Research output

Computational Feature Analysis of Body Movements Reveals Hierarchical Brain Organization

Research output: Contribution to journalArticleAcademicpeer-review

Associated researcher

Associated organisations

Abstract

Social species spend considerable time observing the body movements of others to understand their actions, predict their emotions, watch their games, or enjoy their dance movements. Given the important information obtained from body movements, we still know surprisingly little about the details of brain mechanisms underlying movement perception. In this fMRI study, we investigated the relations between movement features obtained from automated computational analyses of video clips and the corresponding brain activity. Our results show that low-level computational features map to specific brain areas related to early visual- and motion-sensitive regions, while mid-level computational features are related to dynamic aspects of posture encoded in occipital-temporal cortex, posterior superior temporal sulcus and superior parietal lobe. Furthermore, behavioral features obtained from subjective ratings correlated with activity in higher action observation regions. Our computational feature-based analysis suggests that the neural mechanism of movement encoding is organized in the brain not so much by semantic categories than by feature statistics of the body movements.

    Research areas

  • AREA, BIOLOGICAL MOTION, EMOTION, FEAR, NEURAL MECHANISMS, NEURONS, PERCEPTION, RECOGNITION, REPRESENTATION, SINGLE, body, computational analysis, fMRI, movement
View graph of relations

Details

Original languageEnglish
Pages (from-to)3551-3560
Number of pages10
JournalCerebral Cortex
Volume29
Issue number8
Early online date1 Oct 2018
DOIs
Publication statusPublished - Aug 2019