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Abstract—The abundant availability of data allows the con-
struction of predictive systems that support decision makers
in business and society. A problem arises if an organization
does not have a large enough data set by itself to construct a
system of adequate quality. In this case, data across organizations
has to be used, which introduces risks of data sharing. To
overcome these risks, federated learning is getting increasingly
popular to enable automated learning in distributed networks
of autonomous partners without sharing raw data. So far, only
crisp systems have been used in this context. The use of a fuzzy
inference system can bring advantages to deal with vagueness
and uncertainty in predictive systems. Therefore, in this paper we
explore the (hopefully) happy marriage of federated learning and
fuzzy inference mechanisms. We show that it is indeed possible
to build a fuzzy inference model in a federated learning setting,
resulting in a Federated Fuzzy Learning System (F2LS). We also
show that this combination brings advantages to decision making
that cannot be achieved with either mechanism in isolation.

I. INTRODUCTION

Currently, more and more data is being gathered in business
processes or automatically produced in the context of the
internet-of-things (IoT). For instance, in the healthcare domain
the amount of collected data is being doubled every two years
[1]. Many organizations want to use this data to improve
their decision making. One popular way to achieve this is by
building predictive models from the data that inform decision
makers of expected future situations by analyzing patterns in
past situations.

Building high-quality predictive models requires a historic
data set of adequate size to learn from. Sometimes, however,
an individual organization does not have enough data to build
a predictive model of sufficient quality by itself. Obtaining
additional data from other parties may be impossible because
of competitive threats or privacy regulations, e.g. the EU
General Data Protection Regulation (GDPR) [2]. In such
situations, federated learning can offer a solution by using data
across organizations for building models without introducing
problems related to threats or regulations.

Federated learning enables a collaboration between multiple
parties to jointly train a machine learning model without ex-
changing the local data [3]. Because the data are not exchanged
between parties, it is considered a privacy preserving approach.
The collaboration in learning is considered successful, if for
at least one party the performance of the federated model is
better than the performance of the local model [4].

Federated learning has been successfully applied in various
domains. Federated learning is used to combine data of mobile
devices (so called cross-device federated learning), e.g., on
Google Keyboard [5], and data of different organizations (so
called cross-silo federated learning), e.g., in healthcare [6] or
in finance for transaction fraud detection [7]. We have explored
the use of federated learning for processing IoT data to support
decision making in business processes, building a concept
model [8] and a demonstrator [9].

So far, learning in a federated context has been based on
crisp models. In application domains with substantial vague-
ness or uncertainty, the use of fuzzy inference mechanisms
can yield better predictive algorithms, however. With these
domains in mind, we have posed a question: Is it possible to
build a fuzzy inference system model in a federated setting to
bring the advantages of fuzzy reasoning to a federated context?
And more detailed: Could fuzzy inference systems deal with
heterogeneity of data, by allowing the existence of multiple
locally active rules?

In this paper we present our approach to build a fuzzy
inference model in a federated learning setting, resulting
in a Federated Fuzzy Learning System (F2LS). The next
section discusses the background and related work. Section III
explains the basis for our approach. Section IV describes the
proposed approach for building an F2LS. Section V discusses
the initial results of applying our approach to test cases. The
paper finishes with concluding remarks.

II. BACKGROUND: RELATED WORK

In this section, we briefly discuss the relevant background
and related work on the topics of federated systems in general
and federated learning specifically. We address fuzzy inference
mechanisms in the next section.

Federated systems. As there are many application contexts
in which systems are not tightly integrated, but coupled in
a loose fashion, federated systems have been studied for
decades. A typical class of systems is the federated database
system [10], in which several autonomous systems each man-
age their own local databases. The contents of these can be
combined for purposes at the global level, i.e., the level of
the federation. The loose coupling requires specific protocols
to use the data at the federation level, e.g., for integrity
control [11]. Federated learning systems are federated systems
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in which specific protocols are used to combine data from
federation members for machine learning purposes.

Federated learning. Federated learning is defined as “a
machine learning setting where multiple entities (clients) col-
laborate in solving a machine learning problem, under the
coordination of a central server or service provider. Each
client’s raw data is stored locally and not exchanged or
transferred; instead, focused updates intended for immediate
aggregation are used to achieve the learning objective” [3].

The greatest advantage of the federated learning is improv-
ing the model quality, by using data available to all parties in-
volved in a federation, yet keeping raw data at its source. This
is achieved by communicating only model vectors, thereby
improving the data privacy of federation members. There
are still many challenges in federated learning [3], such as
improving efficiency, guaranteeing the privacy of members,
providing robustness to the attacks, ensuring fairness among
members and addressing bias in learning.

Federated learning has been proposed for several learning
paradigms [12]. A popular paradigm is supervised learning
for regression problems (cf. [13], [14], [15]). We adopt this
paradigm in our approach towards an F2LS. Several machine
learning models were adapted to learn in the federated setting,
such as neural networks [13], [16], tree based models [14],
[17], SVMs [18] and linear models [15], but not fuzzy infer-
ence systems.

Many authors (cf. [4], [19], [12]) mention heterogeneity
of data (or non-IID data) as one of the major challenges in
federated learning. Several methods try to solve this issue by
adjusting the relative weights of the data of members better,
e.g., using adaptive weighting [20], [21], regularization [19]
or clustering [22].

III. GROUNDWORK: BASIS FOR AN F2LS

In this section, we lay the groundwork for the development
on an F2LS. First, we discuss the learning process followed
by a federated learning system. Then, we discuss the inference
mechanism we use in learning.

Federated learning process. In the basic federated learning
process [3] a server orchestrates the training process, by
repeating the following steps:

1) Client selection: The server selects the clients for the
next training iteration. This selection may depend on
satisfying some eligibility requirements by the clients.

2) Broadcast: The selected clients download the current
model weights and a training program from the server.

3) Client computation: Each selected device locally com-
putes an update to the model by executing the training
program. In case of Federated Averaging [13] it is based
on a Stochastic Gradient Descent (SGD) mechanism.

4) Aggregation: The server collects the updates from the
clients and aggregates them.

5) Model update: The server updates the federated model
based on the aggregated update computed from the
clients that participated in the current round.

Fuzzy inference mechanism. In this paper we consider a
Takagi-Suegno fuzzy inference system [23] (TSFIS). This is a
rule-based system with J rules. The j-th rule takes the form:

if x1 is Aj1 and . . . and xn is Ajn

then yj = aj0 + aj1x1 + . . .+ ajnxn (1)

The degree of fulfilment of the j-th rule is calculated as:

Bj(x) =

N∏
n=1

µAjn(x) (2)

The output is a weighted average of the outputs of the
individual rules:

f(x, θ) =

∑J
j=1Bj(x)yj∑J
j=1Bj(x)

(3)

There are several methods how to learn a TSFIS from the
data, e.g., [24], [25], [26]. Traditionally a TSFIS is developed
in two steps. In the first step, known as structure identification,
a suitable number of rules and a proper partition of the feature
space is determined. This can be done by using a clustering
algorithm, e.g., the fuzzy c-means clustering method [27]. In
this case each cluster forms one rule. The fuzzy sets Aji of
the rule antecedents are defined by a Gaussian membership
function, where the mean c is the cluster center and the
standard deviation σ is interfered from the partition matrix.
The second step, known as parameter identification, updates
the parameters and tunes the system. To find the parameters of
the rules consequent one may use the least squares method [24]
or the gradient decent method [25].

We show the formulas for the gradient descent method, as
they are used later in this paper. At step k+1 and for training
data pair (xm, ym), the parameters of the consequent for the
j-th rule are:

aj,i(k + 1) = aj,i(k)− λem(k) · Bj(x
m, k)∑J

j=1Bj(xm, k)
· xmj (4)

for i=1,..,n.

aj,0(k + 1) = aj,0(k)− λem(k) · Bj(x
m, k)∑J

j=1Bj(xm, k)
(5)

where em(k) is the error in approximating the output, so
em(k) = ym − f(xm, θ(k))

IV. METHOD: CONSTRUCTING AN F2LS

The algorithm for training a fuzzy inference system in
a federated setting is depicted in Algorithm 1. This algo-
rithm follows both the two-step process of training the fuzzy
inference model and the general federated learning process
discussed in the previous section.

In the first stage of the algorithm (structure and rule
antecedent identification), the server requests each client to
cluster their local data and return to the server the cluster
centers and the standard deviations. Next, similar clusters
are merged (i.e., cluster centers that are close enough are
averaged). For this purpose we use agglomerative hierarchical



clustering with a predefined threshold. Also, two clusters from
the same client cannot be merged. The number of merged
clusters determines the number of rules in the F2LS. For
each cluster, one rule will be formed. The the fuzzy sets in
the rule antecedents are defined by the corresponding cluster
as Gaussian membership with averaged cluster center c̄ and
averaged standard deviation σ̄ as parameters.

In the second stage of the algorithm (rule consequent iden-
tification), we use the stochastic gradient descent algorithm in
a federated setting. It means that each client selected in each
round receives a federated model, runs E training passes of
the stochastic gradient descent algorithm to find consequent
parameters on a training batch of local data, and then returns
the updated parameters to the server. The server updates the
parameters of the rule consequent of the federated model as
the weighted average of parameters returned by the clients in
this round. The weights are dependent on the size of local
data, such that large data sets have more influence than small
data sets.

Algorithm 1: FedFIS algorithm
Server executes:

initialize empty FIS
// structure and rule antecedent identification
[ck, σk]← Cluster(k)
[c, σ]← Merge(ck, σk)
add rules for each cluster (c, σ)
// rule consequent identification
for each round t=1,2,. . . do
m← max(C ·K, 1)
St ← (random set of m clients)
for each client k ∈ St in parallel do
wk

t+1 ← ClientUpdate(k,wt)

wt+1 ←
∑K

i=1
nk

n w
k
t+1

Cluster(k): // Run on client k
m← FindNumberOfClusters(Pk)
[c, σ]← FCM(Pk,m)

ClientUpdate(k,w): // Run on client k
B ← (Split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∇`(w; b)

return w to server

For clustering the local data of each client, we use fuzzy c-
means clustering [27]. The parameter, the number of clusters,
is determined by the cluster correlation validity index based
on Spearman correlation [28]. The standard deviation σ is cal-
culated from memberships values of data points belonging to
each cluster, using the definition of the Gaussian membership
function.

The cluster merging algorithm uses hierarchical clustering
of cluster centers to identify the clusters that can be merged

based on their proximity. We use farthest neighbour clustering
to make sure that all centers in the cluster are close to each
other. Only clusters from different clients can be merged, and
the server needs to define the maximal distance as the merge
criterion. After merging the new cluster centers and standard
deviations are the means of the appropriate parameters of the
merged clusters.

The client update process follows the stochastic gradient
descent method, with the formulas to update the parameters
shown in (4)-(5). Those equations show the parameter updates
just for one single data point. We follow the advice from [25]
and postpone the update of the parameters until all data from
the training batch has been seen and the parameter update is
the mean of the individual updates for each data point in the
local training batch.

V. RESULTS: TESTING AN F2LS

We have tested the proposed F2LS on two small data sets
from the UCI repository [29]. The goal of these experiments
is to verify whether one can train a fuzzy inference system
in a federated setting. As a success criterion we use the one
proposed by Li et al. [4], in which a federated model should
improve the performance for at least one party.

A. Experimental setup
For the experiments we use the Auto MPG data set [30]

and Wine Quality data set [31] from the UCI repository [29].
The Auto MPG data set concerns city-cycle fuel consump-

tion in miles per gallon. It contains 398 observations described
by 8 independent variables. We have removed observations
with missing values and standardized this data set.

The Wine Quality data set concerns wine quality and results
of physico-chemical tests. We have used a data set related to
red wine only. In this data set 1599 wines are described by
11 features describing among others acidity, sugar levels, pH,
alcohol levels. We have standardized this data set and removed
the outliers, resulting in 1537 observations.

For the federated learning setting, we have divided the data
among three clients. We also have considered three scenarios.
In the first scenario, the data was divided equally. In the second
scenario, the split was 30% - 35% - 35% . In the third scenario,
the split was most skewed: 20% - 40% - 40%. Moreover, each
client used only 80% of the data for training and the remaining
20% for testing purposes. The quality measures mean squared
error (MSE) and mean absolute error (MAE) are shown for
the test set.

For the gradient descent method, we have used the following
parameters. The step size λ was set to 0.01. The stopping
criterion was the biggest change of a parameter of a federated
TSFIS in consequent parameters smaller than 0.0001 or 5000
iterations. The parameters for the federated learning were as
follows. The fraction of clients that performed computation in
each round C was set to 1, meaning that we used all 3 clients.
The number of training passes that each client makes over its
local data set E was set to 1. B, the local mini-batch size used
for the client updates, was set to ∞ meaning that the whole
training set was used in each round.



B. Numerical results
We have calculated MSE and MAE on the test sets available

to each client, for both the local and federated models. Each
experiment was repeated 20 times with random partition of
the data. The means and standard deviations of the errors are
shown in Table I for the Auto MPG data set and in Table II
for the Wine Quality data set.

TABLE I
MEAN AND STANDARD DEVIATION OF MSE AND MAE OF LOCAL (LM)
AND FEDERATED (FM) MODELS OF 20 REPETITIONS – AUTO MPG DATA

SET

P1 P2 P3

Scenario 1: equal partition

MSE lm 0.185 (0.08) 0.156 (0.048) 0.149 (0.071)
MSE fm 0.168 (0.066) 0.158 (0.054) 0.138 (0.063)

MAE lm 0.306 (0.062) 0.297 (0.049) 0.287 (0.059)
MAE fm 0.294 (0.055) 0.29 (0.037) 0.28 (0.056)

Scenario 2: 30% - 35% - 35%

MSE lm 0.171 (0.083) 0.171 (0.057) 0.166 (0.068)
MSE fm 0.151 (0.078) 0.141 (0.03) 0.143 (0.042)

MAE lm 0.299 (0.062) 0.303 (0.052) 0.302 (0.051)
MAE fm 0.285 (0.063) 0.287 (0.031) 0.282 (0.047)

Scenario 3: 20% - 40% - 40%

MSE lm 0.161 (0.085) 0.173 (0.063) 0.165 (0.055)
MSE fm 0.133 (0.078) 0.165 (0.086) 0.154 (0.042)

MAE lm 0.282 (0.059) 0.304 (0.049) 0.304 (0.046)
MAE fm 0.259 (0.065) 0.293 (0.061) 0.290 (0.043)

TABLE II
MEAN AND STANDARD DEVIATION OF MSE AND MAE OF LOCAL (LM)
AND FEDERATED (FM) MODELS OF 20 REPETITIONS – WINE QUALITY

DATA SET

P1 P2 P3

Scenario 1: equal partition

MSE lm 0.636 (0.098) 0.675 (0.106) 0.659 (0.095)
MSE fm 0.625 (0.097) 0.655 (0.092) 0.624 (0.083)

MAE lm 0.618 (0.047) 0.638 (0.049) 0.638 (0.044)
MAE fm 0.614 (0.049) 0.628 (0.045) 0.626 (0.042)

Scenario 2: 30% - 35% - 35%

MSE lm 0.638 (0.126) 0.647 (0.087) 0.622 (0.085)
MSE fm 0.612 (0.121) 0.625 (0.078) 0.613 (0.096)

MAE lm 0.617 (0.056) 0.625 (0.040) 0.623 (0.047)
MAE fm 0.607 (0.056) 0.613 (0.041) 0.614 (0.049)

Scenario 3: 20% - 40% - 40%

MSE lm 0.619 (0.141) 0.653 (0.084) 0.671 (0.100)
MSE fm 0.599 (0.132) 0.643 (0.080) 0.654 (0.092)

MAE lm 0.614 (0.055) 0.636 (0.042) 0.636 (0.047)
MAE fm 0.599 (0.06) 0.630 (0.044) 0.628 (0.042)

The mean of the errors shows that the federated learning
setting is successful, as all parties on average improve their
performance quality. However among the 20 repetitions, there
are a few cases in which the federated model didn’t outperform
any of the local models. Further research is required to learn
in which cases joining a federation is beneficial for a party.

C. An example of local and federated models
Here we present one of the F2LS instances created for the

Auto MPG data set, as well as a local model.
In the first stage (structure and rule antecedent identifica-

tion), we have used the FCM clustering algorithm and cluster
correlation validity index for each of the clients and their local
training data set. For client 1 and client 2, 6 clusters were
created, and for client 3, 8 clusters were created. The cluster
centers of the clients are shown using a parallel coordinates
plot [32] in Figure 1. The color indicates the client id.

Fig. 1. Cluster centers for the clients 1, 2 and 3

After merging, 9 clusters remained. Note that all except
one cluster center from set 3 were merged with each other.
The centers of clusters of the federated model are depicted in
Figure 2. The label “4” in the plot legend denotes a center of
a merged cluster.

Fig. 2. Cluster centers after merging.

The local data and the initial clustering were used to obtain
the local models. The MSE values of local and federated
models are shown in Table III.



TABLE III
MSE LOCAL (LM) AND FEDERATED (FM) MODEL

P1 P2 P3

MSE lm 0.261 0.274 0.071
MSE fm 0.191 0.234 0.063

We have generated the surface plots of the local and
federated models. In Figure 3, we show the plots only for
the first two variables. By comparing the surfaces, one can
notice that the federated model is not the average of the local
models, but a smart combination of them.

We can also look at the rules that are generated. As the
federated model has 9 rules, we will focus only on two of
them. In the first case, the definition of the antecedent is a
result of a cluster merge. This rule concerns observations with
very low values for the first 4 variables, and very high values
for the remaining 3.

For the federated model the rule is as follows: if x1 is very
small and x2 is very small and ... and x7 is very large then y
= - 0.105*x1 + 0.252*x2 - 0.134 *x3 - 0.489*x4 + 0.001*x5
+ 0.321*x6 + 0.1470*x7 + 0.001.

For the local model of client 1 the rule is as follows: if
x1 is very small and x2 is very small and ... and x7 is very
large then y = -0.238*x1 + 0.17*x2 - 0.325*x3 - 0.761*x4 +
0.144*x5+ 0.4*x6 - 0.128*x7 + 0.0375.

For the local model of client 2 the rule is as follows: if
x1 is very small and x2 is very small and ... and x7 is very
large then y = -0.086*x1 - 0.147*x2 - 0.195*x3 -0.254*x4 +
0.143*x5 + 0.372*x6 + 0.171*x7 + 0.055.

For the local model of client 3 the rule is as follows: if
x1 is very small and x2 is very small and ... and x7 is very
large then y = -0.068*x1 - 0.165*x2 - 0.153*x3 - 0.41*x4 +
0.043*x5 + 0.368*x6 + 0.188*x7 + 0.1157.

The second rule of the federated model originates from a
cluster that was not merged (represented by a blue line in
Figure 2). This rule in the federated model is: if x1 is very
small and x2 is very small and x3 is small ... and x7 is very
large then y = 0.051*x1 - 0.032*x2 - 0.149*x3 - 0.178*x4 +
0.155*x5 - 0.154*x6 - 0.047*x7 -0.022.

The rule with the same antecedent exists also in the local
model of client 3. It is: if x1 is very small and x2 is very
small and x3 is small ... and x7 is very big then y = 0.022*x1
+ 0.002*x2 - 0.036*x3 - 0.052*x4 + 0.126*x5 - 0.125*x6.

One can see that obtaining a federated rule is not simply a
matter of averaging the corresponding local rules, but requires
a more complex aggregating procedure.

In this case the constructed federated model outperforms
all local models, and improves MSE by at least 15%. The
federated model managed to find additional patterns that are
not present in individual local models.

VI. CONCLUSION

In this paper, we have proposed an approach for building
an F2LS, using a Takagi-Sugeno fuzzy inference system in
a federated setting. The F2LS approach integrates the best of

two worlds: federated learning to deal with privacy-preserving
data integration and learning and fuzzy inference to deal with
uncertainty and vagueness in the contents of the learning
process. We have shown that on average a federated model
outperforms corresponding local models. We have presented
a prototype approach in this paper, which requires further
testing. In this testing, we will put an emphasis on cases with
heterogeneous data.

There are also possibilities for further improvement of our
approach. During our experiments, we have observed a few
cases where the federated model was not better than any
of the local models. In future work, we want to minimize
this risk, for instance by looking at antecedent identification.
Currently antecedents of the federated model are generated
by merging clusters obtained by clustering algorithm on local
data. In future work, we plan to investigate the possibility of
using a federated version of the fuzzy c-means algorithm to
arrive at an F2

CLS variation of our system. Also more detailed
privacy considerations pose an interesting question for further
research, e.g., how much information is released by sharing
the cluster centers with other parties.
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