of disease progression. Although the path-
way collections are covering many well described biological mechanisms they are
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incomplete resulting in a bias towards well studied processes. Nevertheless, path-
way databases are growing and pathway analysis has proven itself as a valid and
intuitive first step in the analysis process. Wiki-based community curated pathway
databases like WikiPathways reduce the barrier to participate in pathway curation
and allow experts to add new findings immediately to the pathway diagrams.
While standard pathway analysis investigates each pathway individually, biologi-
cal processes are not independent but interact and influence each other. Therefore
it is relevant to investigate the links between them as well as shared regulatory
mechanisms. This study describes an workflow to further explore the interplay
between pathways involved in the human fatty liver by combining them in a bio-
logical network and extending them with additional knowledge on TF regulation
and drug targeting.

Pathway analysis demonstrated that Triacylglyceride Synthesis and Adipogenesis
are significantly altered in obese, diabetic subjects with a fatty liver compared to
the lean control group. Interestingly, two pathways related to drug treatment in
T2DM, i.e., the AMPK signaling pathway and the Statin pathway, are among the
significantly altered pathways.
AMPK is known as the metabolic regulator and its activation influences many
metabolic processes [31]. Under catabolic situations, like in a fasted state, AMPK
is activated thereby increasing glycolysis and FA beta-oxidation and decreasing FA
synthesis [32]. The liver biopsies measured in the selected dataset were collected
after overnight fasting. Phosphorylation of AMPK is activated by the upstream
regulators, CAMKK2 and LKB1 in complex with MO25 and STRADA [33]. The
gene expression of all upstream regulators of AMPK are significantly up-regulated
strongly indicating that AMPK is activated in the human diabetic liver.
In the Statin pathway the expression of genes involved in the cholesterol and tri-
acylglycerol production, DGAT1, CYP7A1, SCARB1, LCAT and APOA4, are all
significantly up-regulated in the diabetic liver in humans. These findings indicate
that hepatic lipid accumulation is facilitated by increased expression of these genes.

Regulatory elements like TFs are often not included in pathway diagrams to keep
them comprehensible. Nevertheless, as this study confirms, TFs play a crucial
role in the understanding of complex diseases since they often regulate multiple
pathways simultaneously. Our analysis showed that TFs can be considered addi-
tional links between pathways and adding the regulatory interactions increases the
overall connectivity of the network significantly. Typical TF network motifs, e.g.
feed-forward loops, single input module or self-regulation can be identified using
standard network algorithms.
Hepatocyte nuclear factor 4-alpha (HNF4A) is an essential TF in the extended reg-
ulatory network (see Figure 7.4) which is regulated by two TFs, i.e., PPARGC1A
and SP1 and regulates genes in 6 out of 7 pathways (not in the E.coli infection
pathway). HNF4A is a nuclear receptor (NR) which is a key regulator of the liver
cell function, a sensor of inflammation and known to regulate genes in lipid and
glucose metabolism [34].
Furthermore, CyTargetLinker revealed 93 additional TFs, not yet present in one
of the pathways, that target 212 nodes in the network. TFs generally regulate
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multiple targets and so more than 800 regulatory interactions are added. Two
hub TFs targeting more than 35 genes in the pathways are CTCF and EP300.
CTCF is a general TF which has been reported to mediate the effect of insulin on
glucagon expression and therefore is a possible new target for diabetes treatment
[35]. EP300 is a general TF regulating cell growth and division and has been
reported as a key participant in hepatic steatosis [27].

The extension of the network with drug-target information resulted in a higher
number of known drugs used to treat T2DM than expected which confirms the
validity of the approach described in this study. The network shows where the
drug targets and what effect can be expected in a pathway. It might be possible
to identify other drugs with similar pharmacological effects or advantageous drug
combinations when targeting at two positions in the network to get a stronger
effect of the treatment, e.g. combination of Glipizide (PPARG) and Metformin
(AMPK). It might suggest new drugs targeting pathway elements upstream, down-
stream or even parallel to the currently used targets. When studying the effects
of drugs on a whole pathway the grouped pathway nodes in Figure 7.5 can be
expanded again to see the complete pathway and its interactions.
Besides the diabetes related drugs, there are many other drugs known to target
genes in the selected pathways. HMGCR, a highly targeted gene product, is part
of the Statin pathway depicted in Figure 7.1A and targeted by seven drugs, all be-
longing to the statin family. This drug family has a cholesterol lowering effect and
is often used in combination with anti-diabetic drugs [36]. Furthermore three gene
products in the network are highly targeted by more than 40 drugs, ADRA1A,
ADRA1B and NR3C1. ADRA1A and ADRA1B are members of a subfamily of the
G protein-coupled receptors (GPCRs) and there are several studies investigating
the potential of GPCRs for treatment of T2DM [37, 38]. NR3C1 is part of the NR
superfamily of TFs that are known to play a role in development and adaptations
to liver diseases. NRs are also suggested as potential drug targets for treatment
of diabetes and NAFLD [39].

In general, the described workflow can be applied for different diseases and pathway
sets. Integrating the pathway information into the network allows researchers to
investigate downstream effects of drugs and contributes to the identification of
other treatment possibilities. Also the link with other pathways, affected or not
affected by the disease state, is of importance to predict possible side-effects of
a drug. Including the information about the effects of other drugs in linked or
related pathways can help to identify interferences with the action and efficiency
of the drug.

Conclusions

In this study we demonstrated how pathway analysis results, which are often con-
sidered a final step in the biological interpretation of transcriptomics data, can be
used and combined in a biological network to gain more insights in the interplay
and relation between processes. Instead of starting with a large protein-protein
interaction network and finding the important parts in it, we believe that building
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the networks based on relevant pathways can be another very useful approach to
start the investigation. Also the inclusion of all elements present in the path-
way, e.g. metabolites, provides a framework which can integrate different types of
omics-data. The biological interpretation might be more straight-forward because
it builds on the pathway diagrams which are usually intuitive and well studied.
Regulation by TFs or drugs does not only have effects on one pathway but also
has effects on downstream processes. This integration leads to improved insight
and also a much clearer illustration of the overall process, and the most important
elements. Inclusion of information about drugs and micronutrients and their tar-
gets makes the mode of action of currently used compounds more understandable
and can be useful to suggest drug repositioning and new drugs or micronutrient
related lifestyle interventions.
The tools used in this study, especially PathVisio, Cytoscape and CyTargetLinker,
facilitated the data integration, visualization and interpretation immensely.
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In this thesis we demonstrated the power of pathway and networks to store and
visualize knowledge and to analyze and interpret biomedical experiments. The
approaches and tools presented provide small but relevant pieces to the systems
and network biology fields to reach the final goal of completely understanding
complex biological systems.

Biological Data Curation

Nowadays, advances in measuring technologies lead to the production of huge
amounts of biological data. Bioinformatics tries to develop tools and automated
pipelines to facilitate the analysis of such data. However, the interpretation of
the results and the translation into new knowledge and applications is often still
a manual process performed by experts. This process is time-consuming, focused
on the researchers field of expertise and it is not possible to use all the available
resources.
Pathway diagrams have been used by biologists to organize, share and discuss
knowledge about biological processes for many years. Instead of looking at thou-
sands of genes, pathway analysis reduced the problem to hundreds of pathways
studying biology on a process level instead of on a gene level. Because of the ad-
vances in measuring techniques and computational technologies, we are now able
to study complex biological systems as large networks. One of the most crucial
limitations of pathway but also network analysis is the bias towards what we al-
ready know. As mentioned in Chapter 2, pathway databases only cover less than
50% of the known human protein-coding genes and are often missing relevant regu-
latory elements like microRNAs (miRNAs) or other non-coding RNAs (ncRNAs).
Pathway interactions can be combined with interaction databases which focus on
binary interactions like miRNA-target or protein-protein interactions and even
though the number of interactions is much higher, we are still missing a lot of
information.
PathVisio is a pathway editor, analysis and visualization software [1] which allows
researchers to create new pathways, curate existing ones and analyze and visualize
experimental data on biological pathways. A biological pathway can summarize
and visualize the current knowledge about a biological process and all the elements
can be fully annotated and referenced. Pathways can be immediately published
on WikiPathways [2] which allows other researchers to contribute, discuss and use
the pathway in their analysis.
All the chapters in this thesis rely on the community curated pathway database
WikiPathways. This database applies the same concepts as used in Wikipedia, like
collaboratively editing, collection and curation of knowledge, free content and open
access. The main focus of the database is the collection and curation of biological
pathways in a form that is both human readable and amenable to computational
analysis. This project highly depends on the number of participating experts that
contribute pathways to the database. Recent years showed that this approach
has been hugely successful. Since its beginning in January 2008, the number of
human pathways in WikiPathways has increased from around 100 to over 600
human pathways and WikiPathways now supports 29 species. Figure 8.1 shows
the growth of the pathway collections for human, mouse, rat and zebrafish since the
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start of WikiPathways in 2008. While the human pathway collection still has the
most active curators, other species are growing and the collections become more
extensive. The recent integration of the human Reactome [3] pathway collection
into WikiPathways to enable the community to contribute to the curation efforts
has added more than 200 pathways to the collection.

Figure 8.1: Growth of WikiPathways Pathway Collections for Human, Mouse,
Rat and Zebrafish. In the last 6 years, the human collection grew from 100 to
600 pathways, the mouse collection now reached 190, the rat collection 165 and the
zebrafish collection 100 pathways. The statistics for all collections can be found on
http://wikipathways.org/index.php/WikiPathways:Statistics

Chapter 3 demonstrated how powerful pathway diagrams are to organize and pub-
lish biological knowledge. It allowed us to go beyond the basic SREBP signalling
pathway to study the regulatory mechanisms of this pathway. We were able to
identify many links between SREBP and other regulators of lipid, protein and
carbohydrate metabolism as well as overall energy homeostasis. Submitting the
pathway to WikiPathways allows other researchers to discuss, adapt and further
extend the pathway. The pathway serves not only as an overview but also as a
dashboard to relevant publications and entries in genomics databases. Addition-
ally it can be used for advanced data analysis and visualization in PathVisio.
In 2006, Bader et al. started to collect all pathway and interaction related re-
sources on http://www.pathguide.org [4]. At present, PathGuide lists nearly 550
resources containing biological pathways as well as protein-protein, gene regula-
tory and protein-compound interactions. Biological pathways are network-like in
nature, making them a valuable resource for network analysis. Other typical in-
teraction resources contain mostly binary interactions and they are much larger
than pathway collections. The interaction data is often produced by combining
literature research and prediction algorithms. Data extracted from literature is
extremely noisy and prediction algorithms often include assumptions that might
not reflect the actual mechanisms. Therefore much more validation is needed to
improve the quality of interaction data. As an example, the Interactome Project
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[5] at the Center for Cancer Systems Biology at the Dana-Farber Cancer Institute
released an experimentally validated human interactome (protein-protein interac-
tions) consisting of 3,882 binary interactions. This year they are planning to in-
crease the number to 17,000 experimentally validated protein-protein interactions
(HI-II-14) with the goal to create a complete human protein-protein reference net-
work. Similar projects are running for plants like Arabidopsis thaliana [6], the
worm interactome of C. elegans [7] or the yeast interactome [8]. Such efforts are
of high importance to improve the quality of the data.

Data Integration

Data integration has been a major challenge in bioinformatics for many years.
In 2014, the database issue of Nucleic Acids Research (NAR) reported a growing
number of data resources now reaching 1552 databases [9]. Especially the diversity
and distribution of biological data resources creates a problem for bioinformati-
cians to combine and integrate data. While it is important to collect and publish
biological knowledge there is also a danger. The web makes is very easy to publish
a resource and being a resource provider often increases ones reputation, however
because of the diversity of the discipline there is a large number of very special-
ized resources and only a few centralized data centers. Maintaining and updating
a resource is costly and time-consuming and sometimes small specialized resources
end up as orphaned databases that are not supported anymore.
Since every database has its own data model and data access methods, bioinfor-
maticians need to learn many different data models and use many different data
access methods to integrate data from various resources. This also resulted in a
large number of resources that try to integrate several primary resources into one
database to facilitate the integration process [10]. Standardized formats to share
data from different databases, like BioPAX [11] or SBML [12], are envisioned to
simplify the data integration process.
Two years ago we developed CyTargetLinker a tool that facilitates the integration
of several regulatory interaction resources in Cytoscape [13] providing a visual way
to study the overlap between the different resources. Interactions that are present
in multiple resources are shown as individual coloured edges, so the researcher
immediately sees the origin of the edge. When studying miRNA-gene interactions
the number of validated interactions is still limited. However there are prediction
algorithms that produce a wealth of possible miRNA-target interactions. Because
of different assumptions in the prediction algorithms the different databases have
only very little overlap as demonstrated in Chapter 6 (Figure 6.1). Although the
algorithms produce non-overlapping results, they may still give (conditionally)
valid results. Therefore choosing only one or a many votes approach might lead to
wrong conclusions. This shows how important it is to integrate data from different
resources and that there is a need for more experimental validation to get higher
quality interaction data.
Because of the wealth of biological databases it is often difficult to decide which
should be used in an analysis. This decision might also influence the results found
and conclusions drawn from an experiment. Chapter 6 presents a tool that pro-
vides a simple and visual way to integrate different resources. CyTargetLinker
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provides regulatory interaction networks (RegINs) for several different regulatory
interaction resources, including transcription factor (TF)-gene interactions from
ENCODE or miRNA-target interactions from TargetScan [14] or miRTarBase [15].
The process of generating these RegINs showed how challenging data integration
of biological databases is. Often the databases are not up-to-date, no stable iden-
tifiers are used or the data can not be easily accessed. There are many efforts to
integrate different resources, like GeneMANIA [16], OpenPhacts [17] or Bio2RDF
[18]. These will facilitate the development of new RegINs in the future.
In Chapter 7, CyTargetLinker is used to extend a network built from diabetic,
fatty liver pathways with TF-target and drug-target interactions. The analysis
enabled us to identify additional links between the pathways and key regulators
of liver function, inflammation and lipid and glucose metabolism were identified.
The extension of the network with drug-target interactions from DrugBank [19]
showed a significantly higher number of known diabetes related drugs compared
to randomly generated and extended networks which confirms the validity of the
approach.
Besides the integration of different resources, the integration of different exper-
imental data is crucial when studying a biological process in all its complexity.
Chapter 4 shows how transcriptomics and proteomics data can be combined and
integrated in pathway analysis. Although proteomics and metabolomics measur-
ing techniques develop rapidly, many dataset do not contain enough data for an
overview on systems biology level. Nevertheless, the combination with large scale
transcriptomics data already enables the identification of relevant biological pro-
cesses which can then be studied in detail. Figure 1.1 in the introduction shows
nicely that transcript level (mRNA) is only an intermediate step and in the future,
with better proteomics and metabolomics technologies, the number of measure-
ments in proteomics and metabolomics data will increase and it will be more
important to be able to analyze and visualize different datasets together.

Open Data, Open Access and Open Source Development

With the rise of the internet it became easy to publish and share data with a
wide audience at virtually no cost. Early on several organizations started “open”
movements like open source, open content, open access and open data. The open
definition says that a piece of data, content, software is open if anyone is free to
use, reuse and redistribute it, sometimes with defined regulations on attribution
of authors or document modifications.
Such open movements play a role in a lot of different fields, like finance, environ-
ment, cultural but also science. In 2004, twenty five Nobel prize winners sent an
open letter to the US Congress stating that

“Open access truly expands shared knowledge across scientific fields -
it is the best path for accelerating multi-disciplinary breakthroughs in
research.”

The vision of open research is to increase the pace of scientific discovery and
encourage innovation. Nowadays, many biomedical journals require the submis-
sion of experimental data to one of the publicly available data repositories, when
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publishing scientific software it mostly has to be developed under an open-source
license and large grant organizations like Welcome Trust, National Institutes of
Health (NIH) or the European Union require open-access publications. The results
of publicly funded research should also be available to the public.
As an example, Chapter 7 describes a study solely conducted with open source
software and open data. The dataset was chosen from the publicly available data
repository Gene Expression Omnibus (GEO [20]). There is still a huge amount of
information in these data that can be extracted with further analysis. The fact
that the data is publicly available allows researchers to apply new and state-of-
the-art analysis methods to find new insights about the underlying biology.
Cytoscape and WikiPathways are two major open-source communities in Bioinfor-
matics. They provide public resources to enable the exchange and use of biological
networks and pathways. The three software tools described in this thesis, PathVi-
sio, the pathway editor software of WikiPathways and a powerful analysis tool,
the Cytoscape WikiPathways App [21] and the CyTargetLinker App [22], are all
developed under an open-source license and are freely available.
Cytoscape and PathVisio are two standalone tools that have an extension system
to facilitate the integration of new functionality. Modularity is an important aspect
in software development to allow others to reuse and integrate existing code instead
of reimplementing it anew. Code can only be reused and integrated in another
software tool if the code is available under an open-source license. Furthermore
it enables developers to share the load of maintaining the software application.
If a developer is not able to continue on the project, other developers can take
over and make sure the project progresses further. Community building is an
important aspect of open source development and for Cytoscape and PathVisio
new collaborations emerge easily with groups that develop new extensions for the
software applications.
All publications in this thesis are published in open-access journals, results are
openly available as supplementary data and all software tools developed are avail-
able under an open source license.

Conclusion

Pathways and networks are very useful tools for the analysis of experimental data.
The data is put into a biological context and the visual representation in pathway
diagrams but also larger networks facilitates the interpretation step.
Pathway analysis is biased towards what is already known and well studied, so
pathway curation is still a crucial point. WikiPathways is a community pathway
database that allows researchers to create and curate biological pathways them-
selves and new findings can be added instantaneously. Therefore, the pathway
content is updated continuously and pathway analysis will become more and more
powerful. Another strength of pathway analysis is the possibility to visualize com-
plex data on the pathway diagrams.
Also networks are very powerful visual and mathematical representations of com-
plex processes and systems. The simplification of such systems as nodes and edges
enables the discovery of new mechanisms and can give further insights into the
underlying biology. Networks can represent known biological interactions but also
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interaction purely derived from experimental data, like in a co-expression networks.
Interaction data is still very noisy and more experimental validation is needed to
improve the quality. Nevertheless network biology has already been shown to im-
prove our ability to understand complex molecular mechanisms underlying health
and how they fail in disease.
In scientific research it is important to collaborate with others and to build on each
others work. Sharing, validating and building upon other work is only possible if
the data, tools and results are openly available. This thesis follows this principle
by creating open source software, using open data to analyse and publishing the
results in open access journals.
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In 2000, Stephen Hawking stated that the 21st century will be the century of
complexity. Even though Hawking’s field of expertise is physics, this statement
is also very true when looking at biomedical research. In the past, researchers
often looked at single aspects like how does one element influence the other. But
of course there are many different elements in biological systems and the goal to
better understand the interactions between the components in a system and their
influence on function and behaviour of that system gave rise to a flourishing new
research field called Systems Biology. The advances in measuring technologies to
determine the abundances of different types of molecules in parallel (e.g. transcrip-
tomics, proteomics, metabolomics) and the developments in computer technology,
enable us to start looking at the interactions between the different elements on a
system-wide level. In this project, I have studied how pathways and networks can
be used to store, integrate, visualize and analyze biological data. The wealth of
biological data being produced also requires the development of tools to manage
and analyze it. I introduce three bioinformatics tools and show how they can
help researchers to better understand and visualize their own data, to integrate
data with existing knowledge and therefore to develop better strategies to improve
health as well as understand diseases.

Pathway Analysis

Biological pathways are intuitive and graphical representations of the processes
that occur in living systems. They describe how genes, proteins and metabolites
are all working together. Such pathways are responsible for controlling a cells
activities. A series of signals, from one molecule to the next, triggers specific ac-
tions like the production of a protein, increased sugar uptake or even cell division.
Pathways are really the functional units of any living system and defects in any
of the pathways might cause disease. There are diseases that are caused by mu-
tations in one single gene, like Haemophilia which impairs the bodys ability to
control blood clotting or coagulation. Diseases like cancer or diabetes, however,
are multifactoral and much more complex. Multiple disruption in a single but also
in several different pathways, might be required for a disease to develop.

The first half of the thesis focuses on biological pathways and pathway analysis. In
chapter 2, I introduce the third version of the pathway editor, visualization and
analysis software PathVisio. This tool is already widely adopted in the research
community and it allows users to create new pathways, visualize experimental
data on such pathways as well as identify which pathways are affected in a specific
experiment using pathway statistics.
Pathways are very useful for collecting and organizing knowledge. A pathway
diagram is much more than just an image, it contains identifiers and literature
references for every element in the pathway. The review studying the function and
regulation of sterol regulatory element-binding proteins (SREBPS) in chapter 3
uses a pathway to structure and organize the knowledge from over 50 research
articles. The reader can use the interactive pathway viewer on WikiPathways, a
collaborative pathway database, to zoom and browse to get detailed information
on pathway elements in external databases and thereby allowing a more extensive
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study.
The number of studies measuring multi-omics data is increasing and more ad-
vanced methods to analyse the data together are required. PathVisio provides
functionality to integrate, visualize and analyse multi-omics datasets. In chap-
ter 4, two studies on starvation in mice have been combined and analysed us-
ing PathVisio, one using proteomics and the other using transcriptomics technol-
ogy. The integrated identifier mapping solution of PathVisio makes it particularly
suited for integration and simultaneous visualization of datasets from different
sources. In this example, we showed that proteomics data can reinforce the conclu-
sions deduced from transcriptomics data, and simultaneously indicate areas where
post-transcriptional regulation plays a role. The interpretation of such datasets is
not straightforward, and pathway visualization can serve as a useful aid, given the
role of pathways as a knowledgebase of biological information.

Network Biology

Networks are the universal structure that allows us to describe the relationships
and interactions between multiple things. In biology, the regulation of a gene by
a transcription factor, the building of a complex of two proteins or a conversion
of a metabolite are examples for biological interactions. Such interactions are also
often described in pathways which can then be represented as small networks. If
we have all the pieces and can put them together, we will be able to for example
trace every step of the mechanisms of action of a specific drug or we will be able
to find out which nutrient is causing an allergic reaction and why.

The second half of my thesis is mainly focused on biological networks. The widely
adopted network analysis and visualization tool Cytoscape, allows developers to
provide additional features as so called apps.
Pathways are network-like in nature and the WikiPathways app for Cytoscape, de-
scribed in chapter 5, nicely links the pathway part of my thesis with the network
part. The app allows users to load pathways from WikiPathways and PathVisio
in Cytoscape and to make full use of the pathway models by performing computa-
tional analyses and custom visualizations based on experimental data and network
topology.
Pathways usually have a very specific layout to keep them structured and easy to
understand and it is therefore hard to automatically extend them with additional
interactions. Networks, however, do not have a fixed layout and new interac-
tions can be added easily. Therefore we developed the CyTargetLinker app for
Cytoscape to integrate regulatory interactions in network analysis (chapter 6).
There are many different online resources containing information about regula-
tory elements like transcription factors, microRNAs or drugs and CyTargetLinker
provides an easy and fast way to integrate this knowledge in an existing network
(which could also be a pathway). Especially the visualization options enable the
biological interpretation of complex regulatory networks in a graphical way. This
app can be used in many different studies, like identifying validated and predicted
microRNAs targeting genes related to diabetes mellitus, enriching a network of
DNA repair genes with transcription factors from ENCODE or even building a
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regulatory meta-network by adding a whole regulatory level (transcription fac-
tors, microRNAs and drugs) to a biological process.
The incorporation of both extensions into the Cytoscape framework enables their
usage in combination with a wide variety of other apps for state-of-the-art network
analysis.

In chapter 7, it is clearly demonstrated how the tools and approaches described
in this thesis can be combined in one bioinformatics workflow. We selected a
publicly available transcriptomics dataset to study the obese, diabetic liver. The
workflow described uses PathVisio to identify disease affected biological pathways
which are then loaded in Cytoscape using the WikiPathways app. The CyTar-
getLinker app enabled us to incorporate transcription factors and drugs to study
the regulatory mechanisms. The whole approach leads to improved insights and a
clearer understanding of the overall disease processes.

Conclusion

Pathways and networks are powerful tools to store, organize, integrate, analyze
and visualize biological data. It is important to mention that pathway analysis is
biased towards what is already known and well studied, and interaction data can
be very noisy and more experimental validation is needed to improve the quality.
The availability of accessible, high quality experimental data, well organized and
structured knowledge and freely available, user-friendly software tools is very im-
portant for biomedical research. In this thesis, I presented a number of commonly
used bioinformatics tools for pathway and network analysis and demonstrated how
they can be applied in different research fields.
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In het jaar 2000 heeft Stephen Hawking opgemerkt dat de 21e eeuw de eeuw van
de complexiteit zal worden. Ook al is Hawking een expert op het gebied van de
natuurkunde, deze bewering is zonder meer ook van toepassing op het biomedische
onderzoeksdomein. In het verleden hebben onderzoekers zich vaak bezig gehou-
den met kleine deelvragen, zoals hoe een bepaald element invloed heeft op een
ander. Maar er zijn vanzelfsprekend heel veel verschillende elementen in biologi-
sche systemen, en het doel om de samenwerking tussen al deze componenten in
het systeem en hun invloed op de functie en het gedrag ervan beter te begrijpen,
hebben geleid tot het bloeiende nieuwe onderzoeksveld van de systeembiologie. De
ontwikkelingen in meettechnologieën om verschillende gegevenstypes naast elkaar
te verkrijgen (bijvoorbeeld transcriptomics, proteomics, metabolomics) en de tech-
nologische ontwikkelingen in de informatica, stellen ons in staat om een begin te
maken met het verkennen van de interacties tussen de verschillende elementen op
het niveau van het gehele systeem.
In dit project heb ik bestudeerd hoe pathways (cellulaire moleculaire processen)
en netwerken gebruikt kunnen worden voor de opslag, integratie, visualisatie, en
analyse van biologische gegevens en metingen. De rijkdom aan biologische data
die gegenereerd worden, vereist ook de ontwikkeling van gereedschap om deze te
beheren en te analyseren. Ik introduceer drie bioinformatica tools en laat zien
hoe deze onderzoekers kunnen helpen om hun eigen meetgegevens beter te kun-
nen weergeven en begrijpen, deze met bestaande kennis te integreren, en daarmee
betere strategieën te ontwikkelen om gezondheid te bevorderen en ziekteprocessen
te begrijpen.

Pathway analyse

Biologische pathways vormen een intüıtieve en grafische weergave van de proces-
sen die optreden in levende systemen. Ze beschrijven hoe genen, eiwitten, en
metabolieten allemaal met elkaar samenwerken. Dergelijke pathways zijn verant-
woordelijk voor het aansturen van de activiteiten van een cel. Een serie signalen,
van één molecule naar de volgende, leidt tot specifieke acties zoals de aanmaak
van een eiwit, verhoogde opname van suikers, of zelfs celdeling. Pathways zijn
de werkelijke functionele eenheden van elk levend systeem en fouten in elk van
de pathways kunnen tot het ontstaan van ziekte leiden. Sommige ziekten worden
veroorzaakt door mutaties in één gen, zoals hemofilie, een ziektebeeld waarbij de
bloedstolling is aangedaan. Ziekten zoals kanker of diabetes (suikerziekte), zijn
daarentegen veel complexer. Meervoudige verstoringen in een enkele of zelfs in
meerdere verschillende pathways kunnen nodig zijn om tot de ontwikkeling van de
ziekte te leiden.

De eerste helft van deze thesis heeft betrekking op biologische pathways en pa-
thway analyse. In hoofdstuk 2 introduceer ik de derde versie van de PathVisio
software, waarmee pathways bewerkt, weergegeven en geanalyseerd kunnen wor-
den. PathVisio is al veelgebruikt in de onderzoeksgemeenschap en stelt gebruikers
in staat om nieuwe pathways te creëren, experimentele meetgegevens op pathways
te visualiseren en met pathway statistiek te bepalen welke pathways aangedaan
zijn in een bepaald experiment.
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Pathways zijn erg nuttig voor het verzamelen en organiseren van kennis. Een pa-
thway diagram is veel meer dan enkel een plaatje, het bevat identificatiecodes en
literatuurverwijzingen voor elk element in de pathway. Het overzichtsartikel over
de functie en regulatie van sterol regulatory element-binding proteins (SREBPS) in
hoofdstuk 3 gebruikt een pathway om de kennis van meer dan 50 wetenschappe-
lijke artikelen te structureren en organiseren. De lezer kan de interactieve pathway
weergave op WikiPathways, een collaboratieve pathway databank, gebruiken om
in te zoomen en de pathway te verkennen om gedetailleerde informatie over de ele-
menten te verkrijgen uit externe databronnen, en daarmee een meer uitgebreide
bestudering mogelijk te maken.
Het aantal experimentele studies waarin multi-omics data gegenereerd worden
neemt toe, en meer geavanceerde methodes om deze data gezamenlijk te verwer-
ken zijn nodig. PathVisio voorziet in functionaliteit om multi-omics datasets te
integreren, visualiseren en analyseren. In hoofdstuk 4, worden twee studies over
uithongering bij muizen gecombineerd en geanalyseerd met PathVisio, de ene met
proteomics metingen en de andere met transcriptomics metingen. De ingebouwde
omzetting van identificatiecodes in PathVisio maakt het bijzonder geschikt voor
de integratie en gelijktijdige weergave van datasets van verschillende origine. In
dit voorbeeld toonden we aan dat proteomics data conclusies op grond van trans-
criptomics data kunnen versterken, en tegelijkertijd gebieden kunnen aanduiden
waar posttranscriptionele regulatie een rol speelt. De interpretatie van dergelijke
datasets is niet gemakkelijk en pathway visualisatie kan als een nuttig hulpmiddel
dienen, gebruik makend van de rol van pathways als kennisbank van biologische
informatie.

Netwerkbiologie

Netwerken vormen de universele structuur die ons in staat stelt om relaties en in-
teracties tussen meerdere zaken weer te geven. Voorbeelden van interacties in de
biologie zijn de regulatie van een gen door een transcriptiefactor, het bouwen van
een complex van twee eiwitten of de omzetting van een metaboliet. Dergelijke in-
teracties worden ook vaak beschreven in pathways, die vervolgens gerepresenteerd
kunnen worden als kleine netwerken. Als we alle stukjes van de puzzle verza-
meld hebben en deze samen kunnen brengen, zijn we in staat om bijvoorbeeld alle
stappen in het werkingsmechanisme van een bepaald medicijn te volgen, of uit te
vinden welke voedingsstof een allergische reactie oproept en waarom.

De tweede helft van mijn thesis is voornamelijk gericht op biologische netwerken.
Het veelgebruikte netwerk analyse en visualisatie programma Cytoscape biedt ont-
wikkelaars de mogelijkheid om extra functionaliteiten toe te voegen in de vorm
van zogenaamde apps.
Pathways hebben ook veel karakteristieken van netwerken en de in hoofdstuk 5
beschreven WikiPathways app voor Cytoscape vormt een mooie brug tussen het
pathway en het netwerk deel van mijn thesis. Deze app stelt gebruikers in staat
om pathways van WikiPathways en PathVisio in te laden in Cytoscape en daar-
mee volledig gebruik te maken van de pathway modellen middels het uitvoeren
van berekeningen en op maat aangepaste visualisaties gebaseerd op experimentele
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meetgegevens en netwerk topologie.
Pathways hebben meestal een bewust gekozen opmaak om ze gestructureerd en
gemakkelijk te begrijpen te houden. Daardoor is het lastig om ze geautomatiseerd
uit te breiden met aanvullende interacties. Netwerken daarentegen, hebben geen
vastgestelde opmaak en nieuwe interacties kunnen gemakkelijk toegevoegd wor-
den. Om die reden hebben we de CyTargetLinker app voor Cytoscape ontwikkeld
om regulatoire interacties te integreren in netwerkanalyse (hoofdstuk 6). Er zijn
veel verschillende online kennisbronnen die informatie bevatten over regulatoire
elementen zoals transcriptiefactoren, microRNAs of geneesmiddelen. CyTarget-
Linker voorziet een makkelijke en snelle manier om deze kennis te integreren in
een bestaand netwerk (dat ook een pathway kan zijn). In het bijzonder de visu-
alisatie opties maken biologische interpretatie van gecompliceerde netwerken op
een grafische manier mogelijk. De app kan bij velerlei studies gebruikt worden,
zoals het identificeren van gevalideerde en voorspelde microRNAs die diabetes
gerelateerde genen reguleren, het verrijken van een netwerk van DNA herstelge-
nen met transcriptiefactoren van ENCODE of zelfs het bouwen van een regulatoir
meta-netwerk door het toevoegen van een geheel extra regulatoir niveau (trans-
criptiefactoren, miRNAs en geneesmiddelen) aan een biologische proces.
Het toevoegen van beide uitbreidingen aan Cytoscape laat hun gebruik toe in
combinatie met een grote verscheidenheid aan andere apps voor state-of-the-art
netwerkanalyse.

In hoofdstuk 7 wordt duidelijk getoond hoe de tools en methodieken die in deze
thesis beschreven worden, gecombineerd kunnen worden tot één bioinformatica
workflow. We hebben een publiek beschikbare transcriptomics dataset geselecteerd
om de obese, diabetische lever te bestuderen. De beschreven workflow gebruikt
PathVisio om de pathways op te sporen die door het ziekteproces bëınvloed wor-
den, om die vervolgens met de WikiPathways app in te laden in Cytoscape. De
CyTargetLinker app stelde ons in staat om transcriptiefactoren en geneesmiddelen
aan het netwerk toe te voegen om de regulatoire mechanismen te bestuderen. De
totaalaanpak leidt tot verbeterde inzichten en een duidelijker begrip van het gehele
ziekteproces.

Conclusie

Pathways en netwerken zijn krachtige middelen voor de opslag, organisatie, inte-
gratie, analyse en visualisatie van biologische data. Het is van belang aan te geven
dat pathway analyse gekleurd is door wat al bekend en goed bestudeerd is en dat
interactie data veel ruis kunnen bevatten, en dus meer experimentele validatie no-
dig is om de kwaliteit te verbeteren.
De beschikbaarheid van toegankelijke hoog-kwalitatieve experimentele data, goed
georganiseerde en gestructureerde kennis en vrij beschikbare gebruiksvriendelijke
software is uitermate belangrijk voor het biomedisch onderzoek. In deze thesis heb
ik een aantal veelgebruikte bioinformatica tools voor pathway en netwerk analyse
besproken en gedemonstreerd hoe deze toegepast kunnen worden in verschillende
onderzoeksvelden.
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Introduction

Biological systems are highly complex and bioinformaticians have to deal with
vastly increasing amount of data. In this PhD thesis on “Managing biological
data in pathways and networks”, I present new network-based approaches to or-
ganize, analyze and visualize biological data. The developed methods and tools
help other researchers to make sense of their large and complex datasets and put
them into a biological context. Because of the huge amount of diverse biological
data produced everyday the integration, analysis and interpretation of data is one
of the most difficult aspects in biomedical research projects nowadays. The de-
veloped approaches will help researchers to better understand and visualize their
own data, to integrate it with existing knowledge and therefore to develop better
strategies to improve health as well as understand and cure diseases.

In this thesis, I demonstrate the power of pathway and network analysis in differ-
ent examples, studying the diabetic liver (chapter 7), combining knowledge about
regulation of cholesterol biosynthesis and uptake by SREBP (chapter 3) or in-
vestigating the effect of starvation in a mouse animal study (chapter 4). One of
the developed tools enables the study of drug effects on biological processes or
networks (chapter 6). In the diabetic liver study (chapter 7), it is shown how
this could be used to find new drug-targets, advantageous drug combinations or
possible interferences with the action or efficiency of a drug caused by other drugs.

Open Source Software

Three chapters (2,5,6) in this thesis present new software tools and their applica-
tions. To ensure that others can benefit from the tools and methods developed,
everything is published under an open source license. Because of the collaborative
nature of open source development, effective, scalable and adaptive software can
be produced more quickly. We deliberately choose an open source license with
very few restrictions to maximize reusability. Although I am leading the devel-
opment of all three tools, there are many other developers around the world who
contribute source code or give input. The methods described in this thesis are
already used by many scientists in their research and the numbers of downloads
as well as publications confirm the wide adoption of the tools in the research com-
munity.

The methods used are highly generic and therefore they can be used in many dif-
ferent research fields. While PathVisio has a more biological focus, Cytoscape can
be used for any network visualization or analysis project including social networks,
transportation maps or business process modeling. Therefore the apps developed
for Cytoscape can reach a much wider audience also outside the scientific commu-
nity.

As part of the National Resource for Network Biology (NRNB), we also participate
in large Open Source events which reach a very broad audience. For example, in
the Google Summer of Code in which Google supports Open Source organizations
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by providing money for students around the world to work within such an orga-
nization, we yearly get between two and five students who are paid to work on
our tools during the summer. Although this money does not directly reach the
department or university, it definitely results in an improvement and therefore an
increased value of the tools we develop and consequently an increased visibility
and reputation of the university.

Sharing Knowledge and Data

Besides the tools and methods developed, there is another key result of the re-
search in this PhD thesis, the organization of data. Here we are not only talking
about experimental data but also knowledge that has to be structure and visu-
alized. Pathway diagrams, like the SREBP pathway described in chapter 2, are
intuitive visual representations of the processes happening in our bodies and in
nature around us. In some complex diseases, like Parkinson’s Disease, those di-
agrams might be used by clinicians to explain the disease to their patients and
their families. A visual illustration is much more powerful than saying that gene X
is not functional. With pathway tools like PathVisio, we can go one step further
towards personalized medicine and visualize the patients data on the pathway.
This provides the clinician with a tool to give a unique, personalized view of the
disease to the specific patient. Although high-quality pathway diagrams for many
complex diseases are not yet available and further research is necessary, for some
diseases this could possibly already be used in the near future.

In this thesis, we are using publicly available datasets from different online repos-
itories. Therefore, I would like to shortly mention the value of open data and how
all parties involved can benefit when data is findable, accessible, interoperable and
re-usable (guide to FAIRness of data, www.datafairport.org). Repositories like
ArrayExpress or GEO enable researchers to use and combine existing datasets
that might lead to new insights and generate new hypotheses. The findings can
also be organized and structured for example in pathways which further increases
the value of data.

Spreading / Workshops

One important, probably the most important, aspect of valorization is the spread-
ing of the new tools and methods developed. The shown statistics and number
of citations already indicate that the tools are downloaded and used by many re-
searchers around the world but we envision to further increase those numbers and
make sure that researchers are using the tools in the correct, intended ways. In a
first step it is important to present the tools and methods at different conferences,
not only bioinformatics focused but also more biological focused ones, to inform
scientists about how these tools can be used in their research.

During this 4-year research project, the tools and methods developed have been
presented at numerous Bioinformatics and Systems Biology conferences in the
Netherlands and abroad. Many of the approaches to analyse biological data with
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the tools we developed can become very complex. This leads to a market for
tutorials, courses and such. We already developed several workshop and tutorial
sessions on ‘How to draw a biological pathway?’, ‘How to use pathway and net-
work analysis to interpret biological data’ or more focused on the different tools
like ‘How to use PathVisio/Cytoscape to understand biological processes?’. These
workshops can be further extended and improved. Then we can offer them, if pos-
sible even as online web seminars, to biomedical research groups, pharmaceutical
companies and/or as educational tools to students. This could definitely result in
the acquisition of money to further develop the tools and carry out new research
projects.

Conclusion

In conclusion, I believe that in scientific research, collaborative approaches allow
us to build on each others work and expertise and move forward faster. This is only
possible with an open attitude towards sharing data and knowledge. This thesis
really follows this principle by creating open source software, using open data to
analyse and publishing the results in open access journals. As a final statement, I
would also like to mention that having the tools and the expertise to apply them in
different research fields can also lead to more traditional valorization in the future
for example by participation in research directed towards health improvement or
drug development.
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Abbreviations

2DE two-dimensional gel electrophoresis mRNA messenger RNA
API Application programming interface MS Mass spectrometry
ARC activator recruited-cofactor MTI microRNA-target interaction
ATP Adenosine triphosphate MTTP microsomal triglyceride transfer protein
bHLH-Zip basic helix-loop-helix leucine zipper NAD Nicotinamide adenine dinucleotide
BIND Biomolecular Interaction Network

Database
NAFDL non-alcoholic fatty liver disease

BioPAX Biological Pathway Exchange NAR Nucleic Acids Research
BLAST Basic Local Alignment Search Tool NCBI National Center for Biotechnology Infor-

mation
cAMP Cyclic adenosine monophosphate ncRNA non coding RNA
cDNA complementary DNA NIH National Institute of Health
ChEBI Chemical Entities of Biological Interest NMR Nuclear magnetic resonance
ChEMBL Chemical database at European Molecu-

lar Biology Laboratory
NR nuclear receptor

ChRE carbohydrate response element nSREBP nuclear SREBP
DIP Database of Interacting Proteins OMIM Online Mendelian Inheritance in Man
DNA Deoxyribonucleic acid OSGi Open Service Gateway Initiative
EBI European Bioinformatics Institute PDB Protein Data Bank
ENCODE Encyclopedia pf DNA Elements PDF Portable Document Format
ER endoplasmic reticulum PNG Portable Network Graphics
ERAD ER-associated degradation PRIDE Proteomics Identifications
FC fold change PUFA polyunsaturated fatty acid
FDP farnesyl diphosphate PV PathVisio
GC-RMA GeneChip Robust Multiarray Averaging RDF Resource Description Framework
GEO Gene expression omnibus Recon Reconstruction of human metabolism
GO Gene Ontology RegIN Regulatory Interaction Network
GPCR G protein-coupled receptor REST Representational state transfer
GPML Graphical Pathway Markup Language RING Really Interesting New Gene
GSEA Gene set enrichment analysis RNA Ribonucleic acid
GTP Guanosine-5’-triphosphate RXR retinoid X receptor
gui graphical user interface SBGN Systems Biology Graphical Notation
HDL high density lipoprotein SBGNML Systems biology graphical notation

markup language
HI-II-14 Human Interactome, Space II, 2014 SBML Systems Biology Markup Language
HMDB Human Metabolite Database SCAP SREBP cleavage-activating protein
HMG CoA 3-hydroxy-3-methylglutaryl-Coenzyme A siRNA small interfering RNA
HPRD Human Protein Reference Database SQL Structured Query Language
HTML HyperText Markup Language SREBP Sterol regulatory element-binding pro-

tein
HTTP Hypertext Transfer Protocol SSD sterol-sensing domain
InChI International Chemical Identifier STRING Search Tool for the Retrieval of Inter-

acting Genes/Proteins
Insig insulin-induced gene SVG Scalable Vector Graphics
KEGG Kyoto Encyclopedia of Genes and

Genomes
T2DM type 2 diabetes mellitus

LDL low-density lipoprotein TF transcription factor
log2FC base 2 log fold change TFBS transcription factor binding site
LXR liver X receptor TIFF Tag Image File Format
LXRE LXR response element UFA unsaturated fatty acid
MeSH Medical Subject Headings WP WikiPathways
MIM Molecular Interaction Maps XML Extensible Markup Language
MIMML Molecular Interaction Maps Markup Lan-

guage
XGMML extensible graph markup and modelling

language
miRNA microRNA XML-RPC XML remote procedure call
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