Research output

Hemifield-specific Correlations between Cue-related Blood Oxygen Level Dependent Activity in Bilateral Nodes of the Dorsal Attention Network and Attentional Benefits in a Spatial Orienting Paradigm

Research output: Contribution to journalArticleAcademicpeer-review

Associated researcher

Associated organisations

Abstract

The dorsal attention network (DAN) is known to be involved in shifts of spatial attention or orienting. However, the involvement of each hemisphere in shifts to either hemifield is still a matter of debate. In this study, interindividual hemifield-specific attentional benefits in RTs were correlated with cue-related blood oxygen level dependent responses specific to directive cues in the left and right frontal and posterior nodes of the DAN, measured in a Spatial Orienting Paradigm. The pattern of correlations was analyzed with respect to its fit with three existing hypotheses of spatial attention control: the contralateral, right dominance, and hybrid hypotheses. Results showed that activation in frontal and parietal nodes of the DAN could explain a significant proportion of the interindividual variance in attentional benefits. Although we found that benefits in the right hemifield correlated with cue-related activity in the left, as well as the right, DAN and that the pattern of correlations fits best with the right dominance hypothesis, there were no significant correlations between left benefits and activation in the right (as well as left) DAN, which precludes the conclusion that our data support the right dominance hypothesis and might instead point toward a potential qualitative difference between leftward and rightward shifts of attention. In conclusion, this study demonstrates that behavioral effects of orienting can be linked to activation changes in the DAN, and it raises new questions with respect to the involvement of the frontal and parietal nodes in each hemisphere in hemifield-specific orienting.

View graph of relations

Details

Original languageEnglish
Pages (from-to)625-638
Number of pages14
JournalJournal of Cognitive Neuroscience
Volume31
Issue number5
Early online date21 Sep 2018
DOIs
Publication statusPublished - May 2019