Research output

General overview on the merits of multimodal neuroimaging data fusion

Research output: Contribution to journalArticleAcademicpeer-review

Associated researcher

Associated organisations

Abstract

Multimodal neuroimaging has become a mainstay of basic and cognitive neuroscience in humans and animals, despite challenges to consider when acquiring and combining non-redundant imaging data. Multimodal data integration can yield important insights into brain processes and structures in addition to spatiotemporal resolution complementarity, including: a comprehensive physiological view on brain processes and structures, quantification, generalization and normalization, and availability of biomarkers. In this review, we discuss data acquisition and fusion in multimodal neuroimaging in the context of each of these potential merits. However, limitations - due to differences in the neuronal and structural underpinnings of each method - have to be taken into account when modeling and interpreting multimodal data using generative. We conclude that when these challenges are adequately met, multimodal data fusion can create substantial added value for neuroscience applications making it an indispensable approach for studying the brain.

    Research areas

  • BOLD-FMRI, HEMODYNAMIC SIGNALS, HUMAN BRAIN, IN-VIVO, MULTIVARIATE METHODS, OXYGEN-METABOLISM, PET, PHYSIOLOGICAL NOISE, SIMULTANEOUS EEG-FMRI, STEADY-STATE
View graph of relations

Details

Original languageEnglish
Pages (from-to)3-10
Number of pages8
JournalNeuroimage
Volume102
Issue number1
Early online date16 May 2014
DOIs
Publication statusPublished - 15 Nov 2014