
 

 

 

On the Use of Formative Measurement Specifications
in Structural Equation Modelling: A Monte Carlo
Simulation Study to Compare Covariance-Based and
Partial Least Squares Model Estimation Methodologies
Citation for published version (APA):

Ringle, C. M., Götz, O., Wetzels, M. G. M., & Wilson, B. (2009). On the Use of Formative Measurement
Specifications in Structural Equation Modelling: A Monte Carlo Simulation Study to Compare Covariance-
Based and Partial Least Squares Model Estimation Methodologies. UM Universiteit Maastricht. METEOR
Research Memorandum No. 014 https://doi.org/10.26481/umamet.2009014

Document status and date:
Published: 01/01/2009

DOI:
10.26481/umamet.2009014

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 27 Apr. 2024

https://doi.org/10.26481/umamet.2009014
https://doi.org/10.26481/umamet.2009014
https://cris.maastrichtuniversity.nl/en/publications/6aaaf305-3596-4fda-bd7c-779bae94705b


Christian M. Ringle, Oliver Götz, Martin Wetzels, 
Bradley Wilson 
 
On the Use of Formative Measurement 
Specifications in Structural Equation 
Modeling: A Monte Carlo Simulation Study 
to Compare Covariance-Based and Partial 
Least Squares Model Estimation 
Methodologies 
 
RM/09/014 



 

 

On the Use of Formative Measurement Specifications in Structural 

Equation Modeling: A Monte Carlo Simulation Study to Compare 

Covariance-Based and Partial Least Squares Model Estimation 

Methodologies 

 

 

 

Christian M. Ringle; University of Hamburg; Faculty of Business, Economics and Social 

Sciences; Von-Melle-Park 5; 20146 Hamburg; Germany; e-mail: cringle@econ.uni-

hamburg.de 

 

Oliver Götz; University of Münster; Marketing Centrum Münster;  

Am Stadtgraben 13-15; 48143 Münster; Germany; e-mail: o.goetz@uni-muenster.de 

 

Martin Wetzels; Maastricht University; Faculty of Economics and Business Administration; 

P.O. Box 616; 6200 MD Maastricht; The Netherlands; e-mail: m.wetzels@mw.unimaas.nl 

 

Bradley Wilson; RMIT University; School of Applied Communication;  

GPO Box 2476V; Melbourne VIC 3001; Australia; e-mail: brad.wilson@rmit.edu.au 



 

1 

On the Use of Formative Measurement Specifications in Structural 

Equation Modeling: A Monte Carlo Simulation Study to Compare 

Covariance-Based and Partial Least Squares Model Estimation 

Methodologies 

 

Abstract 

The broader goal of this paper is to provide social researchers with some analytical guidelines 

when investigating structural equation models (SEM) with predominantly a formative 

specification. This research is the first to investigate the robustness and precision of 

parameter estimates of a formative SEM specification. Two distinctive scenarios (normal and 

non-normal data scenarios) are compared with the aid of a Monte Carlo simulation study for 

various covariance-based structural equation modeling (CBSEM) estimators and various 

partial least squares path modeling (PLS-PM) weighting schemes. Thus, this research is also 

one of the first to compare CBSEM and PLS-PM within the same simulation study. We 

establish that the maximum likelihood (ML) covariance-based discrepancy function provides 

accurate and robust parameter estimates for the formative SEM model under investigation 

when the methodological assumptions are met (e.g., adequate sample size, distributional 

assumptions, etc.). Under these conditions, ML-CBSEM outperforms PLS-PM. We also 

demonstrate that the accuracy and robustness of CBSEM decreases considerably when 

methodological requirements are violated, whereas PLS-PM results remain comparatively 

robust, e.g. irrespective of the data distribution. These findings are important for researchers 

and practitioners when having to choose between CBSEM and PLS-PM methodologies to 

estimate formative SEM in their particular research situation. 
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Introduction 

Structural Equation Modeling (SEM) with latent variables is becoming increasingly popular 

in social and behavioral science (Boomsma, 2000) . The literature on SEM distinguishes 

between two different operationalizations of the relationships between latent variables and 

their observed indicators: the reflective (principal factor) and the formative (composite index) 

measurement models of latent variable. Numerous studies have by default or erroneously by 

design incorrectly specified their items as reflective when they should have used a formative 

measurement model operationalization (Jarvis, MacKenzie, & Podsakoff, 2003). This is 

somewhat surprising considering the fact that the understanding of formative indicator 

orientation is not new (Blalock, 1971) and previous research has focused on the nature, 

identification, and validation issues of formative indicators (Bollen & Lennox, 1991; 

Diamantopoulos & Winklhofer, 2001; Edwards & Bagozzi, 2000; MacCallum & Browne, 

1993).  

 

There are two statistical methodologies for estimating SEM with latent variables 

incorporating formative measurement models: the covariance-based (CBSEM) and the partial 

least squares path modeling (PLS-PM). A common misunderstanding found in the literature 

is that only PLS-PM allows the estimation of SEM that includes formative measurement 

models. Even though it has often been neglected, CBSEM is also capable of handling 

formative specifications, but requires that the model’s identification be guaranteed and, thus, 

that certain model specification rules are followed. These CBSEM specification issues have 

been thoroughly addressed by MacCallum & Browne (1993).  

 

Despite the broad discussion and establishment of the formative measurement model 

operationalization as a reasonable alternative to the reflective SEM mode, little attention has 
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so far been devoted to the conditions under which formative measures and their estimation 

method lead to precise and robust coefficients for the population sample (Browne, 1984). 

Some CBSEM estimators require the observed variables to be multivariate normally 

distributed. Violation of this assumption may distort the standard error of the path coefficient 

and parameters of the measurement models. However, the majority of data collected in 

behavioral research do not follow multivariate normal distributions (Micceri, 1989). This 

property is exacerbated with the use of formative indicators. It would be unreasonable to 

expect the observed data to follow a multivariate normal distribution in the population when 

using formative indicators.  

 

Consequently, it is important to fully understand the effects of non-normality with respect to 

the accuracy and robustness of formative indicators in SEM. Our research is positioned to fill 

this gap in the literature, and this paper aims to contribute to the body of knowledge on the 

structural equation model specifications with formative (cause) indicators. The uniqueness of 

this study is twofold. It is the first one to investigate a model that primarily consists of 

formative measurement models by conducting a Monte Carlo simulation study to investigate 

the use of formative measurement model operationalization. Secondly, it is also the first one 

to compare the robustness and performance of CBSEM with respect to different estimator 

discrepancy functions, in concert with PLS-PM and its’ different path weighting schemes. In 

this paper, we are mindful of the advice of Boomsma & Hoogland (2001) who, referring to a 

CBSEM context, stated that:  

The key objective of robustness research is to offer practical guidelines for 
applied work, so as to prevent non-robust analyses that would inevitably lead 
to wrong substantive inferences. Within that framework, a predominant 
question is: if structural models are to be analyzed, what estimation methods 
have to be preferred under what conditions? (p. 22) 
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Therefore, the objectives of this research are: (a) to demonstrate the implications of formative 

measurement model use in SEM, (b) to systematically and empirically test the accuracy and 

robustness of SEM methods with formative measurement models by using Monte Carlo 

simulations, and (c) to provide recommendations regarding the appropriate selection of SEM 

methods, given their specific research requirements. 

 

This paper is organized as follows: We outline issues relevant to the operationalizing of 

formative measurement models and then address the methodological aspects of CBSEM and 

PLS-PM with regard to estimating formative relationships within SEM. Building on the 

findings of a literature review, we explain the design of our primary Monte Carlo simulation 

study on estimating a SEM that predominantly involves formative measurement model 

operationalizations by the means of the CBSEM and PLS-PM methodologies. Then, we 

highlight the pertinent results for each method and present a comparison of these analytical 

outcomes. Finally, we discuss the substantive implications of our findings for SEM 

applications and suggest future avenues for further research. 

 

Formative Measurement Model Operationalization 

Structural equation modeling applications often involve latent constructs with multiple 

indicators. The measurement or outer model specifies the relationship between observable 

variables (i.e., indicators) and latent variables. The direction of relationships and their 

causality is either in an effect (reflective) or a cause (formative) mode (Bollen, 1989; 

MacCallum & Browne, 1993). When discussing the nature and direction of relationships 

between constructs and observed measures, the literature on construct validity and associated 

measurement issues primarily emphasizes the reflective mode. The reflective measurement 

model has its roots in traditional test theory and psychometrics (Nunnally & Bernstein, 1994). 
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Each indicator represents an error-afflicted measurement of the latent variable. The direction 

of causality is from the construct to the indicators and observed measures are assumed to 

reflect variation in latent constructs. Altering the construct is therefore expected to manifest 

in changes in all the multi-item scale indicators. 

 

Research on SEM recognizes that in the early stages of model development and in some 

situations, it is appropriate to determine causality from the measures to the construct, rather 

than vice versa (Blalock, 1971). Therefore, formative constructs have to be modeled as a 

(usually linear) combination of their indicators plus a disturbance term (Diamantopoulos, 

2006). A frequently cited example of formative measurement is socio-economic status (SES), 

which is viewed as a composite of social and economic indicators such as occupation, 

education, residence, and income. If any one of these measures decreases, SES would 

decline. Figure 1 clarifies this issue: the arrows either point from the construct to the 

(reflective mode) indicators, or in the opposite direction. 

----------------------------------- 

Insert Figure 1 about here 

----------------------------------- 

Some researchers provide a conceptual discussion of the differences between formative and 

reflective measurement models (Bollen & Lennox, 1991; Diamantopoulos & Winklhofer, 

2001; Edwards & Bagozzi, 2000) and design rules for determining the specific type of 

measurement model (Jarvis, MacKenzie, & Podsakoff, 2003). Based on these studies, the 

decision to use formative measurement models in SEM has specific implications for 

researchers.  
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One implication of the direction of causality is that omitting one indicator could omit a 

unique part of the formative measurement model and change the meaning of the variable 

(Diamantopoulos & Winklhofer, 2001). Thus, some researchers maintain that a formative 

measurement model requires a census of all indicators that determine the construct (Jarvis, 

MacKenzie, & Podsakoff, 2003). It is therefore quite obvious that formative indicators 

frequently do not follow a multinormal distribution. The response profile of our previous 

example leads to non-normal item distribution curves with varying degrees of skewness and 

kurtosis. This violation of multivariate normality can invalidate statistical hypothesis testing 

and strongly influence the choice of SEM estimations (Browne, 1984). It is clear that this 

area requires more research attention. Consequently, simulation studies need to investigate 

the different CBSEM and PLS-PM statistical estimation techniques to compare their relative 

performance in situations involving non-normal formative indicators. This type of research 

will lead to a better understanding of each method’s robustness and precision in this specific 

research situation. 

 

Formative Structural Equation Modeling Techniques  

Two main approaches have been used to estimate formative measurement models within 

structural models: the CBSEM and the PLS-PM methods. Both methods have distinctive 

statistical characteristics (Fornell & Bookstein, 1982; Schneeweiß, 1991) and selecting an 

approach to SEM depends on the particular research situation. CBSEM is the method of 

choice for theory testing, while PLS-PM is appropriate for prognosis-oriented applications 

(Wold 1982b). 

 

In CBSEM (see Rigdon, 1998), the parameter estimation of a given model minimizes the 

difference between the implied covariance matrix and the sample covariance matrix, with the 
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final result permitting the appropriate model fit to be determined. There are alternative 

CBSEM estimation techniques available to the researcher. The most commonly used 

approaches include: maximum likelihood (ML), generalized least squares (GLS), unweighted 

least squares (ULS), and asymptotic distribution free (ADF) estimation (Marcoulides & 

Hershberger, 1997). These CBSEM methods vary in their particular minimization of the 

discrepancy function, thereby including specific assumptions, for example, regarding sample 

size or the multivariate  

(non-) normality of data.  

 

The inclusion of formative measures in CBSEM has been well documented by Jöreskog & 

Sörbom (2001) and Jöreskog & Goldberger (1975). Williams, Edwards, & Vandenberg 

(2003) point out that formative indicators could be modeled in CBSEM by respecifying the 

formative indicators as latent exogenous variables with single indicators, fixed unit loadings, 

and a fixed measurement error. MacCallum & Brown (1993) illustrate various other 

formative model specifications that have adequate model identification. Consequently, if the 

hypothesized structural and measurement model is correct in the sense that it explains the 

covariance of all the indicators under the given assumption of different estimation methods, it 

is believed that the covariance-based methods should provide optimal estimates of the model 

parameters. 

 

Instead of using the model to explain the covariance of all the indicators, the PLS-PM 

methodology (Wold, 1973, 1974, 1982a, 1982b) maximizes the variance of all dependent 

variables. Thus, parameter estimates are obtained based on the ability to minimize the 

residual variances of dependent (latent and observed) variables. To obtain the weights and 

subsequent loadings and structural estimates, the PLS-PM approach uses a two-stage 
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estimation algorithm (Lohmöller, 1989). In the first stage, after an initial, rather arbitrary, 

estimation of the latent variables, the process iteratively switches between the measurement 

and the structural model approximation by means of simple and/or multiple regressions until 

the parameter estimates converge into a set of weights used for estimating the latent variable 

scores. The PLS algorithm thereby aims at minimizing the residual variance of latent 

endogenous variables. The second stage involves a non-iterative application of ordinary least 

squares regression to obtain the loadings, weights, structural estimates, mean scores, and 

location parameters of the latent and observed variables. Three different kinds of weighting 

schemes have been used in this context: centroid, factor, and path weighting. Lohmöller 

(1989) and Tenenhaus, Vinzi, Chatelin, & Lauro (2005), for instance, present a general 

descriptions of the PLS methodology, particularly of the estimation of formative 

measurement models, whilst Chin (1998) presents a catalog of non-parametric model PLS-

PM evaluation criteria as this statistical approach does not offer global goodness of fit criteria 

as CBSEM does. 

 

In respect of a comparison of CBSEM and PLS (see Lohmöller, 1989), McDonald (1996) 

points out that Wold’s (1980) (reflective) PLS Mode-A algorithm, like the ULS Method in 

CBSEM, maximizes the sum of the covariances of directly connected composites (subject to 

normalized weights). It furthermore allocates a (generally under-identified) rank one 

approximation to the individual correlations across the connected blocks of latent variables 

and their respective measurement models. On the other hand, Wold’s (1980) (formative) PLS 

Mode-B algorithm maximizes the sum of correlations between connected blocks. It has no 

exact counterpart in CBSEM and McDonald (1996) conjectures that it would be difficult to 

empirically find or construct cases in which the results of PLS Mode-B and certain CBSEM 

methods (other than ULS) differ notably. Hence, we designed a simulation study and 
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conducted computational experiments to provide both researchers and practitioners with 

additional confidence regarding their decision to select an appropriate estimation technique 

for SEM incorporating formative measurement models.  

 

Literature Review 

A substantial number of simulation studies on CBSEM (e.g. Boomsma, 1983; Boomsma & 

Hoogland, 2001; Paxton, Curran, Bollen, Kirby, & Chen, 2001; Satorra, 1990; Stephenson & 

Holbert, 2003) primarily compare alternative CBSEM discrepancy functions and investigate 

their estimation bias, accuracy, and robustness with respect to sample size, and third and 

fourth-order data moments. Paxton, Curran, Bollen, Kirby, & Chen (2001), for example, 

provide an introduction to the design and implementation of a Monte Carlo simulation within 

the SEM area. These authors also present a comparison of the maximum likelihood and two-

stage least squares with regard to different sample sizes and misspecifications. Boomsma & 

Hoogland (2001) conclude that there are non-convergence problems and improper CBSEM 

solutions in small samples (200 and less). Furthermore, under various non-normal conditions, 

maximum likelihood estimators in respect of large models have relatively good statistical 

properties compared to other CBSEM estimators. Satorra (1990) indicates that generally 

maximum likelihood and weighted least squares are robust against the violation of 

distributional assumptions.  We do not intend to review the whole plethora of CBSEM 

robustness studies (especially those with reflective specifications) as this knowledge is 

assumed of the reader. Instead, focus is given to the discussion of previous study results 

centered on formative model specifications. Even a cursory review will reveal that the 

majority of analyses have been presented with models dominant in reflective specifications. 
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With respect to PLS-PM, it is difficult to find published robustness studies compared with the 

vast work already completed in the CBSEM realm. There are only a few publications 

utilizing PLS-PM that follow this line of research. Cassel, Hackl, & Westlund (1999) have 

performed a robustness simulation study on PLS-PM estimates by concentrating on varying 

the skewness of reflective indicators and having multicollinearity between latent variables 

and an artificial model misspecification. Their simulation results indicate that PLS-PM based 

on reflective measurement models is quite robust against skewness, as well as against 

multicollinearity between latent variables and misspecification due to the omission of a latent 

variable in the structural model. In respect to inner model coefficients, substantial effects are 

only observed on the estimates of extremely skewed data and for the erroneous omission of a 

highly relevant exogenous latent variable.  

 

Chin & Newsted (1999) employ a Monte Carlo simulation for their analysis on PLS-PM with 

small samples. They find that the PLS approach can provide information about the 

appropriateness of indicators at sample size as low as 20. This study confirms the consistency 

at large (Jöreskog & Wold, 1982) in that the PLS-PM estimates will be asymptotically correct 

under the joint conditions of consistency: large sample size and large number of indicators 

per latent variable. Moreover, Chin, Marcolin, & Newsted (2003) employ a PLS-PM Monte 

Carlo simulation for an interactions effect model for varied sample sizes, altered numbers of 

indicators, and for the loading structure of manifest variables in respect of each of the 

constructs in their model. They finally provide a comparison of the SEM that incorporates 

latent variables with a summated scales approach. The authors provide evidence that 

increasing the number of reflective indicators will have a stronger impact on consistent 

estimations than increasing the sample size will have. This also holds for higher loadings and 

the associated reliabilities.  
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To date, there are only a handful of studies that compare the parameter estimates of both 

CBSEM and PLS-PM methods. Tenenhaus, Vinzi, Chatelin, & Lauro (2005) analyze a 

European customer satisfaction index (ECSI) model by means of reflective measures to 

compare CBSEM and PLS-PM estimates. They find that the outcomes of both methods are at 

comparable levels, but that CBSEM provides higher R2 outcomes for the latent endogenous 

variables and that PLS-PM exhibits higher correlations between indicators and their 

associated latent variable. The latter is due to the PLS-PM estimation being more data driven 

and being more substantially influenced by the manifest variables. 

 

The Hsu, Chen, & Hsieh (2006) article features robustness testing of a reflective 

measurement model orientation. They compare various estimators, including a more recent 

artificial neural network-based (ANN) SEM technique, PLS-PM, and CBSEM estimations of 

200 simulated samples in respect of various scenario designs (e.g., skewness of data). The 

simulated model only consists of reflective measures and is based on a simple ECSI model 

structure. Hsu, Chen, & Hsieh (2006) find that the ANN-based SEM technique is similar to 

PLS-PM and conclude that all SEM techniques offer a certain robustness with respect to 

skewness of data. The results from this study confirm that PLS-PM underestimates structural 

path coefficients and that CBSEM is more sensitive to small sample size problems that 

experience larger deviations.  

 

Our literature review reveals that PLS-PM overestimates the outer loadings of latent 

constructs and provides more conservative estimates of the inner model than ML-CBSEM. 

Furthermore, compared to symmetrical data, PLS-PM and ML-CBSEM estimates that 

incorporate reflective measurement models are negligibly influenced by skewness. CBSEM 
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methods are also more sensitive to small sample sizes than PLS-PM. It can thus be concluded 

that research on formative measures is still in its early stages regarding the precision and 

robustness of coefficients. The review of the literature supports our premise that there has 

been a dearth of robustness studies undertaken specifically comparing CBSEM and PLS-PM 

with a formative model specification. 

 

Design of the Simulation Study 

As we have previously outlined, a researcher has the choice of utilizing CBSEM and PLS-

PM when investigating formative SEMs. This raises the question of which approach to select 

for SEM applications containing formative measurement models of the latent exogenous 

variables. A Monte Carlo simulation study (Paxton, Curran, Bollen, Kirby, & Chen, 2001) 

allows us to address this critical question. Our Monte Carlo design allows us to 

systematically study the bias, accuracy, and robustness for both the CBSEM and PLS-PM 

techniques’ parameter estimates. The SEM underpinning our design and subsequent analyses 

(Figure 2) consists of three latent exogenous variables (ξ1, ξ2 and ξ3) and two latent 

endogenous variables (η1 and η2). The manifest variables in the measurement models of the 

latent exogenous variables are formatively operationalized, while the latent endogenous 

variables are measured reflectively. This simple design specification has been selected for our 

simulation for an unambiguous investigation of the effects of non-normality by means of 

different SEM methods.  

----------------------------------- 

Insert Figure 2 about here 

----------------------------------- 

Researchers have to ensure that their CBSEM has been identified to indicate that the model 

fit is indeed a reasonable presentation of the phenomena under investigation. Approaches to 
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test identification (Rigdon, 1995) include following certain rules but also resolving algebraic 

solutions, analyzing the information matrix, and evaluating the augmented Jacobian matrix. 

The model presented in Figure 2 has been identified, because there are more equations 

describing the model than unknown parameters. However, MacCallum & Browne (1993) 

address the issue of model identification in CBSEM when formative measurement models are 

involved. In keeping with their rules – especially with respect to the formative latent 

exogenous variables ξ1 and ξ3, which have only one relationship to a latent endogenous 

variable – the variance values of the latent endogenous variables η1 and η2 need to be set to 

one in addition to applying the usual reflective CBSEM parameter constraints (Rigdon, 

1998). The model in Figure 2 is also appropriate for PLS-PM. Besides other aspects, the 

model is recursive, latent variables are estimated by non-overlapping blocks of manifest 

variables, and the model operationalization fits the PLS-PM-specific assumptions of predictor 

specification (Chin, 1998; Lohmöller, 1989; Tenenhaus, Esposito Vinzi, Chatelin, & Lauro, 

2005).  

 

The underlying correlation matrix (Table 5 in the Appendix) of the data generation procedure 

has some unique characteristics that are important to note for this study. The manifest 

variables x1, x2, and x3 are slightly to moderately correlated, while x4 and x5 have very low 

correlations with other manifest variables in the ξ1 measurement model. However, x4 and x5 

are strongly correlated with the indicators of the latent variables η1 and η2, while this does 

not hold for x1, x2, and x3. The manifest variables x6, x7, and x8 in the measurement model of 

the latent exogenous variable ξ2 are poorly correlated. Here, only x6 and x7 have significant 

correlations with the η1 and η2 indicators. The manifest variables x9 to x13 in the ξ3 

measurement model are slightly to moderately correlated. All five manifest variables have 

significant correlations with the indicators of the latent endogenous variable η2. Finally, the 
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manifest variables y1, y2, and y3 in the measurement model of the latent endogenous η1 

exhibit strong correlations. The same pattern holds for the η2 indicators. The information on 

the correlation pattern is important for analyzing the simulation results.  

----------------------------------- 

Insert Table 1 about here 

----------------------------------- 

In this study, we pre-specify the relationships in the SEM according to Table 1 and then 

simulate data for the given parameters. The data generation process is consistent with the 

procedure described by Chin, Marcolin, & Newsted (2003) for a Monte Carlo PLS-SEM 

study. We developed a STATISTICA 7.1 (StatSoft, 2005) macro implementation to perform 

this type of approach in two studies: one on multivariate normal data and one on extremely 

non-normal data. 

 

The first Monte Carlo simulation study includes the generation of 1000 sets of multivariate 

normal data that meet – in an evaluation of data simulation (Boomsma & Hoogland, 2001) – 

the expected raw data characteristics, impart convergence of CBSEM estimations, as well as 

proper solutions for the structural model regarding the positive sign of variances. Each data 

set consists of 300 cases, which is a large enough number for model estimation, as well as 

matching the average sample size of SEM simulation studies presented in academic literature 

(Stephenson & Holbert, 2003). Although simulation studies on CBSEM (e.g. Curran, Bollen, 

Paxton, Kirby, & Chen, 2002; Hu & Bentler, 1999; Marcoulides & Saunders, 2006; Satorra 

& Bentler, 2001) and PLS-PM (e.g. Cassel, Hackl, & Westlund, 1999; Chin, Marcolin, & 

Newsted, 2003) present varying sample sizes to answer specific methodological research 

questions, we do not add this level of complexity, which would also require systematic 

alteration of the number of indicators in the measurement models. In this study, we 
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concentrate on CBSEM and PLS-PM comparisons for formative indicator specification. 

Previous simulation studies on reflective CBSEM indicate that 300 cases are sufficient to 

provide robust estimations, at least for ML-CBSEM estimation (Boomsma & Hoogland, 

2001). 

 

The second Monte Carlo simulation study undertaken in this investigation includes the same 

analytical design for non-normal data. The non-normal data specification has a skewness of 

two and kurtosis of eight, whereby the generation of non-normal multivariate random 

parameter values follows the Vale & Maurelli (1983) procedure implemented in the 

STATISTICA 7.1 program. This method is an extension of Fleishman’s (1978) approach and, 

in comparison to other methods, fits our non-normal data generation purposes better 

(Reinartz, Echambadi, & Chin, 2002). The Vale & Maurelli (1983) technique can be used to 

generate adequate multivariate random numbers with pre-specified intercorrelations and 

univariate means, variances, skews, and kurtosis as efficiently as possible. 

 

Both approaches, CBSEM and PLS-PM, are applied on the SEM in Figure 2 and on each set 

of data in the normal, as well as in the non-normal data scenario. This is undertaken 

contrasting CBSEM standard estimators (ML, GLS, ADF and ULS) and PLS-PM weighting 

schemes (centroid, factor, and path). The CBSEM computational results are also obtained via 

STATISTICA 7.1 software by employing a macro program that the authors designed for this 

study. In addition, a batch computing module was developed to process the simulated data by 

means of the SmartPLS 2.0 (Ringle, Wende, & Will, 2005) software to obtain PLS-PM 

results. 
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Results of the Monte Carlo Simulation Study  

The Monte Carlo simulation presented in this study generates normal and non-normal data 

for a SEM incorporating formative operationalization of latent exogenous variables. These 

data are used to compare the model parameter estimations of the four main CBSEM 

discrepancy function procedures. Furthermore, our simulation study evaluates PLS-PM 

estimations that employ the different centroid, factor, and path inner model weighting 

schemes (Tenenhaus, Esposito Vinzi, Chatelin, & Lauro, 2005). Finally, we compare the 

CBSEM and PLS-PM results of the normal and non-normal data scenarios. 

 

Comparison of Alternative CBSEM Model Estimation Techniques 

In CBSEM, the parameters of a proposed model are estimated by minimizing the discrepancy 

between the empirical covariance matrix and a covariance matrix implied by the model. The 

common methods to measure this discrepancy are ML, GLS and ULS. The ADF/WLS 

method is a generalization of the other three CBSEM discrepancy functions that use a weight 

matrix based on a direct estimation of the residuals’ fourth-order moments (Satorra & 

Bentler, 2001). When comparing the average formative model CBSEM estimates of the 1000 

sets of normal and non-normal data, we find that the ML (Tables 2 and 3), GLS, and the 

ADF/WLS procedure exhibit roughly the same results pattern (Tables 6 to 9 in the 

Appendix).  

 

ML and GLS perform at almost comparable levels. The only exception is the robustness of 

the formative measurement model estimates in the non-normal data scenario, with ML 

providing significantly better outcomes. ADF/WLS performs considerably weaker than the 

other two methods do. This study’s results of the formative CBSEM model estimator 

performance are consistent with Boomsma & Hoogland’s (2001) findings with regard to 
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reflective measurement models and the same selected number of cases. Our results are 

therefore in line with our expectations regarding the methodological characteristics of the 

discrepancy functions. The GLS and especially the ADF/WLS model estimation techniques 

usually require a high number of observations (several thousand) to provide robust outcomes. 

Consequently, the GLS and ADF/WLS results of small and medium-sized samples should 

also be interpreted with caution in formative SEM. 

 

The ADF/WLS or ULS for model estimation relaxes the hard assumptions regarding the 

multivariate normality of the data when utilizing the ML or GLS estimator. ULS is a special 

ADF/WLS case and these methods do not automatically reveal standard errors or an overall 

chi-square fit statistic, but provide consistent estimates that are comparable to ML and seem 

relatively robust (Satorra, 1990). However, in our analysis, ULS does not fit the results 

pattern of the other CBSEM techniques. The average parameter estimations differ strongly 

from the given relationships and exhibit elevated deviations and relatively high outliers. 

McDonald (1996) confirms that ULS is equivalent to the reflective PLS-PM model 

estimation and is thus, ideally, not suited for our study of formative SEM measurement model 

operationalization. Consequently, it appears that in respect of the simulated scenarios that we 

investigated, ML provides the most appropriate CBSEM estimates, especially with regard to 

the moderate study sample size and specified formative model.  

 

Comparison of Alternative PLS Model Estimation Techniques 

The next analysis compares the outcomes of the centroid, factor, and path inner model PLS 

weighting schemes (Chin, 1998; Lohmöller, 1989; Tenenhaus, Esposito Vinzi, Chatelin, & 

Lauro, 2005). Applications of PLS illustrate that the alternative inner model weighting 

schemes only lead to marginal differences in the PLS-PM model estimates. Our simulation 
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study confirms this observation (Lohmöller, 1989; Tenenhaus, Esposito Vinzi, Chatelin, & 

Lauro, 2005). On average, the alternative weighting schemes provide the same parameter 

estimates for the model under investigation (Table 10 in the Appendix).  

 

Comparison of CBSEM and PLS-PM 

In our last analysis, we compare CBSEM and PLS-PM estimates for normal (Table 2) and 

non-normal (Table 3) data scenarios. This comparison for the cause-effect model employs 

ML, which offers the most suitable CBSEM parameter estimations in this simulation study. 

Our previous results illustrate that alternative PLS-PM inner weighting schemes provide 

almost identical results; we therefore only present PLS results for the path-weighting scheme 

as it is most frequently used in PLS-PM applications (Chin, 1998). In our computational 

experiments for normal and non-normal data constellations, the comparison of CBSEM and 

PLS-PM parameter estimates includes their bias (mean deviation), accuracy (mean absolute 

deviation), and robustness (mean squared error). 

----------------------------------- 

Insert Table 2 about here 

----------------------------------- 

Mean Deviation. Based on the mean deviation, the simulation study reveals that the ML-

CBSEM estimation has a tendency to overestimate the true parameter values, while the PLS-

PM has the reverse tendency, i.e. underestimating parameters in formative measurement 

models (for both normal and non-normal scenarios). It is notable that a bias in the opposite 

direction holds in respect of reflective outer measurement models, whereas ML-CBSEM has 

a tendency to underestimate and PLS-PM to overestimate the true values (for both 

simulations). Finally, ML-CBSEM tends to overestimate the inner relationships in the normal 

data scenario and exhibits both directions – overestimation and underestimation of 
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parameters – in the non-normal data scenario, while PLS-PM completely underestimates 

those parameters in both simulation scenarios.  

----------------------------------- 

Insert Table 3 about here 

----------------------------------- 

Mean Absolute Deviation. In the formative outer model, ML-CBSEM outperforms PLS-PM 

in all parameter estimations regarding accuracy in terms of the mean absolute deviation 

(MAD). It is important to note that both methods perform considerably better in the formative 

measurement model of latent exogenous variable ξ3 compared to ξ1 and ξ2. The formative 

indicators of the latter two latent variables consist of a heterogeneous correlation pattern, 

while those of the manifest variables in the ξ3 measurement model are relatively 

homogenous. In the inner model, ML-CBSEM and PLS-PM perform with great precision 

regarding the relationship between the latent endogenous variables η1 and η2. The MAD for 

the relationships between the latent exogenous ξ1, ξ2 and ξ3 variables and the latent η1 

endogenous variable has a weaker outcome– especially in the case of PLS-PM, which is 

considerably less accurate in these relationships than ML-CBSEM – although this outcome is 

still at a relatively high level. The highest estimation precision is found in the reflective 

measurement models where the MAD for both methods is at a comparable level. Both 

procedures reveal two indicators with a significantly higher MAD: With regard to ML-

CBSEM, both of these relationships are in the outer model of η1 (paths to y1 and y3), while 

PLS-PM has one indicator with a higher MAD in each of the reflective measurement models 

(paths from η1 to y2 and η2 to y4). The accuracy of ML-CBSEM estimates decrease 

significantly with regard to the non-normal data scenario in all model relationships, whereas 

PLS-PM performs very well and only experiences a slight decrease in deviation with regard 

to the formative outer models (Table 4).  
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----------------------------------- 

Insert Table 4 about here 

----------------------------------- 

 

Mean Squared Error. The mean squared error (MSE) provides additional information about 

the robustness of ML-CBSEM and PLS-PM parameter estimates. In the formative 

measurement model and in accordance with the MAD, we find that in the normal data 

example both methods have the lowest MSE of the parameter estimates for the latent variable 

ξ3, which has indicators with a homogenous correlation pattern. Here, the difference between 

the maximum and minimum MSE is 0.005 for ML-CBSEM and 0.005 for PLS-PM, revealing 

the high robustness of the computations within the measurement model. In contrast, the MSE 

is substantially higher in the outer relationships of the latent variables ξ1 and ξ2. It is 

important to note that ML-CBSEM produces many estimates that deviate strongly from the 

true constrained population parameters, resulting in an increased MSE. This is most apparent 

with those manifest variables that have a high correlation pattern with the indicators of the 

latent endogenous variables and, consequently, a high pre-specified outer relationship. The 

difference between the maximum and minimum MSE is 0.186 in respect of the outer 

relationships of ξ1 and 0.063 for ξ2, indicating a reduced robustness of the ML-CBSEM 

parameter estimates. We did not find any comparable patterns in respect of the MSE of the 

measurement models estimated with PLS-PM in the normal data scenario. Here, the 

difference between the maximum and minimum MSE is 0.011 for the outer relationships of 

ξ1 and 0.020 for ξ2, representing a loss of robustness within the measurement model in 

comparison to ξ3, but a much better result compared to the ML-CBSEM estimation.  
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We find that ML-CBSEM tends to generate more erratic results– which are associated with 

high estimation errors (the difference between the estimated and expected path coefficients) – 

in respect of some indicators, while computations for others in the same, critical latent 

variable measurement model are robust. On the other hand, PLS-PM exhibits an equal and 

slight level of volatility regarding estimation errors in respect of all indicators and, 

consequently, a higher robustness for the estimated ξ1 and ξ2 outer relationships. In contrast, 

the MSE is considerably lower in the reflective outer models and principally performs at 

comparable levels in respect of ML-CBSEM and PLS-PM. Finally, the simulation study’s 

inner model estimates provide MSE findings that are similar to those described in respect of 

the MAD.  

 

A comparison of the normal data with the non-normal data scenario of these analytical results 

provides evidence that ML-CBSEM estimates increase their MSE considerably and, thus, 

decrease their robustness in all model relationships (Table 4). In contrast, PLS-PM only 

exhibits a slight MSE increase in respect of the formative measurement models, whereas the 

robustness of the parameter estimation does not substantially change in respect of the outer 

reflective and inner model relationships. 

 

Summary and Conclusion 

Researchers in the social sciences disciplines are swiftly moving towards using formative 

constructs within their SEM analyses. CBSEM and PLS-PM are two distinctive statistical 

techniques with which to estimate these types of models. Furthermore, the decision to apply 

the one or the other on a SEM depends on the particular research situation: CBSEM is the 

method of choice for theory testing, while PLS-PM is appropriate for prediction-oriented 

applications. Nevertheless, there is wide uncertainty about the applicability and behavior of 
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formative measurement model operationalizations when selecting and applying these 

techniques. Simulation studies can provide researchers with the confidence they need to 

support the application of this kind of SEM. However, the available simulation studies focus 

primarily on reflective model specifications. Our contribution is unique in that it is the first 

Monte Carlo simulation study to compare CBSEM and PLS-PM results containing formative 

indicators. Our five main findings are:  

 

First, the CBSEM and PLS-PM estimates of the simulated sets of data are very close to the 

population parameters when averaged. A comparison of CBSEM discrepancy functions 

reveals that in our simulations study, ML provides the most appropriate estimates in respect 

of a SEM with formative latent exogenous and reflective latent endogenous variables. In 

accordance with reflective CBSEM simulation studies, we assume that alternative 

discrepancy functions require a greater number of cases than has been used in this study. In 

contrast, simulation results of the centroid, factor, and path model weighting schemes provide 

evidence that these alternatives for computing the inner PLS model relationships produce 

exactly the same results on average. Moreover, other simulation studies indicate that PLS-PM 

results are also robust regarding varying sample sizes.  

 

Second, ML-CBSEM has a tendency to overestimate, while PLS-PM has tendency to 

underestimate parameters in the formative measurement model. In the formative outer model, 

ML-CBSEM outperforms PLS-PM in terms of accuracy of estimates. It is important to note 

that both methods perform considerably better in the formative measurement model with a 

homogenous correlation pattern than the two with the manifest variables with heterogeneous 

correlation patterns. These findings also hold for the robustness of estimates in formative 

measurement models.  
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Third, ML-CBSEM has a tendency to underestimate and PLS-PM to overestimate parameters 

in reflective outer models. Both methods present similar level outcomes. Compared to the 

formative outer models and the inner path model, we observe the highest accuracy and 

robustness regarding parameter estimations in the reflective measurement models.  

 

Fourth, ML-CBSEM overestimates inner relationships data, while PLS-PM underestimates 

those parameters. We find that ML-CBSEM and PLS-PM perform particularly well in terms 

of accuracy and robustness where there is a relationship between the latent endogenous 

variables measured by reflective indicators. The accuracy in respect of inner relationships 

between latent exogenous and latent endogenous variables with different kinds of 

measurement models (formative exogenous and reflective endogenous) has a considerably 

weaker outcome, especially regarding PLS-PM. The same finding holds for the robustness of 

parameter estimations.  

 

Fifth, CBSEM estimates in the formative measurement and the structural model decrease 

significantly regarding accuracy and robustness when data are non-normal, while the 

performance regarding reflective measurement models is not affected by changed data 

characteristics. We demonstrate the same type of results regarding PLS-PM, but the decrease 

in accuracy and robustness is far less.  

 

In conclusion, formative CBSEM provides accurate and robust parameter estimates that are 

to some degree superior compared to PLS-PM. In keeping with their analytical goals and 

when their particular data situation meets CBSEM requirements, researchers should choose 

CBSEM rather than PLS-PM. However, if the premises for the applications of CBSEM are 
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violated, for example, regarding the required minimum number of observations for robust 

model estimations, or the multivariate normality assumption in ML-CBSEM, PLS-PM is a 

viable alternative. This technique’s results are extremely robust irrespective of sample size 

and data distributions. Consequently, PLS-PM provides a viable approximation of model 

parameters when the prerequisites for CBSEM are not met. This kind of situation often 

occurs in formative scales, which incorporate all independent cause indicators that are 

relevant for explaining the latent variable. In, for example, success factor analyses (Lee & 

Tsang, 2001; Thatcher, Stepina, & Boyle; Wixom & Watson, 2001) or customer satisfaction 

studies (Westlund, Cassel, Eklof, & Hackl, 2001), manifest variables often exhibit non-

normal distribution curves with varying degrees of skewness and kurtosis. PLS-PM should be 

the methodology of choice with this particular kind of data and model specification. 

 

Our study is clearly not without limitations. As a first simulation study on formative 

indicators, it does not verify the generality of our findings. We emphasize that this work is 

intended to represent only a first step in this direction of comprehension. From the 

complexity of the estimation procedures, it is clear that the robustness of the model 

estimators can hardly be assessed in analytic form. The simulation study which is presented 

in this paper gives some insight into the effects of incorporating formative constructs in SEM. 

Furthermore, the standard methods of generating non-normal data according to correlation 

matrices are limited in terms of the levels of skewness and kurtosis that may be achieved 

(e.g., Vale & Maurelli, 1983). Future extensions of the simulation study should focus on 

more complex model structures with varied correlation pattern within the formative 

measurement model and samples sizes, and should incorporate other methods to generate 

data that may reach extremely high levels of skewness and kurtosis. These extensions should 

provide an additional basis for generalizing the reported findings to a broader extend. 
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The simulation study provides essential contributions on the body of knowledge for deciding 

whether to choose CBSEM or PLS-PM to estimate cause-effect relationship models. We 

share the view of Marcoulides and Sounders (2006) that most arguments for selecting PLS-

PM against CBSEM in empirical applications are false or at least dubious. This paper reviews 

a key argument that formative measurement models must entail the use of PLS-PM (e.g. Chin 

1998). Future research must continue in this direction and provide additional theoretical and 

empirical substantiation for a comparison of both methodologies. The results of existing and 

yet to come research must be consolidated in order to provide profound advices for researcher 

and practitioners to choose an appropriate multivariate analysis method for causal modeling 

that fits the goals of their particular analysis under certain model and/or data constellations.  
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Tables 

Table 1: A-priori specification of relationships in the SEM 

 

Formative Measurement Models 
[x1]-{0.1}->(Ksi1) [x6]-{0.4}->(Ksi2) [x9]-{0.4}->(Ksi3) 
[x2]-{0.2}->(Ksi1) [x7]-{0.6}->(Ksi2) [x10]-{0.3}->(Ksi3) 
[x3]-{0.1}->(Ksi1) [x8]-{0.1}->(Ksi2) [x11]-{0.2}->(Ksi3) 
[x4]-{0.6}->(Ksi1)   [x12]-{0.2}->(Ksi3) 
[x5]-{0.4}->(Ksi1)   [x13]-{0.4}->(Ksi3) 

Reflective Measurement Models 
(Eta1)-{0.8}->[y1] (Eta2)-{0.8}->[y4] 
(Eta1)-{0.7}->[y2] (Eta2)-{0.7}->[y5] 
(Eta1)-{0.8}->[y3] (Eta2)-{0.8}->[y6] 

Inner Model 
(Ksi1)-{0.4}->(Eta1) 
(Ksi2)-{0.5}->(Eta1) 
(Ksi3)-{0.6}->(Eta1) 
(Eta1)-{0.6}->(Eta2) 
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Table 2: Simulation results in respect of normal data 

 

 
Outer Model (Formative)

Mean Value Mean Deviation
Mean Absolute 

Deviation Mean Squared Error 
ML PLS ML PLS ML PLS ML PLS 

[x1]-{0.1}->(Ksi1) 0.107 0.085 0.008 -0.018 0.135 0.226 0.034 0.080
[x2]-{0.2}->(Ksi1) 0.210 0.177 0.010 -0.026 0.142 0.236 0.046 0.085
[x3]-{0.1}->(Ksi1) 0.105 0.084 -0.004 -0.023 0.137 0.230 0.053 0.079
[x4]-{0.6}->(Ksi1) 0.610 0.452 -0.003 -0.137 0.156 0.234 0.195 0.090
[x5]-{0.4}->(Ksi1) 0.421 0.308 -0.000 -0.078 0.151 0.222 0.220 0.081
[x6]-{0.4}->(Ksi2) 0.433 0.413 0.024 0.020 0.113 0.210 0.081 0.068
[x7]-{0.6}->(Ksi2) 0.649 0.600 0.040 0.000 0.144 0.179 0.112 0.052
[x8]-{0.1}->(Ksi2) 0.102 0.098 0.001 0.001 0.103 0.213 0.018 0.072
[x9]-{0.4}->(Ksi3) 0.408 0.329 0.006 -0.075 0.088 0.154 0.015 0.038
[x10]-{0.3}->(Ksi3) 0.300 0.244 -0.003 -0.057 0.089 0.150 0.015 0.036
[x11]-{0.2}->(Ksi3) 0.199 0.160 0.001 -0.035 0.085 0.146 0.013 0.033
[x12]-{0.2}->(Ksi3) 0.203 0.166 0.003 -0.030 0.093 0.145 0.015 0.033
[x13]-{0.4}->(Ksi3) 0.407 0.321 0.008 -0.073 0.095 0.148 0.018 0.035
Average(abs)     0.008 0.044 0.118 0.192 0.064 0.060
Outer Model (Reflective)                 
(Eta1)-{0.8}->[y1] 0.682 0.841 -0.115 0.041 0.125 0.041 0.019 0.002
(Eta1)-{0.7}->[y2] 0.648 0.816 -0.049 0.117 0.072 0.117 0.008 0.014
(Eta1)-{0.8}->[y3] 0.682 0.842 -0.114 0.042 0.124 0.042 0.019 0.002
(Eta2)-{0.8}->[y4] 0.765 0.871 -0.038 0.071 0.064 0.071 0.007 0.005
(Eta2)-{0.7}->[y5] 0.720 0.851 0.017 0.151 0.050 0.151 0.005 0.023
(Eta2)-{0.8}->[y6] 0.766 0.871 -0.036 0.072 0.062 0.072 0.006 0.005
Average(abs)     0.062 0.082 0.083 0.082 0.011 0.009
Inner Model                 
(Ksi1)-{0.4}->(Eta1) 0.398 0.249 -0.001 -0.025 0.048 0.151 0.007 0.025
(Ksi2)-{0.5}->(Eta1) 0.509 0.254 0.005 -0.064 0.072 0.250 0.015 0.064
(Ksi3)-{0.6}->(Eta1) 0.607 0.382 0.002 -0.051 0.057 0.221 0.008 0.051
(Eta1)-{0.6}->(Eta2) 0.597 0.580 0.001 -0.002 0.038 0.035 0.004 0.002
Average(abs)     0.002 0.036 0.054 0.164 0.009 0.036
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Table 3: Simulation results in respect of non-normal data 

 

 
Outer Model (Formative)

Mean Value Mean Deviation Mean Absolute Deviation Mean Squared Error 
ML PLS ML PLS ML PLS ML PLS 

[x1]-{0.1}->(Ksi1) 0.104 0.084 0.004 -0.016 0.163 0.245 0.052 0.093
[x2]-{0.2}->(Ksi1) 0.215 0.178 0.015 -0.022 0.168 0.248 0.070 0.096
[x3]-{0.1}->(Ksi1) 0.110 0.084 0.010 -0.016 0.154 0.238 0.045 0.085
[x4]-{0.6}->(Ksi1) 0.612 0.453 0.012 -0.147 0.196 0.247 0.310 0.098
[x5]-{0.4}->(Ksi1) 0.418 0.307 0.018 -0.093 0.168 0.248 0.088 0.097
[x6]-{0.4}->(Ksi2) 0.445 0.412 0.045 0.012 0.150 0.229 0.264 0.084
[x7]-{0.6}->(Ksi2) 0.655 0.602 0.055 0.002 0.185 0.204 0.260 0.065
[x8]-{0.1}->(Ksi2) 0.103 0.095 0.003 -0.005 0.120 0.225 0.027 0.080
[x9]-{0.4}->(Ksi3) 0.418 0.329 0.018 -0.071 0.115 0.172 0.030 0.047
[x10]-{0.3}->(Ksi3) 0.307 0.243 0.007 -0.057 0.111 0.168 0.024 0.044
[x11]-{0.2}->(Ksi3) 0.203 0.159 0.003 -0.041 0.112 0.164 0.022 0.042
[x12]-{0.2}->(Ksi3) 0.211 0.167 0.011 -0.033 0.121 0.165 0.025 0.042
[x13]-{0.4}->(Ksi3) 0.413 0.318 0.013 -0.082 0.118 0.172 0.032 0.047
Average(abs)   0.016 0.046 0.145 0.210 0.096 0.071
Outer Model (Reflective)                 
(Eta1)-{0.8}->[y1] 0.682 0.842 -0.118 0.042 0.132 0.044 0.023 0.002
(Eta1)-{0.7}->[y2] 0.648 0.817 -0.052 0.117 0.083 0.117 0.011 0.014
(Eta1)-{0.8}->[y3] 0.682 0.842 -0.118 0.042 0.132 0.044 0.023 0.002
(Eta2)-{0.8}->[y4] 0.766 0.872 -0.034 0.072 0.074 0.072 0.010 0.006
(Eta2)-{0.7}->[y5] 0.720 0.851 0.020 0.151 0.066 0.151 0.008 0.023
(Eta2)-{0.8}->[y6] 0.767 0.871 -0.033 0.071 0.074 0.071 0.009 0.005
Average(abs)     0.063 0.082 0.094 0.083 0.014 0.009
Inner Model                 
(Ksi1)-{0.4}->(Eta1) 0.397 0.250 -0.003 -0.025 0.058 0.150 0.009 0.025
(Ksi2)-{0.5}->(Eta1) 0.503 0.255 0.003 -0.063 0.082 0.245 0.020 0.063
(Ksi3)-{0.6}->(Eta1) 0.601 0.384 0.001 -0.050 0.077 0.216 0.014 0.050
(Eta1)-{0.6}->(Eta2) 0.596 0.582 -0.004 -0.002 0.048 0.039 0.007 0.002
Average(abs)     0.003 0.035 0.066 0.162 0.012 0.035
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Table 4: Comparison of simulation results in respect of normal and non-normal data 

 

 
Relative Absolute Changes between  

Normal and Non-Normal Parameter Estimations 
 Mean Absolute Deviation Mean Squared Error 
 ML PLS ML PLS 

Outer Model (Formative) 0.228 0.093 0.495 0.178
Outer Model (Reflective) 0.131 0.008 0.311 0.029
Inner Model 0.229 -0.011 0.432 -0.019

normal

nonnormalnormal

normal

nonnormalnormal

MSE Average
MSE Average - MSE Average

  Change MSE Relative

;  
MAD Average

MAD Average - MAD Average
  Change MAD Relative

=

=  
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Table 5: Correlation matrix of manifest variables 

 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 y1 y2 y3 y4 y5 y6 

x1 1.00          

x2 0.71 1.00         

x3 0.72 0.65 1.00        

x4 0.08 0.04 0.09 1.00       

x5 -0.01 -0.05 -0.02 0.05 1.00      

x6 0.02 0.03 -0.06 0.06 -0.03 1.00     

x7 -0.11 -0.12 -0.06 0.00 0.02 -0.01 1.00     

x8 -0.13 -0.13 -0.09 -0.05 0.01 0.06 0.10 1.00     

x9 0.02 -0.03 0.00 0.06 0.00 -0.02 0.10 -0.06 1.00     

x10 0.01 0.07 -0.01 0.03 0.12 -0.03 -0.02 -0.01 0.12 1.00     

x11 -0.05 0.04 -0.06 0.07 0.00 0.07 0.01 -0.04 0.24 0.57 1.00     

x12 0.03 0.07 -0.02 0.10 0.06 -0.02 0.02 -0.05 0.29 0.49 0.53 1.00     

x13 0.03 0.05 0.01 -0.01 0.01 0.05 0.00 -0.01 0.13 0.20 0.29 0.27 1.00     

y1 0.06 0.06 0.05 0.54 0.61 0.15 0.19 0.01 0.08 0.08 0.03 0.06 -0.02 1.00    

y2 0.00 0.02 0.00 0.54 0.51 0.19 0.16 0.01 0.10 0.04 0.02 0.04 -0.01 0.85 1.00   

y3 0.08 0.06 0.08 0.54 0.58 0.09 0.15 0.04 0.11 0.01 0.00 0.03 0.00 0.89 0.83 1.00  

y4 0.06 0.07 0.04 0.33 0.30 0.29 0.36 0.04 0.33 0.37 0.39 0.42 0.32 0.58 0.53 0.55 1.00  

y5 0.00 0.01 0.01 0.31 0.28 0.26 0.40 0.09 0.29 0.35 0.38 0.35 0.34 0.54 0.51 0.52 0.83 1.00  

y6 0.05 0.05 0.01 0.35 0.35 0.29 0.40 0.07 0.35 0.37 0.41 0.39 0.36 0.63 0.57 0.58 0.88 0.86 1.00
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Table 6: Mean value of alternative CBSEM procedures 

 

 Normal Data Non-normal Data 
Outer Model 
(Formative) ML GLS ADF ULS ML GLS ADF ULS 

[x1]-{0.1}->(Ksi1) 0.108 0.106 0.103 0.567 0.104 0.110 0.110 0.599 
[x2]-{0.2}->(Ksi1) 0.210 0.207 0.206 0.377 0.215 0.229 0.259 0.374 
[x3]-{0.1}->(Ksi1) 0.096 0.101 0.118 0.376 0.110 0.100 0.153 0.370 
[x4]-{0.6}->(Ksi1) 0.597 0.592 0.627 0.547 0.612 0.608 0.684 0.563 
[x5]-{0.4}->(Ksi1) 0.400 0.406 0.410 0.093 0.418 0.430 0.479 0.091 
[x6]-{0.4}->(Ksi2) 0.424 0.422 0.449 0.388 0.445 0.421 0.433 0.397 
[x7]-{0.6}->(Ksi2) 0.640 0.631 0.660 0.290 0.655 0.640 0.690 0.300 
[x8]-{0.1}->(Ksi2) 0.101 0.097 0.101 0.198 0.103 0.097 0.136 0.191 
[x9]-{0.4}->(Ksi3) 0.406 0.401 0.405 0.198 0.418 0.411 0.413 0.201 
[x10]-{0.3}->(Ksi3) 0.297 0.294 0.297 0.392 0.307 0.300 0.306 0.391 
[x11]-{0.2}->(Ksi3) 0.201 0.200 0.201 0.753 0.203 0.202 0.205 0.752 
[x12]-{0.2}->(Ksi3) 0.203 0.199 0.202 0.717 0.211 0.205 0.210 0.715 
[x13]-{0.4}->(Ksi3) 0.408 0.403 0.412 0.755 0.413 0.407 0.415 0.752 

Outer Model 
(Reflective)                 

(Eta1)-{0.8}->[y1] 0.682 0.694 0.697 0.792 0.682 0.698 0.697 0.793 
(Eta1)-{0.7}->[y2] 0.648 0.662 0.663 0.746 0.648 0.666 0.664 0.745 
(Eta1)-{0.8}->[y3] 0.682 0.695 0.696 0.792 0.682 0.697 0.696 0.792 
(Eta2)-{0.8}->[y4] 0.765 0.765 0.769 0.389 0.766 0.774 0.771 0.394 
(Eta2)-{0.7}->[y5] 0.720 0.723 0.729 0.508 0.720 0.730 0.728 0.503 
(Eta2)-{0.8}->[y6] 0.766 0.767 0.771 0.570 0.767 0.774 0.776 0.575 

Inner Model                 
(Ksi1)-{0.4}->(Eta1) 0.398 0.407 0.418 0.639 0.397 0.403 0.435 0.640 
(Ksi2)-{0.5}->(Eta1) 0.509 0.499 0.499 0.359 0.503 0.506 0.529 0.357 
(Ksi3)-{0.6}->(Eta1) 0.607 0.600 0.607 0.419 0.601 0.601 0.624 0.417 
(Eta1)-{0.6}->(Eta2) 0.597 0.617 0.619 0.357 0.596 0.619 0.621 0.358 
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Table 7: Mean deviation of alternative CBSEM procedures 

 

 Normal Data Non-normal Data 
Outer Model 
(Formative) ML GLS ADF ULS ML GLS ADF ULS 

[x1]-{0.1}->(Ksi1) 0.008 0.006 0.003 0.467 0.004 0.010 0.010 0.499 
[x2]-{0.2}->(Ksi1) 0.010 0.007 0.006 0.177 0.015 0.029 0.059 0.174 
[x3]-{0.1}->(Ksi1) -0.004 0.001 0.018 0.276 0.010 0.000 0.053 0.270 
[x4]-{0.6}->(Ksi1) -0.003 -0.008 0.027 -0.053 0.012 0.008 0.084 -0.037 
[x5]-{0.4}->(Ksi1) 0.000 0.006 0.010 -0.307 0.018 0.030 0.079 -0.309 
[x6]-{0.4}->(Ksi2) 0.024 0.022 0.049 -0.012 0.045 0.021 0.033 -0.003 
[x7]-{0.6}->(Ksi2) 0.040 0.031 0.060 -0.310 0.055 0.040 0.090 -0.300 
[x8]-{0.1}->(Ksi2) 0.001 -0.003 0.001 0.098 0.003 -0.003 0.036 0.091 
[x9]-{0.4}->(Ksi3) 0.006 0.001 0.005 -0.202 0.018 0.011 0.013 -0.199 
[x10]-{0.3}->(Ksi3) -0.003 -0.006 -0.003 0.092 0.007 0.000 0.006 0.091 
[x11]-{0.2}->(Ksi3) 0.001 0.000 0.001 0.553 0.003 0.002 0.005 0.552 
[x12]-{0.2}->(Ksi3) 0.003 -0.001 0.002 0.517 0.011 0.005 0.010 0.515 
[x13]-{0.4}->(Ksi3) 0.008 0.003 0.012 0.355 0.013 0.007 0.015 0.352 
Average(abs) 0.008 0.007 0.015 0.263 0.016 0.013 0.038 0.261 

Outer Model 
(Reflective)                 

(Eta1)-{0.8}->[y1] -0.115 -0.106 -0.103 -0.008 -0.118 -0.102 -0.103 -0.007 
(Eta1)-{0.7}->[y2] -0.049 -0.038 -0.037 0.046 -0.052 -0.034 -0.036 0.045 
(Eta1)-{0.8}->[y3] -0.114 -0.105 -0.104 -0.008 -0.118 -0.103 -0.104 -0.008 
(Eta2)-{0.8}->[y4] -0.038 -0.035 -0.031 -0.411 -0.034 -0.026 -0.029 -0.406 
(Eta2)-{0.7}->[y5] 0.017 0.023 0.029 -0.192 0.020 0.030 0.028 -0.197 
(Eta2)-{0.8}->[y6] -0.036 -0.033 -0.029 -0.230 -0.033 -0.026 -0.024 -0.225 
Average(abs) 0.062 0.057 0.056 0.149 0.063 0.054 0.054 -0.148 

Inner Model                 
(Ksi1)-{0.4}->(Eta1) -0.001 0.007 0.018 0.239 -0.003 0.003 0.035 0.240 
(Ksi2)-{0.5}->(Eta1) 0.005 -0.001 -0.001 -0.141 0.003 0.006 0.029 -0.143 
(Ksi3)-{0.6}->(Eta1) 0.002 -0.000 0.007 -0.181 0.001 0.001 0.024 -0.183 
(Eta1)-{0.6}->(Eta2) 0.001 0.017 0.019 -0.243 -0.004 0.019 0.021 -0.242 
Average(abs) 0.002 0.006 0.011 0.201 0.003 0.007 0.027 -0.202 
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Table 8: Mean absolute deviation of alternative CBSEM procedures 

 

 Normal Data Non-normal Data 
Outer Model 
(Formative) ML GLS ADF ULS ML GLS ADF ULS 

[x1]-{0.1}->(Ksi1) 0.135 0.137 0.195 0.474 0.163 0.177 0.251 0.509 
[x2]-{0.2}->(Ksi1) 0.142 0.139 0.209 0.229 0.168 0.181 0.266 0.243 
[x3]-{0.1}->(Ksi1) 0.137 0.138 0.201 0.283 0.154 0.168 0.266 0.303 
[x4]-{0.6}->(Ksi1) 0.156 0.167 0.271 0.140 0.196 0.272 0.404 0.184 
[x5]-{0.4}->(Ksi1) 0.151 0.141 0.210 0.312 0.168 0.184 0.309 0.323 
[x6]-{0.4}->(Ksi2) 0.113 0.117 0.193 0.106 0.150 0.153 0.241 0.133 
[x7]-{0.6}->(Ksi2) 0.144 0.140 0.220 0.319 0.185 0.183 0.306 0.326 
[x8]-{0.1}->(Ksi2) 0.103 0.104 0.147 0.134 0.120 0.118 0.190 0.149 
[x9]-{0.4}->(Ksi3) 0.088 0.086 0.133 0.220 0.115 0.110 0.169 0.227 
[x10]-{0.3}->(Ksi3) 0.089 0.089 0.129 0.139 0.111 0.110 0.162 0.157 
[x11]-{0.2}->(Ksi3) 0.085 0.088 0.127 0.553 0.112 0.115 0.159 0.552 
[x12]-{0.2}->(Ksi3) 0.093 0.092 0.133 0.517 0.121 0.119 0.156 0.515 
[x13]-{0.4}->(Ksi3) 0.095 0.095 0.138 0.355 0.118 0.114 0.175 0.352 
Average(abs) 0.118 0.118 0.177 0.291 0.145 0.154 0.235 0.306 

Outer Model 
(Reflective)                 

(Eta1)-{0.8}->[y1] 0.125 0.118 0.132 0.033 0.132 0.121 0.141 0.041 
(Eta1)-{0.7}->[y2] 0.072 0.068 0.094 0.055 0.083 0.078 0.106 0.057 
(Eta1)-{0.8}->[y3] 0.124 0.117 0.131 0.035 0.132 0.120 0.140 0.040 
(Eta2)-{0.8}->[y4] 0.064 0.073 0.099 0.411 0.074 0.087 0.116 0.407 
(Eta2)-{0.7}->[y5] 0.050 0.062 0.090 0.205 0.066 0.080 0.100 0.210 
(Eta2)-{0.8}->[y6] 0.062 0.071 0.100 0.233 0.074 0.086 0.113 0.231 
Average(abs) 0.083 0.085 0.108 0.162 0.094 0.095 0.119 0.164 

Inner Model                 
(Ksi1)-{0.4}->(Eta1) 0.048 0.059 0.096 0.239 0.058 0.066 0.136 0.240 
(Ksi2)-{0.5}->(Eta1) 0.072 0.066 0.103 0.141 0.082 0.073 0.142 0.144 
(Ksi3)-{0.6}->(Eta1) 0.057 0.050 0.086 0.181 0.077 0.066 0.127 0.183 
(Eta1)-{0.6}->(Eta2) 0.038 0.037 0.062 0.243 0.048 0.048 0.086 0.242 
Average(abs) 0.054 0.053 0.087 0.201 0.066 0.063 0.123 0.202 
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Table 9: Mean squared error of alternative CBSEM procedures 

 

 Normal Data Non-normal Data 
Outer Model 
(Formative) ML GLS ADF ULS ML GLS ADF ULS 

[x1]-{0.1}->(Ksi1) 0.034 0.036 0.069 0.319 0.052 0.174 0.322 0.729 
[x2]-{0.2}->(Ksi1) 0.046 0.041 0.112 0.091 0.070 0.176 0.297 0.130 
[x3]-{0.1}->(Ksi1) 0.053 0.042 0.090 0.115 0.045 0.141 0.302 0.268 
[x4]-{0.6}->(Ksi1) 0.195 0.176 0.460 0.043 0.310 2.757 2.826 0.212 
[x5]-{0.4}->(Ksi1) 0.220 0.054 0.096 0.120 0.088 0.243 0.703 0.132 
[x6]-{0.4}->(Ksi2) 0.081 0.086 0.198 0.023 0.264 0.282 0.422 0.044 
[x7]-{0.6}->(Ksi2) 0.112 0.142 0.225 0.119 0.260 0.446 0.972 0.130 
[x8]-{0.1}->(Ksi2) 0.018 0.019 0.036 0.031 0.027 0.025 0.145 0.039 
[x9]-{0.4}->(Ksi3) 0.015 0.015 0.032 0.064 0.030 0.025 0.054 0.071 
[x10]-{0.3}->(Ksi3) 0.015 0.016 0.031 0.037 0.024 0.024 0.049 0.050 
[x11]-{0.2}->(Ksi3) 0.013 0.013 0.027 0.310 0.022 0.025 0.049 0.310 
[x12]-{0.2}->(Ksi3) 0.015 0.015 0.030 0.271 0.025 0.024 0.044 0.269 
[x13]-{0.4}->(Ksi3) 0.018 0.020 0.038 0.130 0.032 0.030 0.065 0.129 
Average(abs) 0.064 0.052 0.111 0.129 0.096 0.336 0.481 0.193 

Outer Model 
(Reflective)                 

(Eta1)-{0.8}->[y1] 0.019 0.019 0.025 0.003 0.023 0.020 0.030 0.004 
(Eta1)-{0.7}->[y2] 0.008 0.008 0.015 0.006 0.011 0.010 0.019 0.007 
(Eta1)-{0.8}->[y3] 0.019 0.018 0.025 0.003 0.023 0.020 0.029 0.004 
(Eta2)-{0.8}->[y4] 0.007 0.009 0.020 0.175 0.010 0.014 0.023 0.175 
(Eta2)-{0.7}->[y5] 0.005 0.008 0.019 0.050 0.008 0.014 0.021 0.052 
(Eta2)-{0.8}->[y6] 0.006 0.009 0.020 0.064 0.009 0.014 0.022 0.065 
Average(abs) 0.011 0.012 0.021 0.050 0.014 0.016 0.024 0.051 

Inner Model                 
(Ksi1)-{0.4}->(Eta1) 0.007 0.011 0.020 0.061 0.009 0.015 0.066 0.063 
(Ksi2)-{0.5}->(Eta1) 0.015 0.015 0.024 0.022 0.020 0.019 0.050 0.024 
(Ksi3)-{0.6}->(Eta1) 0.008 0.008 0.017 0.035 0.014 0.014 0.046 0.037 
(Eta1)-{0.6}->(Eta2) 0.004 0.005 0.010 0.061 0.007 0.007 0.015 0.062 
Average(abs) 0.009 0.010 0.018 0.045 0.012 0.014 0.045 0.046 
 



 

36 

Table 10: Comparison of alternative PLS weighting schemes in respect of normal data 

 

  
Mean Value Mean Deviation 

Centroid Factor Path Centroid Factor Path 
Outer Model (Formative)             
[x1]-{0.1}->(Ksi1) 0,093 0,092 0,092 -0,007 -0,008 -0,008
[x2]-{0.2}->(Ksi1) 0,192 0,191 0,191 -0,008 -0,009 -0,009
[x3]-{0.1}->(Ksi1) 0,074 0,074 0,074 -0,026 -0,026 -0,026
[x4]-{0.6}->(Ksi1) 0,446 0,446 0,446 -0,154 -0,154 -0,154
[x5]-{0.4}->(Ksi1) 0,314 0,314 0,314 -0,086 -0,086 -0,086
[x6]-{0.4}->(Ksi2) 0,397 0,397 0,397 -0,003 -0,003 -0,003
[x7]-{0.6}->(Ksi2) 0,608 0,608 0,608 0,008 0,008 0,008
[x8]-{0.1}->(Ksi2) 0,116 0,116 0,116 0,016 0,016 0,016
[x9]-{0.4}->(Ksi3) 0,343 0,343 0,343 -0,057 -0,057 -0,057
[x10]-{0.3}->(Ksi3) 0,234 0,234 0,234 -0,066 -0,066 -0,066
[x11]-{0.2}->(Ksi3) 0,157 0,157 0,157 -0,043 -0,043 -0,043
[x12]-{0.2}->(Ksi3) 0,175 0,175 0,175 -0,025 -0,025 -0,025
[x13]-{0.4}->(Ksi3) 0,319 0,319 0,319 -0,081 -0,081 -0,081
Outer Model (Reflective)             
(Eta1)-{0.8}->[y1] 0,842 0,841 0,841 0,042 0,041 0,041
(Eta1)-{0.7}->[y2] 0,817 0,817 0,817 0,117 0,117 0,117
(Eta1)-{0.8}->[y3] 0,842 0,842 0,842 0,042 0,042 0,042
(Eta2)-{0.8}->[y4] 0,872 0,872 0,872 0,072 0,072 0,072
(Eta2)-{0.7}->[y5] 0,850 0,850 0,850 0,150 0,150 0,150
(Eta2)-{0.8}->[y6] 0,872 0,872 0,872 0,072 0,072 0,072
Inner Model             
(Ksi1)-{0.4}->(Eta1) 0,248 0,248 0,248 -0,152 -0,152 -0,152
(Ksi2)-{0.5}->(Eta1) 0,255 0,254 0,254 -0,245 -0,246 -0,246
(Ksi3)-{0.6}->(Eta1) 0,379 0,379 0,379 -0,221 -0,221 -0,221
(Eta1)-{0.6}->(Eta2) 0,578 0,578 0,578 -0,022 -0,022 -0,022
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Figures 

Figure 1: Comparison of reflective and formative measurement models (Diamantopoulos, 

2006; Edwards & Bagozzi, 2000) 
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Figure 2: The structural model tested in a simulated study. 
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