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� We present cross-database evaluation for classification of epileptic seizures using 5 EEG databases.
� We studied the effect of adaptive median feature baseline correction (AM-FBC), smoothing of train

and test data and post-processing of classifier output.
� AM-FBC plays a significant role to overcome inter-database variation of feature distribution.

a b s t a r a c t

Objective: In long-term electroencephalogram (EEG) signals, automated classification of epileptic sei-
zures is desirable in diagnosing epilepsy patients, as it otherwise depends on visual inspection. To the
best of the author’s knowledge, existing studies have validated their algorithms using cross-validation
on the same database and less number of attempts have been made to extend their work on other data-
bases to test the generalization capability of the developed algorithms. In this study, we present the algo-
rithm for cross-database evaluation for classification of epileptic seizures using five EEG databases
collected from different centers. The cross-database framework helps when sufficient epileptic seizures
EEG data are not available to build automated seizure detection model.
Methods: Two features, namely successive decomposition index and matrix determinant were extracted
at a segmentation length of 4 s (50% overlap). Then, adaptive median feature baseline correction (AM-
FBC) was applied to overcome the inter-patient and inter-database variation in the feature distribution.
The classification was performed using a support vector machine classifier with leave-one-database-out
cross-validation. Different classification scenarios were considered using AM-FBC, smoothing of the train
and test data, and post-processing of the classifier output.
Results: Simulation results revealed the highest area under the curve-sensitivity-specificity-false detec-
tions (per hour) of 1–1–1–0.15, 0.89–0.99–0.82–2.5, 0.99–0.73–1–1, 0.95–0.97–0.85–1.7, 0.99–0.99–0.9
2–1.1 using the Ramaiah Medical College and Hospitals, Children’s Hospital Boston-Massachusetts
Institute of Technology, Temple University Hospital, Maastricht University Medical Centre, and
University of Bonn databases respectively.
Conclusions: We observe that the AM-FBC plays a significant role in improving seizure detection results
by overcoming inter-database variation of feature distribution.
Significance: To the best of the author’s knowledge, this is the first study reporting on the cross-database
evaluation of classification of epileptic seizures and proven to be better generalization capability when
evaluated using five databases and can contribute to accurate and robust detection of epileptic seizures
in real-time.

� 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Epilepsy is the fourth most common neurological disorder,
which affects 65 million people of all ages around the world
(Adeli et al., 2003; Gotman, 1982; Sirven, 2017). A sudden dis-
charge of electrical activity in the brain causes temporary brain
dysfunction, which is referred to as a seizure and recurrent sei-
zures lead to epilepsy (Gotman, 1982; Nordqvist, 2017). The elec-
troencephalogram (EEG) signal contains clinically related
information on neural, physiological and pathological conditions
of brain disorders. For epilepsy patients, long-term monitoring of
EEG signals is essential for pre-surgical evaluation, which is found
to be a challenging task as it requires manual intervention (Adeli
et al., 2003; Acharya et al., 2012; Andrzejak et al., 2001;
Blumenfeld, 2012; Hopfengaertner et al., 2014). Automated seizure
detection is desirable in long-term EEG because that surrogate the
manual intervention and saves experts time, improves pre-surgical
evaluation and speeds up the diagnosis process. Existing studies
have validated their algorithm on the same database but not on
other databases to prove the generalization capability of the algo-
rithm. Seizure detection algorithm would be more benefited when
it is validated on multiple EEG databases with a good number of
seizures events. Therefore, to overcome this gap, we present an
algorithm for cross-database evaluation for classification of epilep-
tic seizures using five EEG databases. Such cross-database
approach also helps when insufficient epileptic seizures EEG data
is available to build a seizure detection model.
1.1. Related background

Several studies have been proposed in the past for classification
of epileptic seizures (Acharya et al., 2012; Aydın et al., 2009;
Bogaarts et al., 2014; Gotman, 1982; Logesparan et al., 2015;
Raghu et al., 2019a, 2016). The EEG signals from neonatal and adult
patients were considered to develop a patient-independent seizure
detection model which belongs to the same database. It was
reported in Bogaarts et al. (2016b) and Logesparan et al. (2015),
feature normalization procedure based on the median decaying
memory (MDM) method increases the seizure detection perfor-
mance. Another feature baseline correction (FBC) method called
average non-seizure feature values (ANSFV) uses the first 3 min
of the seizure and artifact-free EEG to correct the feature baseline
(Bogaarts et al., 2014, 2016a). A patient-specific seizure onset
detection model was proposed using wavelet decomposition based
morphology and spatial features using Children’s Hospital Boston-
Massachusetts Institute of Technology (CHB-MIT) database (Shoeb
et al., 2004).

Optimized deep neural network architecture was applied on
EEG signals to perform binary, three-class, and five class classifica-
tion of epileptic seizures (Hussein et al., 2019). Frequency–mo-
ment signatures based showed better seizure detection results
using 12 patients EEG (Khamis et al., 2013). Spectral and temporal
features extracted in five frequency bands classified using support
vector machines (SVM) classifier (Chan et al., 2008). Zheng et al.
(2014) proposed seizure prediction model using phase synchro-
nization information of intrinsic mode functions extracted by
bivariate empirical mode decomposition. A prospective multi-
center study was performed in three epilepsy monitoring units
including 205 patients (Fürbass et al., 2015). Further, the study
was extended on retrospective EEG data of 310 patients and the
publicly available CHB–MIT dataset. A multimodal automatic sei-
zure detection algorithm showed the high sensitivity with full
and reduced electrode montages (Fürbass et al., 2017). Integrated
power in the frequency band 2.5–12 Hz calculated from the
short-time Fourier transform (STFT) approach using adaptive
thresholding was applied on 194 temporal-lobe epilepsy patients
(Hopfengaertner et al., 2014).

Wavelet packet transforms (WPT) based combined seizure
index (CSI) (Zandi et al., 2010) and harmonic WPT (Vidyaratne
and Khan, 2017) features based models were proposed for seizure
classification. Discrete wavelet transforms (DWT) based statistical
features model was introduced using the classifier using Bern-
Barcelona dataset and the University of Bonn (UBonn) databases
(Chen et al., 2017). Rational STFT (DSTFT) based approach yielded
good classification results using multi-layer perceptron (MLP) clas-
sifier. Matrix determinant feature using the SVM classifier was pro-
posed using the Ramaiah Medical College and Hospitals (RMCH)
and UBonn databases (Raghu et al., 2019a). A threshold-based sei-
zure detection method was proposed using the minimum variance
modified fuzzy entropy (Raghu et al., 2018). Recently, deep learn-
ing algorithms have been used for classification of normal, pre-
ictal, and seizure activities (Acharya et al., 2018; Ullah et al.,
2018; Zhou et al., 2018). Further, promising results were obtained
using entropies like approximate entropy (Srinivasan et al., 2007;
Kumar et al., 2014), weighted permutation entropy (Tawfik et al.,
2016), log energy and norm entropy (Raghu et al., 2016), sigmoid
entropy (Raghu et al., 2019c), Renyi, spectral, Shannon and wavelet
entropies (Pravin Kumar et al., 2010; Srinivasan et al., 2005; Wang
et al., 2011; Raghu and Sriraam, 2017) for seizure detection.
Acharya et al. (2013) have reviewed articles related to computer-
aided diagnostic systems to automatically classify normal and
abnormal activities using less number of features. A review on
wavelet-based EEG processing for automated detection of epileptic
seizures was reported in Faust et al. (2015). A systematic review on
autonomic symptoms and signs during epileptic seizures which
includes cardiovascular changes, respiratory manifestations, gas-
trointestinal symptoms, cutaneous manifestations, sexual and gen-
ital manifestations, and urinary symptoms was performed
(Baumgartner et al., 2019).

The post-processing of the classifier output has gained attention
using a Kalman filter (Bogaarts et al., 2014), a central linear moving
average filter (MAF) (Temko et al., 2011), and MAX operator with a
MAF (Ahmed et al., 2017) for seizure detection with improved per-
formance. It was evident from the literature that the SVM classifier
has been promising classification tool for epileptic seizure detec-
tion (Shoeb et al., 2004; Subasi and Gursoy, 2010; Temko et al.,
2011; Bogaarts et al., 2014, 2016a,b; Ahmed et al., 2017; Sriraam
and Raghu, 2017; Raghu and Sriraam, 2018).

The proposed study used two features called successive decom-
position index (SDI) and matrix determinant (MD), which were
proposed by our group in Raghu et al. (2019b,a). The SDI was eval-
uated on the RMCH, CHB-MIT and the Temple University Hospitals
(TUH) databases in Raghu et al. (2019b) and MD was tested on
UBonn and RMCH databases in Raghu et al. (2019a). Further, adap-
tive median feature baseline correction (AM-FBC) was proposed in
(Raghu et al., Unpublished results) to correct inter-subject varia-
tion in feature distribution for intensive care unit (ICU) EEG record-
ings that were collected fromMaastricht University Medical Centre
(MUMC). In the same study, post-processing of classifier output
proven to be ideal to improve the classification results. Above-
mentioned methods were used in the present study to propose a
cross-database framework for seizure detection.

Even though multiple databases were used in Vidyaratne and
Khan (2017), Raghu et al. (2019a), Chen et al. (2017), Bogaarts
et al. (2016b), and Fürbass et al. (2015) for epileptic seizure classi-
fication, the cross-database framework was missing for the gener-
alization ability of the algorithm. Therefore, the present study
proposes cross-database evaluation using five EEG databases for
classification of epileptic seizures driven by AM-FBC, smoothing
of the train and test data and post-processing of the SVM classifier
output.
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1.2. Importance and contributions of proposed study

Importance of cross-database validation are: (1) Cross-database
algorithm can be used when sufficient epileptic seizures EEG data
is not available to build a seizure detection model on new EEG
recordings, (2) Cross-database evaluation confirms the generaliza-
tion capability of the developed algorithm.

The followings are the contributions of our study: (1) AM-FBC
was used to reduce the inter-subject and inter-database variation
in the feature distribution, (2) Studied the effect of smoothing of
the train and test data, (3) Post-processing of the SVM classifier
output, and (4) Most importantly, cross-database evaluation was
proposed using five EEG databases.

2. Materials and methods

2.1. Proposed method

Fig. 1 depicts the flow of the cross-database evaluation for clas-
sification of the epileptic seizure using five ðN ¼ 5Þ databases. Ini-
tially, the EEG recordings were pre-processed and two features
(SDI and MD) were extracted. First, FBC was applied to the subjects
level and then to the database level. Smoothing of the train and test
data was applied before the SVM classifier was trained with leave-
one-database-out cross-validation approach. The trained SVM clas-
sifier was tested on the left out database and post-processing was
applied using a MAF. The same procedure was repeated five times
until all the databases were used both training (ðN � 1Þ times) and
testing (1 time).

2.2. Clinical EEG recordings

The cross-database evaluation was performed using five data-
bases obtained from the RMCH, CHB-MIT, TUH, MUMC, and UBonn
EEG recordings.

2.2.1. RMCH
The first EEG database used for the cross-database framework

was from the RMCH, Bengaluru, India after ethical approval was
obtained from the RMCH ethics committee to use these EEG
recordings for research purpose. The RMCH database was recorded
using the International 10–20 system configuration at a sampling
rate of 128 Hz using Galileo Suite NB Neuro digital EEG system.
This unipolar EEG was recorded using the following 19 scalp elec-
trodes: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4,
T6, O1, and O2. Reference electrode placed at the ear was used as
reference for unipolar EEG. Only EEG recordings from epileptic
patients were used for this study, which consists of 115 subjects
(67 male and 48 female) ranging between 2.5 to 75 years. Two
experts at the RMCH visually marked EEG as non-seizure and sei-
zure segments. The RMCH database consists of 162 seizures (ap-
proximately 4.36 h of seizure data) from 115 subjects with the
recording duration of each patient varied from 20 min to 3 h.

2.2.2. CHB-MIT
The second database used for the cross-database framework

was obtained from the CHB-MIT1 EEG database which is available
in Physionet repository (Shoeb et al., 2004; Shoeb and Guttag,
2010). The CHB-MIT database is one of the largest open source
EEG databases with 844 h of data from the 23 patients recorded at
a sampling rate of 256 Hz. The CHB-MIT database was recorded
using the International 10–20 system bipolar montage electrode
placement with the following 23 channels: FP1-F7, F7-T7, T7-P7,
1 http://www.physionet.org/pn6/chbmit.
P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FZ-CZ, CZ-PZ, FP2-F4, F4-C4,
C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, P7-T7, T7-FT9, FT9-
FT10, FT10-T8, and T8-P8.

2.2.3. TUH
The third database was obtained from the TUH2 EEG resource

(Database, 2016; Obeid and Picone, 2016), which includes EEG from
focal non-specific, generalized non-specific, simple partial, complex
partial, absence, tonic, tonic-clonic, and myoclonic seizure. This
unipolar EEG signal was recorded using the International 10–20 sys-
tem electrode configuration at a sampling rate of 250 Hz. For the
study, 222 seizures from 316 subjects were considered from massive
EEG recordings. The electrode placement in the TUH database was
the same as in the RMCH database.

2.2.4. MUMC
The fourth database was obtained from the Department of Clin-

ical Neurophysiology, MUMC, Maastricht, The Netherlands. The
MUMC EEG database was used for research purpose after approved
by the hospital ethics committee. This database consists of 40 rou-
tine EEG registrations recorded at the intensive care unit. The
MUMC scalp EEG recordings were recorded using BrainLab EEG
recording system at a sampling rate of 250 Hz using a common
average montage using 19 unipolar electrodes. This database con-
sists of 21 h of EEG including 1273 seizure epochs with a minimum
duration of 12 s and a maximum duration of 1949 s. Technician at
the MUMC hospital annotated the seizure and non-seizure epochs
and checked by a clinical neurophysiologist. The electrode place-
ment in the MUMC database was the same as in the RMCH
database.

2.2.5. UBonn
The fifth database used for the cross-database framework was a

publicly available database from the UBonn 3(Andrzejak et al.,
2001). The UBonn EEG was recorded from five different subjects
under-going pre-surgical evaluations. UBonn EEG recordings were
divided into five subsets (set A, set B, set C, set D, and set E), each
subset consists of 100 single-channel EEG segments of 23.6 s dura-
tion recorded at a sampling rate of 173.61 Hz. Each subset EEG in
UBonn belongs to normal with eyes open (set A), normal with eyes
closed (set B), pre-ictal (set C), post-ictal (set D) and ictal state (set
E) conditions. Sets A and B contain recordings obtained through
external surface electrodes and sets C–E were recorded using
intracranial electrodes. In our study, set A to set D considered as
non-seizure and set E considered as seizure activity (Acharya et al.,
2012; Kamath, 2013).

Table 1 provide detailed information on all the five databases
used for cross-database evaluation. All the five EEG databases used
in the study are belongs to retrospective data.

2.3. Pre-processing

Among the five databases, the three open source databases
(CHB-MIT, TUH, and UBonn) were already pre-processed for arti-
facts. Initially, a 50 Hz IIR notch filter was applied to eliminate
the power line noise and a bandpass filter was applied with a lower
and higher cut-off frequency of 0.5 and 32 Hz respectively. In order
to eliminate the artifacts like eye blinks, muscle artifacts, and elec-
trode movements, independent component analysis (ICA) was
applied to the filtered EEG (only on RMCH and MUMC databases)
(Cichocki and Vorobyov, 2000; Winkler et al., 2011) using the ICA
toolbox available in the EEGlab (Delorme and Makeig, 2004).
https://www.isip.piconepress.com/projects/tuh_eeg/index.shtml.
3 http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&change-

lang=3.

http://www.physionet.org/pn6/chbmit
https://www.isip.piconepress.com/projects/tuh_eeg/index.shtml
http://epileptologie-bonn.de/cms/front_content.php?idcat=193&amp;lang=3&amp;changelang=3
http://epileptologie-bonn.de/cms/front_content.php?idcat=193&amp;lang=3&amp;changelang=3


Table 1
Details of different EEG databases used for cross-database evaluation.

RMCH CHB-MIT TUH MUMC UBonn

Open source
database

No Yes Yes No Yes

Type of EEG Scalp Scalp Scalp Scalp Scalp and Intracranial
Type of recording Unipolar Bipolar Unipolar Unipolar Unipolar
Sampling

frequency (Hz)
128 256 250 250 173.73

Electrode position 10–20 10–20 10–20 10–20 10–20
Number of subjects 115 23 316 40 5
Age range (years) 3–60 3–22 2–90 22–89 –
Total duration

(hours)
58 884 408 21 3.24

Number of
channels

19 23 19 19 1 ⁄⁄

Number of seizures 162 182 222 1273⁄ 100⁄⁄⁄

RMCH: Ramaiah Medical College and Hospitals, TUH: Temple University Hospitals,
CHB-MIT: Children’s Hospital Boston-Massachusetts Institute of Technology,
MUMC: Maastricht University Medical Centre, UBonn: University of Bonn.
⁄ 1273 seizure events
⁄⁄ Multichannel data was converted to a single channel
⁄⁄⁄ 100 seizures file each of 23.36 s duration

Fig. 1. The flow of the cross-database framework evaluation for seizure detection using five ðN ¼ 5Þ databases. The support vector machine (SVM) classifier was trained with
ðN � 1Þ databases and tested on the left out database. First, the feature baseline correction (FBC) was applied separately on each database to correct the inter-patient
variation. The adaptive median coefficient estimated from trained inter-database FBC was used to correct the feature baseline of the test database. EEG:
Electroencephalogram, MD: matrix determinant, SDI: successive decomposition index. .
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2.4. Feature extraction

In this study, we have used two features, namely SDI and MD
that were recently proposed by our group in Raghu et al. (2019b,
a). These were validated using RMCH, CHB-MIT, TUH, and MUMC
databases in our previous studies (Raghu et al., 2019b,a) (Raghu
et al., Unpublished results) and were extracted at a segmentation
length of 4 s with 50% overlap in this study.

The procedure to estimate SDI and MD is given in Supplemen-
tary Appendix A and Supplementary Appendix B respectively.

2.5. Adaptive median feature baseline correction

Considering the fact that features have variations in the distri-
bution in patient level and database level, FBC was applied in
two stages. First, AM-FBC was applied to update the feature distri-
bution among the patients (scenario was dominant in MUMC data-
base). Next, feature baseline was applied on five databases to
correct the inter-database feature distribution variation. The AM-
FBC was successfully implemented to update the feature baseline
for inter-patient variation in our previous study (Raghu et al.,
Unpublished results) and better classification results were
obtained.
2.5.1. Inter-patient FBC
The procedure to correct the feature baseline among patients is

given here.

1. Let a typical feature of all the subjects be represented as
f ðsub1; sub2; . . . :; subnÞ.

2. Calculate the f ðMedianseizureÞ and f ðMediannon�seizureÞ of all the
training subjects using seizure and non-seizure feature respec-
tively. The length of the f ðMedianseizureÞ and f ðMediannon�seizureÞ
equals the number of subjects.

3. Estimate global median (f ðMedianglobalÞ) using median values of
seizure and non-seizure.
f ðMedianglobalÞ ¼ Medianff ðMedianseizureÞf ðMediannon�seizureÞg
ð1Þ
4. Now estimate the median of a single subject f ðMediansubiÞ,
where i ¼ 1;2;3; . . . ; n subjects.
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5. Now calculate the adaptive median coefficient (k) using
f ðMedianglobalÞ and f ðMediansubiÞ.
k ¼ f ðMedianglobalÞ � f ðMediansubiÞ ð2Þ

6. Now correct the feature baseline of subi using k as follows:
f newi
¼ kþ f subi ð3Þ
Table 2
Different classification scenarios used to evaluate cross-database framework.

Classification
scenario

FBC Smoothing of
train data

Smoothing
of test data

1 No No No
2 No Yes No
3 No Yes Yes
4 Yes No No
5 Yes Yes No
6 Yes No Yes
7 Yes Yes Yes

Note: All the classification scenarios were evaluated with and without post-pro-
cessing. FBC: Feature baseline correction.
7. Repeat the step 4 to step 6 for all the subjects ðnÞ using the
f ðMedianglobalÞ.

The above procedure was applied to both SDI and MD features
separately.

2.5.2. Inter-database FBC
The procedure to correct the feature baseline among databases

is given in Supplementary Appendix C.

2.6. Smoothing train and test data

Smoothing of the train and test data for classification purpose
reported improved results in Bogaarts et al. (2014, 2016a,b). There-
fore, in this study, we have applied a 5-tap MAF to the train and
test data which reduces the random noise and improves the classi-
fication results (Ahmed et al., 2017).

2.7. Classification

The cross-database framework was evaluated using the SVM
classifier due to its better performance reported in previous studies
(Lima et al., 2009; Liu et al., 2012; Kumar et al., 2014; Chen et al.,
2017; Sriraam and Raghu, 2017; Raghu and Sriraam, 2018; Raghu
et al., 2019a). During the preliminary study, the radial basis kernel
function showed better performance in terms of classification
results. The proposed method was evaluated using leave-one-
database-out cross-validation in which, the SVM classifier was
trained using four databases and tested on the left out database.
The procedure was repeated five times until all the databases were
used for the testing phase. The SVM classifier was tuned as follows:
Kernel function = radial basis function, Kernel Scale = 1 and
Box Constraint = 1.

The experiment was performed in MATLAB 2018b using 8 GB
RAM, CPU 2 GHz with an Intel i3 processor.

The cross-database framework was assessed using performance
parameters, namely sensitivity, specificity, and the area under the
curve (AUC).

Sensitiv ityðSþÞ ¼ TP
TP þ FN

ð4Þ

SpecificityðS�Þ ¼ TN
TN þ FP

ð5Þ

where, TPis seizure detected as seizure, TNis non-seizure detected
as non-seizure, FNis seizure detected as non-seizure, and FPis
non-seizure detected as seizure. The area under the receiver operat-
ing characteristic (ROC) curve was estimated using sensitivity and
1-specificity.

2.8. Post-processing

The post-processing of the classifier output has proven to be a
better choice to reduce false detections and improve the classifica-
tion results (Temko et al., 2011; Ahmed et al., 2017)(Raghu et al.,
Unpublished results). In our study, different tap lengths (2 to 10)
of MAF were applied to the SVM classifier output to perform the
post-processing as reported in Temko et al. (2011) and Ahmed
et al. (2017) Raghu et al., Unpublished results. The post-
processing output [0, 1] was assigned depending on a predefined
threshold of 0.5 to classify as a seizure and non-seizure. The given
EEG segment was classified as a seizure and non-seizure if the
value was greater than or equal to and less than 0.5 respectively.

2.9. Classification scenarios

The proposed cross-database framework was evaluated using
different classification scenarios (CS) in terms of AM-FBC, smooth-
ing of the train and test data, and post-processing of the SVM clas-
sifier output. Table 2 depicts the 7 different CS used to evaluate the
cross-database framework.
3. Results

3.1. Analysis of AM-FBC

After pre-processing, both SDI and MD features were extracted
and AM-FBC was applied individually to correct the inter-patient
variation in the distribution of the feature. Most inter-patient vari-
ation was seen in the MUMC database. Figs. 2a & b shows the SDI
and MD feature distribution for all the five databases. We observe
more variation in features distribution between databases. In the
RMCH database, SDI feature values for seizure are below the SDI
values of non-seizure from the other four databases. This is also
the case for the MD feature values in the RMCH and MUMC data-
bases which is referred to as inter-database feature distribution
variation. Further, features from the MUMC database had more
outliers due to noisy EEG recordings. In the next step, AM-FBC
was applied to correct the feature baseline in inter-database. The
inter-database AM-FBC results are depicted in Figs. 2c & d for SDI
and MD features respectively. The Figs. 2c & d show that the fea-
tures baseline has been brought to a uniform level after applying
AM-FBC. A Wilcoxon rank sum test showed significance difference
(p < 0:05) for each database between seizure and non-seizures
activities. The median values of both the features before and after
AM-FBC are depicted in Fig. 3. The high variation among the data-
bases is reflected for both SDI and MD features. The median values
after AM-FBC show less variation between the databases.

3.2. Cross-database results

Fig. 4 shows the ROC curve obtained from all the five databases
under different CS. The ROC was grouped database wise, with and
without post-processing of the classifier output. The area under the
ROC curve obtained for the proposed study is reported in Fig. 5. The
ROC curve obtained for the RMCH database was below the thresh-
old line due to the effect of inter-database feature distribution vari-
ation. Overall, the best ROC curve was achieved when AM-FBC and
smoothing of the test data were applied.
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Fig. 5 shows the Sþ; S�, and AUC obtained for cross-database
evaluation. First, we discuss CS1, where AM-FBC, smoothing of
train and test data and post-processing was not applied. The AUC
of 0.08 (Sþ = 0, S� ¼ 0:90), 0.99 (Sþ ¼ 0:99, S� ¼ 0:99), 0.97
(Sþ ¼ 0:98, S� ¼ 0:94), 0.83 (Sþ ¼ 0:41, S� ¼ 0:98), and 0.87
(Sþ ¼ 1, S� ¼ 0) was obtained for the RMCH, CHB-MIT, TUH,
MUMC, and UBonn databases respectively without post-
processing. The AUC performance of 0.01, 1, 0.99, 0.93, and 0.91
was obtained using the RMCH, CHB-MIT, TUH, MUMC, and UBonn
databases respectively when post-processing was applied. Further,
similar results were seen in case of CS2 and CS3 for all the data-
bases leading to the worse performance for the RMCH database.
The Sþ closes to zero was obtained for the RMCH database due to
reason that the seizure EEG feature values of RMCH database are
below the non-seizure EEG feature values in the training databases
(refer to Figs. 2a & b). This was the clear indication of effect of
inter-database feature distribution variation.

Now, we have applied AM-FBC to correct the feature distribu-
tion variation in inter-database. The effect of AM-FBC is already
shown in Figs. 2 & 3. The AUC of 0.99 (Sþ ¼ 0:98, S� ¼ 0:98), 0.81
(Sþ ¼ 0:99, S� ¼ 0:75), 0.88 (Sþ ¼ 0:65, S� ¼ 0:96), 0.93
(Sþ ¼ 0:92, S� ¼ 0:84), 0.97 (Sþ ¼ 0:98, S� ¼ 0:90) was achieved
for the RMCH, CHB-MIT, TUH, MUMC, and UBonn databases
respectively in CS4 without post-processing. Similarly, the AUC
was increased to 1, 0.91, 0.91, 0.95, 0.99 for the RMCH, CHB-MIT,
TUH, MUMC, and UBonn databases respectively when post-
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Fig. 4. The Receiver operating characteristic (ROC) curve for cross-database evaluation under different classification scenario (CS) for (a) Ramaiah Medical College and
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processing was applied. The influence of AM-FBC improved the Sþ

and S� for the RMCH, MUMC and UBonn databases respectively,
which was worse in CS1 to CS3.

In CS4 to CS7, we have studied the effect of smoothing of the
train and test data for the SVM classifier. The AUC of 1, 0.84,
0.95, 0.95, 0.98 was obtained for the RMCH, CHB-MIT, TUH, MUMC,
and UBonn databases respectively when post-processing was
applied in CS5. Overall, the highest classification results were
obtained in CS6 when AM-FBC applied along with smoothing of
test data. The highest AUC of 1 (Sþ ¼ 1, S� ¼ 1), 0.89 (Sþ ¼ 0:99,
S� ¼ 0:82), 0.99 (Sþ ¼ 0:73, S� ¼ 1), 0.95 (Sþ ¼ 0:97, S� ¼ 0:85),
0.99 (Sþ ¼ 0:99, S� ¼ 0:92) was achieved for the RMCH, CHB-MIT,
TUH, MUMC, and UBonn databases respectively in CS6 with post-
processing. Finally, we have taken an average of all the databases
classification results to assess the performance of different CS
(refer to Fig. 5f). The results showed that the AUC of 0.77, 0.79,
0.77, 0.93, 0.94, 0.96, and 0.94 for CS1 to CS7 respectively with
post-processing which is being high for CS6.
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The MAF length was varied between 2 to 10 to identify the opti-
mal MAF length to reduce the false detections. It was observed that
false detection rate decreases as the MAF length increases. For the
optimal CS6 at the highest sensitivity, the average false detection
rate (per hour) of 0.15, 2.5, 1, 1.7, and 1.1 was achieved for RMCH,
CHB-MIT, TUH, MUMC, and UBonn databases respectively for MAF
length of 10.

Overall, classification results showed that AM-FBC is essential
to achieve the generalized results for all the databases. Further,
the smoothing of the train and test data improved the classification
results. The classification results suggest that the proposed cross-
database approach has better generalization capability when eval-
uating using five databases.

4. Discussion

This study presents a cross-database evaluation for classifi-
cation of epileptic seizures using SDI and MD features, AM-
FBC, smoothing, and post-processing. The results showed that
the highest AUC of 1, 0.89, 0.99, 0.95, and 0.99 using the
RMCH, CHB-MIT, TUH, MUMC, and UBonn databases
respectively.

4.1. Influence of FBC

The classification results obtained for CS1 to CS3 were not con-
sistent for all the five databases. The Sþ obtained for the RMCH and
MUMC were close to 0 and 0.44 respectively due to inter-database
feature distribution variation. It can be clearly understandable
from Figs. 2 a & b that was due to the fact that the seizure EEG fea-
ture values of the RMCH and MUMC databases were below the
non-seizure EEG feature values of other databases. Similarly, the
S� was 0 for the UBonn without applying AM-FBC for CS1 to CS3
because non-seizure EEG feature values of the UBonn database
were above the seizure EEG feature values of other four databases.
Even though good performance was achieved for the CHB-MIT and
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TUH database in CS1 to CS3 (without FBC), the worse performance
in terms of Sþ and S� cannot be acceptable in real-time scenario.
The influence of AM-FBC (refer to Figs. 2 c & d) improved the clas-
sification results in case of CS4 to CS7 (refer to Fig. 5) proving that
cross-database evaluation requires FBC.

The influence of AM-FBC on cross-database evaluation is
depicted in Fig. 6 when tested on MUMC database and trained
using the left out databases with CS6. Figs. 6b & c shows the SDI
and MD features respectively for the EEG shown in Fig. 6a. As
one can observe that the misclassification in Fig. 6e are high as
compared to the ground truth results in Fig. 6d when AM-FBC
was not applied. As a result of AM-FBC and smoothing (refer to
CS6), proper classification was seen (refer to Fig. 6f) with few false
alarms and it was corrected using post-processing (refer to Fig. 6h)
that the output was closely matched with ground truth labels
(refer to Fig. 6d).
4.2. Influence of MAF on false detection

In our study, the MAF length was varied between 2 to 10 to
identify the optimal MAF length which influences to reduce the
false detections. Fig. 7 shows the effect of MAF length on false
detections for all the five databases. As it can be seen from Fig. 7
that the false detection rate decreases as the MAF length increases.
The best results were achieved when MAF length was 10 for CS6.
The MAF length beyond 10 was not tested as it results in higher
delay in detecting seizure epochs.
4.3. Comparison with other studies

It is worth noting that the exact comparison cannot be made as
no studies have reported cross-database evaluation for classifica-
tion of epileptic seizures. The results presented in Table 3 shows



Table 3
Comparison between the state of the art seizure detection algorithms and cross-database approach.

EEG database Number
of
subjects

Duration
of EEG
(h)

Number
of
seizures

Author Feature extraction FBC Classifier Post-
processing

Results

CHB-MIT 23 884 182 Vidyaratne
and Khan
(2017)

Harmonic wavelet
packet transform
fractal dimension,
spatial and temporal
features

No RVM No Sþ= 96.0%

Minasyan
et al. (2010)

Line length MDM Threshold No AUC = 0.93

Xiang et al.
(2015)

Fuzzy entropy No SVM No Sþ=98.27%
A = 98.31%

Shoeb et al.
(2004)

Wavelet based
features

No SVM No Sþ=94.24%

Raghu et al.
(2019b)

SDI No SVM No Sþ=97.28%

Raghu et al.
(2019b)

SDI No SVM No Sþ=95.80%

UBonn 5 3.24 100 Acharya
et al. (2012)

Entropies No Fuzzy
classifier

No A = 99.00%

Sharma
et al. (2017)

Optimal orthogonal
wavelet based
features

No LS-SVM No A = 100%

Diykh et al.
(2017)

Weighted complex
networks

No SVM No A = 100%

Raghu et al.
(2016)

Wavelet packet
transform based log
energy entropy

No REN No A = 99.70%

Samiee
et al. (2017)

DSTFT No MLP No A = 99.80%

RMCH 115 58 162 Raghu et al.
(2019a)

MD No SVM No A = 97.56%

Raghu et al.
(2019b)

SDI No SVM No Sþ=97.53%

Raghu et al.
(2019c)

DWT based sigmoid
entropy

No SVM No Sþ=96.34%

MUMC 39 term
and pre-
term new
born

25 360 Bogaarts
et al. (2014)

103 features ANSFV SVM Kalman
filter

AUC = 0.90

MUMC 17 ICU
patients

4018 1362 Bogaarts
et al.
(2016b)

103 features MDM SVM Kalman
filter

AUC = 0.96

MUMC 39
neonatal
39 adults

613 348981 Bogaarts
et al.
(2016a)

103 features ANSFV SVM Kalman
filter

AUC = 0.93

Neonatal Intensive Care Unit (NICU) of
Cork University Maternity Hospital,
Cork, Ireland

17 new
borns

267 705 Ahmed
et al. (2017)

55 features No SVM Central
linear
MAF

Sþ=89%

Temko et al.
(2011)

55 features No SVM MAF AUC = 0.71

National Society of Epilepsy (UK),
Katholieke Universiteit Leuven
(Belgium), and Freiburg University
Hospital (Germany).

24 adults 172 47 Logesparan
et al. (2015)

DWT based Relative
power

Norma-
lization

Threshold Bitwise
logical OR
operator

AUC
= 0.83

Proposed
RMCH 115 58 162 SDI and MD AM-FBC SVM MAF AUC = 1
CHB-MIT 23 884 182 AUC = 0.89
TUH 316 408 222 AUC = 0.99
MUMC 40 ICU

patients
21 12733 AUC = 0.95

UBonn 5 3.24 1004 AUC = 0.99

134898 Feature vectors derived from 10s epoch, 21373 seizure epochs of 10 s duration, 31273 seizure events, 4100 seizures file each of 23.36 s duration, A = Accuracy
RMCH: Ramaiah Medical College and Hospitals, TUH: Temple University Hospitals, CHB-MIT: Children’s Hospital Boston- Massachusetts Institute of Technology, MUMC:
Maastricht University Medical Centre, UBonn: University of Bonn, EEG: Electroencephalogram, RVM: Relevance vector machine, FBC: Feature baseline correction.
SVM: Support vector machine, MDM: Median decaying memory, MD: Matrix determinant, SDI: Successive decomposition index, MAF: Moving average filter, AM-FBC:
Adaptive median feature baseline correction, ANSFV: Average non-seizure feature values, Sþ: Sensitivity, S�: Specificity
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the comparison results of previously proposed methods with the
proposed cross-database evaluation results and comparison was
performed database wise. WPT based CSI showed the highest sen-
sitivity of 90.5% from 14 patients (Zandi et al., 2010). Statistical fea-
tures extracted from DWT coefficients have achieved an accuracy
of 83.07% and 88.00% using the Bern-Barcelona dataset and UBonn
databases respectively using the SVM classifier (Chen et al., 2017).
The fractal dimension and harmonic WPT feature-based model
using the RVM classifier showed a sensitivity of 96.0% and 99.8%
using the CHB-MIT and UBonn EEG databases respectively
(Vidyaratne and Khan, 2017). DSTFT based approach yielded a clas-
sification accuracy of 98.1% using MLP classifier.
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The MDM FBC method showed an AUC of 0.93 using the CHB-
MIT database (Minasyan et al., 2010) and 0.96 using the MUMC
database (Bogaarts et al., 2016b). The AUC of 0.92, 0.93, and 0.93
was achieved for neonatal, adult and combined dataset respec-
tively (Bogaarts et al., 2016a). Further, the ANFSV FBC method
was implemented on 103 features using the MUMC database
which showed the AUC of 0.92 (Bogaarts et al., 2014). Similarly,
our previous study on the MUMC database using SDI feature
showed the highest AUC of 0.98 with the help of the AM-FBC
method (Raghu et al., Unpublished results). However, in our pre-
sent cross-database study using MUMC database, the highest
AUC of 0.95 only achieved due to the different training data. A Kal-
man filter was applied to the SVM classifier output for post-
processing, which improved the classification results in Bogaarts
et al. (2014, 2016a,b). In Temko et al. (2011) and Ahmed et al.
(2017) (Raghu et al., Unpublished results), improved performance
was observed when a MAF was used for post-processing. The SDI
and MD features have shown better performance using the RMCH,
CHB-MIT, MUMC databases with leave-one-subject-out cross-
validation when the algorithm was trained and tested on same
database (Raghu et al., 2019b,a) (Raghu et al., Unpublished results).
One can observe that the larger feature set have been used for clas-
sification of epileptic seizures in Shoeb et al. (2004), Temko et al.
(2011), Bogaarts et al. (2014, 2016a,b), Samiee et al. (2015),
Sharma et al. (2017), Ahmed et al. (2017), which could result in
computational complexity.

4.4. Clinical significance

One of the challenges in designing the automated seizure detec-
tion algorithms is lack of annotated seizures EEG data. The algo-
rithm proposed in our study combines EEG from five different
databases and compensates for the feature distribution variation.
Our results demonstrate that the new EEG recordings from same
and/or different database can be validated without spending much
time on designing a new algorithm. Hence, it is cost effective in
terms of designing the new algorithm and speed up the treatment
procedure.

4.5. Significant findings of the study

The significant findings and contributions of cross-database
evaluation are summarized as follows:

1. This is the first of its kind study reporting cross-database eval-
uation for automated classification of epileptic seizures using
five different databases.

2. The Sþ and S� of 0 was obtained for the RMCH and UBonn data-
bases respectively without the application of AM-FBC.

3. AM-FBC on inter-patient and inter-database level proved its
need to perform the cross-database evaluation.

4. AM-FBC along with smoothing of the test data outperformed
other CS on all the five databases.

5. The false detection rate decreases as the MAF length increases.

4.6. Future direction

As a future study, a deep learning technique will be imple-
mented on these five databases to perform the cross-database
evaluation. The classification results could be further improved
by adding a few significant features and optimizing the algorithm.
The proposed study will be validated on new EEG databases to
improve the algorithm performance. Mixing the whole data could
be an interesting future task to improve the generalization of the
algorithm. Further, a mobile-based seizure alert system will be
introduced using the proposed cross-database evaluation
algorithm.

5. Conclusion

To the best of authors knowledge, we are the first to present a
cross-database evaluation for automated classification of epileptic
seizures using five different databases. Inter-subject and inter-
database variation in the feature distribution was corrected using
AM-FBC. With the application of AM-FBC, smoothing, and post-
processing, the highest AUC of 1, 0.89, 0.99, 0.95, and 0.99 was
achieved using the RMCH, CHB-MIT, TUH, MUMC, and UBonn data-
bases respectively. AM-FBC along with smoothing of the test data
outperformed other CS. It can be concluded that the cross-
database approach has better generalization capability when eval-
uated using five databases. Finally, cross-database framework
helps when sufficient epileptic seizures EEG data is not available
to build a seizure detection model.
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