Effects of non-contractile inclusions on mechanical performance of skeletal muscle

M.R. Drost*, R.P. Hesselink, C.W. Oomens, G.J. van der Vusse

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Glycogen storage disease II is an inherited progressive muscular disease in which the lack of functional acid 1-4 alpha-glucosidase results in the accumulation of lysosomal glycogen. In the present study, we examine the effect of these non-contractile inclusions on the mechanical performance of skeletal muscle. To this end, force developed in an isometrically contracting slice of a muscle was calculated with a finite element model. Force was calculated at several inclusion densities and distributions and compared to muscle lacking inclusions. Furthermore, ankle dorsal flexor torque was measured in situ of alpha-glucosidase null mice of 6 months of age and unaffected litter mates as was inclusion density in the dorsal flexor muscles. The calculated force loss was shown to be almost exclusively dependent on the inclusion density and less on the type of inclusion distribution. The force loss predicted by the model (6%) on the basis of measured inclusion density (3.3%) corresponded to the loss in mass-normalized strength in these mice measured in situ (7%). Therefore, we conclude that the mechanical interaction between the non-contractile inclusions and the nearby myofibrils is a key factor in the loss of force per unit muscle mass during early stages of GSD II in mice. As glycogen accumulation reaches higher levels in humans, it is highly probable that the impact of this mechanical interaction is even more severe in human skeletal muscle.

Original languageEnglish
Pages (from-to)1035-1043
JournalJournal of Biomechanics
Volume38
Issue number5
DOIs
Publication statusPublished - 1 Jan 2005

Cite this