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Abstract

Operations Research (OR) can be defined as a scientific approach
to the solution of problems in the management of complex systems.
It uses quantitative methods to help decision makers design, analyse,
and improve the performance or operation of these systems. An im-
portant part of this, is defining and solving optimisation problems.
One can only be interested in finding the best solution, but often (in
practice) a combination of, or interaction between, the quality of the
solution and the computation time is important. Model-based algo-
rithms and heuristics have traditionally played a role in this, however,
data-based methods such as machine learning are increasingly used.
Hardware improvements are also not to be underestimated. A major
improvement in the computing power of conventional computers has
made problem solving methods more efficient over the past 40 years
and is still ongoing. This is currently being reinforced by the use
of GPU processors, the emergence of quantum computers and other
technological solutions such as photonic accelerators. This playing
field of OR problems and the use of machine learning and existing
and emerging hardware accelerations to define and solve them is the
topic of the field of ‘Computational Operations Research’, which is
discussed further in this article.

All rights reserved. No part of this publication may be reproduced, modified, stored in a

retrieval system or made public without the prior written permission of the author.



Rector Magnificus, ladies and gentlemen,

1 Introduction

Operations Research (OR) can be defined! as a scientific approach to the
solution of problems in the management of complex systems. It uses quan-
titative methods to help decision makers design, analyse, and improve the
performance or operation of systems. Organisations may be looking for a
very wide range of operational improvements, for example greater efficiency,
better customer service, higher quality or lower costs. Consider, for example,
parcel delivery. Many of these improvements are of interest here: how do we
route the vehicles, not only minimising the kilometres driven but also increas-
ing the chance of a successful delivery, what does the layout of a distribution
point look like, how do you use a package wall efficiently? The goal of the
OR professional is, together with clients, to find practical and pragmatic so-
lutions for operational, but also tactical and strategic, problems, often within
tight time limits.

The OR field was developed during and just after the Second World
War. During this War, research was conducted in England and the United
States into the efficiency of certain military operations. Many applications
and methodologies were developed in this environment that still form the
basis of OR. After World War II, OR grew in many other areas as well,
as scientists learned to apply its principles to the civilian sector, such as
manufacturing, logistics, and telecommunications. The development of the
simplex linear programming algorithm in 1947 [10] and the development of
computers over the next three decades, among other things, enabled OR to
solve problems with more and more variables and constraints. In addition,
the large amount of data required for such problems could be stored and
manipulated efficiently. But actually, this development has never stopped
and is now more timely than ever. Increasing computing power continues to
open up new possibilities for us, both in the use of new techniques and in
the size of the problems we can solve.

What kind of problems do we mean here? These are problems that can
be formulated as decision or as optimisation problems. In the example of
parcel delivery, the order of the delivery addresses has to be determined,
such that the travelling distance is minimal. An answer or decision must be

! According to the Association of European Operational Research Societies.
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Figure 1: Standard approach to OR problems in 6 steps.

found, that is the best over all possible answers or solutions. Often there are
many solutions possible. Another important element in these systems, that
potentially makes the problem difficult, is whether there is uncertainty. If the
environment is fixed and known, we speak of deterministic problems, where
combinatorial optimisation is the subject of research: find the best of many
possible solutions. Purely finding the optimal route of the parcel deliverer
is an example of this. If there is uncertainty in parts of the problem, we
speak of stochastic problems. In the example of parcel delivery, realise that
we now also take the traffic congestion into account in the planning. Here,
simulation, probability calculation and statistics play an important role in
solving the problem. We classify all these problems and techniques under
OR.

A standard approach to OR problems contains the following steps, see
Figure 1 (based on [40]):

1. Understand.
2. Model.
Feed.

- W

Build.

5. Solve & Analyse.



6. Validate.

The first two steps are extremely important within OR: understanding
the problem and translating the most important features into a model. This
often leads to interesting discussions with domain experts, who find all details
equally important.

The third step is often the most time consuming. In many cases, obtain-
ing, collecting and processing data takes by far the most time in a project.
(Classically, an attempt is made here to provide certain parameters in the
model with a specific value or a probability distribution.

The sequence of these first three steps is a classic fact that is developing
rapidly. More and more often, data is used directly at the start of this pro-
cess, and understanding and modelling is seen as a (semi-)automated process,
based on this data, where the model is created by artificial intelligence tech-
niques, also called AI. This process is adaptive in time by adding new data.
That is, when the data that is added to the model changes over time, the
model structure will automatically also change. The data is now increasingly
used directly to discover and (dynamically) record structure and (interactive)
behaviour of and within the model [22, 45].

The fourth and fifth step are the favourite part of many (colleague) sci-
entists. Developing the mathematical solution techniques, applying them to
the cases and analysing the outcome is the daily work of many OR colleagues.
The fourth step has traditionally received the most attention: the problem
solving methods. For mathematicians often also the most challenging: how
do you efficiently find the best or, usually, a good solution for a problem
with many possible solutions or with uncertainty. Here too, methods from
artificial intelligence play an important role. Or, perhaps it is actually true
that many techniques that the OR has been using for years are now classified
under Al

The last step is the most forgotten step. Often one is very satisfied with
the solution they have found and forget to see whether it actually works in
reality. Also, it should not be forgotten to connect the different steps with
each other. If the model or the data in the model contains uncertainties or
does not contain all the details, then it makes no sense to have a problem
solving methodology that takes a lot of time to arrive at the optimal answer.
The optimal solution based on incomplete or incorrect data is not optimal.
Often it still requires iteration steps, with input from human experts, to
arrive at a good answer. The expert, or problem owner, then receives the



answer from the model, sees from his experience where issues are, feeds them
back to the model and asks for a new solution.

An important development within this whole process, is that the com-
plexity of the underlying systems that need to be optimised is increasing,
both in size and in mutual dependence, and that behaviour (of people) is
increasingly an underlying phenomenon that is difficult to model. Also, the
objectives of a system are not always unambiguous, which leads to multi-
objective problems. Where, as an example, you previously simply minimised
costs, whereby a lower limit was set on the performance, we are now increas-
ingly interested in (all) balanced combinations in which trade-offs between
costs and performance for multiple underlying systems are balanced, the so-
called Pareto frontiers.

This complexity forces the OR professional to make choices: Can this
problem still be modelled? Should I cut it into pieces? Should I let an Al
system model it? Can it still be calculated in a reasonable time?

In this article I discuss the observation that OR has traditionally encom-
passed analytical tools from many different disciplines and is still expanding.
The development of the possibilities in problem solving methods is closely
related to the development of computers that make calculations possible.
Both hardware developments (better processors, CPU, GPU, quantum com-
puting), and software developments (solvers, Al, machine learning), have
peaked and are partly intertwined with developments in OR. In order to
explain the scope of the field of Computational Operation Research, the re-
search directions and the ambitions, I will further discuss the three building
blocks: (1) the methodologies and the underlying building blocks of these
methodologies, (2) the hardware and its development and (3) the measure-
ment of efficiency of the whole. In the last section, these field will come
together to define the field of research.

2 Measuring Efficiency

First, we discuss the efficiency aspect: how do you determine the efficiency of
a problem solving methodology, including the underlying hardware? Suppose
you have a problem that you want to solve. Solving here means finding the
solution to the problem. For problems that are formulated mathematically,
it often involves finding an algorithm (A), a recipe or step-by-step plan to
use for the problem (P) to find the (best) solution (S*):
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You also do this when you try to solve the Sudoku in the newspaper in
the morning. Even then you will probably follow an (implicit) step-by-step
approach. The better this recipe, the faster you will solve the Sudoku. There
is a branch of mathematics that deals with the question of how expensive
an algorithm is, or how many steps does this algorithm take to arrive at
the desired solution for a specific instance of the problem. This branch of
mathematics is called ‘computational complexity theory’. In addition to the
number of steps required, also computation time and amount of memory
required to solve the problem on a computer are important. For a problem
of size n, you can determine the number of steps for a deterministic problem,
for example f4(n), or indicate in which order of magnitude the computation
time falls, via the large O notation. For example, the number of steps can
be linear in n, O(n), or exponential in n, O(2"). It is then interesting for
these mathematicians to search for algorithms that find the answer in as few
steps as possible, so, find that A* that minimises f4(n):

P, — A" — S*.

For some problems, however, the number of steps to find the best answer
is so large that it is not feasible in practice. Consider, for example, the
travelling salesman problem, which is a problem that the parcel deliverer
wants to solve. A travelling salesman must visit n cities and return home
and wants to make the distance he has to travel as short as possible. One
possible algorithm to find the shortest tour, is to calculate the distance for all
possible routes and to choose the shortest one. How often should a distance
be calculated? There are n! =n-(n—1)-(n—2)----- 1 possible routes. For
n=20 that means 51090942171709400000 (=~ 5.1-10'?) possible routes. If you
have a computer that can calculate 1 million solutions every second, you are
calculating for 1.6 million years. For 70 cities, the number of possibilities is
about 10'%, which is 1 Googol.

In OR, we are therefore more interested in algorithms that find a good
solution in reasonable time, rather than the right or best solution. These
kinds of algorithms are also called heuristics (from the Greek find, ebploxw,
also think of Aristotle with his eureka, ‘I found it”). We could note this with

P, — H—~= S*.
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Figure 2: TS paths for various algorithms.

This means that we have a problem of magnitude n and a heuristic that yields
an approximation of the solution. Where it was previously important to look
for an algorithm in which the number of steps is minimal, here we will look for
a heuristic within a framework of three performance indicators: how good is
the answer, how much time is needed, or how many steps are needed and how
do the first two interact? In Figure 2, for a number of (fictional) heuristics
the course over time through the solution space, so called Time-Solution
quality (TS) paths, are shown. The best solution would yield the value
indicated by the green line (S*). This value is usually unknown. All other
colours are various different heuristics or heuristic-hardware combinations.
The difference between black (5) and yellow (4) is obvious: black gives much
faster, much better solutions, although they eventually converge to the same
solution, which is not the optimal solution. Gray (3) initially performs even
better, but converges to a worse solution. One question now might be, which
of these heuristics is preferable. Blue (1) and Orange (2) seem clear losers
and Black seems to be preferable to Yellow. The difference between Gray
and Black is more subtle and depends, for example, on the time scale on the
horizontal axis. If the point where black and grey intersect is after a few
seconds or minutes, then Black is probably preferable. If this intersection
takes hours, days, or weeks of calculation, then Gray might be better. You



may also wonder whether you can combine Gray and Black.

Of course, these T'S-paths hold for a heuristic for specific input (z) and
parameters (#). It is interesting whether the course of the paths for the
different input (x, ) deviates strongly. Interesting for researchers with a
more theoretical slant is to prove that a specific heuristic (i) never deviates
more than a certain fraction («) from the best possible answer.
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Figure 3: Classification of the Classical Optimisation Methods, from [§].

3 Methods and Computing Pipelines

The second part is about the methods and algorithms to solve a problem.
Generic, we can distinguish a number of problem solving methods [8], as
shown in Figure 3. At the highest level, there is the difference between ex-
act methods and approximation methods. We have already indicated that
most exact methods, which find an optimal solution and guarantee their op-
timality, are not suitable for solving large problems in most cases, although
the scope of these methodologies is expanding due to the development of
the computers. The approximation methods can be further divided into
approximation algorithms and heuristic algorithms. The first give an ap-
proximation guarantee, in the worst case they will not deviate more than a
percentage « from the optimal solution. Heuristic algorithms do not provide
this guarantee. They are designed for a specific problem and perhaps even



for a specific problem instance. This class again consists of two sub-fields,
the meta-heuristics and the problem-specific heuristics. Meta-heuristics are
general purpose methods and can therefore be used for multiple problems.
They often use a specific search method to navigate a solution space. The
cleverness here is in the way they move through this space, often based on
natural processes. Mostly, these methods work in two steps [27]:

1. Diversification: Randomly search for areas of the search space that are
promising;

2. Intensification: Take one or more of these areas and look there in more
detail for a better solution.

Problem-specific heuristics use characteristics of the problem, identified by
the modeller, to limit the search space and then search (further) for a good so-
lution. Due to this targeted reduction of search space, these problem-specific
heuristics are often faster to use, but more time-consuming to develop.

From the application point of view, there are good reasons to prefer
problem-specific heuristic methods [44]:

1. Acceptance — “People would rather live with a problem they can not
solve than accept a solution they can not understand” (Woolsey and
Swanson). The adoption and use by decision makers of decision rules
is likely to be facilitated by an understanding, at least intuitively, of
how the rules work.

2. Show improvement compared to current practices - decision makers are
often (reasonably) satisfied with a heuristic solution if it produces bet-
ter results than the current approach. The ‘best solution’ is unknown
and often out of sight.

3. Fast results - Sometimes fast, reasonable results are needed and heuris-
tics can be developed and used faster than (complex) optimisation rou-
tines.

4. Robustness — Heuristics may be less sensitive to variations in problem
characteristics and data quality. From [2] we learn: “Optimal solutions
are vulnerable, meaning they can be extremely sensitive to changes in
the data. If the problem description changes slightly, to restore an opti-
mal solution, generally the entire problem (which was computationally



expensive to solve in the first place) must be solved again. On the
other hand, heuristics often divide the problem and thus ignore inter-
partition relationships. This allows updates to be restricted to only
the affected partition. Recalculation can be done locally and there-
fore faster.” In addition, some constraints are flexible in practice and
a heuristic method can more easily accommodate this flexibility.

Where I indicated earlier that meta-heuristics can often be distinguished
in two steps: diversification and intensification, we can also indicate a number
of techniques that often serve as building blocks for meta- and problem-
specific heuristics [44]:

Generate random (feasible) solutions: randomly select a solution and
evaluate the score of this solution;

Problem decomposition: cut the problem into parts and solve each of
these parts separately;

Inductive methods: define a problem solving method for a simpler ver-
sion of the problem and try to translate it to the original problem;

Reduction: reduce the solution space;

Approximation methods: manipulate the input in such a way that a
simpler problem arises, for example by linearising a continuous function
piece-wise;

Constructive methods: generate a (good) solution step-by-step;

Local improvement methods: search for a better solution close to a
previously found solution through a few simple adjustments;

Perturbation: slightly change a solution, so that another feasible (or
not) solution (‘neighbouring solution’) is created.

For example, you can say that the method ‘Tterated Local Search’ [26]
is a combination of (1) construct an initial solution, (2) perform a local
improvement, (3) perform a perturbation, (4) construct a feasible solution,
and then repeat steps (3) and (4). This is shown schematically in Figure 4.
We also call this kind of schemes a ‘computing pipeline’: a process description
of the steps you take to arrive at (an approximation of) the optimal or a good
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Figure 4: Overview Iterated Local Search steps in a computing pipeline.

solution to a problem. Another method, Grasp [15, 16], is even simpler,
repeating the steps (1) generate an arbitrary solution and (2) construct a
feasible solution from this solution and remember the best solution of these
repetitions. Simulated annealing [48, 23] also starts with an initial solution
and a local improvement methodology, where, with a decreasing probability
during the process, also deteriorations are accepted to ensure diversification.

In the search for a solution, lessons can be learned from nature. Here also,
creatures search or move in a space through a specific structure or movement.
For constructive and local improvement methods, the process can be learned
from evolutionary processes. If it is about learning methods, inspiration can
be drawn from neural processes. Movement through space can be learned
from swarms of animals and for repair and protection solutions one could
look at immune systems of animals and plants. An overview of methods can
be found in Figure 5.

In summary, heuristics are important for solving OR problems in prac-
tice. These heuristics can often be constructed from standard building blocks.
With these building blocks you can then build computing pipelines at every
level of detail, where specific parts of these pipelines can be mapped to dif-
ferent types of hardware. Which leads me to the next topic.

4 Supporting Hardware

Part three of this article is the computer side: what kind of computers do
we have available and how does that affect the algorithms and the perfor-
mance? Although it is not always clear to the end user, a lot of progress
has been made at the hardware level. The classical CPU (Central Processing
Unit) is much more powerful than before and, based on multiple cores and
threats, increasingly capable of (virtual) parallelisation. The GPU (Graphics
Processing Unit) is naturally ideally suited for parallelisation, but not for all

10
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tasks and requires more power. We also have the rise of quantum computers,
photonic hardware and the (further) development of classical supercomput-
ers.

A CPU is the electronic heart of the computer, that executes instruc-
tions that are contained in a computer program. The CPU performs basic
arithmetic, logic, control, and input/output (I/O) operations specified by
the instructions in the program. CPUs are called general purpose processors
because they can perform almost any type of computation, making them less
efficient and less costly in terms of power and chip size. A basic CPU works
sequentially. This sequential working is good for linear and complex calcu-
lations, but not for simpler and multiple calculations that require parallel
calculations. Parallelisation here means that you put several CPU units to
work side by side, but that has an upper limit of a few tens or hundreds. This
means that there are still tasks that can be performed just fine on a CPU and
may be preferable. Examples include machine learning algorithms that do
not require parallel computing such as vector machine algorithms, algorithms
that support time series data, recurring neural networks, and algorithms that
include large-scale branching?.

A GPU is a specialised processor designed to speed up the creation of
graphics. A GPU can be present on a video card or embedded on the moth-
erboard. Modern GPUs are very efficient at manipulating computer graphics
and image processing. Their very large scale parallel structure makes them
more efficient than CPUs for algorithms that need to process large blocks of
data in parallel. They are used for Machine Learning applications that can
take advantage of the parallel processing capabilities. GPUs are generally
designed with specific algorithms in mind. It is therefore also quite difficult
to program an algorithm for efficient execution on a general GPU.

The specific performance advantages for each of these hardware types
mean that hybrid solutions can and should also be looked at, where different
sub-tasks are assigned to the best processor [24].

In addition to machine learning, research is also being done on paralleli-
sation of search algorithms, as presented in the previous section. For exam-
ple, in [11] parallel high-performance versions of so-called adapted Antlion
and Grasshopper meta-heuristic algorithms are examined to solve Travelling
Salesman problems. The authors of [34] look at a GPU accelerated island-

?Based on article on ThinkML.ai: ‘CPU vs GPU in Machine Learning Algorithms:
Which is Better?’
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model genetic algorithm and in [12] they look at a 3D sensor placement
problem, taking advantage of a GPU’s parallelisation capabilities.

Especially for Neural Networks, more and more use is being made of new
hardware accelerations such as FPGA (Field Programmable Gate Arrays),
reprogrammable circuits, and ASIC (Application-specific integrated circuit),
non-programmable but task-specific circuits [35]. The NPU (Neural Process-
ing Unit) and TPU (Tensor Processing Unit) are again specific versions of
this.

In this context you should also think of fully optical neural networks
[42] and quantum photonic processors [46] that can perform Gaussian Boson
Sampling as their only task for the time being. Gaussian Boson Sampling
can be used for example to find dense sub-graphs, such as cliques and graph
similarities [6].

Another problem-specific hardware is an optical Ising machine. Several
researchers and labs around the world are developing these on a larger scale
now [4, 5, 41]. Ising problems can be solved with these machines, defined by:

1 N N
min HIsing = —5 Z JijUiO'j - Z biO'ia

17,4<] 7

where the spins o; € {—1, 1} must be found, given the interaction matrix J
and the bias b. This Ising problem is an equivalent of the QUBO problem:
min 27 Qxz,
with € {0,1}". The transformation z; = H;” makes the two problems
equivalent. There exists Ising or QUBO formulations for many well-known
optimisation problems [17, 28] and applications of all kinds can be found in
recent literature, from financial [36], to machine learning [32], logistics [31,

39] and network optimisation [37, 38].

Another hardware solution for Ising and QUBO problems is the quantum
annealer, the best known version of which is offered by the Canadian D-Wave
Systems. Here, quantum annealing, once presented by [21], is used to solve
optimisation problems in the form of an Ising or QUBO formulation [30].
And with that we have arrived in the quantum domain.

Quantum Computer: a new computer that can solve specific problems in
seconds, while the current generation of computers would take many years for
solving that same problem. At least, that is what is promised by the scientists

13



who are working on building the Quantum Computer (QC), among others in
Delft, The Netherlands. This QC uses quantum mechanical phenomena, such
as superposition and entanglement, to perform operations. Superposition is
the most famous property used by the QC. Where classical computers require
the data to be encoded in binary digits (bits), each of which is always in one
of two states (0 or 1), the QC uses quantum bits, called qubits, which can be
in both states at the same time, or actually, in a complex linear combination
of the two. This state of a qubit is called a superposition. However, when the
qubit is observed, it will appear, seemingly randomly, as a 0 or 1. The other
property used is entanglement. Here, the states of two particles, each of which
may be in a different location, are related to each other. The QC will not be
the answer to all problems. In terms of complexity, a new group of problems
will arise, BQP, Bounded-error Quantum Polynomial time [3], an extension of
P, containing problems that can be solved by the Quantum Computer, with
at most a 1/3 probability of error. One of the most well-known problems in
BQP is integer factorisation, which is why different types of cryptography
will no longer offer the promised security. In terms of development, we are
just at the beginning with the QC. The current generation only has a limited
number of qubits, that also have a limited lifespan and are of limited stability.
Applications are already being worked on for this generation of hardware, the
so-called Noisy Intermediate-Scale Quantum (NISQ) Computers. The most
important areas of application where QC can already add value over classical
computing are expected to be chemical simulations, machine learning and
optimisation.

We can currently distinguish two paradigms in quantum computing: gate-
based quantum computers (GBC) and the aforementioned quantum anneal-
ers (QA). GBC are most similar in operation to the current generation of
computers; they are capable of performing operations (gate operations, such
as AND, OR) on specific qubits or on multiple qubits at the same time. This
allows for actual programming, which is often visualised via circuit diagrams,
such as in Figure 6. Here each line represents a qubit and time runs from
left to right, with the operations, called gates, represented as blocks.

Well-known algorithms for this paradigm are Grover’s algorithm [19],
which can find a specific element in an unsorted set, Shor’s algorithm [43],
which solves the discrete logarithm problem and the integer factorisation
problem in polynomial time, HHL [20], for solving systems of linear equations,
and VQE [14] and QAOA [13], both variational algorithms for, among other
things, optimisation. In a variational algorithm, parameters are assessed for

14
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Figure 6: Example quantum circuit.

a quantum circuit in a collaboration between a quantum and a conventional
computer, with which the best solution can be found.

Quantum annealing works very differently. The evolution of a quan-
tum state on the quantum processor of D-Wave is described by a time-
dependent Hamiltonian (H (t)), consisting of the original Hamiltonian (Hy),
whose ground state is easy to create, the equal superposition, and the final
Hamiltonian (H;), whose ground state encodes the solution of the current
problem, via the QUBO. This system is initialised in the ground state of the
original Hamiltonian. The adiabatic theorem says that if the system evolves
according to the Schrodinger equation, and the minimum spectral gap of
H(t) is not zero, then for T" large enough H(7T) will converge to the ground
state of H;. Although we will not go into the technical details here, it is
good to know that it is usually not possible to estimate a time 7' to ensure
that the system always evolves into the desired state. For some classes of
problems, the optimal annealing time has been experimentally determined
[1]. There is in general no guarantee of optimality.

Also for QC it holds that each type can solve certain problems (proba-
bly) more efficient. However, in general hybrid solutions must be designed
to solve practical problems. This applies more generically to the different
hardware types discussed. The specific performance advantages for each of
the hardware types mean that hybrid solutions can and should be considered,
in which different sub-tasks are assigned to the best processor.

We are on the eve of a hardware revolution. Hardware that can solve
specific problems much faster is approaching. It is becoming increasingly
important to think about hybrid approaches: which part of the problem do
we allow which hardware to solve?
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5 Computational Operations Research

How does this all come together in the research field ‘Computational Opera-
tions Research’? Before that, let us first talk about some current trends. As
said before, OR uses quantitative methods to help decision makers design,
analyse and improve the performance or operation of systems. However,
these systems have been subject to changes in recent years. We are deal-
ing with increasingly complex systems, which are also mutually dependent,
so-called ‘systems of systems’. Think, for example, of ICT and energy sys-
tems, ICT and automotive systems or logistics systems. Next, these systems
can also have conflicting objectives and an ever-growing amount of data is
available, introducing additional sources of complexity and uncertainty.

In addition, the systems must become increasingly independent and adap-
tive; they have to adapt themselves to changes and provide optimal settings
and control, the so-called self-X or self-* methods and systems. Important
from the control view of this, is the frequently asked question: do we prefer
‘central control or completely decentralised, via autonomous agents’? Models
themselves are also becoming more autonomous, as indicated earlier, where
they are fed from the data directly to allow structures and (interactive) be-
haviour to be established. These trends on the demand side are putting a
lot of pressure on computational efficiency.

On the supply side, we have another important trend, which is the devel-
opment of the hardware, especially the emergence of photonic and quantum
computing. It is important that OR professionals are aware of these devel-
opments, understand what these developments mean for their field and that
students are already trained with an awareness of these developments. Not
only the students in the technical fields, but also students in gamma fields
who solve problems with computers.

The idea of the research field is that we bring together as many techniques
as possible, starting from traditional mathematics and computer science, and
linking them to hardware evolution and thus to physics, as depicted in Figure
7. The aim here is achieving practically applicable computational efficiency
for solving optimisation or decision problems in the complex systems men-
tioned earlier, whether or not with uncertainty. In the near future it will no
longer be sufficient to use (only) a heuristic method or solver with a conven-
tional computer. We have to look at the most efficient combination of smart
methods and available hardware.

We have summarised this more specifically under the name ‘Quantum en-
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Figure 7: Scope of Computational Operations Research.

hanced decision intelligence’ as part of Computational Operations Research.
The need for the field of ‘Decision Intelligence’ is also recognised elsewhere.
Gartner names Decision Intelligence as the top trend of 20223 and describes it
as ‘a wide range of decision-making techniques bringing multiple traditional
and advanced disciplines together to design, model, align, execute, monitor
and tune decision models and processes.” We combine this with the right
allocation of supporting (quantum) computing technology. It is worth men-
tioning here that we are not specifically looking for quantum supremacy, but
use the quantum computer (and other hardware) wherever possible as a tool
to find improvements for TS paths. To this end, we try to create new com-
puting pipelines for all kinds of problems, improving the aforementioned TS
path. This may require redesigning the entire pipeline, not only for the prob-
lem solving methodology, but also including data processing and modelling
step, for existing problems, to get a formulation that might already have a
better TS path on a classic computer or that is better suitable for quantum
computers or other hardware and therefore gets a better T'S path. Figure 8
shows this schematically, two alternative pipelines to facilitate applications
of quantum computing.

An example: the problem of ’Sparse sensor placement for reconstruc-
tion’ as described in [7], can be solved classically by performing a number

3Note that Autonomic Systems themselves are also one of their current top trends.
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of successive steps: Singular value decomposition - QR factorisation - Col-
umn Pivoting - Solving a Linear System. We can now take an alternative
pipeline: Determine mutual information all sensors - solve the Quadratic In-
teger Programming Problem as proposed by [33]. The latter is classically
difficult to solve, but very suitable for a quantum computer, with which a
more favourable TS path can still be found.

An interesting development related to the TS-paths is the need to com-
pare different quantum hardware [25]. Purely the number of qubits does
not say everything, which leads to, for example, Quantum Volume [9] and
CLOPS [49] as measures, a combination of the number of qubits, degree of
noise, number of gates per second, etc. Another way to quantify the perfor-
mance of QC are the application-oriented benchmarks, in which a specific
problem is identified, solved and checked how quickly or well that happens.
An example of this is the Q-Score developed by ATOS [29]. This score is
determined by the approximate solutions of the Max-Cut problem for spe-
cific graphs, (IV, %) Erdos-Rényi graphs, for increasingly larger graphs. The
largest N for which a solution can be found that is clearly better than a
randomly obtained solution is called the Q-score. We have calculated this
score for the D-Wave hardware [47] and introduced a time factor for this.
Note that this score is therefore not only hardware dependent, but depends
on the combination of methods, techniques and hardware.

This brings me to the end of this article. The title was ‘Searching for
Optimisation’. I hope you now see that this title can be interpreted in two
ways. Search techniques are very important in optimisation as a means to
find a good solution. In addition, within OR, together with our colleagues in
adjacent, and sometimes partly overlapping, knowledge areas, we are looking
for ways to improve our tool set, in order to be able to solve problems in
business and society even more efficiently. This increasingly demands a multi-
disciplinary approach, connecting OR with computer science, physics and
other fields.
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