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Abstract

In this paper, we study the measurement of polarization in collective
decision making problems with ordinal preferences over alternatives. We
argue that polarization can be measured as an aggregation of antagonisms
over pairs of alternatives in the society. We propose a measure of this sort
and show that it is the only measure satisfying some normatively appealing
conditions.
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1 Introduction

Higher polarization in ideologies or preferences over policies is generally con-

sidered as a bad feature in politics mainly due to representational concerns. It

is argued to cause policy gridlock (Jones (2001)), decrease turnout if it is only

in elite level (Hetherington (2008)) and increase economic inequality (McCarty

et al. (2003)).

Due to the disagreements in measurement, we see disparity in the results

of polarization analyses. For instance, the increase in polarization in the U.S.

politics is somewhat unequivocal for the elite level although the literature on

public polarization is inconclusive. For a review in line with this conclusion, see

Hetherington (2009). This paper introduces yet another approach to the mea-

surement of polarization. However, the major component of our contribution is

in that of the subject of measurement. Although there are quite a number of

articles analyzing the measurement of polarization for distributions that can be

represented on a line1, this paper is among the very first attempts for analyzing

polarization measures for ordinal preference profiles.2

Some of the related concepts that could be found analyzed in the social choice

literature could be listed as consensus (Herrera-Viedma et al., 2011), assent

(Baldiga and Green, 2013) and cohesiveness (Alcalde-Unzu and Vorsatz, 2013).

According to numerous authors, as formulated in Bosch (2006), consensus can be

formulated such that it can be measured with mappings that assign to any profile

of preferences a value in unit interval, which has the following two properties

necessarily: first, the value given to a profile is highest, namely 1, if and only

if all individuals agree on how to rank alternatives and second, the same value

given to any two profiles if the only difference in between them is the names

of either the alternatives or individuals. Alcalde-Unzu and Vorsatz (2008) have

introduced some axiomatic characterizations in this vein. Garćıa-Lapresta and

Pérez-Román (2011) analyze properties of a class of consensus measures that

are based on the distances among individual weak orders.

1See, inter alia, Esteban and Ray (1994) and Montalvo and Reynal-Querol (2005).
2For a measure of ordinal preference polarization which adopts the methodology of Esteban

and Ray (1994) with the use of a metric à la Kemeny (1959), see Ozkes (2013).
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Baldiga and Green (2013) define conflict between two individuals as the dis-

agreement in their top choices. They then use an aggregate-assent maximizing

approach to the selection of the choice rule, where the assent between prefer-

ences is the probability that these preferences would be conflictual on a random

feasible set.

Finally, Alcalde-Unzu and Vorsatz (2013) denote the level of similarity among

preferences in a profile as cohesiveness and characterize a class of cohesiveness

measures with a set of plausible axioms. This class of functions falls within the

above definition of consensus.

In what follows we argue, first, that polarization is not necessarily the oppo-

site of consensus and hence calls for a particular treatment. The least polarized

case naturally coincides with a fully consensual state, which is easily defined

as a unanimous preference profile. However, there is no unique way of framing

the most polarized situation. This would entail a normative approach, which we

embrace in this paper as follows. Since we investigate polarization in preferences

that are represented as linear orders, we restrict the most polarized situations to

societies which are divided equally into two completely opposite linear orders.

Second, we impose that the polarization level should not depend on the

number of individuals in a society but stay the same if the supporting individuals

of each preference is multiplied by equal terms. Furthermore, we require a

form of equal treatment of marginal changes in the composition of preferences.

More precisely, if a single individual changes her preference to conform with

the majority view on a single issue, then the change in polarization should

not depend on the size of this majority. Finally, we impose neutrality towards

alternatives.

In this paper, we show that interpreting polarization as an aggregation of

antagonisms in a society is the only way of measuring polarization with the

properties above. In this context antagonisms are taken as disagreements over

pairwise comparisons of alternatives.

We proceed as follows. In the next section we introduce basic notations and

formal definitions regarding the axiomatic model. Section 3 provides our main

results and proofs thereof. We conclude in Section 4 by pointing to a possible
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direction for further research. We show the logical independence of axioms in

the appendix.

2 Model

2.1 Preliminaries

Let A be a finite and nonempty set of m alternatives. For any finite and

nonempty set of individuals N , and for any individual i in N , let p(i) denote

the preference of i in terms of a linear order, i.e., a complete, antisymmetric and

transitive binary relation on A. Furthermore, p indicates a profile, a combina-

tion of such individual preferences and L the set of all preferences on A. So, p

is an element of LN .

We denote by Ā the set of all subsets of A with cardinality 2. For a given

profile p in LN and different alternatives a and b in A let nab(p) denote the

number of individuals who prefer a to b, i.e., nab(p) = #{i ∈ N : (a, b) ∈ p(i)}.
Let dab(p) = |nab(p)−nba(p)| denote the absolute difference between the number

of voters preferring a to b and those preferring b to a at profile p.

For a preference R, let RN denote the unanimous profile where all individuals

have preference R. Let −R = {(y, x) : (x, y) ∈ R} be the preference where all

pairs in R are reversed. If π denotes a permutation on A, then the permuted

preference of R is πR = {(π(a), π(b)) : (a, b) ∈ R} which naturally defines the

permuted profile πp in a coordinate-wise manner, i.e., (πp)(i) = π(p(i)).

For two profiles p and q of two disjoint sets of individuals, say N1 and N2

respectively, let (p, q) denote the profile, say r, such that r(i) = p(i) if i is in N1

and r(i) = q(i) if i is in N2. Similarly define p2 = (p, p) to be a profile where

preference p is replicated once and p3 = (p, p, p) twice, and so on.

Let p and q be two profiles in LN . We say that p and q form an elementary

change from ab to ba whenever there is an individual i in N who ranks a and

b consecutively in p and furthermore q(i) =
(
p(i) ∪ {(b, a)}

)
\ {(a, b)} and for

all j in N \ {i}, p(j) = q(j). This means that q(i) can be obtained from p(i) by

only reversing the ordered pair (a, b).

Finally, a polarization measure Ψ assigns to any profile p in LN a real number
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Ψ(p), where N is any finite and nonempty set of individuals. Next we discuss a

few normatively appealing conditions on the polarization measures.

2.2 Conditions on Polarization Measures

We first impose a regularity condition on polarization measures to normalize

between 0 and 1. The former value is reserved for profiles wherein each individ-

ual has the same preferences, i.e., a unanimous profile. In this regard, we see

the maximal consensus as a case of minimal polarization. However, we further-

more restrict the maximally polarized case. The profiles (with even number of

individuals) where half of the individuals have a preference R and the rest have

−R, for some R ∈ L are considered to be the maximally polarized profiles.

Regularity : Ψ(RN ) = 0 and Ψ(RN1 , (−R)N2) = 1 for all preferences R

and all finite and nonempty sets N1 and N2 of individuals such that N1 and N2

are disjoint and equal in size, i.e., #N1 = #N2.

Neutrality is a standard property in social choice. In this context, it requires

that a renaming of the alternatives does not change the polarization level.

Neutrality : Ψ(p) = Ψ(πp) for all permutations π on A and all profiles p.

The following condition requires that when societies are replicated by some

positive integer, the polarization is unchanged. Note that this also implies

anonymity, i.e., renaming the individuals does not change the polarization level.

Formally:

Replication invariance : Ψ(pk) = Ψ(p) for all positive integers k, and all

profiles p.

Finally, we introduce our final condition which we call support independence.

This condition requires that elementary changes in favor of an alternative that

has a majoritarian support against another lead to identical changes in polar-

ization across profiles. For instance, if a majority of individuals agree that a is

better than b in each of the two profiles, then an increase in the support of a

over b should lead to the same amount of change in the polarization for both of

these profiles.

Support independence : Ψ(p)−Ψ(q) = Ψ(p̂)−Ψ(q̂) for any two elementary

changes p, q and p̂, q̂ both from ba to ab for some alternatives a and b with
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nab(p) ≥ n/2 and nab(p̂) ≥ n/2.

3 Result

Assume for simplicity that the issue in hand is a binary choice, that there are

only two alternatives. If the absolute difference between numbers of individuals

preferring a to b and b to a, i.e., dab, is 0, then the polarization should intuitively

be maximal. If this number is equal to n, then we have that everyone prefers

a over b or vice versa, a full agreement. Hence polarization should be minimal.

Therefore, the polarization can be related to n−dab. If we normalize by dividing

by n, then we have a bound on the polarization (between 0 and 1) therefore

regularity is also satisfied. For profiles on more than two alternatives, we iterate

this process over all pairs of distinct alternatives. Thereafter we normalize this

value with respect to the number of such pairs and the number of individuals.

Hence we obtain the following polarization measure:

Ψ∗(p) =
∑
{a,b}∈Ā

n− dab(p)
n ·
(
m
2

) .

It is easy to verify that Ψ∗ satisfies the conditions introduced in Section 2.2.

In the sequel, we will show that it is indeed the only measure that satisfies these

conditions. Before, we discuss some features regarding elementary changes that

are instrumental in what follows.

Let p and q form an elementary change from ab to ba, so that nab(p)− 1 =

nab(q) and nba(p)+1 = nba(q). This change can be of one of the following three;

(i) a minority decrement if nab ≤ n/2,

(ii) a majority decrement if nab ≥ n/2 and

(iii) a swing if nab(p) > n/2 and nab(q) < n/2.3

The first two changes are straightforward. For the third, consider the case where

4 individuals prefer a to b and 3 prefer b to a. An elementary change, in this

case, from ab to ba makes the former minority a majority.

3Hence nab(p) = nba(q).
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Remark 1. Note that if p and q form an elementary change from ab to ba

that is a minority decrement, then q and p form an elementary change from

ba to ab that is a majority decrement. This duality allows us to construct the

forthcoming lemmas by focusing on either of the two first elementary changes.

The following Lemma shows that all minority decrements yield an equal

change in polarization regardless of what alternatives are involved. By Re-

mark 1, the result also holds for majority decrements. Let Ψ satisfy the four

conditions; regularity, neutrality, replication invariance and support indepen-

dence.

Lemma 1. Let p and q be a minority elementary change from ab to ba and let

p̂ and q̂ be a minority elementary change from xy to yx. We have

Ψ(p)−Ψ(q) = Ψ(p̂)−Ψ(q̂).

Proof. Let p{a,b} be the profile obtained from p by shifting a and b to the two

top positions for each individual while leaving preference between a and b as well

as those between alternative in A\{a, b} unchanged. That is for all individuals

i in N let p{a,b}(i) = p(i)|{a,b}2 ∪ ({a, b} × A\{a, b})∪ p(i)|(A\{a,b})2 . Similarly

define q{a,b}. Then by support independence we have

Ψ(p)−Ψ(q) = Ψ(p{a,b})−Ψ(q{a,b}).

Considering the permutation π on A such that π(a) = x, π(x) = a, π(b) = y,

π(y) = b and π(z) = z for all z ∈ A\{a, b, x, y} neutrality implies

Ψ(p{a,b})−Ψ(q{a,b}) = Ψ(πp{a,b})−Ψ(πq{a,b}).

Note that πp{a,b} and πq{a,b} are preferences at which the alternatives x and

y are in the two top position for every individual. Furthermore they form a

minority elementary change from xy to yx. Therefore support independence

implies

Ψ(πp{a,b})−Ψ(πq{a,b}) = Ψ(p̂)−Ψ(q̂).

So, all in all

Ψ(p)−Ψ(q) = Ψ(p̂)−Ψ(q̂).
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Next we prove that all minority elementary changes yield a decrease of po-

larization by α = 2

n·(m
2 )

. By Remark 1, then, all elementary changes in majority

increase polarization by that same amount α.

Lemma 2. Let p and q be a minority elementary change from ab to ba. Then

Ψ(p)−Ψ(q) =
2

n ·
(
m
2

) .
Proof. By Lemma 1 it is sufficient to prove that at some minority elementary

change, polarization decreases by α = 2

n·(m
2 )

. Replication invariance implies that

we may assume that the set of individuals is even, that is n = 2 ·k. Consider any

two set of individuals #N1 = #N2 = k with N1∩N2 = ∅ and a combined set of

individuals N = N1 ∪ N2. Given any preference R, consider the following two

profiles (RN1 , (−R)N2) and RN . Note that there is a path of k ·
(
m
2

)
elementary

changes from the former to the latter. By regularity Ψ(RN1 , (−R)N2) = 1

Ψ(RN ) = 0. By Lemma 1, each step in this path cause the same change in

polarization, say α. Note that the amount of swaps from (−R) to R is
(
m
2

)
.

The number of individuals requiring this many swaps is n/2. Therefore each

elementary change should decrease the polarization by 2/n
(
m
2

)
.

We have shown that each minority (or majority) elementary change causes

the same amount of decrease (or increase) in the polarization. Next we show

that swing elementary changes does not affect the polarization level.

Lemma 3. Let p and q be a swing elementary change from ab to ba. Then

Ψ(p) = Ψ(q).

Proof. Consider the profiles p2, (p, q) and q2. Both p2 and (p, q) as well as q2

and (p, q) form minority elementary changes. The former pair from ab to ba the

latter pair from ba to ab. So, Ψ(p2) − Ψ(p, q) = α = Ψ(q2) − Ψ(p, q). Hence,

Ψ(p2) = Ψ(q2). Therefore by replication invariance we have Ψ(p) = Ψ(q).

Now we can state our main theorem.

Theorem 1. A polarization measure Ψ satisfies regularity, neutrality, replica-

tion invariance and support independence if and only if Ψ = Ψ∗.
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Proof. Assume Ψ satisfies the conditions. Take any preference R and consider

the profile RN . By regularity, Ψ(RN ) = Ψ∗(RN ) = 0. Any profile p in LN

can be acquired by a sequence of elementary changes beginning from RN by

minority decrements, majority decrements or swings. By Lemmas 2 and 3, the

increase (or decrease) induced by each of the elementary changes should be the

same. Hence for any p in LN , we conclude Ψ(p) = Ψ∗(p).

4 Conclusion

In this paper, we have modeled polarization as an aggregation of antagonisms

per issues within a profile. The polarization measure we introduce simply

check for each issue, i.e., pairwise comparison of alternatives, and compares

the strength of a majority versus minority. These pairwise comparisons on is-

sues are then aggregated and normalized to a real number between 0 and 1. The

measure is very intuitive and is characterized by a few plausible conditions.

There are many directions for future research. The relation between the

extent of polarization and the social aggregation outcomes would be a natural

route of inquiry. Gurer (2008) studies the Arrovian impossibilities when the

preferences in the society cluster, in some sense, around a preference, where it

is also conjectured that in a bipolar society the sum of the distances from the

two opposite clusters, around which the society is polarized, will be decisive

concerning whether we end up with possibilities. The analysis is dependent on

a metric-based approach to alienation between preferences. Thus, the relevance

of polarization measures based on pairwise comparisons of alternatives to social

aggregation outcomes is an open and immediate question one might ask.

Note that the current analysis treats pairs of alternatives impartially, i.e.,

every issue is of equal importance for polarization. Of course, in many real life

situations we may have differing weights on issues. Another question for future

research would be analyzing richer domains of preferences, e.g., weak orders, or

restricted ones, e.g., single-peaked domains which are politically relevant and

interesting.
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Appendix: Logical independence of axioms

Regularity: The following measure satisfies replication invariance, neutrality

and support independence but not regularity:

Ψ′(p) =
∑
{a,b}∈Ā

dab(p)

n
.

To show it satisfies the first three axioms is rather straightforward. To see

violation of regularity it would suffice to consider a unanimous profile.

Support independence: Consider the function

d̄ab(p) =

{
0 if dab(p) = 0
1 if dab(p) 6= 0.

Then the following measure satisfies neutrality, regularity and replication in-

variance but not support independence:

Ψ̄(p) =
∑
{a,b}∈Ā

1− d̄ab(p)(
m
2

) .

Neutrality is straightforward. Replication invariance is due to the fact that

d̄ab stays the same in case of replication. To see regularity, note that d̄ab(p) = 1

for all a, b ∈ A whenever p = RN for some R, hence we have 0. In the case where

p = (RN1 , (−R)N2) with #N1 = #N2, we have d̄ab(p) = 0 for all a, b ∈ A, hence

1 as the outcome of the function. To see why it fails support independence,

consider two profiles p, p̂ with 4 individuals:

p =

 i1 i2 i3 i4
a a b b
b b a a

 p̂ =

 i1 i2 i3 i4
a a b a
b b a b


Let q, (respectively q̂) be constructed such that from p to q (respectively from

p̂ to q̂), the third agent changes its preference to a over b. Support independence
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requires that the change of polarization should be the same for p, q and p̂, q̂,

which is not the case under Ψ̄.

Neutrality: For any set of alternatives A, let x, y ∈ A be a predefined choice

of pairs. The following measure satisfies replication invariance, regularity and

support independence but not neutrality:

Ψ̇(p) =
n− dxy(p)

n

Replication Invariance: Let m = 2, n = 3. We first construct a function

K̄ such that K̄(p) = 0 for all unanimous profiles, and K̄(p) = 1 for all other

profiles. Consider the measure below which for n = 3 and m = 2 equals K̄(p)

and in all other cases equals Ψ∗(p):

Ψ̂(p) =

{
K̄(p) if m = 2 and n = 3
Ψ∗(p) otherwise.

This measure satisfies neutrality, support independence, regularity but not

replication invariance.
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