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A B S T R A C T   

Millions of particles are collided every second at the LHCb detector placed inside the Large Hadron Collider at 
CERN. The particles produced as a result of these collisions pass through various detecting devices which will 
produce a combined raw data rate of up to 40 Tbps by 2021. These data will be fed through a data acquisition 
system which reconstructs individual particles and filters the collision events in real time. This process will occur 
in a heterogeneous farm employing exclusively off-the-shelf CPU and GPU hardware, in a two stage process 
known as High Level Trigger. 

The reconstruction of charged particle trajectories in physics detectors, also referred to as track reconstruction 
or tracking, determines the position, charge and momentum of particles as they pass through detectors. The 
Vertex Locator subdetector (VELO) is the closest such detector to the beamline, placed outside of the region 
where the LHCb magnet produces a sizable magnetic field. It is used to reconstruct straight particle trajectories 
which serve as seeds for reconstruction of other subdetectors and to locate collision vertices. The VELO sub
detector will detect up to 109 particles every second, which need to be reconstructed in real time in the High 
Level Trigger. 

We present Search by triplet, an efficient track reconstruction algorithm. Our algorithm is designed to run 
efficiently across parallel architectures. We extend on previous work and explain the algorithm evolution since 
its inception. We show the scaling of our algorithm under various situations, and analyse its amortized time in 
terms of complexity for each of its constituent parts and profile its performance. Our algorithm is the current 
state-of-the-art in VELO track reconstruction on SIMT architectures, and we qualify its improvements over 
previous results.   

1. Introduction 

The LHCb detector is a large physics detector situated at the Large 
Hadron Collider at CERN [1]. The detector is being upgraded for the 
restart of data taking scheduled for 2021 [2]. The full collision data rate 
of 40 Tbps will be piped through a data acquisition system that will 
perform a data filtering in real-time, prior to storing data in long-term 

storage for posterior analysis. The filtering will occur in two stages: 
the first stage or High Level Trigger 1 (HLT1) will reduce the data rate 
according to particle kinematics by a factor of 40× in a computing farm 
composed of 170 servers equipped with GPUs [3]. The second filter 
stage or High Level Trigger 2 (HLT2) will perform a full event1 recon
struction and reduce data by an additional factor 20× in a computing 
farm composed of thousands of servers [4]. The introduction of a 
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1 An event corresponds to a single crossing of the Large Hadron Collider proton beams. 
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heterogeneous computing infrastructure in LHCb is motivating the cre
ation of parallel algorithms that are portable and efficient across 
architectures. 

Track reconstruction or tracking is a pattern recognition problem 
consisting in finding particle trajectories from measurements (hits) in 
detectors along their path. The problem is equivalent to finding a 
partition of disjoint sets of measurements that are compatible with the 
laws of motion of particles as they traverse a detector, accounting for the 
fact that some measurements may be noise, and considering the pres
ence of sizable magnetic fields which curves the trajectories of charged 
particles depending on their momentum. Track reconstruction yields 
momentum and trajectory information of reconstructed particles, which 
play an essential role in trigger systems of physics experiments. Fig. 1 
exemplifies the track reconstruction problem. 

The Vertex Locator (VELO) is a tracking detector of LHCb consisting 
of 52 planes of silicon pixel chips surrounding the LHC interaction point 
and beamline, shown in Fig. 2. As particles pass through the detection 
planes, they leave detectable measurements in the form of pixel clusters. 
VELO track reconstruction constitutes the first reconstructed sub
detector of LHCb, and tracks found in the VELO are used to locate the 
originating collision vertices as well as serve as seeds for subsequent 
track reconstruction. Therefore reconstructing the VELO is of vital 
importance towards the correct functioning of LHCb. 

Track reconstruction validation is typically performed with Monte 
Carlo (MC) simulated samples, where reconstructed tracks should match 
MC particles, which establish the ground truth. The matching of tracks 
with particles is done on a hit by hit basis. The physics performance of 
found tracks can be evaluated according to five indicators [5]:  

• The track reconstruction efficiency can be determined by the ratio 
between the reconstructed tracks of reconstructible particles, over all 
the reconstructible particles:2 

Nreconstructed and reconstructible

Nreconstructible
(1)    

• A fake track (ghost track) is created when a percentage of hits in a 
track are not from a real track. In LHCb, at least 70% of the hits in a 
track must belong to the same MC particle to be associated in the 
validation process. The fake track fraction is the ratio between the 
fake tracks and all the reconstructed tracks: 

Nfake tracks

Nreconstructed tracks
(2)    

• The clone track fraction refers to the fraction of tracks associated to 
the same MC particle as another reconstructed track: 

Nclone tracks

Nreconstructed tracks
(3)    

• The hit purity in a track refers to the fraction of track hits that belong 
to the same MC particle: 

Ntrack hits in MC particle hits

Ntrack hits
(4)    

• Finally, the hit efficiency yields the number of hits correctly found out 
of the MC particle hits in a track: 

Ntrack hits in MC particle hits

NMC particle hits
(5) 

The VELO detector is outside of the range of effect of the LHCb 
magnet, and therefore trajectories can be considered to be straight lines. 
Once the detector restarts operation a sustained throughput of 109 

particle trajectories at the VELO per second will have to be reconstructed 
in the trigger systems, while delivering good track reconstruction per
formance indicators. The VELO reconstruction is therefore a real-time 
software challenge whereby the design performance of the system 
must be met within the hardware constraints of the data acquisition 
system. 

2. Tracking techniques 

Due to the interest in tracking by many particle physics experiments, 
there is a rich literature on track reconstruction techniques [6]. Local 
tracking methods find tracks iteratively, whereas global methods adapt 
an equivalent formulation of the problem, typically including all mea
surements, where solutions map to tracks. 

The most common local tracking method consists in finding a track 
seed and extending it to other detector planes in a process known as track 
following. The track seed is usually formed by a segment of two or three 
hits, and the search starts in a region where the hit density is lower and 
thus the signal is easier to distinguish, which usually corresponds with 
the furthest distance to the expected interaction point. Track seeds are 
extrapolated (followed) to detector regions closer to the interaction point 
by applying an extrapolation accounting for the presence of a field if 
necessary. A model of the track can be formed from the track hits, and 
this model can be employed to select among a list of candidate hits the 
best fitting one. This extrapolation process may account for missing hits 
in detector parts, according to the hit inefficiencies of the physical de
tector and dead regions without sensitive detectors. Once a track is fully 
built, its constituent hits can be flagged so they are not revisited in 
further seed or following steps. 

Historically a local track following method has been employed for 
the VELO reconstruction of the LHCb experiment runs, named Search by 
pair [7]. It constructs seeds of pairs of hits initially in the furthest 
modules from the interaction region. Track seeds are followed to 
neighbouring modules, allowing for one hit to be missing in consecutive 
modules on any one side of the VELO subdetector. Tracks of four or more 
hits flag all of their hits, reducing the search time of further seeding and 
following steps. Tracks consisting of at least three hits are stored, in 
accordance to the reconstructibility condition of the VELO subdetector. 
However, the requirement to flag hits as used makes this technique not 
suitable for parallelization without modification. It is possible to find all 
triplet combinations in parallel dropping the flagging mechanism, which 
was done in the seeding phase of [8]. However this parallelism comes at 
the cost of generating all possible triplet combinations, which is ineffi
cient for densely populated detectors. 

Other local tracking methods are track roads and track elements. Track 
roads forms candidates with two hits situated in the extremes of the 
detector, and creates a path or road between both hits by interpolation. 
In case the model of the track be curved, a third hit should be added. The 
width of the road determines the accepted error in the model, and it 
depends on the characteristics of the detector [9]. Track elements per
forms reconstruction in two phases: (1) seeds are made up from neigh
bouring points, straight lines or parabolic lines. Each seed is converted 
into a master point (a weighted average of the points) and a direction. (2) 
The seeds, instead of the original hits, are used to perform tracking. This 
method reduces the number of hits to consider in the tracking phase, at 
the cost of a loss in precision [10]. Local methods may be used in 
conjunction with corrections such as the Kalman filter [11], fitting 
forming tracks and selecting hits [12]. 

Hit multiplicity is often a concern in real-time reconstruction envi
ronments, where track reconstruction must be performed at a high 
throughput in order to keep up with the collision rate. Spatial reductions 
can be employed to reduce the search time of hits under consideration 
for local tracking methods. This involves a data preparation step prior to 

2 A particle is said to be reconstructible in a tracking detector when it fires 
enough measurements over a detector-specific threshold. 
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the application of the tracking method. Common data structures used 
alongside local methods include KD-trees [13], binary search structures 
or more generically search windows. The specifics of the geometry of the 
detector yield in some cases a natural subdivision of the problem [14]. 

Alternatively, global methods can be applied to the track recon
struction problem. The Hough transform method [15] in its simplest form 
converts all hit points into a histogram representation in polar co
ordinates, where peaks are equivalent to compatible hits. Despite of the 
elegance of the Hough transform underlying principle, difficulties arise 
when dealing with high hit multiplicities, where binning and threshold 
of the histogram play an important role in avoiding excess of clones or 
fake tracks. Circular trajectories must be converted to lines prior to 
applying the Hough transform, which can be achieved with a conformal 
mapping transformation [16]. 

The clustering method consists in extrapolating hits onto a parameter 
space, according to the expected trajectory from a collision vertex. Once 
in the parameter space, hits pertaining to the same track appear close to 
each other. The tracking problem consists then in a clustering problem, 
that can be solved with any clustering method [17]. The collision vertex 
must be chosen with sufficient precision, and the resulting cluster must 
be verified to match reasonable track parameters [18]. 

The automata method [19] is a graph traversal method of a weighted 
directed graph representing the measurements. Each measurement is a 
vertex, and directed edges between measurements in neighbouring de
tector elements are created according to the expected track parameters 
in the region of acceptance of the detector, in the direction from outer to 
inner-most layer. The graph is then traversed following a Depth-First 
Search, assigning weights to visited edges according to the current 
depth level. If vertices are visited multiple times, the highest weight 
prevails. The automata method has been successfully implemented in 
various trigger systems [8,20]. 

Both the algorithm and the target hardware architecture must be 
considered when devising an efficient track reconstruction solution. It 
has been discussed that global methods are amenable by design for 
parallel architectures [6,18]. Some of the high-throughput tracking al
gorithms used in current trigger systems are global methods [20,21], 
and have been implemented on modern CPU and GPU architectures. On 

the other hand, local methods have also been used for high-throughput 
solutions [22]. 

In our previous work [23], we presented Search by triplet, a novel 
local method for track reconstruction on parallel architectures, along
side a base framework to run it efficiently on GPU architectures. Our 
algorithm considers module pairs to increase the amount of parallel 
work in every step. We sort the data by φ on every module pair stemming 
from the observation that hits of tracks have similar φ values. Our al
gorithm then iteratively generates track seeds of triplets of hits, and 
extrapolates forming tracks to the next module pair. Fake and clone 
tracks are avoided by introducing a flagging mechanism with barriers. In 
a last step, track seeds that were never extended are checked again prior 
to storing them as tracks. We implemented our work both in the SIMT3 

programming paradigm targeting GPUs, as well as in SPMD targeting 
CPUs. A variation of this algorithm with SIMD-specific optimizations 
was done in [24]. 

In this paper, we build on the foundation of our previous algorithm 
and optimize it for SIMT and SIMD architectures. We improve the 
maintainability of our algorithm by providing a single codebase for any 
heterogeneous architecture in the Allen framework [3]. We also provide 
architecture-specific optimizations for routines that are employed often 
and that require hand-tuning. Through an iterative process of optimi
zation, we increase the throughput of our algorithm by more than a 
factor 3× , while also improving its physics efficiency. 

3. Search by triplet 

Search by triplet is a local track following algorithm optimized to 
reconstruct the LHCb VELO detector that exploits the task parallelism 

Fig. 1. (Left) A minimal track reconstruction instance projected in 2D, consisting in a set of hits with position information. (Right) The actual particle trajectories 
sought when doing track reconstruction. 

Fig. 2. A schematic of the upgraded Velo detector. (Left) Section in the XZ plane, with detector modules laying in two sides. (Right) Front view of each module in the 
XY plane, with subdivisions indicating detector chips. Each detector chip has a resolution of 256 × 256 pixels. 

3 SIMD (Single Instruction Multiple Data) is a class of parallel processors in 
which each instruction operates over several data simultaneously in lockstep. 
SPMD (Single Program Multiple Data) is a class of processors in which the work 
is distributed in tasks that operate over multiple data, not necessarily in lock
step. SIMT (Single Instruction Multiple Thread) is an execution model employed 
by GPUs where every instruction is executed by a group of threads. 

D.H. Cámpora Pérez et al.                                                                                                                                                                                                                    



Journal of Computational Science 54 (2021) 101422

4

inherent to the LHCb data taking regime and the data parallelism of 
track reconstruction. 30 million events are detected per second in LHCb, 
where each is independent of each other. Therefore, we assign different 
tasks to process each individual event. Within each event processing, 
track reconstruction exposes various levels of parallelism that we tackle 
in a data parallel fashion, either employing the SIMT paradigm or SIMD 
optimizations where relevant. 

Search by triplet is now a single coherent codebase written in C++, 
with custom extensions that provide SIMT functionality. Depending on 
the target device specified at compile time, our codebase can potentially 
target any parallel architecture, notably modern CPUs and GPUs. 
Table 1 depicts the levels of parallelism exploited in Allen algorithms 
such as Search by triplet, and the correspondence with each target. 

Our algorithm consists in three sub-algorithms that are described in 
the following. For simplicity, we will refer to modules instead of module 
pairs. When discussing computational complexity, the notation 
employed is generalized to a detector with m consecutive detector 
modules and an average number of hits in each module of n. 

3.1. Sort by phi 

The VELO modules are positioned such that particle collisions tend to 
occur close to the origin of coordinates in the XY plane. Hence, particles 
produced in these collisions that travel in a straight line are likely to 
have a constant phase in polar coordinates when projected on an XY 
plane. Hits in each module are sorted by φ, calculated as the 2-argument 
arctangent in the XY plane with respect to the origin of coordinates. 

The range of values of the 2-argument arctangent is [ − π, + π]. 
However, values close to − π are conceptually very close to values close 
to + π, as they represent angles that are close. For this reason, we 
convert the range into a unsigned 16-bit integer type, mapping the 2- 
argument arctangent range to the unsigned 16-bit range [0, 216 − 1]. 
This transformation enables us to use modulo arithmetic to perform 
comparisons, and it allows us to reduce memory pressure by using two 
bytes as opposed to four to store each φ. 

Given that the number of maximum hits in a module is known, a 
constant amount of shared memory4 is employed as a means of low- 
latency temporary data buffer when φ is calculated and sorted. The 
permutation produced is then employed to sort hit coordinates, yielding 
a structure of arrays sorted by phi for each module. A parallel insertion 
sort method has been implemented to calculate the permutation. The 
worst-case complexity of this algorithm is O(m⋅n2). 

An SIMD-specific optimization is also provided. The φ of every hit is 
calculated using a vectorization library. The permutation is calculated 
using the quicksort implementation provided in the STL library. The STL 
sort implementation has a worst case of O(n⋅log(n)), and therefore the 
SIMD specialization has a worst-case complexity of O(m⋅n⋅log(n)). 

3.2. Track seeding and track following 

The local track reconstruction technique implemented in Search by 
triplet consists in an iterative application of two stages: track seeding 
and track following. Fig. 3 shows an overview of the technique with the 
iterative control flow on the top, and the data containers involved in 
either data dependencies or output at the bottom. Even though the 
iteration follows an ascending order, the actual direction of traversal of 
the modules is configurable. 

Track seeding finds triplets of hits in consecutive modules, one hit in 
each module. In order to avoid clone tracks, a flagging mechanism has 
been implemented, akin to the one found in Search by pair [7]. None of 
the hits in the triplet must be flagged. This introduces the requirement of 
a barrier between each seeding and following stage due to the 
Read-After-Write and Write-After-Read dependencies: flagged hits are 
read during track seeding, and they are written during track following. 
The barrier is only present in SIMT code, and if an SIMD target is 
specified, it is removed at compilation time. The flagged hits container is 
initialized to be empty prior to the execution of the first seeding 
iteration. 

The process of finding triplet seeds has received several optimiza
tions. We consider three consecutive modules, and process all non- 
flagged hits in the middle module separately. For each hit, we seek 
the corresponding φ position in the neighbouring module with a binary 
search. Then, we perform a pendulum search, alternatively looking 
further down and up the hits in the module, until a threshold number of 
candidate hits that are not flagged is found. Fig. 4 depicts this process. 

Once all candidate doublets are found, each doublet is extrapolated 
to the third module. A binary search is performed with the extrapolation 
φ, and all hits within a tolerance window are considered. Fig. 5a shows 
the process of extrapolation for hit c0. Each triplet candidate is evaluated 
with a scatter function between the extrapolated doublet position and 
the third hit under consideration: dx2 + dy2. For each middle module hit, 
at most one triplet is kept: the triplet minimizing the scatter function 
under a threshold. 

Triplets are stored in the seeds container and passed on to the 
following stage, where all forming tracks (in containers seeds and tracks) 
are considered. Track following consists in extrapolating forming tracks 
to the next module and attempting to find compatible hits under a 
threshold. Similarly to the doublet extrapolation of seeding, the last two 
hits of each forming track are extrapolated to the next module, and the 
best hit is evaluated with the scatter function. In order to account for the 
hit inefficiency of modules, it is allowed for tracks to miss a module, in 
which case they are kept for the next following iteration. 

The best hits found for the followed tracks are flagged, as shown in 
Fig. 5. When a forming track misses two consecutive modules, or when 
processing the last iteration, forming tracks are either stored in the 
tracklets or tracks container, depending on whether the number of hits is 
three or more respectively. 

The data parallelism of this process is exploited by separate threads 
in the SIMT model, whereby each thread processes a different starting 
hit in the seeding stage, or a different forming track in the following 
stage. An SIMD-specific optimization has been done for the seeding 
stage, whereby all doublets of each starting hit are processed in parallel 
with vector instructions. 

The worst-case complexities of the two stages are as follows. Seeding 
is performed on all consecutive module triplets (bound by m), where all 
candidates in a module are considered (n). For each candidate, a binary 
search is performed to a neighbouring module (log(n)), and for each 
doublet a binary search to the third module is performed (log(n)). 
Finally, the best hit within the threshold (n) is found. Therefore, its 
worst-case complexity is O(m⋅n2⋅log(n)2). 

Track following occurs on all modules considered for extrapolation 
(m), where all forming tracks are considered (n). Similarly to seeding, 
the last doublet in each track is extrapolated and the best hit within the 

Table 1 
Degrees of parallelism for event reconstruction in Allen. CUDA terminology is 
used [25] for a generic GPU target, not necessarily NVIDIA.   

CPU target GPU 
target 

Type of 
parallelism 

Bunches of 
events 

Threads Streams Task parallelism 

Inter-event Sequential Blocks Task parallelism 
Intra-event Sequential or 

vectorization 
Threads Data parallelism  

4 Shared memory is a GPU-specific optimization that uses the configurable 
L1-cache shared memory available in GPUs. For other targets, main memory is 
employed. 
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threshold is kept. Therefore, its worst-case complexity is O(m⋅n2⋅log(n)). 

3.3. Tracklet filter 

The Tracklet filter operates on the tracklet container, which contains 
three-hit tracks for which no compatible hit was found in any track 
following step. It performs a least means square fit over the three hit 
coordinates of each track, and requires the fit be under a configurable 
threshold, and the three hits be not flagged, prior to accepting the 
tracklets as valid tracks. The worst-case complexity of the tracklet filter 
is O(m⋅n). 

4. Results 

The algorithms composing Search by triplet are not run in a separate 
application, but rather they are embedded as part of the VELO recon
struction sequence. An in-depth discussion of the additional algorithms 
involved in the sequence is out of the scope of this paper. Nevertheless, 
to provide an overall perspective of our work we present the VELO 
reconstruction sequence, which is composed of the following sequence 
of algorithms:  

• Global event cut – Rejects the 10% most densely populated events.  
• Data transmission – Copies VELO raw data from the host to the 

device.  
• VELO decoding – Decodes the VELO raw data into hits.  
• VELO tracking – Our Search by triplet implementation.  
• Data consolidation – Packs resulting track data to improve memory 

locality of subsequent reconstruction algorithms. 

The VELO reconstruction sequence is written in the Allen framework, 
which can be compiled for a variety of heterogeneous target devices. The 
resulting application can be run with a configurable number of events 
per bunch n and threads t. Each thread instantiates an SIMT stream,5 and 
the thread-stream pair executes the requested sequence over the number 
of events. We run the presented experiments thousands of times to 
ensure reproducibility and mitigate processor warm-up effects. 

We have observed the performance evolution of the VELO recon
struction sequence over time. We have focused on the GPU performance, 
which will perform the first stage of HLT in LHCb. Fig. 6 shows the 
evolution of the performance with each of the optimizations we have 
applied. The reported throughput numbers were obtained with the 
configuration n = 1000 and t = 20 in a GeForce RTX 2080 Ti GPU. In all 
cases, the applications were compiled with the NVIDIA compiler nvcc. 
We report the throughput of Search by triplet since its modern inception 
in February 2018, and we align the speedup to the July 2018 version 
used for our previous publication [23]. For each optimization, the 
relevant branch of the code, a brief explanation of the optimization and 
its relative speedup are presented. 

From July 2018 to July 2020, the performance of the entire VELO 
reconstruction sequence has improved by more than a factor 3× . Some 
optimizations have been discussed throughout Section 3. One notable 
speedup has resulted from using array-of-structures (AOS) and moving 
to 16-bit floating point precision (fp-16) for storing and accessing 
VELO hit coordinates (05-03-2020, 1.25× ). AOS improved memory 
locality and coalescing since the three hit coordinates were always 
requested as a group. fp-16 provides enough precision for the VELO 
coordinate range while decreasing memory pressure. 

Three relevant sources of speedup did not involve code trans
formations. We first added the nvcc option maxrregcount to statically set 
the maximum number of registers of our kernels to 64, which improved 
performance (23-04-2018). However, the code evolved and we later 
disabled it, observing a speedup of 1.26× (17-05-2019). We think this is 
likely due to the separation of kernels on 09-07-2018, which allowed the 
compiler to set a better value to improve execution on each of them 
separately the second time. 

Another such speedup resulted from adopting no separable 

Fig. 3. (Top) Control and (bottom) data flow of the track seeding and track following steps. Only data containers relevant to the control flow are shown. SIMT 

barriers are represented with the icon . 

Fig. 4. Pendulum search of the first four non-flagged hits closest to the φ of hit 
c0. Flagged hits are marked in red (ca, cd and ce). 

5 When targeting a CPU architecture, the concept of stream is irrelevant and 
all algorithm invocations are run by the thread. 
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compilation (23-03-2020, 1.21× ). Separable compilation allows 
compilation units to use functions that are defined but not declared 
within their scope. Alongside obtaining a substantial speedup, our code 
became compatible with AMD GPUs as well through use of the HIP 
compiler. Currently it would be possible to improve the performance of 
separable compilation codebases with Link Time Optimization (LTO), 
but the release of nvcc at the time did not have this feature. Finally, 
setting as many active connections as streams (10-07-2020) improved 
the performance when setting configurations with more than eight 
active threads. 

We have closely tracked the physics efficiency of our algorithm 
throughout its development cycle by means of continuous integration 
tests. The physics efficiency of our algorithm has either remained con
stant or improved with every iteration. In particular, the only cut 
introduced in our sequence (27-04-2019, 1.07× ) is a configurable cut 
that removes events with high detector occupancy and consequently low 
signal-to-background ratio, which is common practice in real-time, high- 
throughput, resource-limited physics reconstruction environments. 

Table 2 shows the physics performance indicators for a variety of 
particle categories, for both the reference implementation and the latest 
version of Search by triplet. The different particle categories refer to 
different decay processes. For the LHCb experiment of special interest 
are decays of Beauty particles indicated by From B and also decays from 
so-called strange particles or into electrons. The physics performance 
indicators were introduced in Section 1. 

Reconstruction efficiency has substantially improved across all cat
egories. The tighter scatter criterium has reduced fake fraction at the 
cost of increasing clone fraction. The decay products of strange particles 
are especially challenging to reconstruct as they leave fewer hits in the 
VELO detector and do not necessarily point to the interaction region, as 
they are produced as secondary decay products from relatively long- 
lived particles. We have improved the reconstruction efficiency of 
decay products of strange particles by more than 10%. We have also 
improved the efficiency for electron tracks by around 20%, while 
increasing their hit efficiency and purity as well. 

The entire sequence has been run over a variety of architectures, 
listed in Table 3. Our tests have run over four CPUs from different 
vendors and five GPUs. The throughput of the VELO reconstruction 
sequence across architectures is shown in Fig. 7. GPU architectures are 
depicted on the top, whereas CPU architectures are depicted on the 
bottom. 

The tests are run with a configuration of n = 500 and t = 16 for all 
GPUs. For CPUs, the configuration is n = 200 and t has been set to the 
number of simultaneous multi-threads of each processor. We observe 
best performance on the Quadro RTX 6000 card. If we take into account 
the price from Table 3, the best price performance is found with the 
GeForce RTX 2080 Ti, which is a consumer-grade product. If we consider 
the rate per TDP, best performing device is the Tesla T4 due to its low 
TDP of 75 W. 

The performance of our previous ISPC6 implementation is also pre
sented for reference. Our current implementation is 10% slower than our 
previous ISPC implementation. However, the ISPC implementation was 
a separate codebase that would introduce maintenance overhead, 
especially considering the lack of C++ support of ISPC. In addition, ISPC 
only support x86-based architectures and ARM32. In contrast, we 
currently employ standard C++ and manual vectorization through the 
vectorization library UMESIMD [27], which supports x86 SSE, AVX and 
AVX512 extensions, Altivec, ARM64 and a compatibility scalar backend. 
In the future, we intend to transition to the standard library simd [28], 
currently under development. 

Search by triplet constitutes 70% of the sequence time on CPUs, but 
only 47% of the GPU sequence time. This difference likely has to do with 
differences in the execution model, as the branching ratio affects CPUs 
and GPUs differently. We observe a difference in performance of an 
order of magnitude between the CPUs and GPUs under consideration. 

Fig. 5. Iterative seeding and following 
stages, where modules are considered 
from right to left. (a) Seeding stage. For 
hit c0, four hits c0a, c0b, c0c and c0d are 
considered on the neighbouring module 
on the right. Each of the resulting dou
blets is extrapolated onto the neigh
bouring module on the left, where hits 
in the φ window are considered. The φ 
search wraps around. (b) Following 
stage. Forming tracks are extrapolated 
and hits are sought in a φ window. (c) 
and (d) Subsequent seeding and 
following stages. Hits found in previous 
follow stages are marked as flagged and 
not further considered.   

6 The Intel Implicit SPMD Program Compiler [26] is an SPMD compiler that 
exposes vector units in SIMD processors as programmable processors. ISPC 
programs are written in a custom extension to the C language. 
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The specifications of the Radeon Instinct MI50 match those of the Tesla 
V100 in terms of TFLOPS, however we observe a performance gap of 
2.13× in favour of the NVIDIA card. We have used the HIP compiler to 
generate the application for AMD GPUs, which is currently in active 
development and we have observed performance improvements with 
the recent transition from hipcc to hip-clang. We will continue to 
track the performance in AMD devices with the evolution of the 
compiler. 

The tested generation of NVIDIA cards connect through the standard 
PCIe3 16× , which has a peak payload bandwidth of 15.76 GBps FDx. 
Our current application uses 8 GBps host to device data transfer, so 
theoretically we are currently using 51% of the available bandwidth in 
PCIe3 16× . We obtain a throughput of 592 kHz on the Quadro RTX 
6000, and the peak throughput attainable with only data transmission is 
940 kHz, therefore empirically we are using 63% of the capacity of the 
link. While in the last two years we have improved the throughput of our 

Fig. 6. Evolution of VELO throughput versus time on a GeForce RTX 2080 Ti card.  

Table 2 
Efficiency numbers of VELO reconstruction sequence for reference implementation (left) and latest version (right). For each implementation, the reconstruction ef
ficiency, clone fraction, hit purity and hit efficiency are shown as percentages for a variety of particle categories. The last row shows the overall fake fraction of the 
implementation as a percentage over the total number of reconstructed tracks.  

Particle category Reference (09-07-2018) Latest version (10-07-2020)  

Reco. eff. Clone fraction Hit purity Hit eff. Reco. eff. Clone fraction Hit purity Hit eff. 

All 95.36 0.60 99.07 97.58 98.52 2.14 99.30 96.45 
Strange 87.45 0.60 98.04 97.65 98.13 1.58 99.48 97.35 
From B 96.88 0.51 98.96 97.85 99.30 1.16 99.74 98.11 
Electrons 70.25 0.72 90.93 90.64 97.38 2.74 98.18 97.02 
From B electrons 79.00 1.13 94.00 93.52 97.00 3.68 98.42 96.68 
Overall fake fraction 3.25 0.86  
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algorithm by more than 3× , it will not be possible to improve it further 
by more than 1.6× in the future under these conditions. The next gen
eration of NVIDIA cards will support PCIe4, which should enable us to 
overcome this potential issue. 

Fig. 8 shows the scalability of our application against the peak 32-bit 
FLOPS of the processors under consideration and against the number of 
threads. The top shows cross-architecture scalability with respect to 
TFLOPS of each system. Our software scales with the TFLOPS of the 
processors under consideration. The AMD GPU appears as an outlier 
which indicates that more performance can be attained from further 
optimizing the code for that device. 

The scalability of CPU processors is depicted in the bottom left. The 
run configurations were locked to n = 200, with a varying number of 
threads t run in a single processor. For each CPU, the best performance 
was achieved by running a configuration with as many threads as 
simultaneous multi threads (SMTs). The AMD EPYC and Intel processors 
show a steady performance increase with every additional core, and 
their scalability changes when they start using its SMTs. Both the Power 
and ARM processors exhibit four local peaks, which correspond with 
their 4-way SMT configuration. 

Finally, the scalability of GPU processor is shown in the bottom right. 

For the GPU tests, each configuration was run with n = 500 and t in the 
range [1,20]. The Tesla T4 saturates with as few as 5 streams. The AMD 
card performance fluctuates and saturates with 14 streams. Both the 
GeForce and the Quadro cards scale very similarly, which could be due 
to both sharing the NVIDIA Turing architecture. This is further sup
ported by the different scaling behaviour of the Tesla V100, of the 
previous Volta architecture. All GPUs saturate with a configuration of at 
least 14 streams. Our software scales to both CPU and GPU architectures. 

5. Conclusions 

We have presented Search by triplet, a fast algorithm for VELO 
reconstruction on parallel architectures. Our algorithm exploits various 
degrees of parallelism in LHCb VELO track reconstruction, and makes an 
efficient use of resources in heterogeneous architectures. The algorithm 
is written in a single codebase in C++, and we have developed 
architecture-specific optimizations for hot sections of the code. 

Our algorithm employs a local tracking technique to detect particle 
trajectories. The algorithm first sorts hits in each module by φ, gener
ating an efficient 1D search structure. The local tracking method then 
consists in an iterative process with track seeding and track following 
steps. In track seeding, triplet seeds are sought as compatible non- 
flagged hits minimizing a fit function. Forming tracks are extended in 
track following, which flags hits of extended tracks. The flagging 
mechanism introduces a data dependency between seeding and 
following stages expressed as a barrier in SIMT architectures. Finally, 
remaining three-hit tracklets are filtered in a post-processing step. We 
expect our design to be generalizable to track reconstruction of other 
detectors, but this is subject to further research. 

We have optimized our algorithm in the last two years iteratively, 
resulting in more than a factor 3× speedup. We have described and 
quantified the speedup of each of the individual optimizations. We have 
discussed the inclusion of our algorithm as part of the VELO recon
struction sequence, and we have shown the improvement over time of 
the sequence. We have analysed the performance of our algorithm over a 
variety of CPU and GPU architectures with respect to our previous 
implementations. We trade off a loss of 10% in performance in our CPU 
implementation with the better maintainability of a single codebase and 
the portability across architectures of our new algorithm. We have 
tracked and improved the physics efficiency of our algorithm. 

We have also discussed the price performance and throughput 
against TDP of the processors analysed. We observe a peak throughput of 
592 kHz on the Quadro RTX 6000, the best price performance on the 

Table 3 
Hardware used for our tests.  

Feature Type # 
cores 

Freq. 
(GHz) 

Peak 
TFLOPS 

MSRP 
($) 

TDP 
(w) 

Intel Xeon 
Broadwell E5- 
2630 

CPU 10 
(20) 

3.1 0.352 667 85 

IBM Power9 
IC922 EK01 

CPU 16 
(64) 

4.0 0.512 3150 225 

Cavium 
ThunderX2 
CN9980 

CPU 32 
(128) 

2.5 0.56 1795 180 

AMD EPYC 7502 CPU 32 
(64) 

3.35 1.3 3618 180 

AMD Radeon 
Instinct MI50 

GPU 3840 1.746 13.41 8999 300 

NVIDIA GeForce 
RTX 2080 Ti 

GPU 4352 1.545 13.34 1199 250 

NVIDIA Quadro 
RTX 6000 

GPU 4608 1.77 16.31 4000 250 

NVIDIA Tesla T4 GPU 2560 1.59 8.141 2295 70 
NVIDIA Tesla 

V100 32GB 
GPU 5120 1.37 14.13 8999 250  

Fig. 7. Throughput of full VELO reconstruction sequence, including global event cut, data transmission, decoding, tracking and data consolidation. (Top) 
Throughput across GPUs. (Bottom) Throughput across single-socket CPUs. The reference performance from [23] is included for both CPU and GPU. 
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GeForce RTX 2080 Ti, and the best throughput against TDP on the Tesla 
T4. We observe it is possible to increase throughput by another roughly 
40% before PCIe3 bandwidth becomes a bottleneck. 

We have shown that our algorithm scales with the FLOPS of the 
processors analysed. Our algorithm also scales with the number of 
processors of the various processors under consideration. We have 
shown that a configuration with 14 streams saturates the performance in 
the GPUs under consideration. 

Our algorithm constitutes the state-of-the-art in VELO reconstruction 
on SIMT architectures. The algorithm will be included in the HLT1 
sequence of real-time software reconstruction in the LHCb data acqui
sition system, expected to restart data taking in late 2021. The 
throughput improvements presented gives the HLT1 margin to deal with 
the increase in data volume. The performance of the VELO reconstruc
tion is crucial to the correct functioning of the LHCb experiment, we will 
continue to explore techniques to obtain better performance in current 
and upcoming hardware generations. 
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