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Review article

Radiomics: a quantitative imaging biomarker in precision 
oncology
Ashish Kumar Jhaa,b,c,*, Sneha Mithuna,b,c, Nilendu C. Purandareb,c,  
Rakesh Kumard,†, Venkatesh Rangarajanb,c,†, Leonard Weea,† and Andre Dekkera,†   

Cancer treatment is heading towards precision medicine 
driven by genetic and biochemical markers. Various 
genetic and biochemical markers are utilized to render 
personalized treatment in cancer. In the last decade, 
noninvasive imaging biomarkers have also been 
developed to assist personalized decision support 
systems in oncology. The imaging biomarkers i.e., 
radiomics is being researched to develop specific digital 
phenotype of tumor in cancer. Radiomics is a process 
to extract high throughput data from medical images by 
using advanced mathematical and statistical algorithms. 
The radiomics process involves various steps i.e., image 
generation, segmentation of region of interest (e.g. a 
tumor), image preprocessing, radiomic feature extraction, 
feature analysis and selection and finally prediction 
model development. Radiomics process explores the 
heterogeneity, irregularity and size parameters of the 
tumor to calculate thousands of advanced features. Our 
study investigates the role of radiomics in precision 
oncology. Radiomics research has witnessed a rapid 
growth in the last decade with several studies published 
that show the potential of radiomics in diagnosis and 
treatment outcome prediction in oncology. Several 
radiomics based prediction models have been developed 
and reported in the literature to predict various prediction 

endpoints i.e., overall survival, progression-free survival 
and recurrence in various cancer i.e., brain tumor, head 
and neck cancer, lung cancer and several other cancer 
types. Radiomics based digital phenotypes have shown 
promising results in diagnosis and treatment outcome 
prediction in oncology. In the coming years, radiomics is 
going to play a significant role in precision oncology. Nucl 
Med Commun 43: 483–493 Copyright © 2022 Wolters 
Kluwer Health, Inc. All rights reserved.
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Introduction
Cancer is caused by genetic mutations leading to uncon-
trolled growth of tissue and the cells can leave the tis-
sue colony and metastasize in other parts of the body [1]. 
Conventionally, cancer is treated by surgery or chemo-
therapy or radiotherapy or combinations of these [2]. 
Often the selection of treatment depends upon the type 
of tumor, stage of the disease and general condition of the 
patient [2]. Although,   clinicians consider these factors 
to decide the course of treatment, on several occasions 
these treatments fail [3]. This led to the evolution of per-
sonalized medicine in oncology [4]. Personalized oncol-
ogy works on the principle of identification of subgroups 
of patients in particular disease types [4,5]. Many bio-
markers and gene mutations have been investigated to 
identify the subgroups of the patients in various cancers 

and targeted drugs for those subgroups [5,6]. For exam-
ple, by sequencing and in situ hybridization techniques 
a patient subgroup with epidermal growth factor receptor 
mutation can be identified in non-small cell lung cancer 
patients. These high-risk patients do not respond well to 
conventional treatment options but show good response 
with targeted therapies like Erlotinib, Gefitinib, Afatinib 
and similar drugs [6–9]. Precision oncology has the poten-
tial to personalize the screening, risk stratifications, treat-
ment selection and response assessment [4,5]. Although 
most approaches towards precision oncology are centered 
on biomarkers and genetic mutation assessments [7], arti-
ficial intelligence (AI) driven technologies are also being 
explored to improve the accuracy of precision oncol-
ogy [10–12]. This technology-driven approach has also 
been tested in various fields in precision oncology, that 
is, screening, risk stratifications, treatment selection and 
response assessment [10,12]. AI-based precision oncol-
ogy has achieved success as witnessed in published lit-
erature in the last few years. Various imaging biomarkers 
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are being developed and tested for their utility in pre-
cision oncology [13–15]. Those imaging biomarkers are 
of two types i.e., qualitative (e.g. spiculated margin of 
tumor, vascularity of tumor, position of tumor and con-
trast enhancement of the tumor, etc.) and quantitative 
(e.g., hounsfield unit in computed tomography (CT), 
standardized uptake value and total lesion glycolysis in 
PET) [16]. In the last few years another kind of imaging 
biomarker, i.e., radiomic features are extracted from the 
medical images and being tested in precision oncology 
[16,17]. The aim of this study is to review the radiomic 
process and its role in precision oncology and secondary 
aim was to investigate the growth of radiomics research in 
the last two decades.

Radiomics
Radiomics as a word was first used by Lambin et al. in 
2012 in order to describe the quantification of medical 
imaging data [17]. Radiomics is a process to extract high 
throughput data from medical images like CT, PET, 
MRI or SPECT by using advanced mathematical and 
statistical analysis of images [16,17]. The Radiomics 
process explores the heterogeneity, irregularity and 
size parameters of the tumor to calculate thousands of 
advanced features [16–18]. There are mainly two types 
of radiomics, i.e., handcrafted radiomics and deep learn-
ing-based radiomics. Here in this manuscript mainly we 
will discuss the first form of radiomics i.e. hand crafted 
radiomics and we will address these by the term radiom-
ics itself [19].

Radiomics process
The Radiomics process involves various steps, i.e., image 
generation, segmentation of the region of interest (ROI) 
(e.g. a tumor), image preprocessing, radiomic feature 
extraction, feature analysis and selection and prediction 
model development [16–18]. The stepwise radiomic pro-
cess is shown in Fig. 1.

Image generation
Medical equipment like CT, PET, MRI and SPECT are 
used to image the patient and three-dimensional images 

are generated by sophisticated reconstruction tech-
niques. These images are archived in image repository, 
that is, picture archiving communication system (PACS) 
for future utilization.

Segmentation
The images are transferred to the workstations and the 
ROI is delineated surrounding the tumor, to extract radi-
omic features from that part of the image. The ROI is 
generated by medical experts or physicists and typically 
stored as DICOM RT structure or Segmentation.

Preprocessing of image
Image preprocessing involves various steps performed on 
images and the ROI. As an example, the following steps 
are typically performed before radiomic extraction from 
the medical images [20].

Interpolation
Medical images are reconstructed and represented in 
three-dimensional matrices with one unit of the matrix 
called a voxel. Often voxels are not isotropic and to 
extract textural radiomic features, the voxels are often 
resampled or interpolated into isotropic voxels.

Resegmentation
The original ROI defined by expert or by automated seg-
mentation is utilized to generate a morphological mask 
and intensity mask. The morphological mask is the origi-
nal mask. The intensity mask is resegmented, which con-
tains selected voxel inside or outside the morphological 
mask.

Region of interest extraction
Many features do not require voxels outside the ROI; 
hence the image volume is extracted for the image based 
on the ROI of intensity mask.

Intensity discretization
Medical images contain noise and often quantization 
of image intensities is performed to suppress the noise 
inside the ROI to calculate the texture features. Two 

Fig. 1.

Radiomic process for radiomic feature extraction and feature selection.
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approaches are used for intensity discretization, that is, 
(1) fixed number of bins and (2) fixed bin width.

Radiomic feature extraction
Automatic extraction of radiomic features is performed in 
this step. Thousands of radiomic features are generated 
in this step which is further processed in the radiomic 
analysis step.

Radiomic analysis and feature selection
While sometimes 1000+ features are extracted from 
medical images; these are not all useful for phenotyp-
ing a particular disease or for the development of an 
outcome prediction model. Many features are redun-
dant and many have no association with the particular 
disease or outcome. Various statistical tests can be per-
formed for feature reduction [21]. Hierarchical clustering, 
Spearman correlation, Pearson correlation paired t-test 
are performed to eliminate the redundancy of the fea-
ture; forward, backward feature selection, Least Absolute 
Shrinkage and Selection Operator or recursive feature 
elimination techniques are used to reduce the dimen-
sionality of the features. Finally, the most appropriate 
features are selected for disease prognostication or pre-
diction model development for various endpoints like 
overall survival, recurrence, treatment selection or pre-
diction of treatment outcomes.

Prediction model development
Finally, the prediction model is developed and validated 
by using the selected features. These features may also 
be combined with clinical features to develop predic-
tion models. Various machine algorithms have been 
used to develop a prediction model depending upon 
the need i.e., regression algorithms, Linear and Logistic 
regression, K-Nearest Neighbor, decision trees algo-
rithms, i.e., Random Forest, Support Vector Machine, 
Bayesian Network, and deep learning algorithms, i.e., 
Convolutional Neural Networks, Recurrent Neural 
Networks and Artificial Neural Networks [22–24].

Radiomic features can be categorized into various groups 
[18]. Feature groups and the typical number of features 
extracted using Pyradiomics software [25] are shown in 
Table 1 (Supplementary material 1, Supplemental digital 
content 1, http://links.lww.com/NMC/A215).

Deep learning radiomics workflow
Recently, an alternative to handcrafted radiomic work-
flow, a deep learning-based radiomics workflow [26–28] 
has emerged. A deep learning-based radiomics workflow 
extracts features from medical images without prede-
fined formulas. Images may be used with or without an 
ROI for this deep radiomic workflow. Usually, it is a two- 
or three-step process. Step (1) image data acquisition, 
(2) segmentation (may or may not be given), (3) devel-
opment and validation of deep neural networks model. 

It is not possible in deep learning radiomics to describe 
features mathematically.

Radiomics and precision oncology
Radiomics has witnessed a rapid growth in the last dec-
ade with several studies published that show the poten-
tial of radiomics in diagnosis and treatment of cancer. 
Many radiomics based AI decision support systems have 
been developed in oncology and reported in literature. 
Figure 2 shows the process of precision oncology leverag-
ing radiomic and artificial intelligence.

In the last few years a new aspect of radiomics, that is, 
Delta Radiomics is being researched [29]. Delta radiom-
ics comprises extraction and comparison of quantitative 
features from sequential scans acquired over the course 
of treatment, which provides information on the efficacy 
of treatment.

Methodology
This study is approved by the Institutional Ethics 
Committee as a retrospective study. In this study, we 
have performed literature surveys to find the emerging 
trend of radiomics based publications in oncology. Our 
search criteria are optimized to search only those articles, 
which clearly mention radiomics or related terms like 
texture analysis in their title. We further extended our 
search and added year of publication as a criterion to find 
the total number of publications available on radiomics 
on PubMed and year-wise distribution of those publi-
cations. Furthermore, we added disease and segregated 
articles based on disease type. To understand the trend 
of imaging modality used for radiomic study we further 
included keywords like CT or PET or MRI along with 
search criteria in all fields. The details of search criteria 
adopted in this study are mentioned in Tables 2 and 3.

Results
We found in total 5243 articles published on radiomics 
since the year 2000 that satisfied our search criteria. Out 
of total articles published on radiomics, 624, 2234 and 
2110 articles had mention of PET, CT and MRI, respec-
tively (Table 4). The detailed distribution of the publi-
cations year wise in all categories are shown in Table 4. 
There were 123 studies published on radioiomic stability 
study. Maximum 549 articles were published on lung can-
cer alone followed by 533 articles on GI cancer (Fig. 3).

The percentage of radiomic articles published on CT 
and MRI are almost the same 45% and 42%, respectively 
(Fig. 3a). Radiomics articles published on lung and GI 
cancers contribute approximately 20% of total publica-
tions on radiomics (Fig. 3b).

Publication trend on radiomics has shown rapid growth 
in last decade (Fig.  4a). The trend shows that the 
yearly publications have increased many folds in the 
last 5 years (Fig. 4b). A similar growth trend has been 

http://links.lww.com/NMC/A215


Copyright © 2022 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

486  Nuclear Medicine Communications  2022, Vol 43 No 5

witnessed in all imaging types (Fig. 4a and b) and all 
types of cancers (Fig. 5a and b). In our study, we found 
85 articles which have utilized all three imaging modal-
ities for radiomic study (Fig. 4c). Figure 4d shows the 
year wise publication of radiomic articles on stability of 
radiomic features.

Discussion
The utility of radiomic based prediction modeling has 
been tested widely in diagnosis and treatment of all 
varieties of solid tumors. Several studies have been 
performed to differentiate high-grade and low-grade 
gliomas and to develop various radiomic markers for 
treatment selection [26,27]. Several studies have shown 

the association of radiomic features extracted from PET 
or MRI with survival in glioma [30–39]. Radiomics is 
widely used in diagnosis and treatment assessment of 
head and neck cancer [40]. A radiomic signature from 
PET, MRI and CT has been found to have a significant 
role in prediction of stage of tumor, HPV status, hypoxia 
status and gene expression in head and neck cancer [41–
51]. Studies have shown the role of radiomics in charac-
terization of sentinel lymph node metastasis in breast 
cancer noninvasively [52]. The role of radiomics has also 
been demonstrated by various researchers in breast can-
cer for response evaluation such as disease-free survival 
(DFS) [53–57]. The role of radiomics has been widely 
explored in lung cancer management [58]. Various 

Table 1.  Radiomic features can be extracted by using PyRadiomics software

Type of feature Feature descriptions
No. of 

features

Shape-based features Shape features are the descriptors of the three-dimensional size and shape of the ROI and independent from the gray 
level intensity distribution. These features are only calculated on the original image and mask.

13

First-order statistics First-order statistics describe the distribution of voxel intensities within the ROI region of the image. 17
GLRLM Gray Level Run Length Matrix (GLRLM) assesses the distribution of discretized gray levels in an image or in a stack of 

images assesses run lengths.
16

GLCM Gray Level Co-Occurrence Matrix (GLCM) expresses how combinations of discretized intensities of neighboring voxels 
in a 3D volume, are distributed along with one of the image directions.

22

GLSZM Gray Level Size Zone Matrix (GLSZM) counts the number of groups/zones of linked voxels with identical discretized 
gray level.

16

NGTDM Neighboring Gray Tone Difference Matrix (NGTDM) contains the sum of gray level differences of voxels with discretized 
gray level and the average discretized gray level of neighboring voxels within a Chebyshev distance δ.

5

GLDM Gray Level Dependence Matrix (GLCM) quantifies gray level dependencies in an image in terms of the number of con-
nected voxels within distance δ that are dependent on the central voxel.

14

LoG features A Laplacian of Gaussian (LoG) filter is applied on the original image and one set of derived images is generated for each 
sigma value specified. Usually, 1-5 sigma values are used, we use 3 sigma values 1, 2, 3 and three sets of derived 
images are produced. Subsequently, radiomic features are extracted from these image sets.

270

Wavelet features Wavelet transformation of image is performed using the three-dimensional wavelet decomposition and 8 sets of images 
are generated from the original image set. Radiomic features are extracted for transformed image sets.

720

Fig. 2.

Mechanism to deliver personalized medicine leveraging the machine learning and artificial intelligence to decode the digital signature of the individ-
ual patient.
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studies have been performed to differentiate between 
benign and malignant tumor, pathology types (i.e. adeno-
carcinoma or squamous cell carcinoma), EGFR mutation 

status and various TNM stages [59–65]. Literature pub-
lished in the last one decade also suggests an increasing 
role of radiomic features in the prediction of OS, PFS, 

Table 2.  The term and search criteria used to select study based on the above-mentioned criteria

Modality Search Criteria 

Radiomics “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomic” [Title] OR “Radiomics” [Title] AND 
2000/01/01: 2021/12/31[dp]

Computed tomography “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker”[Title] OR “Radiomics”[Title] OR “Radiomic” [Title] AND 
(“CT”[ALL] OR “Computed Tomography”[ALL]) AND 2000/01/01: 2021/12/31[dp] 

PET “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” [Title] AND 
(“PET” [ALL] OR “Positron” [ALL]) AND 2000/01/01: 2021/12/31[dp]

MRI “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” [Title] AND 
(“MRI” [ALL] OR “magnetic” [ALL]) AND 2000/01/01: 2021/12/31[dp]

PET and computed tomog-
raphy

“Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” [Title] AND 
(“PET” [ALL] OR “Positron” [ALL]) AND (“CT”[ALL] OR “Computed Tomography”[ALL]) AND 2000/01/01: 2021/12/31[dp]

PET and MRI “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” [Title] AND 
(“MRI” [ALL] OR “magnetic” [ALL]) AND (“PET” [ALL] OR “Positron” [ALL]) AND 2000/01/01: 2021/12/31[dp]

MRI and computed tomog-
raphy

“Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” [Title] AND 
(“MRI” [ALL] OR “magnetic” [ALL]) AND (“CT”[ALL] OR “Computed Tomography”[ALL]) AND 2000/01/01: 2021/12/31[dp]

PET and computed tomogra-
phy and MRI

“Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” [Title] AND 
(“MRI” [ALL] OR “magnetic” [ALL]) AND (“PET” [ALL] OR “Positron” [ALL]) AND (“CT”[ALL] OR “Computed Tomography”[ALL]) 
AND 2000/01/01: 2021/12/31[dp]

Radiomic stability “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomic” [Title] OR “Radiomics” [Title] AND 
(“repeatability” [Title] OR “reproducibility” [Title] OR “stability” [Title]) AND 2000/01/01: 2021/12/31[dp]

Table 3.  The term and search criteria used to select radiomic studies published on various cancer types

Disease site Search criteria

Brain tumor “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” 
[Title] AND (“Brain” [Title] OR “GBM” [Title] OR “glioblastoma” [Title] OR “glial” [Title]) AND 2000/01/01: 2021/12/31[dp]

Head & neck cancer “Texture analysis”[title] or “textural analysis”[title] or “imaging biomarker” [title] or “radiomics” [title] OR “Radiomic” [Title] and 
(“head- and-neck” [title] or “neck” [title] or “head” [title]) and 2000/01/01: 2021/12/31[dp] 

Lung cancer “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” 
[Title] AND (“lung” [Title] OR “nsclc” [Title] OR “sclc” [Title]) AND 2000/01/01 : 2021/12/31[dp]

Breast cancer “Texture analysis”[title] or “textural analysis”[title] or “imaging biomarker” [title] or “radiomics” [title] OR “Radiomic” [Title] and 
“Breast” [title] and 2000/01/01: 2021/12/31[dp]

Gastrointestinal cancer “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” 
[Title] AND (“Gastrointestinal” [Title] OR “intestine” [Title] OR “intestinal” [Title] OR “Liver” [Title] OR “HCC” [Title] OR “ 
hepatocellular” [Title] OR “pancreatic” [Title] OR “pancreas” [Title]) AND 2000/01/01: 2021/12/31[dp]

Cervical cancer “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” 
[Title] AND (“Cervical” [Title] OR “Cervix” [Title]) AND 2000/01/01: 2021/12/31[dp]

Prostate cancer “Texture Analysis”[Title] OR “Textural Analysis”[Title] OR “Imaging Biomarker” [Title] OR “Radiomics” [Title] OR “Radiomic” 
[Title] AND (“Prostate” [Title] OR “Prostatic” [Title]) AND 2000/01/01: 2021/12/31[dp]

Colorectal cancer “Texture analysis”[title] or “textural analysis”[title] or “imaging biomarker” [title] or “radiomics” [title] OR “Radiomic” [Title] and 
(“Colorectal” [title] or “rectal” [title] or “Colon” [title]) and 2000/01/01: 2021/12/31[dp]

Table 4.  The total and year wise publications on radiomics in oncology

 Publications on radiomics 

Year 2021 2020 2019 2018 2017 2016 2015 Total

Total 1549 1277 798 535 298 175 132 5243
CT 733 592 343 236 132 70 38 2234
PET 169 151 105 71 43 31 14 624
MRI 645 527 345 205 108 74 43 2110
CT-PET 142 118 82 46 33 26 5 475
PET-MR 42 33 21 17 9 6 2 135
CT-MRI 91 58 42 15 11 8 2 234
CT-MRI-PET 32 19 16 7 6 3 0 85
Stability 47 25 29 9 4 5 0 123
Brain tumor 80 74 45 36 24 14 8 307
Head & neck cancer 26 31 30 12 11 4 2 122
Lung cancer 155 157 78 71 39 20 10 549
Breast cancer 110 93 58 31 25 11 13 369
GI cancer 182 156 85 51 17 10 11 533
Cervical cancer 38 29 15 12 5 2 0 104
Prostate cancer 57 42 38 20 8 10 3 251
Colorectal cancer 82 69 39 22 10 11 9 187
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Fig. 3.

Publications on radiomics: (a) Imaging modality wise distribution of articles; (b) disease wise distribution of articles.

Fig. 4.

Figure shows (a) the trend of number of publications on PET, CT and MRI radiomics in oncology over the last two decades, (b) of number of publi-
cations on PET, CT and MRI radiomics in oncology since 2015. (c) Vann diagram shows the PET, CT and MRI imaging modality used for radiomic 
studies; (d) shows the trend of number of published radiomic stability issues since 2015.
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DFS, LRR, treatment response, toxicity and quality 
of life [66–72]. Radiomic features have been explored 
for the management of colorectal cancer. Various stud-
ies have demonstrated the role of radiomic features in 
the detection of lymph node metastasis, prediction of 
KRAS/NRAS/ BRAF mutation [73,74]. The role of radi-
omic features has also been investigated for treatment 
selection, treatment modification and DFS prediction 
[73,75–77]. Radiomics has been investigated in prostate 
cancer management and features extracted from MRI 
and PET have shown promising results. Several stud-
ies have shown the utility of radiomic features in the 
differentiation between benign and malignant tumor, 
aggressiveness of tumors and the Gleason Score [78–81]. 
Many researchers have also shown the utility of radiomic 
features extracted from MRI and PET to predict bio-
chemical recurrence, PFS and OS [82–84]. GI and liver 
cancer is another area where the role of radiomics has 
been investigated in disease management. The role of 
radiomics has been successfully demonstrated in micro-
vascular invasion detection of liver cancer and differen-
tiation in various kinds of GI malignancies, histology 
type and TNM staging in the GI cancer [85–91]. Various 
studies have demonstrated the role of radiomic features 
in detection of lymph node metastasis, OS, PSF and tox-
icity prediction in cervical cancer [92–95].

Our study shows an increasing trend of radiomics in 
oncology in the last decade. The last 5 years witnessed 
the tremendous growth of radiomic studies in oncology. 
In all major disease types growth of radiomic studies 
have been witnessed. Several articles have been pub-
lished on radiomic stability problems that show the 
researchers have identified it as a major issue in radiomic 
implementation.

Implementation or radiomics based workflow in clinic
The future of radiomics lies in the clinical application 
of radiomics. A self-learning model may be developed 
and implemented in the clinic for participation in the 
decision support system. There will be requirements of 
a super-specialized model to address the specific clini-
cal questions. As suggested by Lambin et al., the image 
archival system, that is, PACS has to be modified to pic-
ture archiving and radiomics knowledge systems to store 
radiomic signatures [16]. The future implementation of 
the radiomic process may look like Fig. 6.

Limitations of radiomic implementation
The main problem of radiomics is its limited repeata-
bility and reproducibility which is thought to be mainly 
caused by the difference in scanners from different ven-
dors, different acquisition protocols and intra scanner 

Fig. 5.

Figure shows (a) the trend of number of publications on radiomics in various cancer types over last two decades, (b) trend of number of publica-
tions on radiomics in various cancer types since 2015.
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variations. In our earlier repeatability and reproduc-
ibility study, we found that only 10% of CT radiomic 
features had a good repeatability and reproducibility in 
a clinical cohort and in phantoms [96]. Traverso et al. 
in a systematic literature review have also concluded 
that there are stability issues with majority of radiomic 
features [97]. In order to harmonize radiomic extraction 
tools, features and imaging standards, several initiatives 
are started by various agencies, like The Quantitative 
Imaging Network (QIN) [98], the Quantitative Imaging 
Biomarkers Alliance (QIBA) [99], and Quantitative 
Imaging in Cancer: Connecting Cellular Processes with 
Therapy (QuIC-ConCePT) [100]. These initiatives are 
working to standardize imaging and imaging biomark-
ers. The Image Biomarker Standardization Initiative 
(IBSI) is another consortium that works towards the 
harmonization of radiomic features across the globe by 
minimizing the deviation in imaging and standardizing 
the radiomic extraction process [101,102]. The radiom-
ics quality score (RQS) is another such initiative pro-
posed by Lambin et al. to address the issues related to 
radiomic study reporting [16]. Most of these initiatives 
will assist in advancing the standardization process of 

imaging biomarkers and are thus expected to address 
the repeatability and reproducibility challenges cur-
rently present in Radiomics.

Conclusion
This literature review is suggestive of the increasing 
role of radiomics in precision oncology. Publications on 
radiomics have increased many folds in the last 5 years. 
Initiatives like QIN, QIBA, QuIC-ConCePT, IBSI and 
RQS will be able to address repeatability and reproduc-
ibility of radiomic features. We envision that radiomics 
is going to play a pivotal role in phenotyping the cancer 
and guide cancer management to provide more precise 
treatments to patients in a true clinical environment 
soon.
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