Ectopic Fat Accumulation in Distinct Insulin Resistant Phenotypes; Targets for Personalized Nutritional Interventions

Inez Trouwborst, Suzanne M. Bowser, Gijs H. Goossens, Ellen E. Blaak*

*Corresponding author for this work

Research output: Contribution to journal(Systematic) Review article peer-review

Abstract

Cardiometabolic diseases are one of the leading causes for disability and mortality in the Western world. The prevalence of these chronic diseases is expected to rise even further in the next decades. Insulin resistance (IR) and related metabolic disturbances are linked to ectopic fat deposition, which is the storage of excess lipids in metabolic organs such as liver and muscle. Notably, a vicious circle exists between IR and ectopic fat, together increasing the risk for the development of cardiometabolic diseases. Nutrition is a key-determining factor for both IR and ectopic fat deposition. The macronutrient composition of the diet may impact metabolic processes related to ectopic fat accumulation and IR. Interestingly, however, the metabolic phenotype of an individual may determine the response to a certain diet. Therefore, population-based nutritional interventions may not always lead to the most optimal (cardiometabolic) outcomes at the individual level, and differences in the metabolic phenotype may underlie conflicting findings related to IR and ectopic fat in dietary intervention studies. Detailed metabolic phenotyping will help to better understand the complex relationship between diet and metabolic regulation, and to optimize intervention outcomes. A subgroup-based approach that integrates, among others, tissue-specific IR, cardiometabolic parameters, anthropometrics, gut microbiota, age, sex, ethnicity, and psychological factors may thereby increase the efficacy of dietary interventions. Nevertheless, the implementation of more personalized nutrition may be complex, costly, and time consuming. Future studies are urgently warranted to obtain insight into a more personalized approach to nutritional interventions, taking into account the metabolic phenotype to ultimately improve insulin sensitivity and reduce the risk for cardiometabolic diseases.

Original languageEnglish
Article number77
Number of pages14
JournalFrontiers in nutrition
Volume5
DOIs
Publication statusPublished - 4 Sept 2018

Keywords

  • insulin resistance
  • ectopic fat
  • personalized nutrition
  • type 2 diabetes mellitus
  • metabolic phenotype
  • IMPAIRED GLUCOSE-TOLERANCE
  • TYPE-2 DIABETES-MELLITUS
  • ADIPOSE-TISSUE FUNCTION
  • FRUCTOSE CORN SYRUP
  • REDUCE LIVER FAT
  • SKELETAL-MUSCLE
  • METABOLIC SYNDROME
  • FASTING GLUCOSE
  • LIPOPROTEIN-LIPASE
  • HEPATIC STEATOSIS

Cite this