A pulse wave propagation model to support decision-making in vascular access planning in the clinic

W. Huberts*, A. S. Bode, W. Kroon, R. N. Planken, J. H. M. Tordoir, F. N. van de Vosse, E. M. H. Bosboom

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The preferred vascular access for hemodialysis is an autologous arteriovenous fistula (AVF) in the arm: a surgically created connection between an artery and vein. The surgeon selects the AVF location based on experience and preoperative diagnostics. However, 20-50% of all lower arm AVFs are hampered by a too low access flow, whereas complications associated with too high flows are observed in 20% of all upper arm AVFs. We hypothesize that a pulse wave propagation model fed by patient-specific data has the ability to assist the surgeon in selecting the optimal AVF configuration by predicting direct postoperative flow. Previously, a 1D wave propagation model (spectral elements) was developed in which an approximated velocity profile was assumed based on boundary layer theory. In this study, we derived a distributed lumped parameter implementation of the pulse wave propagation model. The elements of the electrical analog for a segment are based on the approximated velocity profiles and dependent on the Womersley number. We present the application of the lumped parameter pulse wave propagation model to vascular access surgery and show how a patient-specific model is able to predict the hemodynamical impact of AVF creation and might assist in vascular access planning. The lumped parameter pulse wave propagation model was able to select the same AVF configuration as an experienced surgeon in nine out of ten patients. In addition, in six out of ten patients predicted postoperative flows were in the same order of magnitude as measured postoperative flows. Future research should quantify uncertainty in model predictions and measurements.
Original languageEnglish
Pages (from-to)233-248
JournalMedical Engineering & Physics
Volume34
Issue number2
DOIs
Publication statusPublished - Mar 2012

Keywords

  • Pulse wave propagation model
  • Lumped parameter model
  • Vascular access
  • Hemodialysis
  • Patient-specific modeling

Cite this