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Abstract

We illustrate an equivalence between the class of two-person sym-
metric games and the class of decision problems with a complete pref-
erence relation. Moreover, we show that a strategy is an optimal threat
strategy (Nash, 1953) in a two-person symmetric game if and only if it
is a maximal element in its equivalent decision problem. In particular,
a Nash equilibrium in a two-person symmetric zero-sum game and a
pair of maximal elements in its equivalent decision problem coincide.
In addition, we show that a two-person symmetric zero-sum game can
be extended to its von Neumann-Morgenstern (vN-M) mixed exten-
sion if and only if the extended decision problem satisfies the SSB
utility (Fishburn, 1982) axioms. Furthermore, we demonstrate that
a decision problem satisfies vN-M utility if and only if its equivalent
symmetric game is a potential game. Accordingly, we provide a for-
mula for the number of linearly independent equations in order for the
independence axiom to be satisfied which grows quadratically as the
number of alternatives increase.
JEL-Classification: C72, D8
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1 Introduction

Relating strategic games and decision problems is not a new idea. For ex-
ample, Rosenthal (1981) argues that games should be treated as one-person
decision problems. By contrast, Fudenberg and Levine (2006) argue that
some decision problems can be treated as a game between two selves of a de-
cision maker. The current paper, in distinction, makes a comparison between
‘existing’ notions between two-person symmetric games and one-person de-
cision problems and shows some equivalences between those notions.

We consider a decision problem consisting of a set of alternatives and
a complete (not necessarily transitive) preference relation defined on this
set. We show that the class of such decision problems and the class of two-
person symmetric games are equivalent. Accordingly, we consider an identity
mapping between those classes. The image of a two-person symmetric game
under the mapping is called the equivalent decision problem of the game
and the pre-image of a decision problem is called the equivalent game of
the decision problem. This equivalence can be interpreted as if the decision
maker is playing a game against her dual-self. If the game is of zero-sum
then the preferences of the two selves are opposing but this is not necessarily
the case if the game is symmetric.

In Section 2, we introduce the framework that will be used throughout
the paper. In Section 3, we consider two-person symmetric games in pure
strategies and decision problems in a riskless context. We find that a strategy
is an optimal pure threat strategy (Nash, 1953) in a two-person symmetric
game if and only if it is a maximal element in its equivalent decision problem.
In particular, a pure Nash equilibrium in a two-person symmetric zero-sum
game and a pair of maximal elements in its equivalent decision problem
coincide.

If there does not exist a Nash equilibrium in pure strategies, we usually
extend the game in mixed strategies and find a solution there. Similarly, if
there is no maximal element in a decision problem we can extend the set of
alternatives so as to allow the decision maker to choose a simple lottery.1 In
Section 4, we extend the games to its von Neumann-Morgenstern (vN-M)
mixed extension and we extend the decision problems in such a way that we
allow the decision maker to choose simple lotteries over the set of alternatives.
We show that a two-person symmetric zero-sum game can be extended to

1See, for example, Fishburn (1988) for more discussion.
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its vN-M mixed extension if and only if the SSB utility (Fishburn, 1982)
axioms continuity, dominance and symmetry are satisfied in its equivalent
decision problem. Moreover, we show that a mixed strategy is optimal (von
Neumann, 1928) in a two-person symmetric zero-sum game if and only if it
is a maximal element in its equivalent decision problem. Regarding a two-
person symmetric game in mixed extension, if its equivalent decision problem
satisfies the SSB utility axioms then we obtain a two-person symmetric game
which is unique up to payoff differences. In addition, a strategy is an optimal
mixed threat strategy in a two-person symmetric game if and only if it is
a maximal element in its equivalent decision problem defined over simple
lotteries.

Finally, in Section 5, we show that a two-person symmetric game is a
potential game if and only if its equivalent decision problem satisfies vN-M
utility.2 Accordingly, we provide the number of linearly independent equa-
tions in order for the independence axiom to be satisfied. The number grows
quadratically as the number of alternatives increase. This may be interpreted
as an alternative way to show the strength of the independence axiom.

2 The framework

Firstly, we fix a notation for two-person symmetric games and we define a
decision problem for a decision maker. Next, we elaborate on the way we
can obtain an equivalence between those two classes.

A two-person non-cooperative game ({1, 2}, X1, X2, u1, u2) where u1, u2 :
X1 ×X2 → R is called symmetric if X1 = X2 and u1(x, y) = u2(y, x) for all
x, y in X. We denote a two-person symmetric game by (X, u) where both
players have the same arbitrary set of pure actions X and u : X ×X → R.
When player 1 plays x and player 2 plays y player 1 receives u(x, y) and
player 2 receives u(y, x). We use the notation (X, v) to represent a two-
person symmetric zero-sum game, i.e. v(x, y) + v(y, x) = 0 for all x, y in
X.

We call the pair (X,�) a decision problem where X is a set of alterna-
tives available to a decision maker. The relation �⊆ X ×X represents the

2This is not the first example of relating vN-M utility with a game theoretical concept.
For instance, Roth (1977) shows that Shapley value of a player and vN-M utility function
coincide if we assume the player’s preferences over the positions can be represented by
that utility function and those preferences satisfy some assumptions.
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preferences of the decision maker over X. It can be read as weakly preferred
or at least as good as. The indifference part of � is defined as usual: We
write x ∼ y if x � y and y � x. Moreover, we write x � y if x � y but not
x ∼ y. One can interpret the decision problem (X,�) as if a decision maker
wants to choose an element from X taking into account her preferences.

If we assume that a preference relation on a countable set is reflexive, com-
plete and transitive then it is representable by a one-variable order-preserving
utility function.3 However, this is not possible if we remove the transitivity
assumption. In that case, a simple but powerful approach to obtain a rep-
resentation is to consider a two-variable utility function.4 The following
proposition states that such a decision problem is representable.

Proposition 1. If the relation � on a set X is complete. Then there exist
U : X ×X → R such that for all x, y in X, x � y ⇔ U(x, y) > U(y, x).

Proof. Let � be a complete relation on X. Define a real valued function
U such that for all (x, y) ∈ X × X with x � y we have U(x, y) > U(y, x).
In addition, for all x ∼ y define U(x, y) = U(y, x). It is left to show that
U(z, w) > U(w, z) for z, w in X implies that z � w. Assume that z � w,
then U(z, w) ≤ U(w, z) which is a contradiction to our supposition.

Remark 1. Let U : X ×X → R be a function. Then the preference relation
on X defined by x � y if U(x, y) > U(y, x) and x ∼ y if U(x, y) = U(y, x)
would be complete and such U would represent �.

The function U(x, y) may be (loosely) interpreted as a magnitude of the
intensity of preference for x over y. If the intensity of preference for x over y is
larger than the one for y over x, then we say x is preferred to y. In particular,
for x, y in X the difference U(x, y) − U(y, x) defines another function, say
V (x, y), which has a nice property of being skew-symmetric, i.e. V (x, y) =
−V (y, x). The following corollary illustrates this situation.

Corollary 1. If the relation � on a set X is complete. Then there exist
V : X × X → R such that for all x, y ∈ X, x � y ⇔ V (x, y) > 0 with
V (x, y) + V (y, x) = 0.

3See, for example, Debreu (1954).
4One of the most well-known supporter of this approach is probably Fishburn. Fish-

burn (1982) generalized the expected utility of von Neumann and Morgenstern by a skew-
symmetric two-variable utility function without using the transitivity and the indepen-
dence axioms.
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We call the triplets (X,U,�) and (X, V,�) a decision problem as well.
Notice that a function U as in Remark 1 induces a unique preference relation
on X hence (X,U,�) is a more specific decision problem than (X,�). We
will write (X,U) instead of (X,U,�) and each time we refer to a decision
problem we will state which form we consider. Note that given a decision
problem (X,�) there are (uncountably) many functions U that represent �.
Given a decision problem (X,�) we define the set

[�] = {U : X ×X → R | U represents �}.

It will be helpful in order to identify the similarities of the functions repre-
senting the same relation.

3 Games in pure strategies and decision prob-

lems in a riskless context.

3.1 The equivalence mapping.

Let D denote the class of all decision problems that can be written as (X,U)
where U is an order-preserving utility function as in Proposition 1 and let G
denote the class of all two-person symmetric games. The next proposition
shows the equivalence between those two classes. We will make use of it to
derive conclusions for elements in one class with the help of the structure of
the elements in the other class.

Proposition 2. G = D.

Proof. To show G ⊆ D, let (X, u) be a game in G. Since u : X × X → R,
by Remark 1 the preference relation defined by x � y if u(x, y) > u(y, x)
would be complete and u represents �. Accordingly, (X, u,�) belongs to
the desired class when we consider X as the set of alternatives. Conversely,
given a decision problem (X,U), we define the two-person symmetric game
as follows. We consider X as the set of pure strategies for each player and
when player 1 plays x ∈ X and player 2 plays y ∈ X, player 1 receives
a payoff of U(x, y) and player 2 receives U(y, x). Consequently, the game
(X,U) is a two-person symmetric game.

In particular, the class of decision problems with a representation function
V as in Corollary 1 is equivalent to the class of two-person symmetric zero-
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x y z
x 1, 1 3, 0 0, 3
y 0, 3 1, 1 3, 0
z 3, 0 0, 3 1, 1

x y z
x 0, 0 1,−1 −1, 1
y −1, 1 0, 0 1,−1
z 1,−1 −1, 1 0, 0

Figure 1: Games (X, u) and (X, v) respectively.

sum games. Since the construction is essentially the same with the preceding
proposition we omit it.

So far, we considered the pair (X, u) both as a game and as a decision
problem. To stress this, we define an identity mapping T : G → D. That
is, the mapping T does not change the mathematical object but it puts
a different interpretation on it. In other words, if we interpret a given pair
(X, u) as a two-person symmetric game ({1, 2}, X,X, u, u>) then we interpret
the image of (X, u) under T as the decision problem (X, u,�) where u is the
order-preserving utility function representing the relation �. Note also that
the mapping T is bijective by Proposition 2.

In addition, if u represents the preference relation � on X then we call
the pair (X,�) the equivalent decision problem of the two-person symmetric
game (X, u). To avoid confusion and to distinguish between decision prob-
lems and games, we write T ((X, u)) = (X,U) where u = U . Then we say
the equivalent decision problem of the game (X, u) is (X,U).5

One may informally interpret an equivalent game of a decision problem
as follows. Given a decision problem, one may think of the decision maker as
if she is playing against her dual-self.6 If one considers the equivalent game
in the form of two-person symmetric zero-sum, then what the decision maker
gains is the loss of her dual-self. This is, however, not necessarily the case if
one considers the equivalent two-person symmetric game.

Let us give an example for better understanding how decision problems
and games in question are related. Figure 1 presents a two-person symmetric
game (X, u) and a two-person symmetric zero-sum game (X, v). Consider
the equivalent decision problem (X,U) of the game (X, u) under the mapping
T where U = u. The preference relation represented by the utility function
U is x � y � z � x because U(x, y) > U(y, x), U(y, z) > U(z, y) and

5Those notations will be helpful because most of the time we will need to make dis-
tinctions between the decision problems of the form (X,U), (X,V ) and (X,�).

6See Fudenberg and Levine (2006) for a similar interpretation of decision problems.
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U(z, x) > U(x, z). Similarly, consider the equivalent decision problem (X, V )
of the game (X, v) under the mapping T where V = v. Since V (x, y) > 0,
V (y, z) > 0 and V (z, x) > 0, the preference relation turns out to be the same
as before, i.e. x � y � z � x. Therefore, we can argue that both games
have the same decision problem (in a general sense) (X,�) and that both u
and v represent �, that is u and v in [�]. In the following section, we will
show that different games whose equivalent decision problems have the same
preferences share some common properties.

Notice that the game (X, v) in Figure 1 is the classical rock-paper-scissors
game. This game is known by its cyclic structure. In other words, the relation
defined by ‘one shape beats the other’ is cyclic because rock beats scissors,
scissors beats paper and paper beats rock. Intuitively speaking, it would be
expected that the equivalent decision problem (if ever exists) of rock-paper-
scissors game should have cyclic preferences which is actually the case as we
show above.

3.2 Counterparts of maximal elements.

We say that a set X admits a maximal element x with respect to a preference
relation � on X if there exists no element y ∈ X such that y � x. If � is
complete then one can write x � y for all y in X.

The following proposition characterizes the pure Nash equilibria in two-
person symmetric zero-sum games with respect to the maximal elements of
decision problems.

Proposition 3. Let (X, v) be a two-person symmetric zero-sum game and
let (X,�) be its equivalent decision problem. X admits a maximal element
x∗ with respect to � if and only if the game (X, v) possesses a pure Nash
equilibrium (x∗, x∗).

Proof. ‘⇒’: Since (X,�) is the equivalent decision problem of the game
(X, v), the function v represents the relation � in the sense of Corollary 1.
Hence x∗ � y if and only if v(x∗, y) ≥ 0 for all y ∈ X. Since (X, v) is a
two-person symmetric zero-sum game if there is a value it should be zero.
Since x∗ guarantees the value 0 it is an optimal strategy. By symmetry, the
pair (x∗, x∗) is a pure Nash equilibrium of (X, v).
‘⇐’: If (x∗, x∗) is an equilibrium of the game (X, v), then the value of the
game exists and it is 0. Moreover x∗ is an optimal strategy and it guarantees
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the value 0, that is v(x∗, y) ≥ 0 for all y ∈ X. It implies that x∗ � y for all
y ∈ X since v represents the relation �. Hence x∗ is a maximal element.

In two-person symmetric games, it turns out that a maximal element
coincides with an optimal threat strategy that we know from Nash (1953)
bargaining problem. A strategy is called an optimal threat strategy in a two-
person game if it is an optimal strategy of the game which is obtained from the
payoff differences of the original game.7 In addition, an evolutionary stable
strategy for finite populations (Schaffer, 1988) coincides with an optimal pure
threat strategy in two-person symmetric games if the population consists of
two individuals and the contest size is two as well.

The following proposition illustrates the relationship between an optimal
pure threat strategy and a maximal element of a decision problem.

Proposition 4. Let (X, u) be a two-person symmetric game and let (X,�) be
its equivalent decision problem. An element x∗ ∈ X is maximal with respect
to � if and only if x∗ is an optimal pure threat strategy in (X, u).

Proof. Since (X,�) is the equivalent decision problem of (X, u), the function
u represents the relation �. So x∗ is maximal with respect to � if and only if
u(x∗, y) ≥ u(y, x∗) for all y ∈ X. It is equivalent to u(x∗, y)−u(y, x∗) ≥ 0 for
all y ∈ X which means x∗ is an optimal strategy in the game derived from
the payoff differences of the game (X, u). That is, x∗ is an optimal threat
strategy in (X, u).

To elaborate on Proposition 3 and Proposition 4 a little bit more, consider
an arbitrary decision problem (X,�). If X admits a maximal element with
respect to� then all two-person symmetric games (X, u) with u ∈ [�] have an
optimal pure threat strategy and all two-person symmetric zero-sum games
(X, v) with v ∈ [�] have a pure Nash equilibrium. The reason is that both
u and v represent the same preference relation �. In addition, the reverse
implications are true as well.

7Note that here we use the definition of optimal threat strategy for transferable utility
games. See, for example, Owen (1968) for a detailed discussion.
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4 Mixed extension of games and of decision

problems

So far we have considered the games with arbitrary pure strategy sets. We
elaborate on the mixed extension of finite games in this section. If a game
has no Nash equilibrium in pure strategies then we usually consider the game
in mixed extension. That is, players are allowed to randomize over the pure
strategies. In the case of finite games, the problem of existence of a Nash
equilibrium is solved in this way. Similarly, we can think of randomization
in decision problems in case there is no maximal element.

Let (X = {x, y, z},�) be a decision problem such that x � y � z � x.
Then a paradoxical situation arises according to Tullock (1964) when a de-
cision maker is to choose an alternative from X. One way to solve this
problem is to allow the decision maker to randomize over the set of alterna-
tives.8 Remember the rock-paper-scissors game in Figure 1. The unique Nash
equilibrium is to play each action with equal probability. As we showed, the
equivalent decision problem of rock-paper-scissors game is (X = {x, y, z},�)
where � is cyclic. Therefore, one may suspect that the solution to the de-
cision problem (X = {x, y, z},�) is to choose each alternative with equal
probability as well. Formally, we consider the extension of decision problems
to the set of simple probability distributions over the set of alternatives.

4.1 Two-player symmetric zero-sum games

The usual mixed extension of a finite two-person symmetric zero-sum game
(X, v) is considered to be the game (∆(X), v′) where the von Neumann-
Morgenstern utility function v′ is the bilinear extension of v to ∆(X)×∆(X).

Now consider a finite decision problem (X, V ). We extend the function
V on X × X to a function V ′ on ∆(X) × ∆(X) such that V ′|X×X = V .

Accordingly, the preference relation � on X is also extended to �′ on ∆(X)
so that �′|X×X=�. We denote the mixed extension of a decision problem as

(∆(X), V ′,�′) or shortly (∆(X), V ′).
It turns out that there is a connection with the extended preference re-

lation and the SSB (skew-symmetric and bilinear) utility theory of Fishburn
(1982). This theory is based on the following axioms: For all p, q and r in
∆(X),

8See, for example, Fishburn (1988, p. 137).
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Axiom C (Continuity). There exists β ∈ (0, 1) such that p � q � r implies
q ∼ βp+ (1− β)r.
Axiom D (Dominance). For all α ∈ (0, 1), p � q and p � r implies p �
αq + (1 − α)r, q � p and r � p implies αq + (1 − α)r � p, and p ∼ q and
p ∼ r implies p ∼ αq + (1− α)r.
Axiom S (Symmetry). For all α ∈ (0, 1), p � q � r, p � r and q ∼ 1

2
p+ 1

2
r

implies αp+ (1− α)r ∼ 1
2
p+ 1

2
q ⇔ αr + (1− α)p ∼ 1

2
r + 1

2
q.

As the following theorem states, those axioms are necessary and sufficient
for representing the preferences by an SSB utility function.

Theorem (Fishburn, 1982). The relation � on ∆(X) satisfies C, D and S
if and only if there exists an SSB function φ such that p � q ⇔ φ(p, q) > 0
for all p, q in ∆(X). Moreover, φ is unique up to multiplication by a
positive constant.

Let G ′ ⊂ G be the class of two-person symmetric zero-sum games in
vN-M mixed extension (∆(X), v′) and let D′ ⊂ D be the class of decision
problems of the form (∆(X), V ′). Consider again the identity mapping T
whose domain and codomain are restricted to G ′ and D′ respectively. Note
that mapping T is one-to-one but not onto because G ′ ⊂ D′. For instance,
there could be decision problems in D′ whose representation function does
not satisfy bilinearity. To obtain a bijective mapping we need to put more
assumptions on the preferences of decision problems in D′. Similar as before,
we say that a decision problem (∆(X),�′) is the equivalent decision problem
of a two-person symmetric zero-sum game (∆(X), v′) if the utility function
v′ under mapping T happens to represent the relation �′.

The following proposition characterizes the vN-M mixed extension of a
game with the properties of its equivalent decision problem.

Proposition 5. Let (X, v) be a two-person symmetric zero-sum game and
let (X,�) be its equivalent decision problem under T . (X, v) can be extended
to vN-M mixed extension (∆(X), v′) if and only if the preference relation �′
of the extended decision problem (∆(X),�′) satisfies the axioms C, D and
S.

Proof. ‘⇒’: Let (∆(X), v′) be the equivalent decision problem of the game
(∆(X), v′). We show that v′ is skew-symmetric and bilinear and hence it
satisfies the axioms C,D and S by the theorem of Fishburn (1982). The
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Figure 2: Illustration of Proposition 5.

function v′ is skew-symmetric, i.e. v′(p, q) = −v′(q, p) for all p, q ∈ ∆(X)
since v′(p, q) = p>Aq where A is the payoff matrix of player 1 with A = −A>.
Then p>Aq = p>(−A>)q = (p>(−A>)q)> = −q>Ap = −v′(q, p). The payoff
function v′ is bilinear by definition.
‘⇐’: We extend the decision problem (X,�) to (∆(X),�′). If the relation
�′ satisfies the axioms C,D and S then by Fishburn (1982) there exist a
skew-symmetric bilinear function φ which is unique up to a multiplication
by a positive constant such that p � q ⇔ φ(p, q) > 0 where φ(p, q) =∑

x∈X
∑

y∈X p(x)q(y)φ(x, y) for all p, q in ∆(X). Since φ is the extension of
v, i.e. φ(x, y) = v(x, y) for all x, y in X, we obtain a unique φ on ∆(X) which
represents �′. Define the payoff function v′ of player 1 as v′(p, q) = φ(p, q)
for all p, q in ∆(X). Consequently, we obtain the mixed extension (∆(X), v′)
of the two-person symmetric zero-sum game (X, v).

Figure 2 illustrates Proposition 5 and its proof. It basically shows the
steps to reach the extended preference relation �′ on ∆(X) which satisfies
the axioms C,D and S and vice versa. Each arrow and text say what to do
in order to pass from one object to another.9

9For example, let us start by moving counter-clockwise from v which is located on
the left bottom corner. By considering the vN-M extension of the game (X, v) we can
obtain the extended function v′. Then by applying T we obtain the extended decision
problem (∆(X), V ′). Accordingly, we define the extended preference relation �′ from V ′

which is shown by Proposition 5 to satisfy the SSB utility axioms C,D and S. Finally,
by taking the restriction of V ′ on X we obtain the decision problem (X,V ) and hence the
non-extended game (X, v).
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Now, let DSSB ⊂ D′ be the class of decision problems (∆(X), v) where v
is an SSB function. The following corollary shows that the identity mapping
T becomes bijective when we restrict the domain to G ′ and the codomain to
DSSB.

Corollary 2. G ′ = DSSB.

Regarding the two-person symmetric zero-sum games, the above corollary
shows that we can obtain a result similar to Proposition 2 in mixed strate-
gies as well. We also obtain an analogoue of Proposition 3 as the following
proposition shows.

Proposition 6. Let (∆(X), v) be a two-person symmetric zero-sum game
and let (∆(X),�) be its equivalent decision problem. Then, a strategy p is
optimal if and only if p is a maximal element with respect to �.

Proof. ‘⇒’: The value of a two-person symmetric zero-sum game is 0. Let p
be an optimal strategy then v(p, q) ≥ 0 for all q ∈ ∆(X). Since v represents
� it implies that p � q for all q ∈ ∆(X).
‘⇐’: If p is maximal then v(p, q) ≥ 0 for all q ∈ ∆(X). Since p guarantees
the value of the game it is an optimal strategy in (∆(X), v).

4.2 Two-player symmetric games

Similarly, the mixed extension of a finite two-person symmetric game (X, u)
is the game (∆(X), u′) where the vN-M utility function u′ is the bilinear
extension of u to ∆(X)×∆(X). Given a decision problem (X,U) where X
is finite, we extend the function U to a function U ′ on ∆(X) × ∆(X) such
that U ′|X×X = U . This extends the relation � on X to �′|X×X on ∆(X).
Let G ′′ ⊂ G denote the class of two-person symmetric games in vN-M mixed
extension (∆(X), u) and let D′′ ⊂ D denote the class of decision problems
of the form (∆(X), U ′). The following proposition illustrates that the vN-M
extension of a symmetric game implies SSB utility in its equivalent decision
problem.

Proposition 7. Let (X, u) be a two-person symmetric game and let (X,�)
be its equivalent decision problem. If one extends (X, u) to vN-M mixed ex-
tension (∆(X), u′) then the extended preference relation �′ on ∆(X) satisfies
the axioms C, D and S.
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Proof. Showing that the relation �′ defined by p �′ q ⇔ u′(p, q) ≥ u′(q, p)
satisfies C, D and S is equivalent to showing that the function v(p, q) defined
by u(p, q)− u(q, p) for all p, q in ∆(X) is an SSB function. By definition v is
a skew-symmetric function. The bilinearity of v follows from the bilinearity
of u.

Regarding the other direction, if an extended decision problem satisfies
SSB utility then it is possible construct a two-person symmetric game which
is unique up to payoff differences. That is u and u′ are such functions if and
only if u(p, q)− u(q, p) = u′(p, q)− u′(q, p) for all p, q in ∆(X). Accordingly,
such a function u becomes ∆-bilinear, that is, the function u(p, q)−u(q, p) is
bilinear for all p and q in the domain of u. To be more precise, the identity
mapping T restricted to domain G ′′ and to codomain D′′ is one-to-one but
not onto. However, it remains to be an open question which axioms are
exactly needed on the extended preferences in order to have that mapping
onto.10 The following proposition shows these formally.

Proposition 8. Let (X, u) be a two-person symmetric game, let (X, u,�)
be its equivalent decision problem and let (∆(X), u′) be the vN-M mixed ex-
tension of the game. If the preference relation �′ of the extended decision
problem (∆(X), U ′,�′) satisfies the axioms C, D and S then u′ ∈ [�′]. More-
over, any U ′ in [�′] is unique up to payoff differences and is ∆-bilinear.

Proof. Firstly, we show that u′ ∈ [�′]. We the function v′ by v′(p, q) =
U ′(p, q) − U ′(q, p) for all p, q in ∆(X) with U ′ ∈ [�′] so that we have p �′
q ⇔ v′(p, q) ≥ 0. If we assume that �′ satisfies the axioms C, D and S,
then v′ becomes an SSB function by Theorem 1 of Fishburn (1982). Since
U ′ and u′ are the extensions of u, we have v′(x, y) = u(x, y) − u(y, x) =
u′(x, y)− u′(y, x) for all x, y in X. Since both v′ and u′ are bilinear, we have
v′(p, q) = u′(p, q) − u′(q, p) for all p, q in ∆(X). Consequently, we obtain
p �′ q ⇔ u′(p, q) ≥ u′(q, p), that is u′ ∈ [�′].

Secondly, we show that a function U ′ in [�′] is unique up to the difference
in payoffs. Observe that v′ is uniquely defined on the whole domain since the
values of v′(x, y) = u(x, y)− u(y, x) are fixed for all x, y in X. Let u1 and u2
in [�′], then we obtain u1(p, q) − u1(q, p) = u2(p, q) − u2(q, p) for all p, q in

10It is actually not obvious whether it is even possible to have a set of axioms on
a preference relation such that the representation function u becomes unique (up to a
positive linear transformation).
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∆(X). Finally, we show that any U ′ in [�′] is ∆-bilinear. We have

v′(αp+ (1− α)r, q) = u1(αp+ (1− α)r, q)− u1(q, αp+ (1− α)r).

Then, bilinearity of v′ implies that,

αv′(p, q)+(1−α)v′(r, q) = αu1(p, q)+(1−α)u1(r, q)−αu1(q, p)−(1−α)u1(q, r).

The ∆-bilinearity in the second argument is essentially the same hence the
proof is complete.

The following proposition illustrates that it is possible to obtain a result
in the mixed extension of symmetric games which analogous to Proposition
4.

Proposition 9. Let (∆(X), u) be a two-person symmetric game and let
(∆(X),�′) be its equivalent decision problem. Then a strategy p∗ is max-
imal with respect to �′ if and only if p∗ is an optimal threat strategy.

Proof. Since u represents�′, we have that p∗ is a maximal element if and only
if u(p∗, q) ≥ u(q, p∗). Hence p∗ is an optimal threat strategy in (∆(X), u).

Note that for any u′ ∈ [�′], the game (∆(X), u′) is a two-person sym-
metric game but not necessarily it is the vN-M mixed extension of the game
(X, u′). However, all the games (∆(X), u′) with u′ ∈ [�′] have the same
optimal threat strategy p∗ because the payoff functions simply represent the
same preference relation.

5 The independence axiom

The difference between expected utility and SSB utility is that transitivity
and the axiom of independence is not assumed in SSB utility. One might
wonder what happens to its equivalent game if the decision problem satis-
fies the independence axiom. In that case, we observe that the equivalent
two-person symmetric game becomes a potential game and the game matrix
satisfies a sort of triangular equality condition. The following definitions and
proposition illustrate this situation in a formal way.

To the best of our knowledge, the subclass of potential games were first
proposed by Rosenthal (1973) and later formalized by Monderer and Shapley
(1996). It is a useful class because all potential games possess a pure Nash
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equilibrium. Moreover, the potential function can be used for Nash equilib-
rium selection.11 For our purpose here, we use the definition of the potential
game for two-person symmetric games.

Definition 1. A symmetric two-person game (X, u) is called a (exact) po-
tential game if there exists a function P : X × X → R such that for
all y and all x, z in X, we have u(x, y) − u(z, y) = P (x, y) − P (z, y) and
u(x, y)− u(z, y) = P (y, x)− P (y, z).12

Now let us also recall the independence axiom. A preference relation �
on ∆(X) satisfies the independence axiom13 if for all p, q and r in ∆(X) and
for all α ∈ (0, 1) such that p � q ⇔ αp + (1 − α)r � αq + (1 − α)r. Let u
represent the relation � on ∆(X), then we can express the independence in
terms of u as follows. For every p, q, r in ∆(X) and for all α ∈ (0, 1), we have

u(p, q) ≥ u(q, p)⇔

u(αp+ (1− α)r, αq + (1− α)r) ≥ u(αq + (1− α)r, αp+ (1− α)r).

If, in addition, the relation � satisfies SSB utility then u is ∆-bilinear by
Proposition 8 and it implies that

u(p, q) ≥ u(q, p)⇔

α[u(p, q)− u(q, p)] + (1− α)[u(p, r)− u(r, p) + u(r, q)− u(q, r)] ≥ 0. (5.1)

The following lemma will be useful for the proposition that follows after-
wards. The lemma illustrates that the payoff function of a two-person sym-
metric game satisfies a kind of triangular equality in pure strategies if and
only if it satisfies the similar triangular equality property in mixed strategies.

Lemma 1. Let (∆(X), u) be a two-person symmetric game. For all x, y, z
in X, u(x, y) + u(y, z) + u(z, x) = u(x, z) + u(z, y) + u(y, x) if and only if

u(p, q) + u(q, r) + u(r, p) = u(p, r) + u(r, q) + u(q, p) (5.2)

for all p, q, r in ∆X.

11See Monderer and Shapley (1996) for more details.
12Note that the last equation is expressed in terms of the payoff function of player 1.
13Axiom of vN-M in the form of Jensen (1967). Actually, for our purpose it is enough to

use a weaker independence axiom with α = 1
2 . However, we use the most known version

since SSB utility axioms together with weak independence imply the independence axiom.
See Fishburn (1982) for details.
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Proof. ‘⇒’: By bilinearity of u, we have u(p, q) = up,q =
∑

x,y∈X pxqyux,y.
Substitute ux,y with ux,z + uz,y + uy,x − uy,z − uz,x. Then for all z ∈ X,

we have
up,q =

∑
x,y∈X pxqy(ux,z + uz,y + uy,x − uy,z − uz,x)

=
∑
x,y∈X

pxqyux,z+
∑
x,y∈X

pxqyuz,y+
∑
x,y∈X

pxqyuy,x−
∑
x,y∈X

pxqyuy,z−
∑
x,y∈X

pxqyuz,x

(1)
=

∑
x∈X

pxux,z
∑
y∈X

qy+
∑
x∈X

px
∑
y∈X

qyuz,y+uq,p−
∑
x∈X

px
∑
y∈X

qyuy,z−
∑
x∈X

pxuz,x
∑
y∈X

qy

(2)
=

∑
x∈X pxux,z +

∑
y∈X qyuz,y + uq,p −

∑
y∈X qyuy,z −

∑
x∈X pxuz,x

(3)
=

∑
x∈X(px − qx)ux,z +

∑
x∈X(qx − px)uz,x + uq,p.

We obtain (1) by rearranging the sums. Then, we obtain (2) by setting∑
x∈X px = 1. Finally, by rearranging the index we obtain (3). Following the

same steps as above, we have the following equations,

uq,r
(4)
=

∑
x∈X(qx − rx)ux,z +

∑
x∈X(rx − qx)uz,x + ur,q,

ur,p
(5)
=

∑
x∈X(rx − px)ux,z +

∑
x∈X(px − rx)uz,x + ur,q.

Summing (3), (4) and (5) up yields up,q + uq,r + ur,p = up,r + ur,q + uq,p.
‘⇐’: Trivial.

The following remark will be useful in the proof of the next proposition.

Remark 2. Given (X, v), the following equations are equivalent for all x, y, z, w
in X.

v(x, y) + v(z, w) = v(x,w) + v(z, y) (5.3)

v(x, y) = v(x, z) + v(z, y) (5.4)

Proof. ‘⇒’: Take y = z then Equation 5.3 boils down to Equation 5.4.
‘⇐’: By Equation 5.4 v(x, y) = v(x, z) + v(z, y) and v(z, w) = v(z, x) +
v(x,w). Summing up those two equations yield Equation 5.3.

The following proposition illustrates the relationship between a potential
game and the independence axiom.

Proposition 10. Let G = (∆(X), u) be a two-person symmetric game and
let (∆(X),�) be its equivalent decision problem. The following statements
are equivalent.

1. � satisfies the independence axiom.
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2. G is a potential game.

3. u(x, y) + u(y, z) + u(z, x) = u(x, z) + u(z, y) + u(y, x) for all x, y, z in
X.

Proof. (1) ⇒ (3): By Proposition 7, the equivalent decision problem of the
game (∆(X), u) satisfies C,D and S. If, in addition, it satisfies the inde-
pendence then by Proposition 1 of Fishburn (1982, p. 37) there exists a real
valued function ū such that u(p, q)−u(q, p) = ū(p)− ū(q) for all p, q in ∆(X).
Then it follows for all x, y, z in X we have u(x, y)−u(y, x)+u(y, z)−u(z, y)+
u(z, x)− u(x, z) = ū(x)− ū(y) + ū(y)− ū(z) + ū(z)− ū(x) = 0.
(3) ⇒ (1): By Lemma 1, condition (3) holds if and only if Equation 5.2
holds. Then, substituting u(p, r) − u(r, p) + u(r, q) − u(q, r) with u(p, q) −
u(q, p) reduces Equation 5.1 to u(p, q) ≥ u(q, p) ⇔ u(p, q) ≥ u(q, p). Hence
independence is trivially satisfied.
(2) ⇔ (3): We will use a sequence of equivalent statements for the demon-
stration. Define the two-person symmetric zero-sum game (X, v) such that
v(x, y) = u(x, y)− u(y, x) for all x, y, z in X. Then, by Theorem 20 of Duer-
sch et al. (2012), (X, u) is a potential game if and only if (X, v) is a potential
game. The latter holds if and only if Equation 5.3 holds according to Lemma
2.1 of Potters et al. (1999). Remark 2 concludes the proof since Equation
5.4 is equivalent to the statement in (3) by definition of v.

Corollary 3. A decision problem satisfies von Neumann-Morgenstern utility
if and only if its equivalent symmetric game is a potential game.

It may be of interest to note the following relation between vN-M utility,
Shapley value and potential games. Roth (1977) showed that the Shapley
value of a player coincides with the vN-M utility function representing the
preferences (satisfying some conditions) of the player over the positions in
a game.14 Consider a decision problem whose set of alternatives consist of
different positions in a game. If the decision maker has preferences satisfying
the axioms of Roth (1977) over positions. Then, the equivalent game of the
decision problem is a potential game if and only if the Shapley value (of the
decision maker in the initial game) is the vN-M utility function representing
the preferences in the extended decision problem.

Among the axioms of expected utility of vN-M, perhaps independence
is the most attacked axiom partly due to its strong implications. One of

14The vN-M utility function should be normalized. See Roth (1977) for details.
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the best known example is the Allais paradox which is an illustration of
the systematic violation of it. Here, we try to show the strength of the
independence axiom by a different approach, that is, by examining the effect
of imposing the independence axiom on a preference relation satisfying SSB
utility. The next proposition gives a formula to obtain the number of linearly
independent equations that must be satisfied in order for triangular equality
condition to hold.

Proposition 11. Given a matrix [uij]n×n with n ≥ 3, let the property (P )
be such that for all i, j and k we have uij + ujk + uki = uik + ukj + uji for
i, j, k = 1, 2, ..., n. Then the number of linearly independent equations needed
for (P ) to be satisfied is given by (n−1)(n−2)

2
.

Proof. Let Eijk denote the equation uij + ujk + uki = uik + ukj + uji and
denote by E the set of all these equations. We can restrict the attention
to the case i < j < k because the equations Eijk, Eikj, Ejik, Ejki, Ekji and
Ekij represent the same equation. The sums do not change no matter at
which node you start summing and whether you go first clockwise or counter
clockwise, having the figure below in mind.

i j

k

We show that E ′ = {E1lm|1 < ` < m} is a basis for E. To see this, first
notice that for any quadruple i < ` < k < m, the equations Eijk, Eijm and
Eikm imply the equation Ejkm. From this it follows that any equation Eijk

with i 6= 1 can be obtained from equations E1ij, E1ik and E1jk. Left to show is
that an equation in E ′ cannot be obtained as a linear combination of the other
equations in E ′. By contraposition, suppose E1jk is a linear combination of
equations in E ′\{E1jk}. Then, there exists at least one equation in E ′ which
contains the number ujk (otherwise the ujk can never appear). But then, this
equation must be E1jk, which is in contradiction with our supposition. The
number of equations in E ′ is precisely the number given in the proposition.

Proposition 11 gives a formula to obtain the number of linearly indepen-
dent equations that must be satisfied in order to pass from SSB utility to
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expected utility. Notice that the number (n−1)(n−2)
2

grows quadratically as
the number of alternatives grows. This might be considered as an indication
of the strength of the independence axiom.

Even though it weakens the independence axiom of vN-M utility, SSB
utility theory is not problem-free either. For instance, Fishburn (1984, p.
139) mentions some of potentially disturbing implications of SSB utility in
the case of cycling preferences as follows. Consider the decision problem
(∆(X), v) with SSB utility where X = {x, y, z} and x � y � z � x. Suppose
we replace z by z′ such that z′ in X ′ = {x, y, z′} does better than z against
x and against y but preferences still cycle, that is, v(z′, x) > v(z, x) > 0 and
v(y, z) > v(y, z′) > 0. Let p and p′ be the maximal elements in (∆(X), v)
and in (∆(X ′), v) respectively. Then it might happen that p(z′) < p(z).
This is a bit unintuitive because z′ is better than z with respect to both x
and y. This situation, however, is a known phenomenon of mixed strategy
Nash equilibria in games. Consider the equivalent two-person zero-sum game
(∆(X), v) of the decision problem. Everything else being equal, when we
increase a particular payoff of a player, it sometimes becomes less likely to
be played in the Nash equilibrium. For example, suppose that we increase
the payoff of v(z, x) from 1 to 2 and the payoff of v(z, x) from −1 to −1

2
and

that we rearrange the payoffs so that the rock-paper-scissors game in Figure 1
remains a symmetric zero-sum game. Then the probability of z being played
at the Nash equilibrium decreases from 1

3
to 2

7
.

6 Conclusion

In this paper, we have showed that there is an equivalence between the class of
two-person symmetric games and the class of one-person decision problems in
which the preferences are complete but not necessarily transitive. By making
use of this, we illustrated some equivalences between the existing notions in
games and in decision problems. For instance, we showed that a two-person
symmetric zero-sum game can be extended to its von Neumann-Morgenstern
mixed extension if and only if the extended decision problem satisfies the
SSB utility axioms. In zero-sum symmetric games, we also showed that a
strategy is an optimal strategy if and only if it is a maximal element in the
equivalent decision problem of the game. Regarding two-person symmetric
games, we proved that an optimal threat strategy and a maximal element of
the equivalent decision problem of the game coincide.
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In addition, we demonstrated that a two-person symmetric game is a
potential game if and only if its equivalent decision problem satisfies von
Neumann-Morgenstern utility. Accordingly, we provide a formula for the
number of linearly independent equations that must be satisfied in order to
pass from SSB utility to von Neumann-Morgenstern utility. This number
grows quadratically as the number of alternatives increase. We discuss that
this may be interpreted as an alternative way to show the strength of the
independence axiom.
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