Research output

Echo-time dependence of the BOLD response transients: A window into brain functional physiology

Research output: Scientific - peer-reviewArticle

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{f403f50deb6b4d34a728201dd30ae93b,
title = "Echo-time dependence of the BOLD response transients: A window into brain functional physiology",
abstract = "The blood oxygenation level-dependent (BOLD) fMRI response to neuronal activation results from a complex interplay of induced metabolic and vascular changes. Thus, its transients, such as initial overshoot and post-stimulus undershoot, provide a window into the dynamic relationships of the underlying physiological variables. In this study, we propose multi-echo fMRI as a tool to investigate the physiological underpinnings of the BOLD signal, in particular, and brain functional physiology, in general. In the human visual cortex at 3 T, we observed that the BOLD response is nonlinearly dependent on echo-time (TE) and the amount of nonlinearity varies during the entire time-course. Fitting a linear model to this nonlinear relationship resulted in a positive intercept at TE = 0 ms. The time-course of the intercept exhibited fast and slow modulations, distinctly different both from the BOLD response and cerebral blood flow (CBF). In order to shed light on the TE-dependence of the BOLD signal and the intercept time-course, we performed simulations based on a nonlinear two-compartmental BOLD signal model combined with the dynamic balloon model. The modeling suggests that the intercept time-course reflects a weighted sum of deoxyhemoglobin concentration and venous CBV signal changes. We demonstrate that only CBF-venous blood volume (CBV) uncoupling but not CBF-oxygen metabolism (CMRO2) uncoupling can fully account for our experimental observations. In particular, these results strongly argue for a slow evolution of the venous CBV together with stimulus-type-dependent CBF transients (the latter being tightly coupled with CMRO2) to be responsible for the BOLD signal adaptation during stimulation and for the post-stimulus undershoot. Thus, BOLD signal transients are composed of smoothed version of neuronal time-course as reflected in CBF and CMRO2 and secondary vascular processes due to biomechanics of venous blood vessels, and multi-echo fMRI in combination with modeling provides invaluable insights into these physiological processes.",
keywords = "Journal Article",
author = "Martin Havlicek and Dimo Ivanov and Poser, {Benedikt A} and Kamil Uludag",
note = "Copyright © 2017. Published by Elsevier Inc.",
year = "2017",
month = "10",
doi = "10.1016/j.neuroimage.2017.07.034",
volume = "159",
pages = "355--370",
journal = "Neuroimage",
issn = "1053-8119",
publisher = "Academic Press Inc.",

}

RIS

TY - JOUR

T1 - Echo-time dependence of the BOLD response transients

T2 - Neuroimage

AU - Havlicek,Martin

AU - Ivanov,Dimo

AU - Poser,Benedikt A

AU - Uludag,Kamil

N1 - Copyright © 2017. Published by Elsevier Inc.

PY - 2017/10/1

Y1 - 2017/10/1

N2 - The blood oxygenation level-dependent (BOLD) fMRI response to neuronal activation results from a complex interplay of induced metabolic and vascular changes. Thus, its transients, such as initial overshoot and post-stimulus undershoot, provide a window into the dynamic relationships of the underlying physiological variables. In this study, we propose multi-echo fMRI as a tool to investigate the physiological underpinnings of the BOLD signal, in particular, and brain functional physiology, in general. In the human visual cortex at 3 T, we observed that the BOLD response is nonlinearly dependent on echo-time (TE) and the amount of nonlinearity varies during the entire time-course. Fitting a linear model to this nonlinear relationship resulted in a positive intercept at TE = 0 ms. The time-course of the intercept exhibited fast and slow modulations, distinctly different both from the BOLD response and cerebral blood flow (CBF). In order to shed light on the TE-dependence of the BOLD signal and the intercept time-course, we performed simulations based on a nonlinear two-compartmental BOLD signal model combined with the dynamic balloon model. The modeling suggests that the intercept time-course reflects a weighted sum of deoxyhemoglobin concentration and venous CBV signal changes. We demonstrate that only CBF-venous blood volume (CBV) uncoupling but not CBF-oxygen metabolism (CMRO2) uncoupling can fully account for our experimental observations. In particular, these results strongly argue for a slow evolution of the venous CBV together with stimulus-type-dependent CBF transients (the latter being tightly coupled with CMRO2) to be responsible for the BOLD signal adaptation during stimulation and for the post-stimulus undershoot. Thus, BOLD signal transients are composed of smoothed version of neuronal time-course as reflected in CBF and CMRO2 and secondary vascular processes due to biomechanics of venous blood vessels, and multi-echo fMRI in combination with modeling provides invaluable insights into these physiological processes.

AB - The blood oxygenation level-dependent (BOLD) fMRI response to neuronal activation results from a complex interplay of induced metabolic and vascular changes. Thus, its transients, such as initial overshoot and post-stimulus undershoot, provide a window into the dynamic relationships of the underlying physiological variables. In this study, we propose multi-echo fMRI as a tool to investigate the physiological underpinnings of the BOLD signal, in particular, and brain functional physiology, in general. In the human visual cortex at 3 T, we observed that the BOLD response is nonlinearly dependent on echo-time (TE) and the amount of nonlinearity varies during the entire time-course. Fitting a linear model to this nonlinear relationship resulted in a positive intercept at TE = 0 ms. The time-course of the intercept exhibited fast and slow modulations, distinctly different both from the BOLD response and cerebral blood flow (CBF). In order to shed light on the TE-dependence of the BOLD signal and the intercept time-course, we performed simulations based on a nonlinear two-compartmental BOLD signal model combined with the dynamic balloon model. The modeling suggests that the intercept time-course reflects a weighted sum of deoxyhemoglobin concentration and venous CBV signal changes. We demonstrate that only CBF-venous blood volume (CBV) uncoupling but not CBF-oxygen metabolism (CMRO2) uncoupling can fully account for our experimental observations. In particular, these results strongly argue for a slow evolution of the venous CBV together with stimulus-type-dependent CBF transients (the latter being tightly coupled with CMRO2) to be responsible for the BOLD signal adaptation during stimulation and for the post-stimulus undershoot. Thus, BOLD signal transients are composed of smoothed version of neuronal time-course as reflected in CBF and CMRO2 and secondary vascular processes due to biomechanics of venous blood vessels, and multi-echo fMRI in combination with modeling provides invaluable insights into these physiological processes.

KW - Journal Article

U2 - 10.1016/j.neuroimage.2017.07.034

DO - 10.1016/j.neuroimage.2017.07.034

M3 - Article

VL - 159

SP - 355

EP - 370

JO - Neuroimage

JF - Neuroimage

SN - 1053-8119

ER -