Research output

Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose

Research output: Contribution to journalArticleAcademicpeer-review

Associated researcher

  • Mirahmadi, F.
  • Koolstra, J. H.
  • Lobbezoo, F.
  • van Lenthe, H.
  • Ghazanfari, S.

  • Snabel, J.
  • Stoop, R.
  • Everts, V.

Associated organisations

Abstract

Objective: Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle. To evaluate this hypothesis, collagen crosslinks were induced using ribose incubation.

Methods: Porcine TMJ condyles were incubated for 7 days with different concentrations of ribose. The compressive modulus and stiffness ratio (incubated versus control) was determined after loading. Glycosaminoglycan and collagen content, and the number of crosslinks were analyzed. Tissue structure was visualized by microscopy using different staining methods.

Results: Concomitant with an increasing concentration of ribose, an increase of collagen crosslinks was found. The number of crosslinks increased almost 50 fold after incubation with the highest concentration of ribose. Simultaneously, the stiffness ratio of the samples showed a significant increase after incubation with the ribose. Pearson correlation analyses showed a significant positive correlation between the overall stiffness ratio and the crosslink level; the higher the number of crosslinks the higher the stiffness.

Conclusion: The present model, in which ribose was used to mimic certain aspects of age-related changes, can be employed as an in vitro model to study age-related mechanical changes in the TMJ condyle.

    Research areas

  • AGE-RELATED DECREASE, BIOMECHANICAL PROPERTIES, COMPRESSIVE PROPERTIES, CROSS-LINKING, Cartilage, Collagen crosslinks, GLYCATION END-PRODUCTS, HUMAN ARTICULAR-CARTILAGE, MOLECULAR-STRUCTURE, NONENZYMATIC GLYCATION, PORCINE TEMPOROMANDIBULAR-JOINT, RABBIT ACHILLES-TENDON, Stiffness, Temporomandibular joint
View graph of relations

Details

Original languageEnglish
Pages (from-to)102-109
Number of pages8
JournalArchives of Oral Biology
Volume87
DOIs
Publication statusPublished - Mar 2018