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Abstract. Previous research on EMA data of mental disorders was
mainly focused on multivariate regression-based approaches modeling
each individual separately. This paper goes a step further towards ex-
ploring the use of non-linear interpretable machine learning (ML) models
in classification problems. ML models can enhance the ability to accu-
rately predict the occurrence of different behaviors by recognizing com-
plicated patterns between variables in data. To evaluate this, the per-
formance of various ensembles of trees are compared to linear models
using imbalanced synthetic and real-world datasets. After examining the
distributions of AUC scores in all cases, non-linear models appear to
be superior to baseline linear models. Moreover, apart from personal-
ized approaches, group-level prediction models are also likely to offer an
enhanced performance. According to this, two different nomothetic ap-
proaches to integrate data of more than one individuals are examined,
one using directly all data during training and one based on knowledge
distillation. Interestingly, it is observed that in one of the two real-world
datasets, knowledge distillation method achieves improved AUC scores
(mean relative change of +17% compared to personalized) showing how
it can benefit EMA data classification and performance.

Keywords: Ecological Momentary Assessment · Machine Learning · Ex-
plainable Boosting Machine · Knowledge Distillation.

1 Introduction

In the last few years, there has been a renewed research interest in the ar-
eas of psychology and psychiatry that has been particularly sparked by recent
technological and methodological developments for collecting time-intensive, re-
peated, intra-individual measurements through Ecological Momentary Assess-
ment (EMA) studies [4], [13], [14], [11]. EMA offers the opportunity to capture
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relevant information about patients’ evolution of their mental condition, symp-
toms and experiences, in real-time and in context of their everyday life. This way,
a large amount of personalized data has become available, providing the means
for further exploring mental disorders [6]. Consequently, there has been an urgent
need for developing statistical methods to model psychological behaviour [18].
Some practical applications of such models could be to predict illness course,
determine treatment response or develop tailored psychiatric interventions [3].

Based on literature, EMA time-series data have been mostly studied in a
multivariate regression-based approach [18], [8]. More specifically, the most pop-
ular class of time-series models is the Vector Autoregressive (VAR) model with
a goal to estimate the dynamical interactions between all the measured vari-
ables (i.e., network structures) [2]. However, the fact that these models can only
estimate linear statistical relationships can be a significant issue for mental dis-
orders, where the involved interactions are likely to be quite complex. When
many symptoms or variables are involved in the course, these are more prone
to interact in a non-linear fashion with each other. Thus, linear models seem
insufficient to uncover the possible non-linear interactions and describe precisely
the real complex nature of mental disorders.

A promising approach that can learn such complex and higher-order inter-
actions of symptoms is using non-linear machine learning (ML) models [17]. ML
models can enhance the ability to accurately predict the occurrence of different
behaviors by recognizing complicated patterns or relations between variables in
existing data.

This work focuses on two research objectives, examining the idiographic (or
personalized) and nomothetic (or group-based) predictive approach, respectively.
First, according to the idiographic approach, personalized models are typically
applied, as there are possibly different underlying mechanisms that drive a fu-
ture behavior in each individual. Thus, different non-linear interpretable models
are evaluated in terms of performance to test whether they are superior to base-
line linear models. Second, we should acknowledge the possibility that shared
influences among different individuals may provide a complementary predictive
utility. Therefore, prediction models are applied in a nomothetic (group-based)
approach showing that integrating data of more than one individual in a single
model could also accurately predict future outcomes at a person level [19].

2 Methodology

2.1 Idiographic (person-specific) approach

Based on the fact that mental disorders can be modeled as a complex system,
we assume that illness course and behaviors differ remarkably across individuals.
Most individuals suffering from the same disorder are likely to exhibit different
symptoms, so different mechanisms possibly influence and drive a future behav-
ior. Therefore, it is proposed that each individual should be examined separately
using personalized prediction models [4].
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Starting from the widely used linear models, a natural extension of these is
the more flexible Generalized Additive Models (GAMs) [9]. The main concept
of GAMs remains the same as of the linear ones, expecting for the outcome
to be an additive model of feature effects, but relaxing the restriction of the
linear relationship. It allows the use of arbitrary functions for representing the
features’ effects. Subsequently, more flexible, non-linear feature functions can
be incorporated. These functions can be based on regression spline models and
tree-based models such as single trees or ensembles of bagged trees, boosted trees
and boosted-bagged trees.

However, there is still a significant gap between the flexible GAMs and full-
complexity models, such as ensembles of trees, regarding accuracy [9]. The main
reason of this limitation is that GAMs take into account only univariate terms
and not any interaction between features (variables). To deal with this drawback,
a more advanced method was developed, called Generalized Additive Models
plus Interactions (GA2Ms), which incorporates pairwise interactions between
features [10]. The model is described in the following form:

g(y) =
∑
i

fi(xi) +
∑
i ̸=j

fij(xi, xj) (1)

where f are the feature functions of features x and g is the link function (eg.
identity or logistic) of the predicted outcome y. This model can still be inter-
pretable, using heat maps for representing the pairwise features’ interactions, as
well as accurate, reaching the performance of the state-of-the-art ML models.

In this work, a fast implementation of the GA2Ms algorithm was used,
called Explainable Boosting Machine models (EBMs), which is part of the Mi-
crosoft’s open-source Python package InterpretML [12]. The EBMs’ learning
process makes use of gradient boosting with shallow regression tree ensembles.
At each boosting round, a tree is built on a single feature and its residuals are
used for training the tree of the following feature. This is repeated for all dif-
ferent features. After several boosting rounds, each feature’s trees of all rounds
can be combined, leading to tree ensembles as the final features’ representation.
On top of this, functions for pairwise features’ interactions can be additionally
incorporated. The FAST method is used to detect and rank features’ interac-
tions in order to keep the most significant ones, without the expense of checking
all possible combinations [10]. Again, the same training process is performed for
the specified pairs.

Because EBMs is a relatively novel method, its performance is evaluated by
comparing it to other full-complexity ML models, such as XGBoost, Gradient
Boosting Trees (GradBoost) and Random Forest (RF). Afterwards, non-linear
models are also compared to linear models, such as Logistic Regression (LogReg)
and Support Vector Machines (SVM), using a linear kernel.

2.2 Nomothetic (group-level) Approaches

Although personalized models are mostly applied, commonalities among different
participants may provide complementary predictive utility. Thus, population-
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level prediction studies are also likely to offer an enhanced performance. Espe-
cially, in case of more advanced ML models, incorporating more data could be of
more help, compared to the traditional linear models. This approach could have
a clear advantage to uncover potential complex hidden relationships between
variables.

The most common way of integrating data of more than one individual in a
model is to concatenate the data of all individuals together in a single dataset.
The augmented dataset is then used to construct a population-based model.
Such models produce generalizable predications that can be relevant to a wider
range of individuals. For example, a population-based model can be applied to
new individuals who have not been included in the training of the model. An
additional benefit would be that it can be applied to individuals that cannot be
run in a personalized way due to the lack of the necessary amount of training
samples (time-points) or samples of the minority class.

The second proposed approach is based on the Knowledge Distillation (also
known as teacher-student) method [7]. In this case, information from a larger
(teacher) model is used in a smaller (student) model. The original concept of
Knowledge Distillation was created with the goal to fill the gap between ex-
pressive power and learnability in Neural Networks (NNs). This is achieved by
training a small NN after incorporating additional information from a larger and
more complex NN. However, the aforementioned gap does not only exist in NNs
but also in other machine learning methods like the tree-based models described
above [5]. So, the distillation method using information extracted from larger
models can be further exploited in non-NN models.

Fig. 1: The proposed Knowledge Distillation method: After each sample
(x1, x2, .., xn) is input to the teacher model, the extracted log-probabilies yi
are used to the temperature softmax function. The produced p1 or p2 are the
labels for the student models.

Inspired by this, the proposed Knowledge Distillation method in our case is
illustrated in Fig. 1. First, the teacher model is trained on data from all partici-
pants and then information derived from this model is used for training person-
alized student models for each individual separately. Additional information is
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Table 1: Characteristics of the examined datasets. For imbalance ratio and train-
ing/test sets, the mean and standard deviation values of all individuals are pre-
sented, after pre-processing.
Dataset #Participants #Features Imbalance Ratio #Training Samples #Test Samples

Synthetic 20, 50, 100 25, 60 2.33 35, 70, 210 15, 30, 90
Drink 24 15 8.45(5.45) 72.83(12.02) 31.87(5.24)
ThinkSlim2 57 43 5.82(3.25) 86(38.72) 37.51(16.68)

gained through the smoothened probabilities pi (soft labels), which come from
the pre-trained teacher model. The log-probabilities yi of the training samples
are softened using a temperature softmax function. The temperature hyperpa-
rameter T plays an important role in smoothing the distribution of the outputs,
that is necessary to prevent the case of having an one-hot vector as the result
of a typical softmax function. Then, the smoothened outputs are used as labels
for the personalized student models. Compared to the conventional personalized
training that uses hard labels, distillation can provide additional useful informa-
tion with an aim to improve the personalized models.

3 Experimental Setup

3.1 EMA Datasets

EMA data is organized in a hierarchical structure for each individual, where
observations are collected multiple times a day for a pre-defined period of several
weeks. The total number of observations as well as the collection period can be
different among individuals because some may experience difficulties in following
the schedule of the surveys. All datasets’ characteristics used in this paper are
briefly reported in Table 1 and more extensively presented as follows.

Synthetic Datasets Due to lack of access to big EMA datasets, we follow
a simple method for generating random EMA datasets. These datasets are de-
signed to consist of the feature vectors and labels of each patient, aiming at a
2-class classification problem. It is also commonly noticed that medical-related
EMA datasets, as well as the following examined real-world datasets, are char-
acterized as imbalanced. This means that the majority of samples belongs only
to one class, whereas much fewer to the other class. Thus, in this case, the ratio
of samples assigned to the two classes is 0.7 : 0.3 in the synthetic datasets as
well.

Furthermore, the datasets must be created in a way to be structurally similar
to the real EMA data. First, these must incorporate multivariate ordinal and
categorical variables. This is a challenging issue, especially in high dimensional
datasets. The method of generating our feature vectors is based on sampling
from a different random normal distribution for each one. These are afterwards
transformed into ordinal features after deriving an equi-width histogram of the
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distribution, leading to a random number of 6 distinct values, or 2 as categorical
variables are typically encoded to binary.

It is also often necessary to impose some flexibility on the data variables,
such as noise. Noise can be added to both output labels and feature vectors.
Here, a small amount of noise is introduced. More specifically, 20% of the la-
bels are randomly assigned to samples as well as the values of 20% of features
are randomly shuffled. Finally, regarding other characteristics of the synthetic
datasets, such as the number of individuals, features and samples, a number of
choices is evaluated.

Dataset: Drink This first real-world dataset was obtained by a study described
in [15]. It was a 2-week collection of data from 33 individuals through 8 daily mo-
bile notifications/surveys. The captured variables included positive and negative
emotions, drinking craving and expectancies, self-reported alcohol consumption,
impulsivity, as well as social context. All these variables were measured on a
scale from 0 to 100. Regarding the output variable, the aim of this prediction
was the occurence or not of drinking events at the next time-point. So, a positive
label was assigned to each sample when the number of alcoholic drinks at the
next time-point was one or higher.

Dataset: ThinkSlim2 The second real-world dataset is larger and more chal-
lenging. It was obtained by a study described in more detail in [1], [16]. This
consisted of data collected from 134 overweight individuals multiple times a day
(minimum 8) for 7 weeks (excluding the follow-up phase) via a mobile appli-
cation. From all the measured variables, only some were selected based on the
individuals’s compliance. The final variables included various positive and neg-
ative emotions, location, activity, social context and type of consumed food.
The emotion-related variables were measured on a scale from 0 to 10. All other
variables were categorical, including a set of predefined choices for each one.
Regarding the output variable, the examined scenario was aiming at predicting
the next healthy or unhealthy eating event. So, a healthy or unhealthy label was
assigned to each sample according to the type of food consumed at the next
time-point.

3.2 Data Preparation

For each dataset, each participant’s EMA data was prepared for analysis sepa-
rately. These were assessed for the frequency of daily observations as well as the
frequency and distribution of the outcome events. First, individuals having very
few observations per day or in total were removed. The number of individuals
retained was 31 and 76 for the Drink and ThinkSlim2 datasets, respectively.

Additionally, because of the final goal to predict (or classify) the next time-
point behavior, consecutive data points had to be collected. For example, for
each data point, if the following one (collected within the next 2 hours) was
absent then we could not retrieve its prediction target and eventually it was
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also considered as missing. That way, some individuals were found to have so
few outcome events of the minority class that subsequent cross-validation steps
could not be conducted. So, these participants were also excluded from the final
dataset. As a result, the number of retained individuals were 24 for the Drink
dataset having an average of 6.18 (std = 0.90) daily points and 57 for ThinkSlim2
with average 3.39 (std = 2.05) points.

As further seen in Table 1, data points of each individual were split se-
quentially at fixed time intervals into two datasets, a training and a test set,
containing the first 70% and last 30% of the data points, respectively.

3.3 Data Analysis

Idiographic Approach According to the idiographic approach, separate pre-
dictive models were applied to each individual, using various ML algorithms. A
necessary step is hyperparameters’ tuning, which frequently has a big impact
on model’s performance. In this paper, a time-series cross-validation method (a
variation of KFold, returning first k folds as training set and the (k+1)th fold as
test set) was used to tune some of the main hyperparameters of the tree-based
methods. All these combinations were exhaustively explored for each case using
Grid Search and the one resulting to the best cross-validation score was retained
for the following analysis. The metric score of interest was ROC AUC (or any
of the macro average scores), measuring the true-positive rate and false-positive
rate for the model’s predictions using a set of different probability thresholds.
AUC score was chosen for the prediction of both classes to be taken into account
equally, regardless the number of samples these classes contained. In other words,
the prediction of samples belonging to the majority class should not play a more
important role than predicting samples of the minority class.

Nomothetic Approach According to the nomothetic approach, the two meth-
ods described in Section 2.2 were investigated using Explainable Boosting Ma-
chine models (EBMs). EBMs were built using data of all individuals and then
compared to the traditional personalized EBMs. In the first method, the train-
ing datasets of all individuals were concatenated in a population-level dataset,
which was used to train an EBM. The number of interactions was fine-tuned to
select the optimal value, as in the personalized models. The performance of this
“EBM all” model was evaluated separately on the testing set of each individual.
The testing sets are kept the same as in the personalized approach.

In the second method, information obtained from the first method (teacher
model) was further used in personalized EBMs. Each class’ log-probabilities of
the training samples were extracted and transformed to smoothed probabilities
using a temperature softmax function, with the temperature value being selected
from a range between 2 and 200. Thus, new datasets were created using the
training samples of each individual and the extracted “probabilities” as a target
label, instead of the initial hard labels (0, 1). These new datasets created for each
individual were used to train the student models, which are EBMs regression
models.
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Table 2: Performance of personalized models (EBM, XGBoost, Gradient Boost-
ing, RF, SVM and Logistic Regression): the mean and standard deviation of the
AUC scores are given for all synthetic datasets (each having different number of
users, features and samples). Numbers in bold indicate the highest mean AUC
score for each dataset, while undelined numbers indicate cases where EBMs’
score is close to the highest one.
#Users #Feat #Samples EBM XGBoost Grad RF SVM LogReg

20 25 50 0.715 (0.149) 0.747 (0.145) 0.699 (0.179) 0.734 (0.168) 0.638 (0.185) 0.700 (0.149)
20 25 100 0.736 (0.142) 0.707 (0.127) 0.706 (0.132) 0.735 (0.130) 0.664 (0.130) 0.702 (0.087)
20 25 300 0.695 (0.154) 0.663 (0.148) 0.678 (0.133) 0.691 (0.147) 0.684 (0.163) 0.667 (0.157)
20 60 100 0.757 (0.147) 0.762 (0.181) 0.745 (0.153) 0.760 (0.142) 0.620 (0.147) 0.634 (0.143)

20 60 300 0.761 (0.127) 0.752 (0.121) 0.749 (0.107) 0.747 (0.127) 0.672 (0.105) 0.685 (0.113)
50 25 50 0.736 (0.170) 0.722 (0.170) 0.668 (0.157) 0.711 (0.155) 0.634 (0.188) 0.657 (0.173)
50 25 100 0.718 (0.128) 0.718 (0.133) 0.706 (0.128) 0.726 (0.121) 0.655 (0.145) 0.690 (0.132)
50 25 300 0.750 (0.111) 0.739 (0.108) 0.741 (0.107) 0.751 (0.111) 0.739 (0.123) 0.744 (0.121)

50 60 100 0.680 (0.154) 0.684 (0.148) 0.675 (0.136) 0.667 (0.148) 0.558 (0.150) 0.603 (0.136)

50 60 300 0.764 (0.101) 0.755 (0.105) 0.749 (0.103) 0.757 (0.101) 0.685 (0.101) 0.701 (0.102)
100 25 50 0.688 (0.179) 0.685 (0.158) 0.670 (0.172) 0.695 (0.148) 0.572 (0.193) 0.629 (0.177)
100 25 100 0.675 (0.147) 0.676 (0.144) 0.671 (0.144) 0.690 (0.147) 0.613 (0.133) 0.618 (0.131)
100 25 300 0.751 (0.110) 0.742 (0.101) 0.744 (0.104) 0.757 (0.109) 0.748 (0.109) 0.748 (0.110)

100 60 100 0.737 (0.131) 0.711 (0.134) 0.718 (0.122) 0.696 (0.122) 0.600 (0.131) 0.634 (0.122)
100 60 300 0.722 (0.131) 0.709 (0.128) 0.710 (0.117) 0.710 (0.126) 0.665 (0.091) 0.668 (0.112)

4 Experimental Results

4.1 Synthetic Dataset

Idiographic Approach The initial step to evaluate the described methods was
to create synthetic datasets. Using synthetic data, it is easier to understand the
problem we have to solve and develop effective and efficient methods for that.
To create the data, different values for the dataset’s parameters, such as number
of subjects, features and samples, were chosen and investigated independently.

Synthetic datasets are first analyzed using a personalized approach. For each
combination of the chosen parameters, personalized non-linear and linear models
are applied to each individual of every dataset separately. After applying all
personalized models, the mean and standard deviation values of the performance
(AUC scores) of all created individuals are presented in Table 2. It is clearly
visible that the average AUC scores are greater when applying non-linear models.
According to the extracted AUC results, EBMs models produce the best average
scores in most of the datasets. However, even when RF or XGBoost show the
best scores, their difference to EBMs is quite small. Moreover, EBMs achieved
more accurate performance when a large number of samples is used for training,
such as 100 or 300.

Nomothetic Approach Subsequently, personalized EBMs are evaluated in
comparison to the two nomothetic approaches described in Section 2.2, the us-
ing all data EBMs (EBM all) and knowledge distillation (KD) method. In case of
knowledge distillation, different values for the temperature parameter are eval-
uated, ranging from 1 to 100. After applying all examined methods, the mean
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Table 3: Performance of the two nomothetic methods (EBM all and KD): the
mean and standard deviation of the AUC scores are given for all synthetic
datasets (each having different number of users, features and samples). Numbers
in bold indicate the highest mean AUC score for each dataset, while undelined
numbers indicate cases where distillation outperforms personalized EBMs.
#User #Feat #Samples EBM EBM all KD (T = 1) KD (T = 5) KD (T = 100)

20 25 50 0.715 (0.149) 0.804 (0.151) 0.753 (0.178) 0.768 (0.185) 0.776 (0.178)

20 25 100 0.736 (0.142) 0.758 (0.162) 0.739 (0.134) 0.735 (0.139) 0.753 (0.148)

20 25 300 0.695 (0.154) 0.691 (0.172) 0.698 (0.167) 0.694 (0.171) 0.690 (0.179)
20 60 100 0.757 (0.147) 0.813 (0.111) 0.786 (0.092) 0.779 (0.096) 0.795 (0.097)

20 60 300 0.761 (0.127) 0.762 (0.119) 0.757 (0.111) 0.756 (0.113) 0.762 (0.119)
50 25 50 0.736 (0.170) 0.756 (0.183) 0.707 (0.169) 0.719 (0.170) 0.731 (0.166)
50 25 100 0.718 (0.128) 0.747 (0.146) 0.713 (0.162) 0.720 (0.164) 0.733 (0.160)

50 25 300 0.750 (0.111) 0.773 (0.133) 0.762 (0.134) 0.769 (0.135) 0.769 (0.135)

50 60 100 0.680 (0.154) 0.735 (0.140) 0.689 (0.144) 0.686 (0.147) 0.700 (0.151)

50 60 300 0.764 (0.101) 0.783 (0.120) 0.751 (0.119) 0.755 (0.122) 0.766 (0.123)

100 25 50 0.688 (0.179) 0.767 (0.175) 0.720 (0.167) 0.725 (0.171) 0.736 (0.166)

100 25 100 0.675 (0.147) 0.723 (0.144) 0.719 (0.138) 0.720 (0.135) 0.726 (0.141)
100 25 300 0.751 (0.110) 0.769 (0.121) 0.767 (0.120) 0.765 (0.119) 0.764 (0.121)

100 60 100 0.737 (0.131) 0.761 (0.140) 0.712 (0.150) 0.721 (0.147) 0.738 (0.148)

100 60 300 0.722 (0.131) 0.736 (0.142) 0.724 (0.133) 0.720 (0.132) 0.729 (0.139)

and standard deviation values of the produced AUC scores for each synthetic
dataset are presented in Table 3.

In the majority of the examined datasets, it is apparent that using person-
alized EBMs leads to worse performance than when either of the nomothetic
methods is applied. More specifically, EBM all gives the best results compared
to the distillation method in all but three datasets, whereas in one of these, both
methods achieved the same score. It is also interesting to mention that their dif-
ference, in terms of the mean AUC score, is quite big in some datasets. This is
the case in datasets with a small number of samples, such as when characteristics
({users, features, samples}) are {20, 25, 50}, {50, 25, 50}, {100, 25, 50}, {50, 60,
100} and {100, 60, 100}. Therefore, it is important to highlight that collecting
sufficient data from each user can benefit the knowledge distillation process.

4.2 Dataset: Drink

Idiographic Approach First, the total number of 24 individuals is analyzed
using a personalized approach. After applying all different ML models, the re-
sults of the personalized predictive models on the testing sets indicated that the
produced results highly vary across individuals. For instance, some individuals
had quite high AUC results, whereas others’ results were at chance level.

To compare the different ML models, we show some of the statistical prop-
erties of all AUC scores, using the box and whisker plots in Fig. 2a. In this
figure, we present the performance of EBMs compared to the full-complexity
ML models as well as the performance of non-linear models compared to the
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traditionally-used linear ones. Regarding the first comparison, AUC’s distribu-
tion for EBMs is comparable to the ones of the other non-linear models. Apart
from RF, which shows a slightly better overall performance, all statistical prop-
erties of the EBMs’ scores reached higher values than the other three models.
The median value of EBM AUC score is around 0.81, only a bit lower than
XGBoost (0.83). It can also be noticed that the minimun value of EBM perfor-
mance was the highest among ML models, indicating a smaller variation among
individuals in the case of EBMs.

Regarding the second comparison, a distinction between the linear and non-
linear models is clearly visible. All statistical properties of the AUC scores are
lower in the case of linear models. These findings highlight the ability of non-
linear ML models to enhance the predictive performance of the traditionally-
applied linear ones.

(a) (b)

Fig. 2: a: AUC performance of all non-linear and linear models b: Comparing the
performance of personalized EBMs to the two nomothetic approaches (EBM all
and KD)

Nomothetic Approach In the nomothetic approach, data from all individuals
are pooled into one dataset and modeled collectively by one EBM (EBM all), or
further exploited in a personalized way (KD). To facilitate comparison, box and
whisker plots are utilized and presented (as before) in Fig. 2b.

Using a nomothetic approach, the AUC distribution of the KD method is im-
proved compared to that of personalized EBMs. This shows more consistent per-
formance scores across individuals, apart from 4 outliers. Regarding the EBM all
method, its AUC distribution is more spread, meaning that the 25th percentile
and minimum values are lower compared to personalized EBMs and KD. How-
ever, the upper half of its distribution is comparable to the respective part of
the distributions obtained through the other cases. Subsequently, by comparing



EBMs to Compare Idiographic and Nomothetic Approaches 11

the median values of both approaches, we see that there is a slight distinction
between them, where personalized EBMs reach the level of 0.80, whereas around
0.76 and 0.79 for the EBM all and KD methods, respectively. In contrast to the
results on synthetic datasets, we see that in a more realistic dataset, the knowl-
edge distillation method can lead to improved results compared to EBM all.

4.3 Dataset: ThinkSlim2

Idiographic Approach Similar to the previous dataset, the performance of 57
personalized predictive models is first evaluated. As the produced results highly
varied across individuals, their performance is also here assessed through box
and whisker plots. Fig. 2a presents the AUC scores of all different ML methods.
According to AUC scores, all models’ distributions are comparable to each other,
having a quite large range. All methods show similar poor performance, achieving
a low median value around 0.57 in the case of non-linear models, whereas around
0.54 for the linear ones. That could be due to the more complex and challenging
structure of this dataset, containing a larger number of individuals as well as
features, but not more data samples compared to the previous dataset. Another
interesting aspect in this experiment is that some AUC values are very close to
zero (for all setups). This means that probabilities produced by all models for
these individuals lead to a flipped prediction label for almost all testing points.

Nomothetic Approach Finally, personalized EBMs were compared to the two
nomothetic approaches, EBM all and KD. The results of all methods, in terms
of AUC scores, are presented in Fig. 2b. The median as well as the 25th and 75th
percentile values are similar for both KD and EBM all, and also increased com-
pared to the respective values of the personalized EBMs. The mean relative AUC
increase of KD and EBM all compared to EBMs are at 17% and 14%, respec-
tively. It is also worth mentioning that there is one individual having an AUC
score equal to 0. This means that the probabilities produced by both EBM all
and KD methods for this individual do not map the class labels correctly, maybe
because they are different than the rest of the population. In challenging prob-
lems, like the one represented by the ThinkSlim2 dataset, where personalized
non-linear models do not perform well, both nomothetic approaches are likely
to achieve a slightly improved performance.

5 Challenges of modelling EMA data

Studying the aforementioned two real-world datasets and noticting their varying
results across individuals shows the importance of collecting good quality EMA
data. Because of the complex nature of psychological behavior, its representa-
tion on a dataset can be quite challenging. EMA data collection is a difficult
task, trying to capture multiple observations on subjective variables during an
intensive period. Thus, it may contain unclear and arbitrary responses as well
as missing values.
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Missing data is a significant problem of real-world EMA datasets that cannot
be controlled during a study. Even though several individuals initially participate
in a study, some may not produce enough data for analysis (especially if one
needs to take into account the temporal nature of the data). The number of
data points that is sufficient depends on the total compliance of each individual
during the whole data collection period and also per day. The most common
approach to deal with missing data is to delete them while keeping only the
complete sets of data. However, this method relies on the assumption that the
missing observations are missing at random (MAR) or completely at random
(MCAR), which possibly is not always the case.

6 Conclusion

This research work highlights the importance of exploiting the wealth of EMA
data through more advanced ML models compared to linear ones. Non-linear vs.
linear and idiographic vs. nomothetic approaches were investigated for classifying
a target variable at a next time-point on different datasets.

The results showed great consistency for the idiographic approach, showing
that non-linear models yield an enhanced performance on both synthetic and
real-world data. Subsequently, regarding the nomothetic approaches, no clear
trends were observed in the results of all datasets. Although the EBM all method
appears to perform best for synthetic datasets, that is not the case for the real-
world datasets. Overall, the proposed knowledge distillation method could be
recognized as the most beneficial to improve performance of personalized models.
However, the differences in both idiographic and nomothetic approaches were not
found statistically significant. As a future step, further experiments are needed
on more (and larger) datasets for evaluating the examined approaches.
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