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Summary

Impaired cerebrovascular reactivity in adult moderate and severe traumatic brain injury (TBI) is known to be associated

with worse global outcome at 6e12 months. As technology has improved over the past decades, monitoring of cerebro-

vascular reactivity has shifted from intermittent measures, to experimentally validated continuously updating indices at

the bedside. Such advances have led to the exploration of individualised physiologic targets in adult TBI management,

such as optimal cerebral perfusion pressure (CPP) values, or CPP limits in which vascular reactivity is relatively intact.

These targets have been shown to have a stronger association with outcome compared with existing consensus-based

guideline thresholds in severe TBI care. This has sparked ongoing prospective trials of such personalised medicine ap-

proaches in adult TBI. In this narrative review paper, we focus on the concept of cerebral autoregulation, proposed

mechanisms of control and methods of continuous monitoring used in TBI. We highlight multimodal cranial monitoring

approaches for continuous cerebrovascular reactivity assessment, physiologic and neuroimaging correlates, and associ-

ations with outcome. Finally, we explore the recent ‘state-of-the-art’ advances in personalised physiologic targets based on

continuous cerebrovascular reactivity monitoring, their benefits, and implications for future avenues of research in TBI.

Keywords: cerebral autoregulation; cerebrovascular reactivity; neurocritical care; traumatic brain injury
Cerebrovascular reactivity has emerged as a monitored

physiologic parameter of interest in adult critically ill trau-

matic brain injury (TBI) patients, with support from recent

multimodal monitoring (MMM) consensus statements.1,2

Given the inter-patient heterogeneity in cerebrovascular

reactivity after TBI,3e6 the association with clinical

outcome,7e9 and the relative lack of good therapies directed

at dysfunction,7,10,11 there has emerged the desire and need

for tailored therapeutic approaches. Such personalised
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therapies would require continuous cerebrovascular

reactivity monitoring capabilities at the bedside,2,12 the

ability to derive and display patient-specific physiologic

metrics in real time,13,14 and the availability of

autoregulation modulating therapies.13,15e17

Recent improvements in continuous cerebrovascular reac-

tivity monitoring in TBI can facilitate detection and continuous

monitoring of individualised autoregulation guided cerebral

perfusion pressure (CPP) and intracranial pressure (ICP)
rved.
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targets.13,14,17 Although such individualised targets have been

shown to be associated with improved outcomes retrospec-

tively, the benefit of using these targets needs to be proven in

prospective interventional randomised control trials. Although

such trials would currently focus on manipulations of physi-

ology and outcome improvement, an understanding of the
c
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The following review explores continuous cerebrovascular

reactivity monitoring in adult TBI, highlighting the back-

ground, theories of control, methods of monitoring, clinical

literature, the move towards personalised physiologic targets

during current neurocritical care management, and future

directions of research.
Defining cerebral autoregulation

Definition

Cerebral autoregulation refers to the ability of the cerebral

vascular system to maintain relatively constant levels of ce-

rebral blood flow (CBF), despite changes in systemMAP or CPP.

The concept of cerebral autoregulation was first described by

Fog,19 in controlled CBF assessments in cats, and Lassen20

through observational studies of CBF in humans during

different CO2 and MAP manipulations. Both described the

static phenomenon of the cerebral vessels innate ability to

regulate CBF to a constant level, across different levels in

MAP.19,20 Of note, given the technical limitations of the time,

such descriptions did not use continuously updating assess-

ments based on slow-wave vasogenic fluctuations, which are

now emerging as the main method for continuous beside

assessment. Since Fog19 and Lassen20, various studies in pre-

clinical experimental models21e27 and humans8,9,28e33 have

described the concept of cerebral autoregulation, and outline

different methods of assessment.34e36 Fig. 1 shows our con-

ceptual understanding of cerebral autoregulation and the

relationship between CBF and MAP, during both healthy and

various diseased states related to TBI.
Classic theories of cerebral blood flow control

In general, the brain arterial bed can be divided to conducting

and regulating arteries/arterioles. Small precapillary arterioles

are believed to be the key vessels involved in cerebral autor-

egulation, measuring up to a few hundred microns in diam-

eter, and representing the main site where active

vasoconstriction and dilatation takes place,37e39 typically

occurring in the slow-wave vasogenic frequency range of

0.05e0.005 Hz.31,40 The mechanisms involved in the control of

cerebrovascular tone, and thus vasoregulatory capacity, have

been detailed in various other publications.18,33,41e44

Table 1 provides an account of the various theorised mech-

anisms involved inCBF control in humans. In general, fourmain

classical mechanisms18,41,42 of CBF control have emerged:

myogenic, endothelial, neurogenic, and metabolic. The

myogenic mechanism is predicated on the notion that slow

changes in flow induce shear stress and vascular smooth

muscle stretch lead to reflex alterations in smoothmuscle tone,

and thus vessel diameter, controlling CBF.45e48 This theory relies

on smooth muscle stretch receptors and calcium based sarco-

lemma changes leading to variations in smooth muscle func-

tion. The endothelial mechanism revolves around shear stress

operating on the endothelial lining of cerebral vessels, leading to

induced changes in vascular mediator expression, including but

not limited to factors such as nitric oxide synthase (NOS) and

endothelin (ET).49e51 These mediators lead to change in cere-

brovascular tone, and thus CBF. The neurogenic mechanisms

involve the direct neural input for vasomotor control, as medi-

ated by various neurotransmitters such as adrenergic/norad-

renergic, dopaminergic, serotonergic, and cholinergic based

transmitters.18,52e56 It is postulated that through various



Fig 2. Theorised mechanisms of CBF and cerebral autoregulation control. (a) Myogenic theoryddepicting stretch of smooth muscle related

to CBF, and reflex vasoconstriction. (b) Endothelial theoryddepicting shear stress of CBF leading to endothelial mediated release of various

vasoactive molecules which impact smooth muscle tone. (c) Neurotransmitter theoryddepicting neural input into arteriole vascular tone

which may be mediated by various NTs. (d) Metabolic theoryddepicting mitochondria and highlights intimate role of oxidative meta-

bolism on cellular function, with impaired metabolism potentially leading to altered vascular tone. Note: other potential mediators are

listed in upper left dialogue box in the figure. Ad, adenosine; BBB, bloodebrain barrier; CBF, cerebral blood flow; CSD, cortical spreading

depression; En, endothelial cell; ET, endothelin; Mt, mitochondria; N, neurone; NO, nitric oxide; NT, neurotransmitter; PG, prostaglandins;

Sm, smooth muscle; TBI, traumatic brain injury.
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synapses of the nervi vasorum, such as direct sympathetic and

parasympathetic inputs, vascular tonemay be quicklymediated

in response to slow changes in driving pressure, leading

to control of CBF. Finally, the metabolic mechanism suggests

that changes in local metabolite concentrationsmatched to CBF

lead to proportional smoothmuscle response.55e58 However, the

time frame for metabolic changes being the sole regulator

of cerebral vascular tone is not in keeping with the rapidity of

blood vessel response to changes in driving pressure. Fig. 2

provides a diagrammatic representation of the main CBF

control mechanisms, both classical and emerging.

Aside from the classical ‘mechanical’ theories of CBF con-

trol, emerging literature suggests the role of other processes

in the development of impaired vascular reactivity. Recently,

the role for inflammatory cytokines,18,59e61 mediators of

bloodebrain barrier (BBB) dysfunction,18,61e67 autonomic ner-

vous system,52,54 and cortical spreading depression (CSD)68e70

have all been raised as potential players in the impaired
vascular reactivity seen after TBI. These aspects are beyond the

scope of this review, but are touched upon briefly, with refer-

ences, in Appendix A of the online Supplementary material.
Methods of monitoring autoregulation in
traumatic brain injury

Several approaches have been used for the quantitative

assessment of cerebral autoregulation in TBI.34e36 These

methods have been categorised in various ways according to

the physiological signals used to derive autoregulatory met-

rics, the monitoring techniques used to detect these, and the

temporal and spatial resolution of themetrics that are derived.

The nomenclature system in the literature organises autor-

egulation measurements into those which are (1) intermittent

in nature (imaging based metrics)35 and (2) those that are

robust enough to be applied continuously (ICP or near-infrared



Fig 3. Diagrammatic representation of PRx calculation from high-frequency physiology. An example showing how the PRx index (trend) is

calculated over a period of several hours. First, from the bedside monitor the raw signals of ABP and ICP are collected in dedicated ICMþ©
software (Cambridge Enterprise Ltd, Cambridge, UK, http://icmplus.neurosurg.cam.ac.uk). The characteristic waveform of the signals are

clearly visible. Both signals are averaged over a 10 s period to retrieve the mean ABP (MAP) and mean ICP (MICP) value. Averaging is

necessary to limit the influence of artifacts and ventilation on the autoregulation calculations. Next, over a period of 300 s (5 min) the

Pearson correlation between MAP and MICP is calculated. This calculation process is repeated with a moving window of 60 s (so 80%

overlap of data is present). Finally, this gives us the time trend of the PRx index. The whole calculations process can be done offline (after

data storage) or online (at the bedside). ABP, arterial blood pressure; ICP, intracranial pressure; PRx, pressure reactivity index.
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spectroscopy [NIRS]).34,36 As intermittent techniques are of

limited use in autoregulation guided treatment currently, they

will not be covered in this review.

More information on these techniques can be found in

Appendix B of the online Supplementary material and the

referenced literature.

For the purpose of overviewing the different techniques, we

will focus on those currently used in adult TBI for the contin-

uous assessment of pressure based autoregulatory capacity.
Continuous autoregulation monitoring

Continuous measures of cerebral autoregulation/cerebro-

vascular reactivity are seen as the desired method for ce-

rebral monitoring in critically ill TBI patients. Various simple

inputeoutput methods exist, including frequency and time

domain based continuous metrics. However, the most

commonly described and used methodologies in adult TBI

involve time domain based assessments of the relationship

between spontaneous slow-wave fluctuations in a continu-

ously measured surrogate of cerebral blood volume (CBV) or

CBF as output variables, and a driving pressure for flow as

and input variable (MAP or CPP).34 The slow-wave vasogenic

frequency range of 0.05e0.005 Hz has been identified as the

frequency range for cerebrovascular responses related to

changes in MAP.31,32,40 In order to assess cerebrovascular

reactivity from raw signals, the following general time
domain process is followed.28,34 First, both the continuous

surrogate measures of CBV/CBF and MAP/CPP are captured

from bedside monitors at typically 50 Hz or higher fre-

quency. Next, a 10 s average filter is applied to both signals

to decimate it to 0.1 Hz, limiting the influence of faster slow

frequencies related to breathing. Next, using moving Pear-

son linear correlation coefficients, typically based on 30

consecutive (10 s averaged) values updated every minute

(i.e. 5 min of data, updated every minute), an index of ce-

rebrovascular reactivity is derived. The classic, and most

commonly used, example in adult TBI is the pressure reac-

tivity index (PRx),28 which is derived from the moving cor-

relation between slow waves of ICP (surrogate of changes in

CBV) and MAP (surrogate of changes in the driving pressure).

In general, cerebrovascular reactivity index values that are

positive denote ‘impaired’ autoregulation and describe

passive transition of driving pressure influence on CBV.

Values that are negative or around zero are believed to

denote ‘intact’ autoregulation by active filtering the transi-

tion of slow waves. Fig. 3 provides a diagrammatic repre-

sentation of the calculation method for PRx from raw high-

frequency physiologic data. Furthermore, these continu-

ously updating methods have led to the ability to derive

individual physiologic targets in adult TBI.13,17 The next

section will discuss in more detail various continuous ce-

rebrovascular reactivity measures currently described in the

adult TBI literature.
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Currently used continuous monitors of
cerebrovascular reactivity in adult traumatic
brain injury

Continuous multimodal monitoring metrics

Based on the concept of evaluating the relationship between

spontaneous slow-wave vasogenic fluctuations in signals, as

described above, various measures of cerebrovascular

reactivity can be derived using a range of invasive and

noninvasive continuous MMM used in the assessment of

critically ill TBI patients.34,36,71 The currently described

techniques include those cerebrovascular reactivity indices

derived from: ICP, transcranial Doppler (TCD), NIRS, brain

tissue oxygen (PbtO2), and thermal diffusion CBF (TD-CBF)

monitoring. Appendix C of the online Supplementary ma-

terial provides an overview of the different cerebral moni-

toring devices, and the related cerebrovascular reactivity

metrics.

The signal based metrics can be divided into three main

classes: (1) those that are based on surrogate measure of

changes in CBV,28,72e77 (2) those based on surrogate measures

of changes in CBF,78e84 and (3) those based on cerebral physi-

ologic metrics other than CBV or CBF.85e88 As highlighted by

three recent retrospective cohort studies in adult TBI, these

continuous indices are not all equivalent, nor do they all

measure the same aspect of the cerebrovascular reactivity

process.79,89,90 To date, only a few metrics have been validated

as a measure of autoregulation experimentally. Therefore, we

will focus on these, with the remaining MMM metrics

described in Appendix C of the online Supplementarymaterial.
Intracranial pressure and near-infrared spectroscopy
monitoring

ICP and NIRS monitoring provide the most commonly applied

CBV-based metrics of continuous cerebrovascular reac-

tivity.28,72e75,77 ICP-based indices are considered the ‘standard’

by many experts in the field given the robust signals and

experimental literature supporting them (see next

section).21e23 They provide global information regarding ce-

rebrovascular reactivity using the ICP28 or the pulse amplitude

of ICP (AMP)72,73 as a surrogate of slow changes in CBV. Lower

resolution metrics for ICP-derived cerebrovascular reactivity

indices exist, but are not commonly used clinically, and are

beyond the scope of this review. Appendix D of the online

Supplementary material provides a brief description of these

low-resolution metrics and the relevant associated literature.

Bifrontal NIRS measurement information regarding

changes in oxygenated and deoxygenated haemoglobin that

are caused by changes in CBV is used to calculate cerebro-

vascular reactivity. The theory behind this is that an in-

crease in intracranial volume is compensated by arterial or

venous components. In comatose patient with low meta-

bolic activity, we therefore expect the total Hb, as the sum of

oxygenated and deoxygenated Hb, to remain constant. In

case of multi-channel NIRS application, regional vaso-

regulation or homeostatic information is obtained.74e77,91

NIRS also may provide some information regarding the

contribution of changes in CBF, but differentiation from

accompanying CBV changes at the same time is

difficult.76,77,91,92 Both ICP and NIRS indices have, to some

extent, been validated in experimental animal models (see

next section).21e23,93
Experimental validation studies

Of all the described continuous cerebrovascular reactivity

measures in adult TBI, very few have received pre-clinical

experimental validation as true measures of autoregulation

in animal models. To date, only ICP-based PRx,21e23 PAx (cor-

relation between AMP andMAP),22,23 and RAC23 (correlation [R]

between AMP [A] and CPP [C]) have data to support that they

can detect the lower limit of autoregulation (LLA) during

arterial hypotension and intracranial hypertension. NIRS

based THx (or HVx; correlation between total haemoglobin

index [THI] and CPP) and total oxygenation index (TOx or COx;

correlation between total oxygen index [TOI] or regional oxy-

gen saturation [rSO2] and CPP) have only been assessed in

experimental arterial hypotension, confirming that these

measures provide information regarding the LLA.21,93 All other

intracranial based metrics have either never been evaluated

experimentally against the LLA or upper limit of autor-

egulation (ULA), or have displayed inconclusive results. Of

note, there are currently no data which document that these

continuous metrics of cerebrovascular reactivity reliably

measure the ULA, as such validation is subject to model lim-

itations (i.e. animals succumbing to cardiac failure prior to

MAP reaching and surpassing the ULA).94,95 This aspect re-

quires further exploration.
Physiologic and outcome associations with
continuously measured cerebrovascular
reactivity in traumatic brain injury

Given the myriad of cerebrovascular reactivity metrics avail-

able, the literature on this topic in adult TBI can be daunting. In

the following section, we summarise the important literature

regarding associations between continuously measured cere-

brovascular reactivity and both cerebral physiologic measures

and patient outcome. For simplicity, we will focus on the MAP

(input) and CBV/ICP (output)-derived measures (mainly PRx),

given the extensive literature on these measures,34 their

acceptance by the international community,1,2 and existence

of experimental data supporting them as measures of the

LLA.21e23
Association with patient and injury factors

Continuously measured PRx has been evaluated in various

studies in adult TBI. Specific recurring associations between

patient demographics have been identified. First, advanced age

appears to be associated with worse autoregulatory function in

moderate/severe TBI, with those above the age of 60 yr

demonstrating the worst measures.4,96 Second, although the

data are limited, there is some suggestion that females younger

than 50 yr display worse cerebrovascular reactivity after mod-

erate/severe TBI compared with their male counterparts

(males, PRx 0.044 [SD 0.031]; females, PRx 0.11 [0.047]; P<0.05),3

although this finding requires validation with control for co-

variates. Third, low admission Glasgow Coma Scale (GCS)

score was associated with poor cerebrovascular reactivity

during the ICU monitoring period (r¼0.29; P<0.01).28 Fourth,

admission intracranial injury burden, as assessed using CT, has

been demonstrated to be associated with worse cerebrovascu-

lar reactivity during the acute ICU stay.97,98 In particular, spe-

cific injury patterns associated with acceleration/deceleration

or shearing mechanisms display the strongest link to globally

impaired vascular reactivity.98 Such injury characteristics



Fig 4. Example of CPPopt determination in traumatic brain injury (TBI). This recording in a patient with severe TBI is a snapshot of 4 h

period from a recording of several days with invasive ABP and ICP monitoring. Illustration of time series of ABP (a) and ICP (b). (c) Mean PRx

values are plotted in 5 mm Hg bins of CPP in this 4 h period; this yields a parabolic or U-shaped curve. The minimum of the PRx indicates

the point of best-preserved autoregulationdCPP ‘optimal’ (CPPopt¼86 mm Hg)dand is the nadir of the fitted curve. Constructing such 4 h

parabolic curves and automated CPPopt values forms the basis of the CPPopt methodology (as described by Aries and colleagues17). (d) The

trends of patients’ CPP value (straight line) and CPPopt (dashed line) and also the deviation from CPPopt. To increase the yield and stability

of the CPPopt trend a weighted multi-(calculation) window approach was developed and currently under investigation in the COGITATE

study (as described by Beqiri and colleagues108). The histogram of time spent in certain CPP values (%) in the lowest panel (e) shows the

maximum at lower CPP values, indicating that this patient was predominantly managed at a CPP lower than the ‘optimal’ level. ABP,

arterial blood pressure; CPP, cerebral perfusion pressure; CPPopt, optimal CPP; ICP, intracranial pressures; PRx, pressure reactivity index

(correlation between slow waves of ICP and ABP).
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include presence of a subdural haematoma, traumatic sub-

arachnoid haemorrhage, and sub-cortical diffuse axonal injury.

These findings suggest that these particular high energy injury

mechanisms appear to predispose adult TBI patients to develop

sustained impaired cerebrovascular reactivity during their ICU

stay. Finally, admission Acute Physiology, Age, Chronic Health

Evaluation II (APACHE II) scores, but not injury severity scores,

are strongly associated with impaired cerebrovascular reac-

tivity metrics.98 This suggests that the extracranial injury

burden is not necessarily an additional driver of impaired

vascular reactivity, but the individual systemic stress response

to traumamay drive impaired cerebrovascular reactivity. These

findings raise questions as to the role of the autonomic nervous

system,52,54,99 inflammatory mediators,59,100,101 and TBI thera-

peutic interventions (e.g. deep sedation, fluids, cooling,

transfusion)7,10,11,102 in the acute phase, in driving impaired

autoregulation in TBI. Further investigation of all of the above

patient and injury factors is ongoing as part of the CENTER-TBI

High Resolution ICU Sub-Study objectives.
Association with continuously monitored cerebral
physiology

There have been a large number of studies assessing the cor-

relation and association between cerebrovascular reactivity

monitoring and other continuously measured cerebral physi-

ology in adult moderate/severe TBI.34 Elevated ICP has been

well documented to be associated with worse cerebrovascular

reactivity,12,103,104 and appears to be a key physiologic driver

of ongoing impairment. CPP values at both upper and

lower extremes are associated with worse cerebrovascular

reactivity,105 and form the basis for individualised CPP targets

or target range in adult TBI care, summarised as the ‘optimal’

CPP concept. This refers to the concept of a ‘safe’ autor-

egulation plateau (see following sections for further

discussion).13,17,105,106 The specific CPP thresholds associated

with impaired vascular reactivity are individual and dynamic,

and are related to combinations of physiologic factors, such as

ICP, chronic systemic hypertension, and degree of baseline



Fig 5. CPPopt determination with the ‘lower’ and ‘upper’ ends of regulation. (a) The U-shaped PRxeCPP curve showing the automated

CPPopt. The PRx threshold is set at 0.3 for impaired autoregulation (white line). The intersection with the U-shaped curve results in upper

and lower reactivity CPP (CPP LLR and ULR, respectively) values. (b) U-shaped PRxeCPP curve showing the automated CPPopt. The PRx

threshold is set at 0.0 for impaired autoregulation (white line) leading to smaller CPP range between the upper and lower reactivity CPP

(CPP LLR and ULR, respectively) values. ABP, arterial blood pressure; CPP, cerebral perfusion pressure; CPPopt, cerebral perfusion pressure

optimum; ICP, intracranial pressure; PRx, pressure reactivity index (correlation between slow waves of ICP and ABP).

Continuous monitoring in moderate/severe TBI - 447
cardiovascular and pulmonary fitness.41e44 As such, these

individualised CPP thresholds can be seen as a ‘moving’ value,

dependent on patient baseline factors, and ongoing factors

related to the injury and treatment.

In keeping with the relationship between CPP and

PRxdalthough the number of clinical studies with inva-

sive continuously measured CBF are limiteddthere does

exist some preliminary data, using LDF or TD-CBF, to

support the temporal relationship between reduced local

CBF and impaired PRx measures.84,87,107 The relationship

between other MMM physiologic variables and PRx in

adult TBI are less commonly described. A brief overview

of these findings and the relevant literature can be found

in Appendix E of the online Supplementary material.
Association with outcome

Numerous studies confirm the association between continu-

ously measured PRx and global outcome.8,9,28,34,96 Czosnyka

and colleagues28 documented the first associations between

continuously measured cerebrovascular reactivity in moder-

ate/severe adult TBI and global outcome in 1997 (r¼0.48;

P<0.00001). This study has sparked various other retrospective

assessments of cerebrovascular reactivity summarised over

the whole monitoring period and its association with global

patient outcome. One such (single-centre) study, evaluating 25

yr of neuro-monitoring in 1146 critically ill adult TBI patients,

displayed the persistently strong association between

outcome and PRx despite changes in BTF based guidelines over
time.7 Moreover, PRx has distinct critical thresholds associ-

ated with poor global outcome at 6 months, including

thresholds of 0, þ0.25, and þ0.35.8,96 The other ICP-derived

cerebrovascular reactivity indices, PAx and RAC, also display

critical thresholds associated with outcome.96 In addition, a

recent retrospective analysis, controlling for admission de-

mographics and other physiologic variables, has confirmed

the persistently strong association between impaired cere-

brovascular reactivity (measured as PRx, PAx, or RAC), with 6

month outcome.96 This study also displayed higher area under

the receiver operating curve (AUC) for prognostic models

including cerebrovascular reactivity indices, compared with

baseline models with patient demographics, ICP, and CPP

physiologic measures. These results suggest added prognostic

value of vascular reactivity monitoring in adult TBI above

standard ICP/CPP monitoring and call for new interventions.

Furthermore, recent publications from the prospective multi-

centre CENTER-TBI High Resolution ICU Sub-Study have

confirmed the above-mentioned associations with

outcome,9,16 providing additional confidence in the results

from previous retrospective studies.
Current status of treatment for dysfunctional
cerebrovascular reactivity in traumatic brain
injury

Despite the strong links between impaired cerebrovascular

reactivity and patient outcome, current BTF based therapies



448 - Zeiler et al.
pay limited attention to continuous updated vascular reac-

tivity status.7,10,11 A large 25 yr retrospective single-centre

study, analysing 1146 critically ill TBI patients with invasive

ICP monitoring, provides some evidence to support the lack of

BTF-based treatment effect on continuously measures cere-

brovascular reactivity.7 Within this analysis, ICP, CPP and PRx

were assessed in each patient across the archived ICU physi-

ology recording period. Patients were split into 5 yr epochs,

considering specific BTF guideline changes over these periods.

The results clearly showed that ICP and CPP values were

controlled in response to changing BTF based guidelines.

However, PRx failed to demonstrate any substantial

improvement across all assessed epochs. Given this context, it

is interesting that the mortality rate for this cohort also

remained relatively stable across the 25 yr. As a corollary, the

prospective multi-centre CENTER-TBI High Resolution ICU

Sub-Study has recently confirmed the relative independence

of PRx to treatment measures in the ICU, asmeasured through

daily therapeutic intensity level (TIL) total and sub-scores.11

This study also displayed the relative constant time spent

with PRx above the value of 0 on a daily basis (as a measure of

cerebrovascular reactivity impairment), at 40e50% per day

during the first 7 days of ICU care, despite ongoing active care.

All these results are relevant in the face of the current lack of

effective treatment for impaired cerebrovascular reactivity in

adult TBI. As such, there is a need for future investigation into

potential molecular targets aimed at prevention and treatment

of impaired autoregulation. As we wait for such work to be

conducted, we are currently left with the difficult situation of

patient management in the absence of directed therapies.

Consequently, current interest has moved towards individual

personalised CPP targets in critically ill TBI patients,13,17,106

focussing on achieving CPP values associated with the

‘leasteworst’ cerebrovascular reactivity status for a given pa-

tient. This concept forms the basis for ‘optimal CPP’ (CPPopt),

which will be covered in detail within the next section.
State-of-the-art personalised cerebral
perfusion pressure targets guided by
cerebrovascular reactivity monitoring

The CPPopt concept has gained interest in the past decade with

the observation that PRx and CPP often exhibit a U-shaped

relationship over time with a minimum PRx occurring at a CPP

for which cerebrovascular pressure reactivity is best preserved

(or least impaired).13 Fig. 4 highlights the parabolic relationship

seen between PRx and CPP in adult TBI. Such observations

suggest that targeting a CPP such that global CA is best main-

tained is a potentially attractive strategy for individualising TBI

care. Deviations in achieved CPP from the CPPopt value (retro-

spectively assessed) have been associated with worse

outcomes.13,16,17,32,105,106,109,110 In recent years there has been a

great deal of work in trying to translate the concept of autor-

egulation guided CPP management into an automated clinical

application at the bedside. It has been necessary to refine the

original algorithms of CPPopt calculation and interface soft-

ware significantly to allow a continuous assessment that is

robust enough for clinical use.17,111,112 However, to date, pro-

spective evaluation has been lacking. Three prospective pilot

studies evaluating CPPopt tailored therapy in different settings

demonstrated an improvement in patient physiology and

outcome.87,113,114 However, none of these was a randomised

study with a published intervention protocol. It is worthy to
note that in the recent Brain Oxygen Optimization in Severe

Traumatic Brain Injury Phase II (BOOST II) trial,115 CPP

augmentation higher than 70mmHgwas a frequent treatment

option for increased ICP in the intervention arm (treatment

protocol based on combined PbO2 and ICP monitoring). Likely,

this resulted in higher levels of CPP in this group or less periods

with low CPP, maybe explaining (partly) the improved outcome

in the intervention arm.115,116 A prospective study evaluating

the feasibility, safety, and the physiological implications of

CPPopt guided management is now underway to inform the

design of any future phase III study in severe TBI patients

(CPPOpt Guided Therapy: Assessment of Target Effectiveness

[COGiTATE]; clinicaltrials.gov identifier NCT02982122).

Appendix F in the online Supplementary material displays an

example CPPopt determination during COGiTATE and the data

review steps and intervention.
Future of cerebrovascular reactivity
monitoring in traumatic brain injury

Existing studies have focused on identifying one

autoregulation-guided CPP target, ignoring the fact that a

broader CPP range might provide similar autoregulation

benefit. As depicted in Fig. 5, understanding the position and

shape of CPP-PRxmayhelp us identify the CPP belowwhich PRx

is impaired (the lower limit of reactivity [LLR]), the CPP above

which PRx is again impaired (upper limit of reactivity [ULR]),

and the CPP range associated with intact PRx (within limits of

reactivity [WLR]).106 The time spent with CPP less than LLR and

(10 mm Hg) deviation below CPPopt are significantly indepen-

dently related to adverse outcome, fitting with the clinical

maxim that periods with low CPP should be avoided in severe

TBI patients.106 Similar to the recently developed visualisation

method of the CPP-PRx landscape,117 the continuous estima-

tion of CPP reactivity limits provides the clinician with more

contextual information to the single CPPopt value and therefore

may align better with clinical acumen. In this scenario, man-

agement based on the individual autoregulation-guided CPP

could be a compromise between the aggressive CPP-oriented

therapy promulgated by Rosner and colleagues118 and the

more permissive Lund protocol.119 A recent nested randomised

controlled study showed that keepingMAP above the individual

LLA (using TCD-based mean flow index [Mx]) in cardiothoracic

patients during cardiopulmonary bypass significantly reduced

the incidence of postoperative delirium by 45%.120

As described above, the feasibility of a 4-hourly updated

CPP target is currently tested in the prospective COGiTATE

study. Irrespective of the published results, one might argue

that a faster and continuous adaption of the CPP target (within

preset safety ranges) might be more suitable and beneficial.

This practise will probably prove to be very labour intensive

and could trigger speculations about the use of an automated

system which allows continuous delivery of drugs (e.g.

noradrenaline) in a closed-loop system in a neurocritical care

setting. However, it is important to be cautious about such

approaches, because the time constants for changing autor-

egulation may be more rapid than the pharmacokinetic and

pharmacodynamics temporal precision in which we can sta-

bilise the MAP. Furthermore, our increasing understanding of

autonomic influences on cerebral autoregulation may mean

that catecholamines (and potentially, other vasoactive drugs)

may have independent (and as yet poorly understood) direct

effects on autoregulation. A better understanding of the
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biology of dysautoregulation, however, may allow us to use

interventions that reduce its incidence and severity, and thus

reduce reliance onmanipulation of systemic physiology as our

sole therapeutic target.
Individual intracranial pressure thresholds

Aside from personalised CPP targets, the concept of individual

ICP thresholds has emerged utilising continuously monitoring

cerebrovascular reactivity, mainly PRx. Retrospective litera-

ture suggests the tolerance for derangements in ICP and CPP is

directly impacted by autoregulatory status, with dose

response (i.e. outcome) heat map patterns seen in adult TBI

populations which support a higher tolerance for ICP eleva-

tions when autoregulation is preserved.12 Furthermore,

although the literature remains in its infancy, two studies to

date have displayed a stronger association between time spent

above individual ICP threshold, compared with BTF guideline

based ICP thresholds.14,121 The first study was a retrospective

single-centre evaluation of manually determined individual

ICP thresholds.14 This study explored the relationship between

PRx and ICP, with the individual ICP threshold determined by

direct visual inspection of the error bar plots where PRx be-

comes consistently higher than þ0.20. The ICP value after

which PRx remains higher than þ0.20 for all higher ICP values

is deemed the individual ICP threshold. The results of this

analysis demonstrated that the dose above individual ICP

threshold displayed the highest discriminatory value for

dichotomised outcome prediction (AUC¼0.81; 95% confidence

interval [CI], 0.74e0.87) over both the dose of ICP above a fixed

threshold of 20 and 25 mm Hg (AUC¼0.75; 95% CI, 0.68e0.81

and AUC¼0.77; 95% CI, 0.70e0.83, respectively).

The second study was a recent validation of data from the

prospective multi-centre CENTER-TBI High Resolution ICU

Sub-Study, in which a semi-automated algorithmic detection

of the individual ICP threshold was developed, using the same

criteria from the manual threshold study.121 This study used

automated detection of the intersection between the locally

weighted scatterplot smoothing (LOWESS) function of the PRx

vs ICP relationship, and the line PRx¼þ0.20. Visual verification

for each patient was conducted,making it semi-automatically.

This study confirmed that approximately two-thirds of pa-

tients have an identifiable individual ICP threshold, whereas

the mean hourly dose spent above individual ICP threshold

displayed higher AUC (0.678, P¼0.029) for outcome compared

with dose of ICP of 20 or 22 mm Hg (AUC¼0.509, P¼0.03 and

AUC¼0.492, P¼0.035, respectively). This effect was maintained

with correction for baseline admission characteristics.

Despite these results, the application of individual ICP

thresholds is unclear and requires further validation and

improvement of automated detection algorithms. Further-

more, such thresholds have only been studied using the entire

ICU recording period, leaving them currently for post-ICU

long-term prognostication.12,14,121 If such thresholds are to

be used clinically, moving window calculations will have to be

developed, similar to CPPopt, allowing for continuously

updating individual ICP threshold targets.
Development of therapeutic targets for impaired
cerebrovascular reactivity

Our current treatment strategy for impaired cerebrovascular

reactivity in adult moderate/severe TBI revolves around finding

the ‘optimal’ CPP for which cerebrovascular reactivity indices
indicated ‘intact’autoregulation.However, thereexists theneed

for therapies directed at reversing and preventing impaired

autoregulation. As such, future studies on cerebrovascular

reactivity in TBI will need to incorporate information from

various sources, including those from the CNS systemic vari-

ables. Through using combinations of invasive/noninvasive

MMM,1,2,122 both during the acute ICU and long-term follow-up

phases of care, the relationship between continuously

measured cerebrovascular reactivity and other important ce-

rebral physiologic metrics can be uncovered and transformed

into therapeutic targets. In the upcoming years, the link be-

tween continuously measured PbtO2, TD-CBF, ICP, CPP, cortical

EEG, and cerebral metabolism, as assessed through cerebral

microdialysis, may provide important insights into the re-

lationships between cerebrovascular reactivity, CBF, BBB

integrity and oxygen diffusion, autonomic response, CSD, and

aerobic metabolism/mitochondrial function. In addition, sys-

temic impairments associated with ventilation (e.g. PaCO2) and

cardiac function are likely to influence cerebrovascular reac-

tivity andmight lead to targeted intervention studies.

Furthermore, integrating this high-frequency information

with serum, microdialysis protein biomarkers of inflamma-

tion, or both, BBB integrity, and vascular function,may provide

important insights into potential molecular pathways

involved in impaired cerebrovascular reactivity and other ce-

rebral physiologic dysfunction seen after moderate or severe

TBI. In addition, including individual patient genome-wide

association data may also uncover particular single nucleo-

tide polymorphisms involved in CBF regulation and control

during both the healthy and brain injured state, providing

further information on potential molecular pathways driving

autoregulatory dysfunction.18,61 Through combining all of

these complex data, one may be able to determine individual

therapeutic targets for impaired cerebrovascular reactivity in

adult TBI, and develop therapies directed at prevention and

treatment, reducing mortality in TBI. In addition, incorpo-

rating noninvasive NIRS or TCD based continuous cerebro-

vascular reactivity monitoring during follow-up clinic visits,

combined with the complex physiologic and biological data

obtained during the acute phase of care, we may be able to

highlight the association between long-term clinical pheno-

type and persistent impairment of cerebrovascular reactivity.

With knowledge of individual pathways involved in CBF con-

trol, gleamed from the acute phase data, persistent symp-

tomatology related to cerebrovascular dysfunction may then

be amendable to personalised therapeutics, with the goal of

reducing long-term morbidity.
Conclusions

Over the previous decades, continuous cerebrovascular reac-

tivitymonitoring in adult critically ill TBI patients has emerged

as an important physiologic metric, with strong links to global

prognosis. Despite a lack of effective proven treatments

directed at impaired cerebrovascular reactivity in TBI,

continuous monitoring of this cerebral physiologic mecha-

nism has led to important advancements in bedside care, with

the availability of personalised CPP targets. Future research in

cerebrovascular reactivity in adult TBI will revolve around

improving personalised physiologic targets for ICU care, while

exploring potential drivers of impaired vascular reactivity. The

hope is that through integration of cerebral MMM, protein,

imaging, and genetic biomarkers, the molecular mechanisms

involved in cerebrovascular dysfunction after TBI will be
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uncovered, leading to therapies directed at prevention and

new treatments in the acute phase.
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