

Search by triplet: An efficient local track
reconstruction algorithm for parallel architectures
Citation for published version (APA):

Campora Perez, D. H., Neufeld, N., & Nunez, A. R. (2021). Search by triplet: An efficient local track
reconstruction algorithm for parallel architectures. Journal of Computational Science, 54, Article 101422.
https://doi.org/10.1016/j.jocs.2021.101422

Document status and date:
Published: 01/09/2021

DOI:
10.1016/j.jocs.2021.101422

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 11 Apr. 2024

https://doi.org/10.1016/j.jocs.2021.101422
https://doi.org/10.1016/j.jocs.2021.101422
https://cris.maastrichtuniversity.nl/en/publications/e523378b-658c-46bf-8dad-e0823bd0e32b

Journal of Computational Science 54 (2021) 101422

Available online 15 July 2021
1877-7503/© 2021 Elsevier B.V. All rights reserved.

Search by triplet: An efficient local track reconstruction algorithm for
parallel architectures☆

Daniel Hugo Cámpora Pérez a,b,*, Niko Neufeld c, Agustín Riscos Núñez d,e

a Maastricht University, Maastricht, Netherlands
b Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
c CERN, CH-1211 Geneva 23, Switzerland
d Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Informatics Engineering (I3US), Universidad de Sevilla, Spain
e Research Group on Natural Computing, Universidad de Sevilla, Spain

A R T I C L E I N F O

Keywords:
Track reconstruction
High throughput computing
Parallel computing
Heterogeneous architectures
GPGPU
SIMD
SIMT

A B S T R A C T

Millions of particles are collided every second at the LHCb detector placed inside the Large Hadron Collider at
CERN. The particles produced as a result of these collisions pass through various detecting devices which will
produce a combined raw data rate of up to 40 Tbps by 2021. These data will be fed through a data acquisition
system which reconstructs individual particles and filters the collision events in real time. This process will occur
in a heterogeneous farm employing exclusively off-the-shelf CPU and GPU hardware, in a two stage process
known as High Level Trigger.

The reconstruction of charged particle trajectories in physics detectors, also referred to as track reconstruction
or tracking, determines the position, charge and momentum of particles as they pass through detectors. The
Vertex Locator subdetector (VELO) is the closest such detector to the beamline, placed outside of the region
where the LHCb magnet produces a sizable magnetic field. It is used to reconstruct straight particle trajectories
which serve as seeds for reconstruction of other subdetectors and to locate collision vertices. The VELO sub
detector will detect up to 109 particles every second, which need to be reconstructed in real time in the High
Level Trigger.

We present Search by triplet, an efficient track reconstruction algorithm. Our algorithm is designed to run
efficiently across parallel architectures. We extend on previous work and explain the algorithm evolution since
its inception. We show the scaling of our algorithm under various situations, and analyse its amortized time in
terms of complexity for each of its constituent parts and profile its performance. Our algorithm is the current
state-of-the-art in VELO track reconstruction on SIMT architectures, and we qualify its improvements over
previous results.

1. Introduction

The LHCb detector is a large physics detector situated at the Large
Hadron Collider at CERN [1]. The detector is being upgraded for the
restart of data taking scheduled for 2021 [2]. The full collision data rate
of 40 Tbps will be piped through a data acquisition system that will
perform a data filtering in real-time, prior to storing data in long-term

storage for posterior analysis. The filtering will occur in two stages:
the first stage or High Level Trigger 1 (HLT1) will reduce the data rate
according to particle kinematics by a factor of 40× in a computing farm
composed of 170 servers equipped with GPUs [3]. The second filter
stage or High Level Trigger 2 (HLT2) will perform a full event1 recon
struction and reduce data by an additional factor 20× in a computing
farm composed of thousands of servers [4]. The introduction of a

☆ The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/).

More information on the Reproducibility Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
* Corresponding author at: Maastricht University, Maastricht, Netherlands.

E-mail address: dcampora@cern.ch (D.H. Cámpora Pérez).
1 An event corresponds to a single crossing of the Large Hadron Collider proton beams.

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

https://doi.org/10.1016/j.jocs.2021.101422
Received 12 August 2020; Received in revised form 22 January 2021; Accepted 30 June 2021

https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:dcampora@cern.ch
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2021.101422
https://doi.org/10.1016/j.jocs.2021.101422
https://doi.org/10.1016/j.jocs.2021.101422
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2021.101422&domain=pdf

Journal of Computational Science 54 (2021) 101422

2

heterogeneous computing infrastructure in LHCb is motivating the cre
ation of parallel algorithms that are portable and efficient across
architectures.

Track reconstruction or tracking is a pattern recognition problem
consisting in finding particle trajectories from measurements (hits) in
detectors along their path. The problem is equivalent to finding a
partition of disjoint sets of measurements that are compatible with the
laws of motion of particles as they traverse a detector, accounting for the
fact that some measurements may be noise, and considering the pres
ence of sizable magnetic fields which curves the trajectories of charged
particles depending on their momentum. Track reconstruction yields
momentum and trajectory information of reconstructed particles, which
play an essential role in trigger systems of physics experiments. Fig. 1
exemplifies the track reconstruction problem.

The Vertex Locator (VELO) is a tracking detector of LHCb consisting
of 52 planes of silicon pixel chips surrounding the LHC interaction point
and beamline, shown in Fig. 2. As particles pass through the detection
planes, they leave detectable measurements in the form of pixel clusters.
VELO track reconstruction constitutes the first reconstructed sub
detector of LHCb, and tracks found in the VELO are used to locate the
originating collision vertices as well as serve as seeds for subsequent
track reconstruction. Therefore reconstructing the VELO is of vital
importance towards the correct functioning of LHCb.

Track reconstruction validation is typically performed with Monte
Carlo (MC) simulated samples, where reconstructed tracks should match
MC particles, which establish the ground truth. The matching of tracks
with particles is done on a hit by hit basis. The physics performance of
found tracks can be evaluated according to five indicators [5]:

• The track reconstruction efficiency can be determined by the ratio
between the reconstructed tracks of reconstructible particles, over all
the reconstructible particles:2

Nreconstructed and reconstructible

Nreconstructible
(1)

• A fake track (ghost track) is created when a percentage of hits in a
track are not from a real track. In LHCb, at least 70% of the hits in a
track must belong to the same MC particle to be associated in the
validation process. The fake track fraction is the ratio between the
fake tracks and all the reconstructed tracks:

Nfake tracks

Nreconstructed tracks
(2)

• The clone track fraction refers to the fraction of tracks associated to
the same MC particle as another reconstructed track:

Nclone tracks

Nreconstructed tracks
(3)

• The hit purity in a track refers to the fraction of track hits that belong
to the same MC particle:

Ntrack hits in MC particle hits

Ntrack hits
(4)

• Finally, the hit efficiency yields the number of hits correctly found out
of the MC particle hits in a track:

Ntrack hits in MC particle hits

NMC particle hits
(5)

The VELO detector is outside of the range of effect of the LHCb
magnet, and therefore trajectories can be considered to be straight lines.
Once the detector restarts operation a sustained throughput of 109

particle trajectories at the VELO per second will have to be reconstructed
in the trigger systems, while delivering good track reconstruction per
formance indicators. The VELO reconstruction is therefore a real-time
software challenge whereby the design performance of the system
must be met within the hardware constraints of the data acquisition
system.

2. Tracking techniques

Due to the interest in tracking by many particle physics experiments,
there is a rich literature on track reconstruction techniques [6]. Local
tracking methods find tracks iteratively, whereas global methods adapt
an equivalent formulation of the problem, typically including all mea
surements, where solutions map to tracks.

The most common local tracking method consists in finding a track
seed and extending it to other detector planes in a process known as track
following. The track seed is usually formed by a segment of two or three
hits, and the search starts in a region where the hit density is lower and
thus the signal is easier to distinguish, which usually corresponds with
the furthest distance to the expected interaction point. Track seeds are
extrapolated (followed) to detector regions closer to the interaction point
by applying an extrapolation accounting for the presence of a field if
necessary. A model of the track can be formed from the track hits, and
this model can be employed to select among a list of candidate hits the
best fitting one. This extrapolation process may account for missing hits
in detector parts, according to the hit inefficiencies of the physical de
tector and dead regions without sensitive detectors. Once a track is fully
built, its constituent hits can be flagged so they are not revisited in
further seed or following steps.

Historically a local track following method has been employed for
the VELO reconstruction of the LHCb experiment runs, named Search by
pair [7]. It constructs seeds of pairs of hits initially in the furthest
modules from the interaction region. Track seeds are followed to
neighbouring modules, allowing for one hit to be missing in consecutive
modules on any one side of the VELO subdetector. Tracks of four or more
hits flag all of their hits, reducing the search time of further seeding and
following steps. Tracks consisting of at least three hits are stored, in
accordance to the reconstructibility condition of the VELO subdetector.
However, the requirement to flag hits as used makes this technique not
suitable for parallelization without modification. It is possible to find all
triplet combinations in parallel dropping the flagging mechanism, which
was done in the seeding phase of [8]. However this parallelism comes at
the cost of generating all possible triplet combinations, which is ineffi
cient for densely populated detectors.

Other local tracking methods are track roads and track elements. Track
roads forms candidates with two hits situated in the extremes of the
detector, and creates a path or road between both hits by interpolation.
In case the model of the track be curved, a third hit should be added. The
width of the road determines the accepted error in the model, and it
depends on the characteristics of the detector [9]. Track elements per
forms reconstruction in two phases: (1) seeds are made up from neigh
bouring points, straight lines or parabolic lines. Each seed is converted
into a master point (a weighted average of the points) and a direction. (2)
The seeds, instead of the original hits, are used to perform tracking. This
method reduces the number of hits to consider in the tracking phase, at
the cost of a loss in precision [10]. Local methods may be used in
conjunction with corrections such as the Kalman filter [11], fitting
forming tracks and selecting hits [12].

Hit multiplicity is often a concern in real-time reconstruction envi
ronments, where track reconstruction must be performed at a high
throughput in order to keep up with the collision rate. Spatial reductions
can be employed to reduce the search time of hits under consideration
for local tracking methods. This involves a data preparation step prior to

2 A particle is said to be reconstructible in a tracking detector when it fires
enough measurements over a detector-specific threshold.

D.H. Cámpora Pérez et al.

Journal of Computational Science 54 (2021) 101422

3

the application of the tracking method. Common data structures used
alongside local methods include KD-trees [13], binary search structures
or more generically search windows. The specifics of the geometry of the
detector yield in some cases a natural subdivision of the problem [14].

Alternatively, global methods can be applied to the track recon
struction problem. The Hough transform method [15] in its simplest form
converts all hit points into a histogram representation in polar co
ordinates, where peaks are equivalent to compatible hits. Despite of the
elegance of the Hough transform underlying principle, difficulties arise
when dealing with high hit multiplicities, where binning and threshold
of the histogram play an important role in avoiding excess of clones or
fake tracks. Circular trajectories must be converted to lines prior to
applying the Hough transform, which can be achieved with a conformal
mapping transformation [16].

The clustering method consists in extrapolating hits onto a parameter
space, according to the expected trajectory from a collision vertex. Once
in the parameter space, hits pertaining to the same track appear close to
each other. The tracking problem consists then in a clustering problem,
that can be solved with any clustering method [17]. The collision vertex
must be chosen with sufficient precision, and the resulting cluster must
be verified to match reasonable track parameters [18].

The automata method [19] is a graph traversal method of a weighted
directed graph representing the measurements. Each measurement is a
vertex, and directed edges between measurements in neighbouring de
tector elements are created according to the expected track parameters
in the region of acceptance of the detector, in the direction from outer to
inner-most layer. The graph is then traversed following a Depth-First
Search, assigning weights to visited edges according to the current
depth level. If vertices are visited multiple times, the highest weight
prevails. The automata method has been successfully implemented in
various trigger systems [8,20].

Both the algorithm and the target hardware architecture must be
considered when devising an efficient track reconstruction solution. It
has been discussed that global methods are amenable by design for
parallel architectures [6,18]. Some of the high-throughput tracking al
gorithms used in current trigger systems are global methods [20,21],
and have been implemented on modern CPU and GPU architectures. On

the other hand, local methods have also been used for high-throughput
solutions [22].

In our previous work [23], we presented Search by triplet, a novel
local method for track reconstruction on parallel architectures, along
side a base framework to run it efficiently on GPU architectures. Our
algorithm considers module pairs to increase the amount of parallel
work in every step. We sort the data by φ on every module pair stemming
from the observation that hits of tracks have similar φ values. Our al
gorithm then iteratively generates track seeds of triplets of hits, and
extrapolates forming tracks to the next module pair. Fake and clone
tracks are avoided by introducing a flagging mechanism with barriers. In
a last step, track seeds that were never extended are checked again prior
to storing them as tracks. We implemented our work both in the SIMT3

programming paradigm targeting GPUs, as well as in SPMD targeting
CPUs. A variation of this algorithm with SIMD-specific optimizations
was done in [24].

In this paper, we build on the foundation of our previous algorithm
and optimize it for SIMT and SIMD architectures. We improve the
maintainability of our algorithm by providing a single codebase for any
heterogeneous architecture in the Allen framework [3]. We also provide
architecture-specific optimizations for routines that are employed often
and that require hand-tuning. Through an iterative process of optimi
zation, we increase the throughput of our algorithm by more than a
factor 3× , while also improving its physics efficiency.

3. Search by triplet

Search by triplet is a local track following algorithm optimized to
reconstruct the LHCb VELO detector that exploits the task parallelism

Fig. 1. (Left) A minimal track reconstruction instance projected in 2D, consisting in a set of hits with position information. (Right) The actual particle trajectories
sought when doing track reconstruction.

Fig. 2. A schematic of the upgraded Velo detector. (Left) Section in the XZ plane, with detector modules laying in two sides. (Right) Front view of each module in the
XY plane, with subdivisions indicating detector chips. Each detector chip has a resolution of 256 × 256 pixels.

3 SIMD (Single Instruction Multiple Data) is a class of parallel processors in
which each instruction operates over several data simultaneously in lockstep.
SPMD (Single Program Multiple Data) is a class of processors in which the work
is distributed in tasks that operate over multiple data, not necessarily in lock
step. SIMT (Single Instruction Multiple Thread) is an execution model employed
by GPUs where every instruction is executed by a group of threads.

D.H. Cámpora Pérez et al.

Journal of Computational Science 54 (2021) 101422

4

inherent to the LHCb data taking regime and the data parallelism of
track reconstruction. 30 million events are detected per second in LHCb,
where each is independent of each other. Therefore, we assign different
tasks to process each individual event. Within each event processing,
track reconstruction exposes various levels of parallelism that we tackle
in a data parallel fashion, either employing the SIMT paradigm or SIMD
optimizations where relevant.

Search by triplet is now a single coherent codebase written in C++,
with custom extensions that provide SIMT functionality. Depending on
the target device specified at compile time, our codebase can potentially
target any parallel architecture, notably modern CPUs and GPUs.
Table 1 depicts the levels of parallelism exploited in Allen algorithms
such as Search by triplet, and the correspondence with each target.

Our algorithm consists in three sub-algorithms that are described in
the following. For simplicity, we will refer to modules instead of module
pairs. When discussing computational complexity, the notation
employed is generalized to a detector with m consecutive detector
modules and an average number of hits in each module of n.

3.1. Sort by phi

The VELO modules are positioned such that particle collisions tend to
occur close to the origin of coordinates in the XY plane. Hence, particles
produced in these collisions that travel in a straight line are likely to
have a constant phase in polar coordinates when projected on an XY
plane. Hits in each module are sorted by φ, calculated as the 2-argument
arctangent in the XY plane with respect to the origin of coordinates.

The range of values of the 2-argument arctangent is [− π, + π].
However, values close to − π are conceptually very close to values close
to + π, as they represent angles that are close. For this reason, we
convert the range into a unsigned 16-bit integer type, mapping the 2-
argument arctangent range to the unsigned 16-bit range [0, 216 − 1].
This transformation enables us to use modulo arithmetic to perform
comparisons, and it allows us to reduce memory pressure by using two
bytes as opposed to four to store each φ.

Given that the number of maximum hits in a module is known, a
constant amount of shared memory4 is employed as a means of low-
latency temporary data buffer when φ is calculated and sorted. The
permutation produced is then employed to sort hit coordinates, yielding
a structure of arrays sorted by phi for each module. A parallel insertion
sort method has been implemented to calculate the permutation. The
worst-case complexity of this algorithm is O(m⋅n2).

An SIMD-specific optimization is also provided. The φ of every hit is
calculated using a vectorization library. The permutation is calculated
using the quicksort implementation provided in the STL library. The STL
sort implementation has a worst case of O(n⋅log(n)), and therefore the
SIMD specialization has a worst-case complexity of O(m⋅n⋅log(n)).

3.2. Track seeding and track following

The local track reconstruction technique implemented in Search by
triplet consists in an iterative application of two stages: track seeding
and track following. Fig. 3 shows an overview of the technique with the
iterative control flow on the top, and the data containers involved in
either data dependencies or output at the bottom. Even though the
iteration follows an ascending order, the actual direction of traversal of
the modules is configurable.

Track seeding finds triplets of hits in consecutive modules, one hit in
each module. In order to avoid clone tracks, a flagging mechanism has
been implemented, akin to the one found in Search by pair [7]. None of
the hits in the triplet must be flagged. This introduces the requirement of
a barrier between each seeding and following stage due to the
Read-After-Write and Write-After-Read dependencies: flagged hits are
read during track seeding, and they are written during track following.
The barrier is only present in SIMT code, and if an SIMD target is
specified, it is removed at compilation time. The flagged hits container is
initialized to be empty prior to the execution of the first seeding
iteration.

The process of finding triplet seeds has received several optimiza
tions. We consider three consecutive modules, and process all non-
flagged hits in the middle module separately. For each hit, we seek
the corresponding φ position in the neighbouring module with a binary
search. Then, we perform a pendulum search, alternatively looking
further down and up the hits in the module, until a threshold number of
candidate hits that are not flagged is found. Fig. 4 depicts this process.

Once all candidate doublets are found, each doublet is extrapolated
to the third module. A binary search is performed with the extrapolation
φ, and all hits within a tolerance window are considered. Fig. 5a shows
the process of extrapolation for hit c0. Each triplet candidate is evaluated
with a scatter function between the extrapolated doublet position and
the third hit under consideration: dx2 + dy2. For each middle module hit,
at most one triplet is kept: the triplet minimizing the scatter function
under a threshold.

Triplets are stored in the seeds container and passed on to the
following stage, where all forming tracks (in containers seeds and tracks)
are considered. Track following consists in extrapolating forming tracks
to the next module and attempting to find compatible hits under a
threshold. Similarly to the doublet extrapolation of seeding, the last two
hits of each forming track are extrapolated to the next module, and the
best hit is evaluated with the scatter function. In order to account for the
hit inefficiency of modules, it is allowed for tracks to miss a module, in
which case they are kept for the next following iteration.

The best hits found for the followed tracks are flagged, as shown in
Fig. 5. When a forming track misses two consecutive modules, or when
processing the last iteration, forming tracks are either stored in the
tracklets or tracks container, depending on whether the number of hits is
three or more respectively.

The data parallelism of this process is exploited by separate threads
in the SIMT model, whereby each thread processes a different starting
hit in the seeding stage, or a different forming track in the following
stage. An SIMD-specific optimization has been done for the seeding
stage, whereby all doublets of each starting hit are processed in parallel
with vector instructions.

The worst-case complexities of the two stages are as follows. Seeding
is performed on all consecutive module triplets (bound by m), where all
candidates in a module are considered (n). For each candidate, a binary
search is performed to a neighbouring module (log(n)), and for each
doublet a binary search to the third module is performed (log(n)).
Finally, the best hit within the threshold (n) is found. Therefore, its
worst-case complexity is O(m⋅n2⋅log(n)2).

Track following occurs on all modules considered for extrapolation
(m), where all forming tracks are considered (n). Similarly to seeding,
the last doublet in each track is extrapolated and the best hit within the

Table 1
Degrees of parallelism for event reconstruction in Allen. CUDA terminology is
used [25] for a generic GPU target, not necessarily NVIDIA.

CPU target GPU
target

Type of
parallelism

Bunches of
events

Threads Streams Task parallelism

Inter-event Sequential Blocks Task parallelism
Intra-event Sequential or

vectorization
Threads Data parallelism

4 Shared memory is a GPU-specific optimization that uses the configurable
L1-cache shared memory available in GPUs. For other targets, main memory is
employed.

D.H. Cámpora Pérez et al.

Journal of Computational Science 54 (2021) 101422

5

threshold is kept. Therefore, its worst-case complexity is O(m⋅n2⋅log(n)).

3.3. Tracklet filter

The Tracklet filter operates on the tracklet container, which contains
three-hit tracks for which no compatible hit was found in any track
following step. It performs a least means square fit over the three hit
coordinates of each track, and requires the fit be under a configurable
threshold, and the three hits be not flagged, prior to accepting the
tracklets as valid tracks. The worst-case complexity of the tracklet filter
is O(m⋅n).

4. Results

The algorithms composing Search by triplet are not run in a separate
application, but rather they are embedded as part of the VELO recon
struction sequence. An in-depth discussion of the additional algorithms
involved in the sequence is out of the scope of this paper. Nevertheless,
to provide an overall perspective of our work we present the VELO
reconstruction sequence, which is composed of the following sequence
of algorithms:

• Global event cut – Rejects the 10% most densely populated events.
• Data transmission – Copies VELO raw data from the host to the

device.
• VELO decoding – Decodes the VELO raw data into hits.
• VELO tracking – Our Search by triplet implementation.
• Data consolidation – Packs resulting track data to improve memory

locality of subsequent reconstruction algorithms.

The VELO reconstruction sequence is written in the Allen framework,
which can be compiled for a variety of heterogeneous target devices. The
resulting application can be run with a configurable number of events
per bunch n and threads t. Each thread instantiates an SIMT stream,5 and
the thread-stream pair executes the requested sequence over the number
of events. We run the presented experiments thousands of times to
ensure reproducibility and mitigate processor warm-up effects.

We have observed the performance evolution of the VELO recon
struction sequence over time. We have focused on the GPU performance,
which will perform the first stage of HLT in LHCb. Fig. 6 shows the
evolution of the performance with each of the optimizations we have
applied. The reported throughput numbers were obtained with the
configuration n = 1000 and t = 20 in a GeForce RTX 2080 Ti GPU. In all
cases, the applications were compiled with the NVIDIA compiler nvcc.
We report the throughput of Search by triplet since its modern inception
in February 2018, and we align the speedup to the July 2018 version
used for our previous publication [23]. For each optimization, the
relevant branch of the code, a brief explanation of the optimization and
its relative speedup are presented.

From July 2018 to July 2020, the performance of the entire VELO
reconstruction sequence has improved by more than a factor 3× . Some
optimizations have been discussed throughout Section 3. One notable
speedup has resulted from using array-of-structures (AOS) and moving
to 16-bit floating point precision (fp-16) for storing and accessing
VELO hit coordinates (05-03-2020, 1.25×). AOS improved memory
locality and coalescing since the three hit coordinates were always
requested as a group. fp-16 provides enough precision for the VELO
coordinate range while decreasing memory pressure.

Three relevant sources of speedup did not involve code trans
formations. We first added the nvcc option maxrregcount to statically set
the maximum number of registers of our kernels to 64, which improved
performance (23-04-2018). However, the code evolved and we later
disabled it, observing a speedup of 1.26× (17-05-2019). We think this is
likely due to the separation of kernels on 09-07-2018, which allowed the
compiler to set a better value to improve execution on each of them
separately the second time.

Another such speedup resulted from adopting no separable

Fig. 3. (Top) Control and (bottom) data flow of the track seeding and track following steps. Only data containers relevant to the control flow are shown. SIMT

barriers are represented with the icon .

Fig. 4. Pendulum search of the first four non-flagged hits closest to the φ of hit
c0. Flagged hits are marked in red (ca, cd and ce).

5 When targeting a CPU architecture, the concept of stream is irrelevant and
all algorithm invocations are run by the thread.

D.H. Cámpora Pérez et al.

Journal of Computational Science 54 (2021) 101422

6

compilation (23-03-2020, 1.21×). Separable compilation allows
compilation units to use functions that are defined but not declared
within their scope. Alongside obtaining a substantial speedup, our code
became compatible with AMD GPUs as well through use of the HIP
compiler. Currently it would be possible to improve the performance of
separable compilation codebases with Link Time Optimization (LTO),
but the release of nvcc at the time did not have this feature. Finally,
setting as many active connections as streams (10-07-2020) improved
the performance when setting configurations with more than eight
active threads.

We have closely tracked the physics efficiency of our algorithm
throughout its development cycle by means of continuous integration
tests. The physics efficiency of our algorithm has either remained con
stant or improved with every iteration. In particular, the only cut
introduced in our sequence (27-04-2019, 1.07×) is a configurable cut
that removes events with high detector occupancy and consequently low
signal-to-background ratio, which is common practice in real-time, high-
throughput, resource-limited physics reconstruction environments.

Table 2 shows the physics performance indicators for a variety of
particle categories, for both the reference implementation and the latest
version of Search by triplet. The different particle categories refer to
different decay processes. For the LHCb experiment of special interest
are decays of Beauty particles indicated by From B and also decays from
so-called strange particles or into electrons. The physics performance
indicators were introduced in Section 1.

Reconstruction efficiency has substantially improved across all cat
egories. The tighter scatter criterium has reduced fake fraction at the
cost of increasing clone fraction. The decay products of strange particles
are especially challenging to reconstruct as they leave fewer hits in the
VELO detector and do not necessarily point to the interaction region, as
they are produced as secondary decay products from relatively long-
lived particles. We have improved the reconstruction efficiency of
decay products of strange particles by more than 10%. We have also
improved the efficiency for electron tracks by around 20%, while
increasing their hit efficiency and purity as well.

The entire sequence has been run over a variety of architectures,
listed in Table 3. Our tests have run over four CPUs from different
vendors and five GPUs. The throughput of the VELO reconstruction
sequence across architectures is shown in Fig. 7. GPU architectures are
depicted on the top, whereas CPU architectures are depicted on the
bottom.

The tests are run with a configuration of n = 500 and t = 16 for all
GPUs. For CPUs, the configuration is n = 200 and t has been set to the
number of simultaneous multi-threads of each processor. We observe
best performance on the Quadro RTX 6000 card. If we take into account
the price from Table 3, the best price performance is found with the
GeForce RTX 2080 Ti, which is a consumer-grade product. If we consider
the rate per TDP, best performing device is the Tesla T4 due to its low
TDP of 75 W.

The performance of our previous ISPC6 implementation is also pre
sented for reference. Our current implementation is 10% slower than our
previous ISPC implementation. However, the ISPC implementation was
a separate codebase that would introduce maintenance overhead,
especially considering the lack of C++ support of ISPC. In addition, ISPC
only support x86-based architectures and ARM32. In contrast, we
currently employ standard C++ and manual vectorization through the
vectorization library UMESIMD [27], which supports x86 SSE, AVX and
AVX512 extensions, Altivec, ARM64 and a compatibility scalar backend.
In the future, we intend to transition to the standard library simd [28],
currently under development.

Search by triplet constitutes 70% of the sequence time on CPUs, but
only 47% of the GPU sequence time. This difference likely has to do with
differences in the execution model, as the branching ratio affects CPUs
and GPUs differently. We observe a difference in performance of an
order of magnitude between the CPUs and GPUs under consideration.

Fig. 5. Iterative seeding and following
stages, where modules are considered
from right to left. (a) Seeding stage. For
hit c0, four hits c0a, c0b, c0c and c0d are
considered on the neighbouring module
on the right. Each of the resulting dou
blets is extrapolated onto the neigh
bouring module on the left, where hits
in the φ window are considered. The φ
search wraps around. (b) Following
stage. Forming tracks are extrapolated
and hits are sought in a φ window. (c)
and (d) Subsequent seeding and
following stages. Hits found in previous
follow stages are marked as flagged and
not further considered.

6 The Intel Implicit SPMD Program Compiler [26] is an SPMD compiler that
exposes vector units in SIMD processors as programmable processors. ISPC
programs are written in a custom extension to the C language.

D.H. Cámpora Pérez et al.

Journal of Computational Science 54 (2021) 101422

7

The specifications of the Radeon Instinct MI50 match those of the Tesla
V100 in terms of TFLOPS, however we observe a performance gap of
2.13× in favour of the NVIDIA card. We have used the HIP compiler to
generate the application for AMD GPUs, which is currently in active
development and we have observed performance improvements with
the recent transition from hipcc to hip-clang. We will continue to
track the performance in AMD devices with the evolution of the
compiler.

The tested generation of NVIDIA cards connect through the standard
PCIe3 16× , which has a peak payload bandwidth of 15.76 GBps FDx.
Our current application uses 8 GBps host to device data transfer, so
theoretically we are currently using 51% of the available bandwidth in
PCIe3 16× . We obtain a throughput of 592 kHz on the Quadro RTX
6000, and the peak throughput attainable with only data transmission is
940 kHz, therefore empirically we are using 63% of the capacity of the
link. While in the last two years we have improved the throughput of our

Fig. 6. Evolution of VELO throughput versus time on a GeForce RTX 2080 Ti card.

Table 2
Efficiency numbers of VELO reconstruction sequence for reference implementation (left) and latest version (right). For each implementation, the reconstruction ef
ficiency, clone fraction, hit purity and hit efficiency are shown as percentages for a variety of particle categories. The last row shows the overall fake fraction of the
implementation as a percentage over the total number of reconstructed tracks.

Particle category Reference (09-07-2018) Latest version (10-07-2020)

Reco. eff. Clone fraction Hit purity Hit eff. Reco. eff. Clone fraction Hit purity Hit eff.

All 95.36 0.60 99.07 97.58 98.52 2.14 99.30 96.45
Strange 87.45 0.60 98.04 97.65 98.13 1.58 99.48 97.35
From B 96.88 0.51 98.96 97.85 99.30 1.16 99.74 98.11
Electrons 70.25 0.72 90.93 90.64 97.38 2.74 98.18 97.02
From B electrons 79.00 1.13 94.00 93.52 97.00 3.68 98.42 96.68
Overall fake fraction 3.25 0.86

D.H. Cámpora Pérez et al.

Journal of Computational Science 54 (2021) 101422

8

algorithm by more than 3× , it will not be possible to improve it further
by more than 1.6× in the future under these conditions. The next gen
eration of NVIDIA cards will support PCIe4, which should enable us to
overcome this potential issue.

Fig. 8 shows the scalability of our application against the peak 32-bit
FLOPS of the processors under consideration and against the number of
threads. The top shows cross-architecture scalability with respect to
TFLOPS of each system. Our software scales with the TFLOPS of the
processors under consideration. The AMD GPU appears as an outlier
which indicates that more performance can be attained from further
optimizing the code for that device.

The scalability of CPU processors is depicted in the bottom left. The
run configurations were locked to n = 200, with a varying number of
threads t run in a single processor. For each CPU, the best performance
was achieved by running a configuration with as many threads as
simultaneous multi threads (SMTs). The AMD EPYC and Intel processors
show a steady performance increase with every additional core, and
their scalability changes when they start using its SMTs. Both the Power
and ARM processors exhibit four local peaks, which correspond with
their 4-way SMT configuration.

Finally, the scalability of GPU processor is shown in the bottom right.

For the GPU tests, each configuration was run with n = 500 and t in the
range [1,20]. The Tesla T4 saturates with as few as 5 streams. The AMD
card performance fluctuates and saturates with 14 streams. Both the
GeForce and the Quadro cards scale very similarly, which could be due
to both sharing the NVIDIA Turing architecture. This is further sup
ported by the different scaling behaviour of the Tesla V100, of the
previous Volta architecture. All GPUs saturate with a configuration of at
least 14 streams. Our software scales to both CPU and GPU architectures.

5. Conclusions

We have presented Search by triplet, a fast algorithm for VELO
reconstruction on parallel architectures. Our algorithm exploits various
degrees of parallelism in LHCb VELO track reconstruction, and makes an
efficient use of resources in heterogeneous architectures. The algorithm
is written in a single codebase in C++, and we have developed
architecture-specific optimizations for hot sections of the code.

Our algorithm employs a local tracking technique to detect particle
trajectories. The algorithm first sorts hits in each module by φ, gener
ating an efficient 1D search structure. The local tracking method then
consists in an iterative process with track seeding and track following
steps. In track seeding, triplet seeds are sought as compatible non-
flagged hits minimizing a fit function. Forming tracks are extended in
track following, which flags hits of extended tracks. The flagging
mechanism introduces a data dependency between seeding and
following stages expressed as a barrier in SIMT architectures. Finally,
remaining three-hit tracklets are filtered in a post-processing step. We
expect our design to be generalizable to track reconstruction of other
detectors, but this is subject to further research.

We have optimized our algorithm in the last two years iteratively,
resulting in more than a factor 3× speedup. We have described and
quantified the speedup of each of the individual optimizations. We have
discussed the inclusion of our algorithm as part of the VELO recon
struction sequence, and we have shown the improvement over time of
the sequence. We have analysed the performance of our algorithm over a
variety of CPU and GPU architectures with respect to our previous
implementations. We trade off a loss of 10% in performance in our CPU
implementation with the better maintainability of a single codebase and
the portability across architectures of our new algorithm. We have
tracked and improved the physics efficiency of our algorithm.

We have also discussed the price performance and throughput
against TDP of the processors analysed. We observe a peak throughput of
592 kHz on the Quadro RTX 6000, the best price performance on the

Table 3
Hardware used for our tests.

Feature Type #
cores

Freq.
(GHz)

Peak
TFLOPS

MSRP
($)

TDP
(w)

Intel Xeon
Broadwell E5-
2630

CPU 10
(20)

3.1 0.352 667 85

IBM Power9
IC922 EK01

CPU 16
(64)

4.0 0.512 3150 225

Cavium
ThunderX2
CN9980

CPU 32
(128)

2.5 0.56 1795 180

AMD EPYC 7502 CPU 32
(64)

3.35 1.3 3618 180

AMD Radeon
Instinct MI50

GPU 3840 1.746 13.41 8999 300

NVIDIA GeForce
RTX 2080 Ti

GPU 4352 1.545 13.34 1199 250

NVIDIA Quadro
RTX 6000

GPU 4608 1.77 16.31 4000 250

NVIDIA Tesla T4 GPU 2560 1.59 8.141 2295 70
NVIDIA Tesla

V100 32GB
GPU 5120 1.37 14.13 8999 250

Fig. 7. Throughput of full VELO reconstruction sequence, including global event cut, data transmission, decoding, tracking and data consolidation. (Top)
Throughput across GPUs. (Bottom) Throughput across single-socket CPUs. The reference performance from [23] is included for both CPU and GPU.

D.H. Cámpora Pérez et al.

Journal of Computational Science 54 (2021) 101422

9

GeForce RTX 2080 Ti, and the best throughput against TDP on the Tesla
T4. We observe it is possible to increase throughput by another roughly
40% before PCIe3 bandwidth becomes a bottleneck.

We have shown that our algorithm scales with the FLOPS of the
processors analysed. Our algorithm also scales with the number of
processors of the various processors under consideration. We have
shown that a configuration with 14 streams saturates the performance in
the GPUs under consideration.

Our algorithm constitutes the state-of-the-art in VELO reconstruction
on SIMT architectures. The algorithm will be included in the HLT1
sequence of real-time software reconstruction in the LHCb data acqui
sition system, expected to restart data taking in late 2021. The
throughput improvements presented gives the HLT1 margin to deal with
the increase in data volume. The performance of the VELO reconstruc
tion is crucial to the correct functioning of the LHCb experiment, we will
continue to explore techniques to obtain better performance in current
and upcoming hardware generations.

Authors’ contribution

Daniel Hugo Cámpora Pérez: conceptualization, methodology, soft
ware, data curation, draft preparation, writing, visualization, investi
gation, validation. Niko Neufeld and Agustín Riscos Núñez: supervision,
writing – reviewing.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgements

The authors would like to acknowledge the support of the LHCb
collaboration throughout the development of the Search by triplet al
gorithm. We thank the LHCb Online team for the hardware support
during our tests. We would also like to thank the LHCb computing, RTA
and simulation teams for their support and for producing the simulated
LHCb samples used to develop and benchmark our algorithm. We thank
R. Schwemmer for fruitful discussions about the performance of our
algorithm. We thank R. Aaij and T. Suerink for their help in setting up
tests in the Nikhef Power and AMD servers. We thank D. vom Bruch for
providing the datasets used for tests. We thank X. Valls Pla for his help in
setting up tests on the Cavium ThunderX2 platform. We thank NVIDIA
and especially A. Hehn for the support and fruitful discussions.

References

[1] LHCb Collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015)
1530022, https://doi.org/10.1142/S0217751X15300227.

[2] LHCb Collaboration, LHCb Trigger and Online Upgrade Technical Design Report,
2014 (Online). Available: http://cds.cern.ch/record/1701361?ln=en.

[3] LHCb Collaboration, LHCb Upgrade GPU High Level Trigger Technical Design
Report, 2020 (Online). Available: https://cds.cern.ch/record/2717938.

Fig. 8. (Top) VELO throughput versus peak 32-bit TFLOPs of processors under analysis. (Bottom left) Scalability of our program on CPUs under analysis. The x axis
refers to the number of active threads in the program with respect to the total number of SMTs of the processor. (Bottom right) Scalability of our program on GPUs
with an increasing number of active streams.

D.H. Cámpora Pérez et al.

https://doi.org/10.1142/S0217751X15300227
http://cds.cern.ch/record/1701361?ln=en
https://cds.cern.ch/record/2717938

Journal of Computational Science 54 (2021) 101422

10

[4] LHCb Collaboration, Upgrade Software and Computing, Tech. Rep., 2018 (Online).
Available: https://cds.cern.ch/record/2310827?ln=es.

[5] M.T. Schiller, Track Reconstruction and Prompt K0
S Production at the LHCb

Experiment, 2011 (Online). Available: http://inspirehep.net/record/1088127?
ln=es.

[6] R. Fruhwirth, M. Regler, Data Analysis Techniques for High-Energy Physics,
Cambridge University Press, 2000 (Online). Available: http://inspirehep.net/
record/299776?ln=es.

[7] O. Callot, FastVelo, A Fast and Efficient Pattern Recognition Package for the Velo,
2011 (Online). Available: http://cds.cern.ch/record/1322644.

[8] D. Funke, T. Hauth, V. Innocente, G. Quast, P. Sanders, D. Schieferdecker, Parallel
track reconstruction in CMS using the cellular automaton approach, J. Phys.: Conf.
Ser. 513 (5 (jun)) (2014) 052010 (Online). Available: http://stacks.iop.org/1742
-6596/513/i=5/a=052010?key=crossref.85cff4ebb76ffe912b706a3d23b5f608.

[9] A. Fröhlich, C.J. Onions, H. Grote, F. Ranjard, MARC – Track Finding in the Split
Field Magnet Facility, 1976 (Online). Available: https://cds.cern.ch/record/
310404?ln=ru.

[10] J. Olsson, P. Steffen, M. Goddard, G. Pearce, T. Nozaki, Pattern recognition
programs for the JADE jet-chambers, Nucl. Instrum. Methods 176 (1–2) (1980)
403–407 (Online). Available: https://linkinghub.elsevier.com/retrieve/pii/
0029554X8090734X.

[11] R.E. Kalman, A new approach to linear filtering and prediction problems, J. Basic
Eng. 82 (1) (1960) 35 (Online). Available: http://fluidsengineering.asmedigitalc
ollection.asme.org/article.aspx?articleid=1430402.

[12] D.H. Cámpora Pérez, O. Awile, An efficient low-rank Kalman filter for modern
SIMD architectures, Concurr. Comput.: Pract. Experience 30 (23) (2018) e4483,
https://doi.org/10.1002/cpe.4483.

[13] R.H.C. Lopes, I.D. Reid, P.R. Hobson, A well-separated pairs decomposition
algorithm for k-d trees implemented on multi-core architectures, J. Phys.: Conf.
Ser. 513 (5 (jun)) (2014) 052011 (Online). Available: http://stacks.iop.org/1742-
6596/513/i=5/a=052011?.key=crossref.7aa755c2818c5cdf67df76cc30b496e4.

[14] D. Rohr, S. Gorbunov, A. Szostak, M. Kretz, T. Kollegger, T. Breitner, T. Alt, ALICE
HLT TPC tracking of Pb-Pb events on GPUs, J. Phys.: Conf. Ser. 396 (1) (2012)
012044 (Online). Available: http://stacks.iop.org/1742-6596/396/i=1/a=012
044?key=crossref.de54b8e9f4ac3d5d6a6a54254467601f.

[15] H. Kälviä inen, P. Hirvonen, L. Xu, E. Oja, Probabilistic and non-probabilistic
Hough transforms: overview and comparisons, Image Vision Comput. 13 (4)
(1995) 239–252 (Online). Available: https://www.sciencedirect.com/science/artic
le/pii/026288569599713B.

[16] P. Yepes, A fast track pattern recognition, Nucl. Instrum. Methods Phys. Res. Sect.
A: Accel. Spectrom. Detect. Assoc. Equip. 380 (3) (1996) 582–585.

[17] G.W. Milligan, M.C. Cooper, Methodology review: clustering methods, Appl.
Psychol. Meas. 11 (4) (1987) 329–354, https://doi.org/10.1177/
014662168701100401.

[18] H. Eichinger, Global methods of pattern recognition, Nucl. Instrum. Methods 176
(1–2) (1980) 417–424 (Online). Available: https://linkinghub.elsevier.com/ret
rieve/pii/0029554X80907375.

[19] A. Glazov, I. Kisel, E. Konotopskaya, G. Ososkov, Filtering tracks in discrete
detectors using a cellular automaton, Nucl. Instrum. Methods Phys. Res. Sect. A:
Accel. Spectrom. Detect. Assoc. Equip. 329 (1–2) (1993) 262–268 (Online).
Available: https://www.sciencedirect.com/science/article/pii/016890029390
945E.

[20] D. Rohr, S. Gorbunov, V. Lindenstruth, A. Collaboration, GPU-accelerated track
reconstruction in the ALICE High Level Trigger, J. Phys.: Conf. Ser. 898 (3) (2017)
032030 (Online). Available: http://stacks.iop.org/1742-6596/898/i=3/a=03203
0?key=crossref.6b939e8be90ba0f8a55af0ad90d65f14.

[21] R. Quagliani, Study of Double Charm B Decays With the LHCb Experiment At CERN
and Track Reconstruction for the LHCb Upgrade (Ph.D. dissertation), 2017.

[22] X. Ai, Acts: A Common Tracking Software, 2019. arXiV:1910.03128.
[23] D.H. Cámpora Pérez, N. Neufeld, A. Riscos Núñez, A fast local algorithm for track

reconstruction on parallel architectures, 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW) (2019) 698–707, https://
doi.org/10.1109/IPDPSW.2019.00118.

[24] A. Hennequin, B. Couturier, V. Gligorov, S. Ponce, R. Quagliani, L. Lacassagne,
A Fast and Efficient SIMD Track Reconstruction Algorithm for the LHCb Upgrade 1
VELO-PIX Detector, 2019. arXiV:1912.09901.

[25] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, NVIDIA Tesla: a unified graphics
and computing architecture, IEEE Micro 28 (2 (mar)) (2008) 39–55 (Online).
Available: http://ieeexplore.ieee.org/document/4523358/.

[26] Intel, Intel SPMD Program Compiler. (Online). Available: https://ispc.github.io/.
[27] P. Karpiński, J. McDonald, A high-performance portable abstract interface for

explicit SIMD vectorization. Proceedings of the 8th International Workshop on
Programming Models and Applications for Multicores and Manycores - PMAM’17,
ACM Press, New York, New York, USA, 2017, pp. 21–28 (Online). Available:
http://dl.acm.org/citation.cfm?.doid=3026937.3026939.

[28] M. Kretz, Extending C++ for Explicit Data-Parallel Programming Via SIMD Vector
Types (Ph.D. dissertation), 2015.

Daniel Campora obtained his degree in Computer Engineering
from the University of Sevilla in 2010. He then worked at CERN
for 10 years on diverse topics such as data acquisition systems
or network administration, and specialized as a developer of
efficient software for parallel architectures. During his Ph.D. he
worked on parallelizing physics software on GPUs for LHCb
and earned an LHCb Early Career Scientist Award for this work.
He is now Assistant Professor at the University of Maastricht
and closely collaborates with LHCb. His research includes high-
throughput programming, GPU accelerators, Quantum
Computing and ML.

Niko Neufeld studied engineering physics and computer sci
ence at TU Wien in Austria. After a PhD in experimental par
ticle physics, he switched to computing for his first post-doc
position at CERN, where he codeveloped the first high
throughput data acquisition system based on Ethernet for the
LHCb experiment. Later he worked for the University of Lau
sanne (UNIL) and the EPF Lausanne on electronics and
embedded SoCs. He became a staff scientist at CERN in 2005
and has been working in many areas of high throughput
computing and networking since. He is now leading the project
for the next generation LHCb data acquisition which will be the
biggest system of its kind.

Agustín Riscos Núñez, Associate professor at Department of
Computer Science and Artificial Intelligence, guarantor
researcher at the Smart Computer systems Research and
Engineering Lab (SCORE), head of the Research Group on
Natural Computing, founding member and Secretary of the
Research Institute of Computer Engineering (I3US) at
Universidad de Sevilla, Spain. Founding member of the “In
ternational Membrane Computing Society (IMCS)”, IEEE
Member. His main areas of expertise are bio-inspired
computing and artificial intelligence. His research interests
mainly focus in computational modeling of complex systems
and population dynamics, as well as other practical
applications in the fields of bioinformatics, biomedicine, high
performance computing and robotics.

D.H. Cámpora Pérez et al.

https://cds.cern.ch/record/2310827?ln=es
http://inspirehep.net/record/1088127?ln=es
http://inspirehep.net/record/1088127?ln=es
http://inspirehep.net/record/299776?ln=es
http://inspirehep.net/record/299776?ln=es
http://cds.cern.ch/record/1322644
http://stacks.iop.org/1742-6596/513/i=5/a=052010?key=crossref.85cff4ebb76ffe912b706a3d23b5f608
http://stacks.iop.org/1742-6596/513/i=5/a=052010?key=crossref.85cff4ebb76ffe912b706a3d23b5f608
https://cds.cern.ch/record/310404?ln=ru
https://cds.cern.ch/record/310404?ln=ru
https://linkinghub.elsevier.com/retrieve/pii/0029554X8090734X
https://linkinghub.elsevier.com/retrieve/pii/0029554X8090734X
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
https://doi.org/10.1002/cpe.4483
http://stacks.iop.org/1742-6596/513/i=5/a=052011?.key=crossref.7aa755c2818c5cdf67df76cc30b496e4
http://stacks.iop.org/1742-6596/513/i=5/a=052011?.key=crossref.7aa755c2818c5cdf67df76cc30b496e4
http://stacks.iop.org/1742-6596/396/i=1/a=012044?key=crossref.de54b8e9f4ac3d5d6a6a54254467601f
http://stacks.iop.org/1742-6596/396/i=1/a=012044?key=crossref.de54b8e9f4ac3d5d6a6a54254467601f
https://www.sciencedirect.com/science/article/pii/026288569599713B
https://www.sciencedirect.com/science/article/pii/026288569599713B
http://refhub.elsevier.com/S1877-7503(21)00107-1/sbref0080
http://refhub.elsevier.com/S1877-7503(21)00107-1/sbref0080
https://doi.org/10.1177/014662168701100401
https://doi.org/10.1177/014662168701100401
https://linkinghub.elsevier.com/retrieve/pii/0029554X80907375
https://linkinghub.elsevier.com/retrieve/pii/0029554X80907375
https://www.sciencedirect.com/science/article/pii/016890029390945E
https://www.sciencedirect.com/science/article/pii/016890029390945E
http://stacks.iop.org/1742-6596/898/i=3/a=032030?key=crossref.6b939e8be90ba0f8a55af0ad90d65f14
http://stacks.iop.org/1742-6596/898/i=3/a=032030?key=crossref.6b939e8be90ba0f8a55af0ad90d65f14
http://refhub.elsevier.com/S1877-7503(21)00107-1/sbref0105
http://refhub.elsevier.com/S1877-7503(21)00107-1/sbref0105
https://doi.org/10.1109/IPDPSW.2019.00118
https://doi.org/10.1109/IPDPSW.2019.00118
http://ieeexplore.ieee.org/document/4523358/
https://ispc.github.io/
http://dl.acm.org/citation.cfm?.doid=3026937.3026939
http://refhub.elsevier.com/S1877-7503(21)00107-1/sbref0140
http://refhub.elsevier.com/S1877-7503(21)00107-1/sbref0140

	Search by triplet: An efficient local track reconstruction algorithm for parallel architectures
	1 Introduction
	2 Tracking techniques
	3 Search by triplet
	3.1 Sort by phi
	3.2 Track seeding and track following
	3.3 Tracklet filter

	4 Results
	5 Conclusions
	Authors’ contribution
	Declaration of Competing Interest
	Acknowledgements
	References

