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General introduction

Preterm birth: a considerable concern

Around 10% of children are born preterm (i.e., before 37 weeks of gestational age [GA]),
which translates to a global figure of approximately 15 million neonates each year?. Of these
preterm infants, approximately 5% are born extremely premature (<28 weeks GA), 15%
severely premature (28-31 weeks GA) and 20% moderately preterm (32-33 weeks GA)2. The
remaining 60% of preterm births (34-36 weeks GA) are considered near-term?2.
Approximately 70% of preterm births follow spontaneous onset of labor with intact
membranes or preterm premature rupture of membranes (PPROM)? and these births are
collectively referred to as spontaneous preterm birth. The remaining 30% of premature
births are the consequence of medically induced labor or caesarian section for maternal or
fetal indications such as (pre-)eclampsia or intrauterine growth retardation?. Importantly,
despite gradually improving survival, premature birth remains the leading cause of neonatal
mortality and mortality below 5 years of age®3. Moreover, it causes considerable short-term
and long-term morbidity® and is associated with extensive health care costs and societal
costs, in particular in case of extremely and severely premature neonates34.

Chorioamnionitis, intra-uterine inflammation and FIRS

A major cause for spontaneous preterm birth is chorioamnionitis>®. Chorioamnionitis is an
inflammatory process in the fetal membranes (i.e., chorion and amnion) that is
characterized by an influx of inflammatory cells that migrate from the decidua (mucosal
lining of the uterus, maternal tissue) towards the chorion and amnion®’. Chorioamnionitis is
most often caused by bacteria originating from the lower genital tract of the mother that
ascend to the fetal membranes’®. Besides reaching the fetal membranes, microorganisms
can enter the amniotic fluid, the umbilical cord, and, in severe cases, the choriodecidual
space (maternal-fetal interface) and placenta®, thereby causing intra-amniotic (IA) infection,
funisitis and villitis respectively®. Direct microbial invasion of the amniotic cavity or release
of inflammatory mediators from infected chorion and amnion may provoke an IA
inflammatory response that is mainly driven by cells in the chorion and amnion, fetal skin
cells and cells from the umbilical cord®. This IA pro-inflammatory response is characterized
by increased levels of various pro-inflammatory cytokines, such as IL1, TNFa, IL6 and IL8,
and elevated numbers of inflammatory cells in the amniotic fluid®®. Inflammatory cytokines
and chemokines that are involved in 1A inflammation stimulate production of prostaglandins
in the decidua, which together with migrated inflammatory cells, promotes the secretion of
matrix metalloproteinases from placenta and fetal membranes, which in turn results in
ripening of the cervix and weakening or even rupture of the fetal membranes®. In
conjunction with stimulation of uterine contractions by the increased levels of
prostaglandins, this can lead to preterm labor®. Although chorioamnionitis can give rise to
maternal signs and symptoms such as fever, tachycardia, uterine tenderness, leukocytosis,
and foul-smelling amniotic fluid (together called clinical chorioamnionitis), it is frequently
clinically silent®!'. Hence, chorioamnionitis is often not recognized until preterm birth and
histological examination of the placenta and fetal membranes (histological
chorioamnionitis)®'2. Risk factors for chorioamnionitis include PPROM, prolonged labor,
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Chapter 1

nulliparity, alcohol and tobacco use, bacterial vaginosis, group B streptococcus colonization
and chorioamnionitis in a previous pregnancy®*3.

Microbial invasion of the amniotic fluid and/or intrauterine inflammation can ultimately
lead to fetal invasion and inflammation, as the fetus is exposed to the contaminated
amniotic fluid via skin, pulmonary tract, gastrointestinal tract and mucosal membranes in
the middle ear and conjunctiva®''. This may cause inflammation of fetal tissues, such as the
gastrointestinal tract, and a systemic inflammatory reaction in the fetus called Fetal
Inflammatory Response Syndrome (FIRS)®!'. FIRS is defined as increased fetal plasma
concentrations of IL6 (>11 pg/mL) and regarded as the fetal equivalent of the systemic
inflammatory response syndrome (SIRS) in adults'4*>.

The prevalence of clinical and histological chorioamnionitis, intrauterine infection (e.g.,
positive chorioamnionic tissue culture or amniotic fluid culture), intrauterine inflammation
(increased amniotic fluid IL6 concentrations), and FIRS are inversely related to the GA at
time of delivery>®1916-13_ During pathological examination of the placenta, histological
chorioamnionitis is observed in ~30-70% of spontaneous preterm births®'”:18, and around
20-60% of preterm births following spontaneous labor with intact membranes is associated
with intrauterine infection or inflammation>!®'7, Importantly, only about half of the patients
with 1A inflammation had a positive amniotic fluid culture, which suggests an
underestimation of intra-uterine inflammation when only culture results are considered®.
The prevalence of FIRS is ~30-35% in pregnancies complicated by preterm labor with intact
membranes, PPROM or other risk factors of bacterial infection such as chorioamnionitis?®2..
Last, in a cross sectional study, prevalence of FIRS in infants with a positive amniotic fluid
culture was 69%, while this was 12% in infants with a negative amniotic fluid culture?2.

Ureaplasma spp.: the main culprits in chorioamnionitis

A broad range of microorganisms including bacteria, viruses, and—to a lesser extent—fungi
and yeast have been implicated in chorioamnionitis?®®>. Of these microorganisms,
Ureaplasma spp. are most commonly detected in the amniotic fluid and placenta of women
with chorioamnionitis, funisitis and preterm delivery!®. Ureaplasma spp. are part of the
family of Mycoplasmataceae and are for their energy supply dependent on hydrolysis of
urea by their urease enzyme?®. They do not have a cell wall and range in size from 100 nm to
1 um?*%. Ureaplasma spp. consist of two species (Ureaplasma parvum [UP] and Ureaplasma
urealyticum [UU]), which contain at least 14 serovars!%?*. Ureaplasma spp. are commensals
of the female genital tract and have an average colonization rate of 40-80%%>2¢. UP is more
frequently isolated from the female lower genital tract than UU and serovar 3 is the most
common clinical isolate!®. Despite the clear association between Ureasplasma spp. and
chorioamnionitis'®?”28, its causative role in the pathophysiology of chorioamnionitis,
intrauterine infection and FIRS is debated, since the inflammatory response to Ureasplasma
spp. is variable and many women do not experience adverse pregnancy outcomes despite
Ureasplasma colonization?>. Ureaplasma is known for its capacities to avoid immune
detection by the host and can cause chronic asymptomatic in utero infections'®. In addition,
chorioamnionitis is often polymicrobial®?°, making it difficult to pinpoint Ureaplasma as the
responsible microbe®. Nevertheless, several findings support a role for Ureaplasma spp. in
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General introduction

the pathophysiology of chorioamnionitis and its sequelae. Ureaplasma spp. have been
shown to induce histological chorioamnionitis also in absence of other microorganisms®3°
and may provoke more severe IA infections than other microorganisms3.. In a cohort study,
Ureaplasma spp. respiratory tract colonization was associated with histological
chorioamnionitis, fetal vasculitis and increased concentrations of IL6 and IL1B in cord
blood32.

Neonatal consequences of chorioamnionitis, intra-uterine
inflammation and FIRS

Chorioamnionitis and FIRS are both associated with a higher incidence of adverse neonatal
outcomes'#*>3335  most notably neonatal death33. Specific postnatal diseases that are
associated with (clinical) chorioamnionitis and FIRS include (early-onset) sepsis333*,
respiratory distress syndrome®, bronchopulmonary dysplasia3*3¢, intraventricular
hemorrhage333437, periventricular leukomalacia®, retinopathy of prematurity® and
necrotizing enterocolitis (NEC)3*3. Part of this association can be causally explained by the
role of chorioamnionitis and FIRS in the induction of premature birth333:38 However, fetal
plasma IL6 levels are predictive for severe neonatal morbidity, regardless of, amongst
others, gestational age and cause of preterm delivery®. FIRS is believed to affect multiple
fetal organs in utero and during the subsequent neonatal period, thereby increasing the risk
of postnatal disease!*>3>4! (Figure 1.1).

In addition to the general association of chorioamnionitis and FIRS with adverse fetal
outcomes, colonization and infection with Ureaplasma spp. have been linked with
detrimental neonatal effects. Ureaplasma colonization of the respiratory tract has been
associated with the development of bronchopulmonary dysplasia** and Ureaplasma spp.
can cause neonatal sepsis and meningitis*®. Moreover, colonization of preterm infants (<33
weeks GA) with Ureaplasma spp. has been reported to increase NEC risk 2-fold to 3-fold3244,
A role for Ureaplasma spp. in the pathophysiology of perinatal diseases is also supported by
evidence from experimental studies. Studies in a fetal ovine chorioamnionitis models have
demonstrated harmful effects of IA exposure to UP serovar 3, as acute intrauterine
exposure induced gut inflammation, intestinal epithelial damage, gut barrier loss and
disturbed enterocyte proliferation, differentiation and maturation* and chronic intrauterine
exposure induced detrimental cerebral changes, both of which may predispose to postnatal
disease*>#®. Effects of UP on the fetal intestine were largely dependent on IL1 signaling®,
which suggests that Ureaplasma spp.-induced intestinal inflammation as well as subsequent
intestinal damage and disturbance of normal gut development at least in part explain the
epidemiological association between Ureaplasma colonization and NEC.
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Figure 1.1  Neonatal consequences of (clinical) chorioamnionitis and FIRS.
Adapted from Gantert et al. J Perinatol. 2010;30 Suppl: S21-30.

Treatment options for chorioamnionitis and intra-uterine infection
or inflammation

Currently, the treatment of chorioamnionitis and its sequelae, clinically referred to as
intrauterine inflammation, intrauterine infection or both (Triple 1), focuses on alleviating
symptoms and risk factors, rather than addressing the cause of the disease!'. Generally, in
women with confirmed or suspected IA infection, labor is induced and intra-partum
antibiotic therapy is initiated*”®. Induction of labor is often regarded a necessity, as
intrauterine bacteria may form biofilms that are difficult to treat with antibiotics and an
intrauterine cytokine storm resulting from intrauterine infection is largely irreversible®. In
addition to the intra-partum maternal treatment, neonates are often treated with
antibiotics while awaiting the results of additional laboratory diagnostics, such as C reactive
protein and blood culture®#°, The decision to start neonatal antibiotic therapy is based on a
combination of maternal risk factors (e.g., maternal fever, prolonged rupture of
membranes, and maternal group B streptococcus colonization status) as well as the clinical
status of the neonate (e.g., clinical characteristics such as respiratory distress, neonatal
fever, and feeding problems)*&%.

Unfortunately, to date no (prenatal) treatment strategies are available to address fetal
systemic inflammation and tissue inflammation resulting from chorioamnionitis, such as the
fetal gut inflammation, that likely predisposes to postnatal development of NEC.
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General introduction

Necrotizing enterocolitis: a devastating disease that still is
incompletely understood

NEC is a gastrointestinal emergency that primarily affects premature neonates and is
characterized by severe intestinal inflammation and—in later stages—intestinal necrosis®°.
Although NEC can affect the gastrointestinal tract from stomach to distal colon, it is most
commonly found in terminal ileum and ascending colon®!. NEC affects around 7% of infants
at the neonatal intensive care unit (NICU) and its incidence increases with decreasing
gestational age and birth weight>%°2. Despite advancing medical care, NEC incidence has not
decreased over the years, which is partly caused by increased survival of extreme premature
neonates®>>*, NEC is responsible for 10% of NICU deaths and thereby forms a major cause of
death in premature neonates®. Mortality in NEC patients is inversely correlated with
gestational age and birth weight. It generally ranges from 15 to 30%°°°¢, but can be as high
as 50% in infants requiring surgical intervention®”>8, Besides its considerable mortality, NEC
is a risk factor for the development of long-term morbidities, such as short bowel
syndrome®®>9, intestinal failure®-%, intestinal failure associated liver disease®>%?, growth
retardation®%, and neurodevelopmental delays®®%. Although not extensively studied,
surgical NEC is reported to be associated with long-term reduction of quality of life®’.
Additionally, NEC poses a significant economic burden both on society and the parents
and/or patient®®. Direct surplus costs of NEC, including prolonged hospital stay, have been
estimated to range from $70,000 for medical NEC up to $180,000 for surgical NEC®7°, In
addition, long-term care for NEC survivors, especially when NEC-related morbidities are
present, further increases costs®7?,

NEC pathophysiology is multifactorial and, despite many decades of research, remains
incompletely understood’ (Figure 1.2). Prematurity is a major risk factor, because it is
associated with hampered intestinal barrier function, vascular dysfunction, disturbed
digestion and absorption capacities, immature intestinal motility, and immaturity of the
(intestinal) immune defense®. In addition, microbial dysbiosis is an important factor
contributing to NEC pathophysiology’®. Several genetic polymorphisms that impact such
processes as immune defense, regulation of oxidative stress, and regulation of apoptosis
and cellular repair increase the risk of NEC development’®. Last, enteral feeding is a pivotal
factor modulating NEC pathogenesis. Over 90% of infants that develop NEC have been
enterally fed®® and timing of NEC is closely related to start of enteral feeding’>. On the other
hand, the risk of NEC increases with delay of enteral feeding’®, and human milk feeding is
highly protective against NEC development”’.
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Figure 1.2  Pathophysiology of necrotizing enterocolitis (NEC).
Adapted from Lin et al. Lancet. 2006;368(9543):1271-83.

Of note, since many diseases of the premature neonate, including NEC’8, have clear prenatal
risk factors that influence outcome beyond the induction of preterm birth, the
pathophysiological onset of these diseases probably lies already in utero in at least a subset
of infants. In a broader context, this concept of fetal and early postnatal life shaping both
health and disease for later postnatal life is referred to as Developmental Origins of Health
and Disease (DOHaD)"°. The postulated role of fetal involvement in NEC onset suggests that
the window of therapeutic opportunity starts prenatally and that intervening in utero is a
promising strategy to prevent NEC and improve neonatal outcomes.

Diagnosis and treatment of necrotizing enterocolitis

NEC diagnosis is based on several general clinical symptoms such as increase of apneas,
bradycardia and temperature instability as well as gastrointestinal symptoms including
abdominal distention, feeding intolerance, villous vomiting and rectal bleeding or bloody
stools in combination with radiographic findings such as pneumatosis intestinalis,
pneumoperitoneum and portal venous gas®®. Depending on clinical and radiographic
severity, NEC can be staged with the modified Bell’s criteria as suspected NEC (Bell’s stage I),
definite NEC (Bell’s stage Il) or severe NEC (Bell’s stage I11)®.. Nevertheless, especially signs
and symptoms of early or less severe Bell’s stage | NEC are non-specific and difficult to
diagnose’*®2. Moreover, early diagnosis of NEC is challenging as it often rapidly progresses
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to a fulminant disease and can cause septic shock, multi-organ failure and even death within
a few hours to days’2.

Treatment of NEC depends on its severity. It normally consists of withholding enteral
feeding, gastric decompensation by placement of a gastric tube, and intravenous
administration of broad-spectrum antibiotics®®. Further, additional cardiovascular neonatal
support by mechanical ventilation and inotropic medication may be necessary®. Surgical
intervention, in which necrotic parts of the bowel are removed, is required in up to 50% of
patients®. Despite being a long-lasting topic of research, NEC treatment remains largely
symptomatic; due to the fulminant nature of NEC and its complex and multifactorial
pathophysiology, it is difficult to majorly improve treatment strategies’. Consequently,
current NEC research is mainly aimed at developing new preventative approaches’.

The enteric nervous system: the brain of the gut

The enteric nervous system (ENS), often considered ‘the brain of the gut’, is the collection of
neurons and supporting cells in the gastrointestinal tract®3. The ENS contains somewhere
between 200-600 million neurons, most of which are present in small ganglia in either the
myenteric or the submucosal plexus®* (Figure 1.3). The myenteric plexus is mainly involved
in regulating intestinal motor function and is positioned between the circular and
longitudinal muscle layers of the entire gastrointestinal tract®®. The submucosal plexus is
primarily involved in regulating mucosal secretion and absorption as well as vascular tone
and lies between the muscularis mucosa and the circular muscle layer in small intestine and
colon®*#, The myenteric and the submucosal ganglia are interconnected by nerve fiber
bundles®®. Besides the muscles in the gut wall, ENS nerve fiber bundles innervate blood
vessels, mucosa, entero-endocrine cells and gut associated lymphoid tissue®>. The ENS of
the small and large intestine can function independently of the central nervous system
(CNS) and contains many complete reflex circuits®. Nevertheless, the ENS is connected to
the CNS via the vagal nerve and pelvic nerves, both containing parasympathetic fibers and
sympathetic pathways®, and, importantly, information flow between the two is
bidirectional®2,

Several subtypes of neurons, which can roughly be divided into motor neurons, sensory
neurons and interneurons, are involved in ENS signaling and these neurons use various
neurotransmitters®®’. Excitatory motor neurons that project towards circular and
longitudinal muscles most often contain acetylcholine, which is produced by choline
acetyltransferase (CHAT), whereas inhibitory motor neurons use, amongst others, NO as
neurotransmitter produced by neuronal nitric oxide synthase (nNOS)®’. Efferent motor
neurons that project to the mucosa to regulate mucosal secretions and the tonus of blood
vessels contain neurotransmitters such as vasoactive intestinal peptide (VIP) (non-
cholinergic neurons) or acetylcysteine (cholinergic neurons)®#’. Sensory neurons (intrinsic
and extrinsic primary afferent neurons) act as chemo- and mechano-receptors, thereby
transferring signals of the physical and chemical environment of the gut, such as mucosal
distortion, muscle movements, and chemical content of the intestinal lumen®. As such, they
are the first part of many intrinsic feedback loops of the ENS®. Sensory neuron axons are
localized just below the intestinal epithelium in the lamina propria and lie in close proximity
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of other neurons and ganglia®. Interneurons, which interconnect different types of neurons
in the ENS, can contain a broad range of neurotransmitters such as acetylcholine,
somatostatin, NO and serotonin®. Last, sympathetic neurons that modulate the ENS are
largely noradrenergic®®, whereas parasympathetic neurons are cholinergic®.

Besides neurons, enteric glial cells are an important part of the ENS?%°%, They surround
neuronal cell bodies and interact with neuronal axons and majorly outnumber the amount
of neurons in the ENS®. Enteric glial cells are considered the intestinal counterpart of
astrocytes in the CNS®. Although much is still unknown about the function of enteric glial
cells in vivo, it is clear that enteric glial cells are important for the homeostasis and
structural integrity of enteric neurons, modulate ENS signaling, and are involved in the
regulation of gut barrier function®°2. Moreover, these cells are crucial in the ENS response
to injury and inflammation, where they become activated, proliferate, and stimulate
neurogenesis and promote restitution of barrier function®-%2,

Importantly, the enteric nervous system, the intestinal epithelium, the immune system,
and the intestinal microbiome are in near proximity of each other, and their function is
closely connected®®°®4. For instance, neuropeptides produced by the ENS can alter the
function of intestinal epithelial cells and several immune cells such as lymphocytes,
macrophages, and mast cells®®, and neuropeptides produced by immune cells can regulate
ENS signaling®. Moreover, microbiota modulate ENS development and function directly and
indirectly via, amongst others, toll like receptor (TLR) signaling and hormone production by
entero-endocrine cells®>%,

The enteric nervous system develops from cells that migrate from then neural crest
towards the foregut, midgut, and hindgut during embryonic development®”8. This
migration goes from proximal to distal and is completed around week 7-8 of human GA,
after which additional migration, proliferation, and differentiation of ENS cells takes
place®”®8. This process is influenced by a plethora of transcription factors, neurotrophic
factors, such as glial cell derived neurotrophic factor (GDNF), and extracellular matrix
components®. Interestingly, further ENS development is considered to be ‘outside-in’, as
myenteric plexus development precedes that of the submucosal plexus by around
3 weeks®®. By week 14, all ENS components, including myenteric and submucosal plexus, are
assembled®. Following structural ENS constitution, which largely takes places in the first
trimester, the ENS further maturates during the second and third trimester of pregnancy,
by, amongst others, neurite outgrowth and the development of densely interconnected
neuronal networks, and step by step gains its function®®1%, Moreover, ENS development
continues postnatally, when its development is further shaped by the immune system,
enteral feeding, and microbial colonization?®®:103.104,
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Figure 1.3  Schematic overview of the ENS.

Necrotizing enterocolitis and the enteric nervous system

Immature intestinal motility is one of the postulated risk factors for NEC development®%103,
as it can contribute to impaired microbial clearing from the intestinal lumen and subsequent
microbial dysbiosis'®. Preterm infants have immature small intestinal motor patterns
compared to term infants%®1% but their motility gradually matures under influence of
enteral nutrition10>107,109110 |nterestingly, neonates that suffered from perinatal asphyxia,
which increases the risk of NEC development!!?, also have poor intestinal motility compared
to healthy controls'!2. Structural abnormalities of the ENS have been observed in intestinal
biopsies of infants with NEC, characterized by loss of neurons and glial cells in the myenteric
and the submucosal plexus!'*7, Further, reduced levels of the neurotransmitter VIP!3 as
well as neurotransmitter synthesizing enzymes nNOS'*3'> and CHAT* were observed in
intestinal tissue of patients with NEC compared to controls.

Currently, it remains incompletely understood whether the ENS alterations associated
with NEC are involved in NEC pathophysiology, or only reflect intestinal damage caused by
NEC. However, evidence is emerging that favors a role for ENS alterations and dysmotility in
the (downstream) pathogenesis of NEC. Ablation of enteric glial cells in transgenic mice
induces a NEC-like intestinal phenotype®®'7118 In pig and murine NEC models, alterations in
gut transit time were observed prior to radiological sighs of NEC!°, intestinal
inflammation!'’ and histological NEC''” appeared. Moreover, in a mouse NEC model,
pharmacological restoration of gut motility reduced NEC severity!'’. Last, neural stem cell
transplantation reduced ENS alterations, improved intestinal motility, and concomitantly
reduced intestinal damage and mortality in a rat NEC model'*>. Nevertheless, additional
studies are needed to disclose the precise role of the ENS in the pathophysiology of NEC.
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Intestinal barrier function: mucus and more

The intestinal barrier separates the intestinal lumen from the internal environment!?°. A
healthy intestinal barrier allows absorption of nutrients and fluids, while preventing noxious
substances such as bacteria and (bacteria-derived) toxins from reaching the tissue
underneath the intestinal epithelial layer'?’. The intestinal barrier is highly dynamic and
consists of several interconnected parts'?%'?l, The first part of the barrier is formed by
commensal gut bacteria that prevent colonization by pathogenic bacteria'?. In addition,
commensal bacteria contribute to maintenance and repair of other parts of the intestinal
barrier’?!. Second, the intestinal mucus layer and antimicrobial peptides and secretory IgA
herein are of pivotal importance®?!. Antimicrobial peptides, such as defensins and lysozyme,
are produced by Paneth cells and—to a lesser extent—by other epithelial cell types, such as
enterocytes, and contribute to barrier function by directly killing microbes and modulating
the host immune response!?>123, Secretory IgA is produced by plasma cells and promotes
the clearance of pathogenic microbes and their antigens through blocking of epithelial
receptors and mucus entrapment!?#'25 Last, intestinal epithelial cells are tightly
interconnected by an apical junctional complex of adherens junctions, tight junctions, and
desmosomes!?®, thereby preventing paracellular transfer of bacteria and their toxins.

The mucus layer forms a passive barrier that limits the number of bacteria reaching the
intestinal epithelium in the small intestine?>!2!, The small-intestinal mucus layer is present
between the crypts and also covers the villus surface'?’. Mucus consists of water and several
proteins, of which (MUC2) is the most prominent one!?®. MUC2 polymers form a net-like
structure that, in the presence of water, forms a gel-like layer that can be moved through
the small intestine by peristalsis?’. MUC2 and other mucus constituents are produced by
Goblet cells, which specialize in the formation and secretion of mucus!?. Goblet cells arise
from transit-amplifying cells following differentiation that is, amongst others, controlled by
the transcription factor SAM Pointed Domain Containing ETS Transcription Factor
(SPDEF)™2.

Multiple organelles are involved in the synthesis of MUC2 in the Goblet cell**°. Following
mRNA translation, the MUC2 protein is transported to the endoplasmic reticulum (ER),
where dimerization transpires by the formation of disulfide bonds at the C-terminal of the
protein'3®, Thereafter, MUC2 dimers are transported to the Golgi apparatus, where
O-glycosylation occurs!?®13°, Following further packaging steps in the trans Golgi network,
mucin net-like sheet can be secreted by the Goblet cell'?%0, Small intestinal Goblet cells
secrete their mucus upon stimulation, for instance by endocytosis of luminal material or in
response to acetylcholine!?®,

Necrotizing enterocolitis and the intestinal mucus barrier

Immaturity of the intestinal barrier, including the mucus barrier, is an important risk factor
for NEC development®. Preterm infants were observed to have a reduced stool mucus
glycoprotein content compared to term controls, suggesting that epithelial mucin
production matures during gestation!3'. Moreover, the intestinal barrier further impaired
during NEC, which augments the disease process and contributes to a vicious cycle of
inflammation and intestinal damage.3*'34. Patients with NEC have lower numbers of mucin-
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containing intestinal Goblet cells and Paneth cells compared to controls3>%36, and a
decrease in the number of Goblet cells is also observed in experimental NEC models37-13°,
Mice with aberrant MUC2 were observed to have an increased NEC incidence and increased
NEC severity upon exposure to a protocol to induce experimental NEC'3°. Additionally,
exposure to NEC stressors in a rat NEC model modified mucus permeability and altered
mucus structure,

Promising preventative approach: breast milk and breast milk
components

Feeding breast milk to infants has long been recognized as an effective strategy to prevent
NEC”’, ever since Lucas et al. reported that NEC incidence is reduced by 10-fold when
human milk is used as the exclusive enteral feeding and by 3 to 5-fold when combined with
feeding of infant formula”. The effects of human milk on NEC incidence are dose-
dependent, and even adding little amounts of human milk to infant formula was shown to
reduce NEC risk?!. In addition, breast milk may protect preterm neonates against late-onset
sepsis'* and bronchopulmonary dysplasia’®?, and is further regarded as supportive for
neurodevelopment!*31%, Therefore, breast milk is currently the first choice of enteral
nutrition provided at the NICU#>1%, The protective role of breast milk can be explained by
the large amount of bioactive components present in breast milk that, together, act on a
broad range of disease mechanisms involved in NEC pathogenesis, such as improvement of
barrier function and reduction of intestinal inflammation4’-14%. Examples of these bioactive
components include epidermal growth factor (EGF), heparin-binding EGF-like growth factor
(HB-EGF), human milk oligosaccharides (HMO), lactoferrin, alkaline phosphatase and
secretory IgA (slgA), all of which, as single interventions, have been extensively studied in
the context of NEC*®14°, From this versatile list of important nutritional factors, we will—in
this thesis—primary focus on plant sterols, whey proteins, and whey peptides. Although
these nutritional components to date have been less frequently studied in the perinatal
context, several aspects make them interesting candidates for preventing perinatal gut
inflammation. Plant sterols were shown to have anti-inflammatory effects in case of
inflammatory bowel disease®!!, Moreover, in a pilot study with an ovine LPS-induced
chorioamnionitis model, intra-amniotic plant sterol administration prevented
chorioamnionitis induced fetal gut inflammation and mucosal injury'>!, indicating that plant
sterols potentially are a promising intervention in the perinatal context. Whey proteins and
peptides have been implicated in promoting gut health through, amongst others, anti-
inflammatory, antioxidant, and barrier protective effects’>>'**. Of note, since breast milk
contains such as a plethora of bioactive compounds, it is highly likely that the best biological
effect can be achieved by combining several factors rather than studying single
interventions.

Unfortunately, many mothers do not (immediately) yield enough breast milk, partly
because initiation of breastfeeding is more difficult after preterm labor'>> and mothers’ own
milk feeding is regularly discontinued due to various reasons'*®!*’. In addition, although
rare, mothers’ own milk feeding is sometimes contraindicated, for instance due to maternal
medication use or maternal infection'®®. Pasteurized donor milk, often donated to breast

21



Chapter 1

milk banks by mothers who have been lactating for a longer period of time, is increasingly
being used as alternative to formula feeding in premature infants for whom insufficient or
no mothers’ own milk is available'*®. Preliminary evidence suggests the use of donor milk
also reduces NEC risk¢91¢1, Nevertheless, part of the biologically active substances in breast
milk are lost during pasteurization and freezing of donor breast milk®> In addition, the
composition of donor milk might not be optimal for the NICU population as breast milk
composition is, amongst others, determined by stage of lactation and gestational age of the
child®¢31¢* and some safety concerns have been raised regarding the risk of infection related
to the use of donor milk®,

Thus, although breastmilk is the optimal nutrition for the preterm infant, mothers’ own
milk is not always available and donor milk is not a full-fledged replacement. The
development of nutritional interventions containing (combinations of) bioactive human
breast milk components holds great promise to bridge this gap and provide novel
preventative strategies to reduce the incidence and severity of NEC.

Translational animal models: of mice and sheep

Animal models are of great value in the research of perinatal diseases. In experimental
animal models, different microbial or disease-inducing triggers can be administered at a
specific moment during gestation or early postnatal life. In addition, outcomes can be
studied at a defined time point after exposure. By combining different lengths of exposure
to microbial triggers or a disease-inducing protocol, changes during chorioamnionitis or NEC
can be studied over time, which aids in gaining insight into the biological processes
underlying the observed changes. Moreover, in animal studies, novel treatment strategies
can be tested to ensure effectivity and safety before, eventually, these interventions can be
translated to vulnerable neonates.

Various species have been used in the modeling of chorioamnionitis, such as mice?®,
rats'®’, guinea pigs'®, rabbits'®, pigs'’?, and rhesus macaques'’:. All these models have their
specific pros and cons, and the choice of a model depends on several aspects'’2. Generally,
large animal models, such as pig, sheep and macaque models, are of great value because
they are closer to human physiology and allow complex procedures such as intra-uterine
instrumentation'’3. Although non-human primates come closest to humans, using such
models is—for ethical reasons—only allowed by Dutch and European law under strictly
defined circumstances. Fortunately, sheep, which have been extensively used to model
chorioamnionitis'’+'’¢, form a good alternative for several reasons. Their organ
development, including lung, brain, and intestinal development, closely mimics that of
human fetuses'’®. Intestinal villus formation is completed at an early gestational age in
sheep and humans, which is not the case for rodents. Additionally, whereas intestinal crypt
formation is completed well before birth in sheep and humans, it only takes place
postnatally in rodents’%. Perinatal intestinal development in (premature) sheep is well
characterized?’7-1%, Last, the relatively long pregnancy duration of ~150 days in sheep allows
for longer study periods in which for instance acute and chronic intra-amniotic inflammation
can be compared and the effects of inflammation or interventions during different
developmental phases can be investigated'’. Taken together, this makes the sheep
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chorioamnionitis model a very relevant one to study the effects of chorioamnionitis and
nutritional interventions on the fetal gut with.

Like chorioamnionitis models, NEC models have been developed in multiple species,
including mice!®182, rats'®, rabbits'®, quails'®, pigs!® and baboons'®’. Rodent models are
most frequently used in NEC research as they are suitable for the development of transgenic
models!’3. In addition, rodent studies are less expensive, easier to perform, and thereby less
time- and labor-consuming than large-animal studies’3. Although it is notably difficult to
include all aspects of the complex NEC pathophysiology in an animal model, rodent NEC
models reflect the histopathological damage and cytokine profile of clinical NEC.
Moreover, experimental NEC induction in these models frequently covers important
pathophysiological mechanisms of NEC, such as hypoxia, exposure to LPS, and formula
feeding!®. Collectively, NEC models, such as the murine NEC model used in this thesis'®,
form a suitable model for in depth analysis of NEC pathophysiology.

Human intestinal organoids as novel in vitro screening model

Organoids, also called mini-organs, are three-dimensional (3D) in vitro cell cultures that self-
organize, differentiate into functional cell types, and recapitulate the structure and function
of their organ in vivo'®. Organoid technology has emerged over the last few decades and is
currently extensively used to study human organ development and diseases'®. Organoids
can be formed out of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), or
from fetal, neonatal, or adult stem cells from primary tissue (ASCs)'®. Whereas the
formation of organoids derived from ESCs or iPSCs is a difficult, time-consuming, and costly
process, generation of organoids from ASCs is much less complicated?®°?.

Human intestinal organoids formed out of ASCs (here referred to as HIOs) took flight in
2009 with pioneer work by Sato et al. who showed the long-term culture of small-intestinal
organoids from adult intestinal epithelial stem cells that had been isolated from intestinal
crypts?®21%2_In this model, crypts are isolated from human intestinal tissue and seeded in a
basement membrane matrix, in which they quickly form 3D HIOs!? (Figure 1.4). The HIOs
are cultured in a medium that contains many factors that mimic the natural stem-cell niche
environment and promote intestinal epithelial proliferation (e.g., Wtn3a, Rspondinl and
epidermal growth factor [EGF])'*2. Whereas HIOs self-differentiate to some extent, further
differentiation of the organoid epithelial cells can be achieved by manipulating the
composition of the HIO’s culture medium?®31%4, HIOs derived from small amounts of tissue
can be expanded and propagated for a long time, while remaining genetically stable!®°,
which makes them suitable for large-scale experiments and medium-to-high-throughput
screening!®>'%, Moreover, HIOs enable studies with human material that are difficult or
even impossible with human subjects®®® and can contribute to the reduction of animal
experiments®®’,
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adult small intenstine small intestinal crypt basement membrane matrix culture intestinal epithelial organoids

Figure 1.4  Culture of human intestinal organoids from human intestinal tissue.

Importantly, HIOs only contain the epithelial layer of the intestine. This allows for in-depth
study of the response of the intestinal epithelial layer to various stimuli, but also means
that, in order to study interaction of the intestinal epithelial layer with other relevant
factors such as the immune system, the ENS, vasculature, and the intestinal microbiome,
the model needs to be extended®®. In addition, since proteins in the basement membrane
matrix determine HIO’s polarity, the apical membrane of the intestinal epithelial cells in a
3D HIO is generally enclosed in the HIO lumen'®®. In circumstances in which apical
availability of the intestinal epithelial cells is important, such as studies with nutritional
interventions, this is a disadvantage. However, this can be overcome by several solutions,
such as micro-injection of the organoids®®, organoid culture in absence of the extracellular
matrix proteins'®, and two-dimensional (2D) monolayer culture of HIOs'°*20! (Figure 1.5).

microinjection

l

2D organoid monolayer culture

l

»

basement membrane matrix basement membrane matrix

Figure 1.5  Strategies to improve apical accessibility of the HIOs.

HIOs have already been used to model a broad range of gastrointestinal diseases, such as
inflammatory bowel disease???, ischemia-reperfusion injury?%, celiac disease?®, infections
(both viral and bacterial)?°>-2%7, and colorectal cancer?®® In addition, some studies have used
HIOs from neonatal or fetal tissue to model NEC through basolateral administration of
lipopolysaccharides (LPS) or commensal bacteria?®>?!!. Besides, HIOs have been used in
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studies regarding nutrient uptake and metabolism?'%213, Altogether, this makes human
intestinal organoids a promising model for screening the effects of (combinations of)
nutritional interventions in a broad set of gastrointestinal diseases.

Aims and outline of this thesis

Despite many years of research into single-component postnatal feeding interventions, NEC
occurance has not been majorly reduced yet, indicating alternative research strategies are
desired. This thesis aims to provide a framework for the improvement of preventative
enteral feeding measures for NEC, by applying novel strategies that specifically acknowledge
the multifactorial pathophysiology of NEC and its postulated prenatal onset.

This is addressed by:

1) providing insight into the current state of evidence on the effectiveness of enteral
feeding interventions and the pathophysiological mechanisms these interventions
address, as well as on ways to improve the research of preventative enteral feeding
strategies for NEC;

2) increasing insight into NEC pathogenesis by exploring the effects of chorioamnionitis,
which is one of the most important (prenatal) risk factors for NEC development, on the
ENS and mucus barrier of the fetal gut, and by exploring the effects of NEC on the ENS
in a murine NEC model;

3) investigating the effects of an in utero enteral feeding intervention on the fetal gut
during chorioamnionitis;

4) developing a novel human intestinal organoid model that enables screening of
(combinations of) nutritional interventions in the context of hypoxia-induced intestinal
inflammation and investigating the effects of (hydrolyzed) whey in this model.

In chapter 2, we systematically reviewed the current evidence on the prevention of NEC via
enteral feeding interventions. Data from experimental NEC animal models and human trials
was reviewed. Outcome measures were incidence and severity of NEC as well as the effect
on different pathophysiological mechanisms of NEC. In addition, ways to improve research
of enteral feeding interventions in NEC were identified.

In chapter 3 and 4, we investigated the effects of chorioamnionitis on the fetal ENS, in
order to gain more insight into the pathophysiological mechanisms of NEC. In chapter 3, we
studied the longitudinal effects of IA LPS exposure on the fetal ENS. In chapter 4, the effects
on the fetal ENS of acute IA exposure to LPS and chronic exposure to UP were compared. In
addition, combined exposure to acute LPS and chronic UP was studied to investigate the
effects of repetitive microbial exposure on the fetal ENS. In chapter 5, we evaluated ENS
alterations in a validated murine model of NEC to gain insight into ENS changes during
postnatal development of NEC.

In chapter 6, we examined alterations of goblet cells and mechanisms underlying these
alterations over time during IA LPS-induced chorioamnionitis. In chapter 7, the effects of IA
UP exposure on the intestinal goblet cells and the functional consequences for the mucus
layer were investigated in detail. Moreover, goblet cell characteristics following
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chorioamnionitis in this pre-clinical model were compared with findings in clinical NEC
biopsies and matched controls.

In chapter 8, we investigated whether an early preventative enteral feeding intervention
with plant sterols in utero improved fetal gut outcome following UP-induced
chorioamniontis. In chapter 9, we extended a validated HIO model to enable screening of
enteral nutritional interventions during health and during a hypoxia-mediated inflammatory
disease state. In addition, we tested the effects of different whey protein fractions as
enteral nutritional intervention in this model.

In chapter 10 the key findings of this thesis are summarized and discussed in the context
of the current literature, as well as their clincial implications and significance for future
research. Last, in chapter 11, the scientific and social impact of this dissertation is examined.
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Chapter 2

Abstract

Necrotizing enterocolitis (NEC), which is characterized by severe intestinal inflammation and
in advanced stages necrosis, is a gastrointestinal emergency in the neonate with high
mortality and morbidity. Despite advancing medical care, effective prevention strategies
remain sparse. Factors contributing to the complex pathogenesis of NEC include immaturity
of the intestinal immune defense, barrier function, motility and local circulatory regulation
and abnormal microbial colonization. Interestingly, enteral feeding is regarded as an
important modifiable factor influencing NEC pathogenesis. Moreover, breast milk, which
forms the currently most effective prevention strategy, contains many bioactive
components that are known to support neonatal immune development and promote
healthy gut colonization. This systematic review describes the effect of different enteral
feeding interventions on the prevention of NEC incidence and severity and the effect on
pathophysiological mechanisms of NEC, in both experimental NEC models and clinical NEC.
Besides, pathophysiological mechanisms involved in human NEC development are briefly
described to give context for the findings of altered pathophysiological mechanisms of NEC
by enteral feeding interventions.
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Introduction

Necrotizing enterocolitis (NEC) is a multifactorial disease, characterized by severe intestinal
inflammation and, in advancing disease, gut necrosis, that mainly affects premature
neonates?. Around 5 to 10% of very low birth weight (VLBW) infants develop NEC, with the
highest incidence among neonates with an extremely low birth weight (ELBW)?2. Despite
advancing medical care, NEC incidence has not substantially decreased over time, mainly
due to increased early survival of neonates®>. NEC mortality is inversely correlated with
birth weight and generally ranges from 15% to 30%%°. However, case fatality can increase
up to 50% for ELBW infants treated surgically®’. Being responsible for 10% of NICU deaths,
NEC represents an important cause of death in this setting®. Moreover, infants that do
recover from NEC suffer from several long-term morbidities such as growth retardation®,
short bowel syndrome??, intestinal failure!!, intestinal failure-associated liver disease and
neurodevelopmental delays!?. Although the precise healthcare costs of NEC are difficult to
estimate?3, the costs undoubtedly exceed those of matched controls, with estimates of
around $70,000 extra hospital costs for medical NEC and around $180,000 for surgical
NEC!. Moreover, life-long care for patients with morbidities following NEC will impose an
even higher financial burden on both society and the individual patient!>. NEC thus forms an
important health issue that has high impact on the patient and its parents and also leads to
a significant economic burden.

Due to its complex pathophysiology and fulminant nature, NEC treatment remains,
despite advancing medical care, largely symptomatic’. Moreover, effective prevention
strategies are sparsel. Factors contributing to the excessive intestinal inflammation in NEC
include immaturity of the intestinal immune defense, barrier function, motility and local
circulatory regulation and abnormal microbial colonization'®. Interestingly, NEC almost
exclusively develops in infants that have been enterally fed and the NEC risk increases with
delay of enteral feeding, indicating enteral feeding is an important target to modify NEC
pathogenesis'®1®. Breast milk contains many bioactive components that are known to shape
neonatal (intestinal) immune development?® and promote healthy gut colonization?,
thereby preventing intestinal inflammation'®. Consequently, although not completely
effective, breast milk is highly protective against NEC development and is currently
considered the most effective preventive strategy??2. Accordingly, several enteral feeding
interventions that use donor breast milk or feeding components derived from breast milk
have been studied over the past years as potential strategies for prevention of NEC'?3. This
systematic review aims to describe the effect of different enteral feeding interventions on
the prevention of NEC incidence and severity and the effect on pathophysiological
mechanisms of NEC (intestinal inflammation, systemic inflammation, intestinal barrier
function, vascular dysfunction/hypoxia-ischemia/free radical formation, intestinal epithelial
cell death/altered proliferation, microbial dysbiosis, disturbed digestion and absorption and
enteric nervous system alterations), in both experimental NEC models and clinical NEC.
Besides, pathophysiological mechanisms involved in human NEC development are briefly
described to contextualize the findings of altered pathophysiological mechanisms of NEC by
enteral feeding interventions.
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Materials and methods

Search strategy

To identify all relevant publications, the electronic databases PubMed, Embase and the
Cochrane library were searched to select records published from inception until December
2020 that studied the effect of enteral feeding interventions in the prevention of NEC
incidence and severity or pathophysiological mechanisms of NEC. An overview of the
performed searches can be found in Supplementary Tables $2.1-S2.3. Both single and
hierarchical search terms (e.g., MESH) were used. General search terms for nutritional
interventions as well as terms for specific nutritional interventions often used in the context
of NEC (expert opinion) (alkaline phosphatase (ALPI), epidermal growth factor
(EGF)/heparin-binding EGF-like growth factor (HB-EGF), erythropoietin (EPO), exosomes,
gangliosides, glutamine, immunoglobulins, insulin like growth factor (IGF), milk fat globule
membrane, oligosaccharides, osteopontin, platelet-activating factor acetylhydrolase (PAF-
AH), polyunsaturated fatty acids (PUFA), transforming growth factor B (TGF B), vitamin A
and vitamin D) were incorporated in the search. For the search in the Cochrane library,
results were filtered as to only retrieve Cochrane reviews. Last, references of included
studies were cross-checked for additional studies that did not emerge in the original search.
No restrictions were applied on study design or language. Results from the different
searches were combined and after automatic removal of duplicates, the remaining records
were screened for eligibility. No review protocol was published.

Selection criteria

We included experimental animal studies (any experimental NEC model), RCTs and meta-
analysis that reported on the effect of enteral feeding interventions on the prevention of
NEC (incidence, severity (histological or clinical), NEC related mortality) or the prevention of
pathophysiological mechanisms of NEC (intestinal inflammation, systemic inflammation,
intestinal barrier function, vascular dysfunction/hypoxia-ischemia/free radical formation,
intestinal epithelial cell death/altered proliferation, microbial dysbiosis, disturbed digestion
and absorption and enteric nervous system alterations). Studies that did not relate to
enteral feeding interventions as preventative treatment for NEC were excluded.
Experimental studies with an enteral feeding intervention that started simultaneously with a
NEC-inducing protocol were regarded as preventive. Studies that investigated
intraperitoneal or intravenous administration were excluded (no enteral intervention).
Regarding clinical studies, meta-analyses were included whenever possible. Meta-analyses
of which a more recent or relevant (e.g., more studies included on NEC outcome) version
was available, either by the same authors or different authors on the same subject, were
excluded. RCTs were only included if: (1) a meta-analysis was not available or (2) the RCT
was not included in a meta-analysis and was relatively large (N 250% of infants included in
the meta-analysis) or (3) the RCT reported the effect of enteral feeding interventions on one
of the pathophysiological mechanisms of NEC. RCTs that were excluded because of their low
sample size relative to an earlier published meta-analysis are displayed in Supplementary
Table $2.4%%27, Exclusion of these RCTs did not influence the findings and conclusions of this
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systematic review. No narrative reviews, in vitro studies, research protocols, comments on
original articles, guidelines or conference abstracts were included.

Selection process

Rayyan, online software enabling blind screening for reviewers®, was used by to
independent authors (I.H.d.L.,, C.v.G.) for article selection. Disagreements were solved by
discussion. A third author was consulted in case consensus was not reached (T.G.A.M.W). In
the first round, articles were screened based on title and abstract. In the second round,
articles were full text screened.

Data extraction

Data was extracted by one author (I.H.d.L) from the included publications and
corresponding supplementary files. When in doubt, inclusion of data was discussed with a
second author (C.v.G.). All data related to the outcomes of interest (NEC
incidence/severity/mortality and the pathophysiological hallmarks of NEC) were included.
Data were first clustered based on type of study (experimental animal study or human trial),
a second clustering was applied based on outcome reported and the last clustering was
based on type of enteral feeding intervention (fat-based, carbohydrate / sugar-based,
protein / amino acid-based, hormone / growth factor / vitamin-based, probiotic
interventions and other interventions) (Figure 2.1). Additional parameters extracted were
author, year of publication, experimental NEC model used (experimental animal studies),
type of study (human studies), sample size, in- and exclusion criteria (human studies),
intervention and control, sample size/power calculation and (primary and secondary)
outcomes studied. For experimental animal studies, data are reported for the enteral
feeding intervention group(s) compared to an untreated NEC protocol exposed group. For
human studies, data are reported for the enteral feeding interventions treated group
compared to an untreated (placebo) group.

study data clustering

experimental
animal studies

\

pathophysiological mechanisms of NEC:

. intestinal (3.4) and systemic inflammation (3.5)
severity (32) loss of intestinal barrier function (3.7)
vascular dysfunction, hypoxia-ischemia and

free radical formation (3.9)
intestinal epithelial cell death and proliferation
(3.11)
microbial dysbiosis (3.13)
disturbed digestion and absorption (3.15)
enteric nervous system alterations (3.17)

R —

type of feeding intervention:
fat-based interventions
carbohydrate / sugar based interventions
protein / amino acid based interventions
hormone / growth factor / vitamin based interventions
probiotic interventions
other feeding interventions

human studies

| pathophysiological mechanisms of NEC (3.19) |

NEC incidence and
severity (3.18)

Figure 2.1  Overview of clustering of extracted data. The number in parentheses refers to the result
section the data is incorporated in.
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Risk of bias assessment

The methodological quality and risk of bias of the different included studies were assessed
with the use of the SYRCLE’s risk of bias tool® (experimental animal studies), the Jadad
scoring system3® (RCTs) and the AMSTAR measurement tool (meta-analyses)'. The
assessment was performed by two independent authors (L.H.d.L and L.D.E.S.).
Disagreements were resolved by discussion.

Certainty of evidence assessment

Certainty of evidence of the effect of enteral feeding interventions tested in clinical studies
(RCTs and meta-analyses) on NEC incidence or mortality was assessed with the GRADE
approach3?, These interventions were scored for limitations in study design or execution
(risk of bias), inconsistency of results, indirectness of evidence, imprecision and the risk of
publication bias by two independent authors (I.H.d.L. and C.v.G.). Disagreements were
resolved by discussion. The scores on individual assessment points were combined in an
overall estimation of certainty of evidence. Certainty of evidence is reported as “high” (we
are very confident that the true effect lies close to that of the estimate of the effect),
“moderate” (we are moderately confident in the effect estimate: the true effect is likely to
be close to the estimate of the effect, but there is a possibility that it is substantially
different), “low” (our confidence in the effect estimate is limited: the true effect may be
substantially different from the estimate of the effect) or “very low” (we have very little
confidence in the effect estimate: the true effect is likely to be substantially different from
the estimate of effect)3. Certainty of evidence was not scored for animal studies. Although
a GRADE scoring system for animal studies has been suggested®?, implementation of this
methodology is still in its infancy and many aspects needed to adequately assess certainty of
evidence from animal studies, such as 95% confidence intervals (Cl) and power calculations,
are seldomly reported.

Results

Study characteristics

We identified a total number of 5883 records. After automatic removal of duplicates (1327
records), the remaining records (4573 records) were screened for eligibility (Figure 2.2). Of
these articles, 4257 records were excluded in the first round. All of the remaining 316
articles could be retrieved. In the second round full-text screening, another 177 articles
were excluded. An overview of the study characteristics of the included studies can be
found in Supplementary Table S2.5 (included experimental animal studies), Supplementary
Table S2.6 (included clinical trials), and Supplementary Table S2.7 (included systematic
reviews and meta-analyses). Whereas the risk of bias for the included animal studies
(Supplementary Table S2.8) was in general unclear due to poor reporting of methodological
details in these articles, the risk of bias for included RCTs (Supplementary Table $2.9) and
meta-analyses (Supplementary Table $2.10) was predominantly low.
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Records identified from:

Records identified from: . Citation searching (n=17)
PubMed (n = 3994) Records removed before screening:
Embase (n =1502) »| duplicate records (n = 1327)

Cochrane library (n = 387)

Identification

Records excluded
— l not about NEC (n = 2577)

no preventative enteral feeding
— intervention (n = 1277)
narrative review (n = 188)
Records screened duplicate (n=132)
(n = 4573) in vitro studies (n = 52)
comment on original article (n = 21)
l study protocol (n = 8)
guideline (n=2)

Reports sought for retrieval
(n=316)

Y

Reports not retrieved

l (n=0)

o Reports excluded

Reports assessed for eligibility 3| RCT included in meta-analysis (n=53)

(n=316) retrospective clinical study (n=16)

RCT low sample size compared to earlier meta-analysis (n=4)
more recent/relevant meta-analysis available (n=47)

no preventative enteral feeding intervention (n=34)
conference abstract (n=21)

narrative review (n=2)

Screening

v

Studies included in review
(n=139)

experimental animal studies (n=114)
RCTs (n=16)
meta-analyses (n=9)

Figure 2.2  Flowchart of the article selection. Adapted from the PRISMA 2020 statement. Page M),
McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA,
Brennan SE, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic
reviews. BMJ 2021, 372, n71.3*

Enteral feeding interventions affecting NEC incidence and severity in animal
studies

Evidence of successful NEC prevention through enteral nutritional interventions in
experimental animal models of NEC is abundantly present. In these models, many enteral
nutritional interventions have been shown to reduce NEC incidence (Table 2.1), NEC
severity (Table 2.2), clinical disease score or signs/symptoms (Table 2.3) and to improve
survival (Table 2.4). Studies that did not report statistically significant preventative effects of
enteral feeding interventions on NEC incidence, histological injury scores, clinical disease
score or signs and symptoms or survival are summarized in Table 2.5. Importantly,
supplementation of bovine lactoferrin increased the NEC severity score and elevated
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intestinal apoptosis and inflammation in a preterm pig NEC model®*>3¢, demonstrating that
postulated beneficial enteral feeding interventions can also be harmful. This harmful effect
may be caused by activation of the nuclear factor kappa-light-chain-enhancer of activated B
cells (NFkB) pathway and stimulation of interleukin 8 (IL8) release by enterocytes by a high
dose of lactoferrin®. In addition, supplementation of formula with HB-EGF in a rat NEC
model induced a dose dependent reduction of NEC incidence, with a therapeutic effect of
moderate HB-EGF dosages that was not observed with either a low or a high HB-EGF dose®’.
This example highlights the importance of understanding the dose dependent working
mechanisms of protective breast milk components. Some studies already provide
mechanistic insight in the potential working mechanisms involved. For instance, the
preventive effect of HMO was abolished in the presence of an inhibitor of the endoplasmic
reticulum (ER) stress chaperone protein disulfide isomerase (PDI), suggesting PDI function is
necessary for enteral HMO induced reduction of NEC incidence®®. The protective effects of
Lactobacillus rhamnosus on NEC severity score are toll like receptor 9 (TLR9) signaling
dependent, as protective effects disappeared in TLR9 knock-down animals®?. In addition, the
protective effects of enteral administration of amniotic fluid in a mouse NEC model were
demonstrated to be largely dependent on EGFR signaling, as the preventative effects mostly
disappeared in the presence of the EGFR inhibitor cetuximab and with the use of amniotic
fluid that was depleted of EGF*. Besides the supplemented substance and dose, timing and
duration of the intervention are important. Addition of HB-EGF to all feeds, four feeds or
two feeds per day reduced NEC incidence in a rat NEC model, while this was not the case
when HB-EGF was only added to one feed per day*. In contrast to enteral HMO
administration that was started within 24 h after birth and was continued during the
duration of the study, enteral HMO administration that was started after the first 24 h or
only given in the first 24 h did not result in improved histological NEC scores in a rat NEC
model®2. Similarly, enteral administration of HB-EGF successfully reduced NEC incidence
when administration started within 12 h after birth, but not when supplementation was
only initiated at or after 24 h*'. Another interesting finding is that maternal feeding of a diet
enriched with docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) during pregnancy
reduced NEC incidence in the offspring in a mouse NEC model*3, indicating that the fetus
can already be targeted prenatally with a nutritional intervention to prevent NEC.
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Table 2.1 Enteral feeding interventions reducing NEC incidence in experimental animal models of NEC.

Fat-based interventions

Carbohydrate/sugar-based
Interventions
Protein/amino acid-based interventions

Hormone/growth factor/vitamin-based
interventions

Probiotic interventions

Other interventions

AA and DHA®%

Egg phospholipids**

PUFA%

BCFA%®

Pomegranate seed oil*’

MFGM*8

DHA or EPA maternal intervention during pregnancy*?
HMO*®

GD3>0

Lactadherin®!

rPAF-AH>2

EGF37,41,S3-56

H B_EG F37,41,S7-62

HGF%3

TGF-p164

IGF1%%

EPQ®%6

Lactobacillus reuteri DSM 179386770

Lactobacillus reuteri ATCC PTA 465958

Lactobacillus reuteri biofilm on unloaded microspheres’%72
Lactobacillus reuteri biofilm on MRS loaded microspheres’
Lactobacillus reuteri biofilm on sucrose loaded microspheres’?
Lactobacillus reuteri biofilm on maltose loaded microspheres’?
Bifidobacterium bifidum OLB63787374

Bifidobacterium infantis”

Bifidobacterium adolescentis’®

probiotic mixture (Bifidobacterium animalis DSM15954,
Lactobacillus acidophilus DSM13241, Lactobacillus casei
ATCC55544, Lactobacillus pentosus DSM14025 and
Lactobacillus plantarum DSM13367)77

Amniotic fluid®3

Human breast milk extracellular vesicles’®

Berberine’®

Surfactant protein a®

Human B-defensin-38!

AA, arachidonic acid; DHA, docosahexaenoic acid; PUFA, polyunsaturated fatty acids; BCFA, branched chain
fatty acids; MFGM, milk fat globule membrane; EPA, eicosapentaenoic acid; HMO, human milk
oligosaccharides; GD3, ganglioside D3; rPAF-AH, recombinant platetet-activating factor acetylhydrolase; EGF,
epidermal growth factor; HB-EGF, hemoglobin-binding EGF-like growth factor; HGF, hepatocyte growth
factor; TGF-B1, transforming growth factor B1, IGF1, insulin-like growth factor 1.
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Table 2.2 Enteral feeding interventions improving histological injury scores in experimental animal
models of NEC.

Fat-based interventions Fish oil (rich in n-3 PUFA)8283
MPL84
MFGM*8
Very low fat diet®
Reduced long chain triacylglycerol diet (considered pre-
digested)®®
Pomegranate seed oil*’

Carbohydrate/sugar-based HMQ38/42:49,86-90

interventions Neutral HMO (no sialic acids)*?
-2 HMO (two sialic acids)*?
DSLNT (HMO)*2

DSLNNT (synthetic disialyl glycan)3°
DS’LNNT (synthetic disialyl glycan)8°%°
2'_FL87,91,92
6'-SL°?
2'-FL and 6'-SL*2%2
Sialylated HMO%
Sialylated GOS®”
GD3>0
Hyaluronan 35 kD%
Protein/amino acid-based interventions L-Glutamine/glutamine®425°7
Arginine®°°
L-Carnitine®®
N-Acetylcysteine®
Lactadherin®!
OPNlOO
Lactoferrinot
|AP102,103
Hormone/growth factor/vitamin- EGF53,54,56
based interventions Recombinant EGF from soybean extract!%*
H B_EG F41,58-60,62,105,106
HGF%3
relaxin0?
TGF-p164
TGF-p2108
ATRA109,110
Vitamin At1!
Vitamin D12
Probiotic interventions Bacteroides fragilis ZY-312113
Lactobacillus reuteri DSM 179386869
Lactobacillus reuteri ATCC PTA 46598
Lactobacillus reuteri biofilm on unloaded microspheres’*72
Lactobacillus reuteri biofilm on MRS loaded microspheres®
Lactobacillus reuteri biofilm on sucrose loaded microspheres”
Lactobacillus reuteri biofilm on maltose loaded microspheres’
Bifidobacterium microcapsules!!*
Bifidobacterium mixture!®
Bifidobacterium adolescentis’®
Bifidobacterium infantist®
Bifidobacterium bifidum OLB637874
Bifidobacterium breve M-16V*'7
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Other interventions

Lactobacillus rhamnosus HNOO1 (live)3®

Lactobacillus rhamnosus HNOO1 (dead)*®

Lactobacillus rhamnosus isolated DNA3°

Probiotic mixture (Bifidobacterium animalis DSM15954,
Lactobacillus acidophilus DSM13241, Lactobacillus casei
ATCC55544, Lactobacillus pentosus DSM14025 and Lactobacillus
plantarum DSM13367)77

CpG-DNA®

Bovine milk exosomes?!®

Native human breast milk exosomes’®11°

Pasteurized human breast milk exosomes!®

Preterm human breast milk exosomes?°

Ginger?!

Fennel seed extracts!??

Amniotic fluid*063.123

Curcumin??*

Sesamol'?®

Astragaloside iv1?®

Resveratrol'?’

Berberine”®

Surfactant protein a®

Human B-defensin-38!

PUFA, polyunsaturated fatty acids; MPL milk polar lipids; MFGM, milk fat globule membrane; HMO, human
milk oligosaccharides; DSLNT, disialyllacto-N-tetraose; 2'-FL, 2'-fucosyllactose; 6'-SL, 6'-sialyllactose; GOS:
galacto-oligosaccharides; GD3, ganglioside D3; OPN, osteopontin; EGF, epidermal growth factor; HB-EGF,
hemoglobin-binding EGF-like growth factor; HGF, hepatocyte growth factor; TGF-B1, transforming growth
factor B1; TGF-B2, transforming growth factor B2; ATRA, all-trans retinoic acid.

Table 2.3 Enteral feeding interventions reducing clinical disease score or signs and symptoms in
experimental animal models of NEC.

Fat-based interventions

carbohydrate/sugar based
interventions

Protein/amino acid based interventions

Hormone/growth factor/vitamin based
interventions

DHA and EPA33
MFGM*8

Very low fat diet®
Reduced long chain triacylglycerol diet (considered pre-
digested)®®

MPL84

2'_FL91,92

6'-SL°?

2'-FLand 6'-SL°?
FOSlZS

GD3>0
Lactadherin®!
CGMP1®

OPN129

EGF>*,

HB-EGF>8

IGF1%%

Vitamin D12
Relaxin®?
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Table 2.3 (continued)

Probiotic interventions

Other interventions

Lactobacillus reuteri DSM179387°
Bifidobacterium infantis-longum strain CUETM 89-215130
Bifidobacterium adolescentis’®
Bacteroides fragilis ZY-312113
Lactobacillus rhamnosus HNOO1 (live)3®
Lactobacillus rhamnosus HNOO1 (dead)®®
Lactobacillus rhamnosus isolated DNA3°
Ginger?!

Fennel seed extracts!??

Amniotic fluid!?®

Sesamol'®

Human B-defensin-38!

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; MFGM, milk fat globule membrane; MPL milk polar
lipids; 2'-FL, 2'-fucosyllactose; 6'-SL, 6'-sialyllactose; GD3, ganglioside D3; CGMP, caseinoglycomacropeptide;
OPN, osteopontin; EGF, epidermal growth factor; HB-EGF, hemoglobin-binding EGF-like growth factor; IGF1,

insulin-like growth factor 1.

Table 2.4 Enteral feeding interventions improving survival in experimental animal models of NEC.

Fat-based interventions

Carbohydrate/sugar-based
interventions
Protein/amino acid-based interventions

Hormone/growth factor/vitamin-based
interventions
Probiotic interventions

Other interventions

PUFA%

MFGM?“®
HMO4249.,88
Hyaluronan 35 kD%*
Lactadherin®!
Lysozyme?!3!
rPAF-AH5?

HB-EG F41,58,59,62,105

Bacteroides fragilis ZY-312113

Lactobacillus reuteri DSM 179386869,132

Lactobacillus reuteri ATCC PTA 465958

Lactobacillus reuteri biofilm on sucrose loaded microspheres’?
Lactobacillus reuteri biofilm on maltose loaded microspheres’?
Bifidobacterium adolescentis’®

Bifidobacterium infantis™

Bifidobacterium breve M-16V*'7

Surfactant protein A%

Human B-defensin-38!

PUFA, polyunsaturated fatty acids; MFGM, milk fat globule membrane; HMO, human milk oligosaccharides;
rPAF-AH, recombinant platelet-activating factor acetylhydrolase; HB-EGF, hemoglobin-binding EGF-like

growth factor.
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Table 2.5 Overview of studies that did not report statistically significant preventative effects of enteral
feeding interventions on NEC incidence, histological injury scores, clinical disease scores or
signs and symptoms or survival in experimental animal models of NEC.

NEC Incidence
Carbohydrate/sugar-based 2'-FL133
interventions Gangliosides'®
SLlOO
Lactose®?
Mixture of 4 HMO34
Mixture of 25 HMO34
IFOS*?
Protein/amino acid-based interventions OPN100.129
CGMP1®
Bovine lactoferrin3>36
Probiotic interventions Lactobacillus reuteri DSM 200167472
Other interventions amniotic fluid?3
NEC histological injury scores
Fat-based interventions
Carbohydrate/sugar-based 2'-FL133
interventions GOS*289
Lactose3®

0 HMO (no sialic acids)*?
-1 HMO (one sialic acid)*?
-3 HMO (three sialic acids)*?
-4 HMO (four sialic acids)*?
Mixture of 4 HMO34
Mixture of 25 HMO34
3"'-sLNnT®?
GD3%
DSLac®®
Neu5GC-DS’LNT?®
DS’LNnT*°
DSTa®°
DSGalB®®
Gangliosides'®
SLlOO
Protein/amino acid-based interventions Bovine lactoferrin3>3¢ (even higher score for3¢)
OPN129
CGMP1®
Probiotic interventions Lactobacillus reuteri DSM 200167*
NEC clinical disease score or signs and symptoms
Fat-based interventions BCFA%®
carbohydrate/sugar based Lactose®?
interventions HMO3842
Mixture of four HMO34
Mixture of 25 HMO34
2'_FL133
Gos/F05135,136
GOS*?
Protein/amino acid-based interventions Glutamine®
OPN129
CGMP1®
Probiotic interventions Saccharomyces Boulardii'3>13¢
Other interventions Resveratrol*?’
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Table 2.5 (continued)

NEC survival
Fat-based interventions Pomegranate seed oil*’
DHA131
DHA or EPA maternal intervention during pregnancy*?
Carbohydrate/sugar-based GOS/FOS®33
Interventions GOS*?
IFOS*°
Hormone/growth factor/vitamin-based EGF104.137
interventions
Probiotic interventions Saccharomyces boulardi 13>

Lactobacillus reuteri DSM 2001672
Lactobacillus reuteri biofilm on unloaded microspheres’?

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; BCFA, branched chain fatty acids; HMO, human milk
oligosaccharides; 2'-FL, 2'-fucosyllactose; SL, sialic acids; GOS, galacto-oligosaccharides; FOS, fructo-
oligosaccharides; IFOS, infant formula oligosaccharides; GD3, ganglioside D3; EGF, epidermal growth factor;
DSLac, disialyllactose; DSTa, disialyl T-antigen tetraose; 3"’-sLNnt, 3'’-sialyllacto-N-neotetraose; DSGalB,
disialyl galactobiose; DS’LNnT, a2—6-linked disialyllacto-N-neotetraose; DS'LNT, a2—6-linked disialyllacto-N-
tetraose; CGMP: caseinoglycomacropeptide; OPN: osteopontin.

NEC pathophysiology: intestinal and systemic inflammation

Both intestinal and systemic inflammation are essential hallmarks of NEC pathophysiology.
Acute NEC is characterized by increased intestinal expression of various cytokines, such as
interleukin 1a (IL10)'%8, IL1B*3°, TNFa'®, IL6Y0 and IL10%°, whereas TGF-P tissue expression
is decreased!®®. Intestinal cytokine levels normalize after recovery from NEC'*. NEC is
characterized by an increased number of polymorphonuclear leukocytes!*!, neutrophil
extracellular trap activation and release!*, and an increased number of macrophages in the
intestine'®. In addition, mRNA levels of C-X-C motif chemokine 5 (CXCL5), a chemokine
stimulating influx of neutrophils were elevated in intestinal samples from infants with NEC
compared to controls!*!. Moreover, a reduced proportion of functional regulatory T cells
(Treg) in the intestine of NEC patients was observed compared to age-matched controls that
was accompanied by a pro-inflammatory cytokine expression profile characteristic of
inhibited Treg development!*3, As the proportion of Treg was restored after NEC recovery, it
is likely that the strong inflammatory response during NEC temporarily inhibits Treg
development!*3. In addition, an increased frequency of a subset of Treg, namely C-C motif
chemokine receptor 9 (CCR9)-positive interleukin 17 (IL-17) producing Treg with strongly
impaired immunosuppressive capacities, was found in peripheral blood during NEC and the
conversion of CCR9+ Treg into this IL-17 producing subset was promoted by IL-6%.
Interestingly, in mice, treatment with anti-interleukin 6 receptor antibodies ameliorated
NEC mortality, severity and morbidity and restored the balance between Treg and Th17
producing cells in peripheral blood, indicating a role for both cell types in the pathogenesis
of NEC'*. Altered expression and/or signaling of pattern recognition receptors (PRRs) is
clearly involved in the pathogenesis of NEC'*. Firstly, the role of toll like receptor 4 (TLR4)
and some other TLRs, have been studied intensively in NEC pathogenesis'. In small
intestinal specimen from infants with NEC, an increased mRNA expression'4’1%® and
increased protein levels'*®14° of TLR4 were found. Protein levels of TLR9 were reduced in the
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intestine of infants with NEC'. TLR4 knockout mice'¥ as well as mice with a non-
functioning mutation in TLR4*® are protected against experimental NEC. Reduced intestinal
mMRNA levels of negative regulators of TLR4 signaling (single IL1 receptor-related protein
(SIGIRR), Toll-interacting protein (TOLLIP) and A20) have been observed in NEC**° and
mutations causing a loss of function of SIGGR are associated with NEC'*!. However, a
prospective multicenter cohort study failed to show an association between genetic variants
of TLR4, toll like receptor 2 (TLR2), toll like receptor 5 (TLR5), TLR9 or IL1 receptor-
associated kinase 1 (IRAK1) and NEC!2. Moreover, we previously reported that Myeloid
Differentiation factor 2 (MD-2) could not be detected in the intestine or immune cells of
infants with NEC, suggesting impaired LPS signaling®>3. This was confirmed by another study
observing reduced protein levels of MD-2 and also TLR4 in the intestine of two NEC patients
compared to control tissue from stoma closure of these two patients'>*. Last, nucleotide-
binding oligomerisation domain (NOD)-like receptors are likely to be involved in NEC
pathogenesis'®>. Mutations in the NOD2 gene, leading to loss of function, have been
associated with an increased risk of severe NEC requiring surgery*>15>,

In addition to intestinal inflammation, infants with NEC have higher blood levels of pro-
inflammatory mediators PAF**¢, tumor necrosis factor a (TNFa), interleukin 6 (1L6)*"*>® and
IL8'>718 and the anti-inflammatory cytokine interleukin 10 (IL10)%*8. Moreover, blood levels
of IL6™8, IL8%%15° and interleukin 1B (IL1B)**° as well interleukin 1 receptor antagonist
(IL1ra)*>® and IL10%*? are higher in severe NEC compared to mild or moderate NEC*°. Higher
blood levels of interleukin 2 (IL2) and TGF-B are associated with a decreased NEC risk'>’.

Enteral feeding and intestinal inflammation in animal models of NEC

Intestinal inflammation is, in preclinical studies, the most extensively studied
pathophysiological mechanism of NEC and many enteral feeding interventions reduce
intestinal inflammation in animal models of NEC (Table 2.6).

Fat-based feeding interventions

Fat-based feeding interventions, such as polyunsaturated fatty acids (PUFA, including DHA,
EPA, arachidonic acid (AA) and egg phospholipids), branched chain fatty acids (BCFA), bovine
milk fat globule membrane (MFGM) and milk polar lipids (MPL), are extensively studied in
relation to intestinal inflammation.

Supplementation of enteral feeding with fish oil, rich in n-3 PUFA such as DHA and EPA,
prevents an increase in intestinal PAF and leukotriene B4 in a mouse NEC model®? and
partially prevents a rise in intestinal IL6 and TNFa protein expression in a rat NEC model®.
Enrichment of formula feeding with DHA and arachidonic acid (AA) in a rat NEC model
reduced intestinal mRNA levels of the PAF synthesizing enzyme phospholipase A2-Il (PLA2)
and of the PAF receptor (PAFR)*. Supplementation of egg phospholipids, AA and DHA or
DHA alone lowers intestinal PAFR gene expression®t. Enteral supplementation with egg
phospholipids decreased gut TLR4 and ileal TLR2 mRNA expression in rats**. Finally, AA and
DHA, but not DHA alone, lowered intestinal TLR4 mRNA expression, suggesting AA is the
responsible agent for the found effects**. Interestingly, a maternal feeding intervention in
rats with a DHA or EPA enriched diet during pregnancy resulted in increased levels of both
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DHA and EPA in the fetal intestine and reduced small intestinal mMRNA expression of NFkf
inhibitor a (IkBa), NFkp inhibitor B (IkBB) and peroxisome proliferator-activated receptor Y
(PPARY) in the offspring®®, demonstrating that postnatal gut inflammation can already be
targeted prenatally. Addition of BCFA to rat formula feeding increases intestinal IL10 mRNA
levels more than threefold and also enhances IL10 protein levels®. A very low fat or reduced
long chain triacylglycerol diet (considered pre-digested as its digestion is not dependent on
intestinal lipases) reduces intestinal mRNA expression of IL1B and TNFa®>. Enteral
supplementation of bovine MFGM reduces ileal mRNA expression of IL1B, TNFa and IL6, as
well as protein expression of TLR4%, whereas TLR9 signaling remained unaffected®. Enteral
treatment with MPL, which are abundantly present in MFGM, increased intestinal IL10
protein expression, while decreasing intestinal TNFa, IL6 and IL8 protein expression and
TLR4 immunoreactivity®®. In addition, MPL inhibited NEC induced intestinal p65 and p50
expression®*. Pomegranate seed oil, rich in unsaturated fatty acids such as conjugated
linolenic acids and oleic acid, blocks an increase in ileal gene expression of IL6, IL8, IL12,
interleukin 23 (1L23) and TNFa in neonatal rats during NEC*’. Taken together, numerous fat-
based feeding interventions possess immune modulatory activities, making them promising
candidates for NEC prevention in a clinical setting.

Carbohydrate or sugar-based feeding interventions

Secondly, interventions using carbohydrate/sugar based dietary interventions have been
shown to be successful in reducing intestinal inflammation, either by downregulating pro-
inflammatory cytokines or by upregulating anti-inflammatory mediators. In a murine NEC
model, addition of the neutral HMO 2'-fucosyllactose (2'-FL) to formula feeding reduced
intestinal gene expression of IL6, IL1B and TLR4°L. Enteral administration of the HMO 2'-FL,
6’-sialyllactose (6'-SL) or a combination of both reduced intestinal mRNA levels of TNFa
(murine and pig model), IL1B (pig model) and TLR4 (murine and pig model), while this effect
was not observed with enteral administration of lactose®. In other studies, addition of HMO
to formula feeding reduced ileal mRNA levels of 1L6%, IL8*, IL1B* and TLR4* and ileal
protein levels of IL6* and IL8*>®8. In addition, HMO reduced intestinal protein levels of
phosphorylated NFkB, phosphorylated IkBa and TLR4*. In a preterm pig model of NEC,
enteral administration of a mixture of four HMO increased small intestinal mRNA expression
of IL10, IL12, TGF-B and TLR4, whereas other cytokines and TLR such as IL8, IFNY, TNFa and
TLR2 were not affected®*. Enteral administration of sialylated HMO (containing 6'-SL, 3'-SL
and DSLNT) reduced ileal mast cell counts and dipeptidylpeptidase | (DPPI) activity and
concomitantly reduced ileal protein levels of IL6 and TNFa®3. Enteral administration of
GOS/FOS decreased terminal ileum IL1B and TNFa protein levels and the mRNA expression
of several pro-inflammatory cytokines including IL6, IL1B and TNFa in a rat NEC model*3¢,
NEC protocol exposed rats that are orally treated with ganglioside D3 (GD3) had lower ileal
protein levels of TNFa, IL6, C-C motif chemokine ligand 5 (CCL5) and L-selectin, combined
with higher protein levels of anti-inflammatory mediators TIMP metallopeptidase inhibitor 1
(TIMP1), IL1ra and IL10 than animals that were not treated with GD3°°. Furthermore, in the
same rat model, protein expression of the Treg marker forkhead box P3 (FoxP3) was
upregulated by the GD3 treatment and more ileal Foxp3+ cells were observed in the GD3
supplemented group.
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Protein or amino acid-based feeding interventions

Various interventions using proteins or amino acids, such as IAP, lactoferrin,
N-acetylcysteine, arginine and glutamine, have been used as nutritional interventions to
reduce intestinal inflammation.

In a study using a neonatal rat NEC model, enteral administration of IAP preserved
endogenous ileal IAP mRNA expression and dose dependently decreased ileal TNFa mRNA
expression'®. In preterm pigs, enteral bovine lactoferrin administration reduced proximal
intestinal IL1B, but not IL8, protein levels®. Terminal ileum mRNA expression levels of IL6
and TNFa were reduced by enteral feeding supplemented with lactoferrin in a murine NEC
model'®l. Oral administration of N-acetylcysteine reduced intestinal mRNA levels of IL1B and
TNFa®. Arginine supplementation reduced ileal IL6 and TNFa mRNA levels®. Glutamine
supplementation decreased intestinal protein concentrations of TNFa®+%, IL6 and IL8 and
decreased TLR4, p65 and p50 immunoreactivity®, while increasing intestinal IL-10 protein
concentrations®. In addition, upon enteral glutamine supplementation, mRNA and protein
expression of TLR2 and TLR4 were lowered in ileum and colon, but not jejunum, of NEC
protocol exposed rats®’.

Hormone, growth factor or vitamin-based feeding interventions

Growth factors and hormones form another group of nutritional interventions with
promising results regarding the reduction of intestinal inflammation in experimental models
of NEC. In a NEC rat model, enteral administration of EGR decreased intestinal mRNA
expression of interleukin 18 (IL18), while increasing mRNA expression of 1L10 and the IL10
transcription factor specificity protein 1 (Sp1)>3. Recombinant EGF from soybean extract
reduced intestinal mMRNA levels of cyclooxygenase 2 (COX-2) upon orogastric administration
in a rat NEC model'®*, Gastric gavage of HB-EGF in a murine NEC model reduced the number
of pro-inflammatory M1 and increased the number of immune modulatory M2
macrophages in the intestine®’. Oral administration of TGF-B1 in a neonatal rat NEC model
increased SMAD family member 2 (Smad2) activation/phosphorylation, reduced the number
of phosphorylated NFkP positive intestinal epithelial cells and prevented a NEC induced
decrease of the NFkB regulator IkBa®*. Oral administration of IGF1 in a rat NEC model
reduced intestinal TLR4 and NFkB mRNA expression and IL6 protein expression®®.

Vitamins such as vitamin A are often studied as nutritional interventions in the context
of NEC. Intragastric vitamin A supplementation significantly lowered intestinal IL6 and TNFa
levels, both on protein and mRNA level, compared to NEC only animals'!!. Enteral treatment
with all-trans retinoic acid (ATRA), a vitamin A metabolite, reduced ileal mMRNA expression of
IL6 and IL17 in a murine NEC model*°. In addition, an increase of Treg (Foxp3+CD4+ T cells)
and a decrease of CD4+Th17 cells upon enteral ATRA treatment was observed with
fluorescence-activated cell sorting of lamina propria CD4+ T cells'®°. In another murine NEC
study, enteral ATRA decreased the ileal mMRNA expression of pro-inflammatory cytokines
IL1B and IL6%%°. Moreover, ATRA supplementation prevented NEC induced loss of Treg
(preserved Foxp3 mMRNA expression) and induction of Th17 cells (reduced IL17 mRNA
expression) in CD4+ T cells isolated from the intestinal lamina proprial®. In a mouse model
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of NEC, vitamin D decreased intestinal protein and mRNA expression of IL6, IL1 and
TNFali2,

Probiotic feeding interventions

Probiotics are also a widely studied group of nutritional interventions. In a mice NEC model,
reduction of terminal ileum IL1B%7° and TNFa’® mRNA and protein levels upon oral
administration of Lactobacillus reteuteri DSM 17938 was found. In a rat NEC model, both
Lactobacillus reuteri DSM 17938 and Lactobacillus reuteri ATCC PTA 4659 reduced intestinal
MRNA expression of TLR1, TLR4, IL6, TNFa and NFkP and protein expression of TNFa, IL1p,
TLR4 and phosphorylated IkB, while increasing the mRNA expression of IL10%. Moreover,
Lactobacillus reuteri DSM 17938 inhibited mRNA expression of the TLR interaction proteins
mitogen-activated protein kinase 8 interaction protein 3 and increased NFk( inhibitor-B,
while Lactobacillus reuteri ATCC PTA 4659 inhibited myelin and lymphocyte protein mRNA
expression (also TLR interaction protein)®. Supplementing formula with Lactobacillus reuteri
DSM 17938 reduced the percentage of activated effector CD4+ T cells in the intestine,
increased the proportion of CD4+ Foxp3+ Treg and tolerogenic dendritic cells in the gut and
reduced intestinal protein levels of the pro-inflammatory cytokines IL1B and IFNY®. All
these effects were TLR2 dependent, as they did not occur in TLR2 —/- mice®’. In another
study, Lactobacillus reuteri DSM 17938 increased the percentage of Foxp3+ CD4+ Treg cells
and Foxp3+ CD4+ CD8+ Treg cells in the terminal ileum of rats, while decreasing the
percentage of Foxp3+ CD4+ CD8+ Treg cells in the mesenteric lymph nodes, indicating
migration of Tregs from the lymph nodes to the intestine following treatment with this
probiotic agent'32. In a murine NEC model, Lactobacillus reuteri DSM 17938 normalized the
frequency of CD4+ Foxp3+ Treg cells in both ileum and mesenteric lymph nodes®. As most
of these Treg in ileum as well as in the mesenteric lymph nodes were Helios positive, the
cells are likely to be of thymic origin®. In addition, enteral treatment with Lactobacillus
reuteri DSM 17938 reduced the increase of activated effector/memory T cells
(CD44+CD45RBlo) and transitional effector T cells (CD44+CD45Rbhi) in the ileum during
NEC®. Interestingly, enteral administration of Lactobacillus reuteri biofilms on sucrose or
maltose loaded microspheres, but not administration of unbound Lactobacillus reuteri,
reduced small intestinal mRNA levels of IL6, IL1B, C-C motif chemokine ligand 2 (CCL2), C-X-C
motif chemokine 1 (CXCL1) and IL10 in a rat NEC model’. Enteral Lactobacillus rhamnosus
GG, both in a low and higher dosage, reduced TLR4 expression (mRNA) and increased SIGIRR
(mRNA, protein) and A20 (mRNA) levels®!. In addition, mediators of the TLR4 signaling
pathway phosphorylated IKKB and phosphorylated p65 were reduced on protein level
concomitant with a reduced intestinal inflammation on mRNA level (Intercellular Adhesion
Molecule 1 (ICAM-1), IL8, IL1B) and protein level (ICAM-1, IL1B)*:. The strain
Bifidobacterium bifidum OLB6378 normalized ileum IL6 levels in NEC rats’®. Orogastric
administration of Bifidobacterium infantis reduced mRNA expression of the PAF synthesizing
enzyme phospholipase-A2 Il (PLA2 11)’>. Intragastric administration of Bifidobacterium
microcapsules in a rat NEC model reduced ileal protein expression of TLR4, TLR2 and NFkf
p65'*. Enrichment of formula feeding with Bifidobacterium adolescentis decreased ileal
MRNA expression of TLR4, while increasing the mRNA expression of the negative regulators
of TLR signaling TOLLIP and SIGIRR®. In addition, enteral administration of Bacteroides
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fragilis strain ZY-312 decreased intestinal IL1IR protein expression in a rat NEC model*'.
Enteral administration of Bifidobacterium breve M-16V reduced ileal mRNA levels of TLR4,
IL1B, IL6, TNFa and IL10 and increased the mRNA levels of TLR2 in a rat NEC model*’. In
addition, ileal protein levels of macrophage inflammatory protein 1 a (MIP1a) and IL1B
were increased by this intervention'’’. In a rat NEC model, enteral administration of
Saccharomyces boulardii reduced terminal ileum protein concentrations of IL1B, IL6 and
TNFa and the mRNA expression of several pro-inflammatory cytokines including IFNB and
TNFa®3®. Last, oral supplementation of the TLR9 ligand GpG-DNA, reduced terminal ileum IL6
MRNA expression in a murine NEC model®. In accordance with the extensive evidence on
the immunomodulatory effect of probiotics in animal models of NEC, probiotics are
currently the most promising enteral feeding intervention for the prevention of NEC in
clinical practice.
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Table 2.6 Effect of enteral feeding interventions that reduce intestinal inflammation in experimental
animal models of NEC.

Enteral Feeding Intervention Effect on Intestinal Inflammation (Compared to NEC
Protocol Exposure without Feeding Intervention)

Fat-based interventions

Fish oil (n-3 PUFA) Intestinal PAF (protein) |82
Intestinal leukotriene B4 (protein) |82
Intestinal IL6 (protein) |83
Intestinal TNFa (protein) |83
AA + DHA Duodenal, jejunal and ileal TLR 4 (mRNA) |44
Intestinal TLR2 (mRNA) =44
Intestinal PLA2-1I (mRNA) |4
Intestinal PLA2-11 (mRNA) =%
lleal, colonic and intestinal PAFR (mRNA) | 4445
DHA Intestinal TLR4 (mRNA) =44
Intestinal TLR2 (mRNA) =44
Intestinal PLA2-11 (mRNA) =%
lleum and colon PAFR (mRNA) |44
DHA lleal DHA 143
(maternal intervention) lleal EPA 143
Small intestinal ikba (mRNA) |43
Small intestinal IkBB (mRNA) |43
Small intestinal PPARY (mRNA) |43
EPA lleal DHA 143
(maternal intervention) lleal EPA 143
Small intestinal IkBa (mRNA) |43
Small intestinal IkBB (mRNA) |43
Small intestinal PPARY (mRNA) |43
Egg phospholipids Intestinal TLR 4 (mRNA) |44
lleal TLR2 (MRNA) |*
Intestinal PLA2 (mRNA) =*4
lleal and colonic PAFR (mRNA) |44

BCFA lleal IL10 (MRNA) 146
lleal IL10 (protein) 146
Pomegranate seed oil lleal IL6 (mRNA) |47

lleal IL8 (mRNA) |47

lleal IL12 (MRNA) |47

lleal IL23 (MRNA) |47

lleal TNFa (mRNA) |47
Pre-digested fat (less long chain triacylglycerol, Intestinal IL13 (mMRNA) |8

not dependent on intestinal lipases) Intestinal TNFa (mRNA) |8
Very low-fat diet Intestinal IL13 (mRNA) |8

Intestinal TNFa (mRNA) |8
MFGM lleal IL6 (MRNA) |8

lleal IL1B (mRNA) |48
lleal TNFa (mRNA) |48
lleal TLR4 (protein) |*®
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MPL

Intestinal IL10 (protein) 184
Intestinal TNFa (protein) |34
Intestinal IL6 (protein) |8
Intestinal IL8 (protein) |8
Intestinal TLR4 (protein) |84
Intestinal p65 (protein) |3
Intestinal p50 (protein) |®*

Carbohydrate/sugar-based interventions

HMO

Mixture of four HMO

6'-SL

2'-FL +6'-SL

Sialylated HMO

GOS/FOS

GD3

lleal IL6 (mRNA) |4°

lleal IL8 (mRNA) |4°

lleal IL1B (mRNA) |4°

lleal TLR4 (MRNA) |

lleal IL6 (protein) |4°

lleal IL8 (protein) | 488

lleal phosphorylated NFkB (protein) |4°
lleal phosphorylated IkBa (protein) |4°
lleal TLR4 (protein) |*°

Small intestinal IL10 (mRNA) 1134
Small intestinal IL12 (mRNA) 1134
Small intestinal TGF-B (mRNA) 1134
Small intestinal TLR4 (mRNA) 1134
Small intestinal IL8 (mRNA) =134
Small intestinal IFNY (mRNA) =134
Small intestinal TNFa (mRNA) =134
Small intestinal TLR2 (mRNA) =134
Intestinal IL6 (MRNA) |°*

(Small) intestinal IL13 (mRNA) | 9292
Small intestinal TNFa (mRNA) |*2
(Small) intestinal TLR4 (mRNA) | 9192
Small intestinal IL13 (mRNA) |2
Small intestinal TNFa (mRNA) |*2
Small intestinal TLR4 (mRNA) |°2
Small intestinal IL13 (mRNA) |2
Small intestinal TNFa (mRNA) |*2
Small intestinal TLR4 (mRNA) |°2
lleal mast cell counts |3

lleal DPPI activity |3

lleal IL6 (protein) |3

lleal TNFa (protein) |3

Terminal ileum IL1B (protein) |36
Terminal ileum TNFa (protein) | 3¢
Terminal ileum IL1B (mRNA) |36
Terminal ileum TNFa (mRNA) |36
Terminal ileum IL6 (MRNA) |36
lleal TNFa (protein) |5°

lleal IL6 (protein) |*°

lleal CCL5 (protein) |>°

lleal L-selectin (protein) |50

lleal TIMP1 (protein) 150

lleal IL1ra (protein) 1>°

lleal IL10 (protein) 150

lleal Foxp3 (protein) 150

lleal Foxp3 cellcount 15°
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Table 2.6 (continued)

Enteral Feeding Intervention

Effect on Intestinal Inflammation (Compared to NEC
Protocol Exposure without Feeding Intervention)

Protein/amino acid-based interventions

IAP

L-Glutamine/glutamine

Arginine
N-Acetylcysteine
Lactoferrin

Bovine lactoferrin

lleal endogenous IAP (MRNA) 1160

lleal TNFa (mRNA) | 160

Intestinal TNFa (protein) |%°

Intestinal IL10 (protein) 184

Intestinal TNFa (protein) |34

Intestinal IL6 (protein) |8

Intestinal IL8 (protein) |8

Intestinal TLR4 (protein) |84

Intestinal p65 (protein) |3

Intestinal p50 (protein) |3

Jejununal, ileal and colonic TLR4 (protein) |%7
Jejununal, ileal and colonic TLR4 (mRNA) |*7
Jejununal, ileal and colonic TLR2 (protein) |%7
Jejununal, ileal and colonic TLR2 (mRNA) |*7
lleal IL6 (mRNA) |8

lleal TNFa (mRNA) | %8

Intestinal IL13 (mRNA) |8

Intestinal TNFa (mRNA) |8

lleal IL6 (mRNA) |01

lleal TNFa (mRNA) |10t

Proximal small intestinal IL1B (protein) | 3°

Hormone/growth factor/vitamin based
interventions

EGF

Recombinant EGF from soybean extract
HB-EGF

TGF-B1

IGF1

Vitamin A

ATRA

lleal IL18 (MRNA) |53

lleal IL10 (MRNA) 153

lleal Sp1 (mRNA) 153

lleal COX2 (MRNA) | 104

Intestinal M1 macrophages cellcount (CD86) |>7
Intestinal % M1 macrophages/total macrophages
(CD86/CD68) |57

Intestinal M2 macrophages cellcount (CD206) 157
Intestinal % M1 macrophages/total macrophages
(CD206/CD68) 157

lleal Smad2 activation/phosphorylation 164

lleal phosphorylated NFk positive intestinal epithelial cells
l64

lleal IkBa (protein) 164

lleal TLR4 (mRNA) |65

lleal NFkB (mRNA) | %

lleal IL6 (protein) | %

Intestinal IL6 (protein) |11t

Intestinal TNFa (protein) |11

Foxp3 (mRNA) in CD4+ T cells from lamina propria 11°°
IL17 (mRNA) in CD4+ T cells from lamina propria | 10°
FoxP3+ CD4+ T cells from lamina propria (FACs) 1110
CD4+ Th17 cells from lamina propria (FACs) |1°

lleal IL1B (mRNA) |00

lleal IL6 (MRNA) | 109110

lleal IL17 (MRNA) | 110
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Vitamin D

Intestinal IL6 (MRNA) |12
Intestinal IL1B (mRNA) |12
Intestinal TNFa (mRNA) | 112
Intestinal IL6 (protein) |12
Intestinal IL1B (protein) |12
Intestinal TNFa (protein) |12

Probiotic interventions

Lactobacillus reuteri DSM 17938

Lactobacillus reuteri ATCC PTA 4659

Lactobacillus rhamnosus GG

Intestinal % CD4+ Foxp3+ Treg 167.69.132
Mesenteric lymph nodes % CD4+ Foxp3+ Treg 1%
Terminal ileum % Foxp3+ CD4+CD8+ Treg cells 1132
Mesenteric lymph nodes % Foxp3+ CD4+CD8+ Treg cells |32
Intestinal % tolerogenic DC 1¢7

Intestinal % activated CD4+ Teff |7

Intestinal % activated effector/memory T cells
(CD44+CDA45RBIo) |5

Intestinal % transitional effector T cells (CD44+CD45RBhi) | ©°
lleal IL10 (MRNA) 168

lleal IL6 (mMRNA) |58

lleal TNFa (mRNA) | 6870

lleal TLR4 (mRNA) |68

lleal TLR1 (mRNA) |68

lleal NFkB (mRNA) | %8

lleal IL1B (mMRNA) |6970

lleal IL1B (protein) |67-7°

lleal IFNY (protein) |57

lleal TNFa (protein) | 5870

lleal TLR4 (protein) 168

lleal phosphorylated IkB (protein) 168

lleal mitogen-activated protein kinase 8 interaction protein 3
(MRNA) |8

lleal NFkB inhibitor-B (mRNA) 168

lleal IL6 (mMRNA) |58

lleal TNFa (mRNA) | %8

lleal TLR4 (mRNA) |68

lleal TLR1 (mRNA) |68

lleal NFkB (mRNA) | %8

lleal TNFa (protein) |58

lleal IL1B (protein) |58

lleal TLR4 (protein) 168

lleal phosphorylated IkB (protein) 168

lleal IL10 (MRNA) 168

lleal myelin and lymphocyte protein (mRNA) | %8
lleal TRL4 (MRNA) | 161

lleal SIGIRR (MRNA) 1161

lleal SIGIRR (protein) 1162

lleal A20 (mRNA) 1162

lleal p-IKKb (protein) |61

lleal p-p65 (protein) |61

lleal ICAM-1 (protein) |61

lleal ICAM-1 (mRNA) | 161

lleal IL1B (protein) |62

lleal IL1B (mRNA) |16t

lleal IL8 (mRNA) |61
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Table 2.6 (continued)

Enteral Feeding Intervention Effect on Intestinal Inflammation (Compared to NEC
Protocol Exposure without Feeding Intervention)
Lactobacillus reuteri DSM 20016 Small intestinal IL6 (mRNA) =72

small intestinal IL1B (mRNA) =72
Small intestinal CCL2 (mRNA) =72
Small intestinal CXCL1 (mRNA) =72
Small intestinal IL10 (mRNA) =72
Lactobacillus reuteri biofilm on sucrose loaded Small intestinal IL6 (mMRNA) |72
microspheres small intestinal IL1B (mRNA) |72
Small intestinal CCL2 (mRNA) |72
Small intestinal CXCL1 (mRNA) |72
Small intestinal IL10 (mRNA) |72

Bifidobacterium bifidum OLB6378 lleal IL6 (mRNA) |73
Bifidobacterium infantis Intestinal PLA2 Il (mRNA) |7®
Bifidobacterium microcapsules lleal TLR4 (protein) |14

lleal TLR2 (protein) |14

lleal NFkB p65 (protein) | 114
Bifidobacterium adolescentis lleal TLR4 (mRNA) |7®

lleal TOLLIP (mRNA) 176

lleal SIGIRR (MRNA) 176
Bifidobacterium breve M-16V lleal TLR4 (mRNA) |17

lleal IL1B (mRNA) |17

lleal IL6 (mRNA) |17

lleal TNFa (mRNA) |17

lleal IL10 (MRNA) |17

lleal TLR2 (MRNA) 1117

lleal MIP1a (protein) |17

lleal IL1B (protein) |17
Bacteroides fragilis ZY-312 Intestinal IL1B (protein) |13
Saccharomyces Boulardii Terminal ileum IL1B (protein) |36

Terminal ileum IL6 (protein) |36

Terminal ileum TNFa (protein) | 3¢

Terminal ileum IFNB (mRNA) | 136

Terminal ileum TNFa (mRNA) |36

CpG-DNA lleal IL6 (MRNA) |3°
Other interventions
Ginger Intestinal IL1B (protein) | 12!

Intestinal IL6 (protein) |12

Intestinal TNFa (protein) | 12!

Intestinal MPO (protein) |12
Fennel seed extracts Intestinal IL6 (protein) | 122

Intestinal TNFa (protein) | 122

Intestinal MPO (protein) |22
Bovine milk exosomes Distal ileal MPO (protein) | 118
Human milk exosomes lleal IL6 (mMRNA) |19

lleal MPO (protein) |!1°
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Table 2.6 (continued)

Amniotic fluid lleal CXCL2 (mRNA) |53
lleal CXCL5 (mRNA) | &3
lleal CCL2 (MRNA) |63
lleal CCLS (mRNA) |63
lleal IFNy (mRNA) |53
Distal small intestinal IFNy (mRNA) | 123
Distal small intestinal IL1a (mRNA) |23
Distal small intestinal TNFa (mRNA) | 123
Middle small intestinal IL1a (mRNA) |12
Middle small intestinal TNFa (mRNA) |23
Middle small intestinal IL6 (mMRNA) |12
Middle small intestinal IL8 (mMRNA) |12
Curcumin Intestinal IL1B (protein) |14
Intestinal IL6 (protein) | 124
Intestinal IL18 (protein) | 124
Intestinal TNFa (protein) | 124
Intestinal TLR4 (protein) | 124
Intestinal SIRT1 (protein) 1124
Intestinal NRF2 (protein) 1124
Intestinal TLR4 (mRNA) | 124
Intestinal SIRT1 (mMRNA) 1124
Intestinal NRF2 (mRNA) 1124
Surfactant protein A lleal IL1B (protein) |80
lleal TNFa (protein) |80
lleal IFNY (protein) | &
lleal TLR4 (protein) |8
Human B-defensin-3 lleal TNFa (mRNA) |8
lleal IL6 (mRNA) |8t
lleal IL10 (MRNA) |8
Berberine lleal TLR4 (protein) |7°
lleal IL6 (protein) |7°
lleal IL10 (protein) |7°
lleal TLR4 (mRNA) |7
lleal NFkB (mRNA) |7°
lleal TNFa (mRNA) |7°
Astragaloside IV Distal ileal TNFa (mRNA) | 126
Distal ileal IL1B (mRNA) | 126
Distal ileal IL6 (mRNA) | 126
Distal ileal NFkB p65 (mRNA) | 126
Distal ileal MPO (protein) | 126
Distal ileal p-NFkB p65/ NFkB p65 (protein) | 126
Distal ileal p-1kBa/ IkBa (protein) |26
Distal ileal p-IkBa (protein) | 126
Distal ileal p-NFkB p65 (protein)|12¢
Distal ileal NFkpB p65 (protein) |26
Distal ileal IkBa (protein) 1126

1 depicts an increase, | depicts a decrease; PUFA, polyunsaturated fatty acids; AA, arachidonic acid; DHA,
docosahexaenoic acid; EPA, eicosapentaenoic acid; BCFA, branched chain fatty acids; MFGM, milk fat globule
membrane; MPL, milk polar lipids; HMO, human milk oligosaccharides; 2'-FL, 2'-fucosyllactose; 6'-SL, 6'-
sialyllactose; GOS, galacto-oligosaccharides; FOS, fructo-oligosaccharides; GD3, ganglioside D3; IAP, intestinal
alkaline phosphatase; EGF, epidermal growth factor; HB-EGF, hemoglobin-binding EGF-like growth factor;
HGF, hepatocyte growth factor; TGF-B1, transforming growth factor B1; IGF1, insulin-like growth factor 1;
ATRA, all-trans-retinoic acid.
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Other enteral feeding interventions

Finally, several other food components have been linked to immune modulatory effects
within the context of NEC. Ginger intake by rats with NEC reduces intestinal protein
concentrations of IL1B, IL6, TNFa and myeloperoxidase (MPO)'?!. Enteral administration of
fennel seed extracts reduces intestinal protein concentrations of MPO, TNFa and IL6%2.
Bovine milk exosomes administered through gavage normalized terminal ileum protein
expression of MPO in NEC mice!®. Both native and pasteurized exosomes from human
breast milk were able to reduce distal ileum IL6 mRNA levels and MPO activity (MPO protein
levels) in a mouse NEC model**®. Addition of rat amniotic fluid to formula feeding reduced
ileal mRNA expression of the chemokines C-X-C motif chemokine 2 (CXCL2), CXCL5, CCL2,
CCL5 and the pro-inflammatory cytokine IFNy in rats that developed NEC®3. In a preterm pig
NEC model, enteral treatment with amniotic fluid reduced the distal small intestinal mRNA
expression of IFNy, IL1a and TNFa and middle small intestinal mRNA expression of IL1a,
TNFa, IL6 and IL8 compared to formula fed pigs that developed NEC'?3. Oral administration
of curcumin dose dependently reduced intestinal protein levels of IL1B, IL6, IL1, TNFa and
protein and mRNA levels of TLR4 while increasing protein and mRNA levels of SIRT1 and
nuclear factor erythroid 2-related factor 2 (NRF2)*?%. In a rat NEC model, addition of
surfactant protein A to formula feeding reduced ileal IL13, TNFa and TLR4 protein levels, but
did not affect ileal IFNY concentrations®. Administration of human B-defensin-3 in a rat NEC
model reduced ileal mRNA expression of TNFa, IL6 and IL10%. Enteral berberine reduced
ileal protein concentrations of TLR4, IL6 and IL10 and reduced mRNA levels of TLR4, NFkf
and TNFa’°. Finally, enteral administration of astragaloside IV, a flavonoid from the plant
Astragalus membranaceaus dose dependently decreased mRNA levels of TNFa, IL6, IL13 and
NFkB p65, decreased MPO protein levels and decreased the phosphorylation rate of NFk
p65 and that of IkBa in the distal ileum of NEC protocol exposed rats!?®,
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Table 2.7 Effect of enteral feeding interventions that reduce systemic inflammation in experimental

animal models of NEC.

Enteral Feeding Intervention

Effect on Systemic Inflammation (Compared to NEC Protocol
Exposure without Feeding Intervention)

Carbohydrate/sugar-based
interventions

HMO
Hyaluronan 35 kD

Serum IL8 (protein) | 4988
Plasma TNFa (protein) |%*
Serum CXCL1 (protein) |4
Serum IL12p70 (protein) |
Serum IL6 (protein) | %4
Serum IFNY (protein) |**

Protein/amino acid-based
interventions

IAP

Serum TNFa (protein) | (dose dependent)!62
Serum IL1P (protein) | (dose dependent)®?
Serum IL6 (protein) | (dose dependent)?62

Hormone/growth factor/
vitamin-based interventions

TGF-B

Serum IL6 (protein) |4
Serum IFNY (protein) |%*

Probiotic interventions

Bacteroides fragilis ZY-312

Serum TNFa (protein) |13
Serum IFNY (protein) |13
Serum IL10 (protein) 1113

Other interventions

Berberine

Human B-defensin-3
Astragaloside IV

Serum IL6 (protein) |7°
serum IL10 (protein) |7°
Serum TNFa (protein) |8
Serum TNFa (protein) | 126

Serum IL6 (protein) | 126
serum IL1B (protein) |26

1 depicts an increase, | depicts a decrease; HMO, human milk oligosaccharides; IAP, intestinal alkaline
phosphatase; TGF-B, transforming growth factor B.

NEC pathophysiology: loss of intestinal barrier function

The intestinal barrier consists of several parts that together protect the host against luminal
microbiota and their toxins, while preserving the capacity to absorb nutrients®3. It is formed
by a biofilm of commensal bacteria, a mucus barrier, antimicrobial peptides (AMPs)
secreted by enterocytes and Paneth cells, secretory IgA released by plasma cells and
intestinal epithelial cells that are interconnected by an apical junction complex containing
adherens junctions, desmosomes and tight junctions (TJ)'®3. TJ regulate paracellular
permeability and consist amongst others of claudins, occludin, junctional adhesion
molecules (JAM) and zonulae occludens (ZO) proteinsi®. Importantly, regulation of
paracellular permeability by TJ proteins is a complex process, in which some proteins reduce
permeability (such as occludin) while others promote permeability (such as claudin-2)64165,
In premature infants, several components of the intestinal barrier are still immature
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predisposing them to NEC development®%. During NEC, these components are further
impaired, resulting in a defective barrier function. The mucus barrier is affected during NEC;
in severely damaged regions of human NEC biopsies fewer goblet cells are present®”168
whereas in mildly injured regions similar or even increased numbers of goblet cells are
observed®®’. In addition, reduced numbers of Paneth cells have been described in human
NEC!67168 and increased mRNA expression of defensin A5 and A6, an unaffected protein
expression of defensin A5%%° and decreased protein expression of defensin A6'°. In fecal
samples, the percentage of intestinal bacteria bound by IgA negatively correlates with NEC
development®’™. In biopsies from infants with NEC, transepithelial electrical resistance was
lower and flux of mannitol was higher, indicating increased intestinal permeability
compared to controls'’2. Reported alterations of apical junction complex proteins in human
NEC specimen include a reduced mRNA expression of occludin'’>173, claudin-4173, vinculin’3
and ZO-1'73, reduced immunoreactivity of occludin and ZO-1 in jejunum and ileum?’3,
increased immunoreactivity for claudin-2 in both colon and small intestine!!® and an
increased protein expression and internalization of claudin-2'74. Of note, one study did not
find differences in expression or distribution of occludin and ZO-1?6.

Enteral feeding and loss of intestinal barrier function in animal models of NEC

Many enteral feeding interventions have been studied in the context of NEC induced
intestinal barrier loss (Table 2.8). Often, both structural (such as TJ expression and goblet
cell counts) and functional read-outs were studied.

Fat-based feeding interventions

PUFA is the only fat-based feeding intervention that has been studied in relation to
intestinal barrier function in NEC. Enteral treatment with PUFA (AA and DHA) reduced
endotoxemia, as a read-out for barrier function loss, after 48 h in a rat NEC model, an effect
that was interestingly abolished by additional supplementation with nucleotides®. Enteral
supplementation of DHA in a rat NEC model resulted in a less permeable mucus barrier,
reflected by reduced effective diffusivity of amine and carboxyl modified particles, less
linear movements of Escherichia coli through intestinal mucus and reduced Escherichia coli
movement speed through intestinal mucus3!. Mucus contained less sialic acid upon DHA
administration, but mucus structure, analysed with confocal imaging and scanning electron
microscopy (SEM), was hardly altered by DHA administration?3..

Carbohydrate or sugar-based feeding interventions

Secondly, carbohydrate or sugar-based dietary interventions have been studied. In mice,
hyaluronan 35 kD in both a low (15 mg/kg) and high (30 mg/kg) dose prevented NEC
induced increase in gut permeability, measured with oral administration of fluorescein
isothiocyanate (FITC)-labelled dextran 4 kD and in the higher dose also reduced
bacteraemia®. In addition, hyaluronan 35 kD treatment increased the expression of the TJ
proteins occludin, claudin-2, -3 and -4 and ZO-1 both in control and NEC protocol treated
animals and the localization of occludin and claudin-3 were normalized in these animals®.
NEC induced increase in paracellular translocation of FITC-labelled dextran was reduced by
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enteral HMO administration in a murine NEC model®. In addition, HMO administration
normalizes the number of goblet cells in the intestinal villi (mucin 2 (Muc2) positive cells)
that is decreased by NEC protocol exposure3®®® and tended to increase the mRNA
expression of Muc2 and trefoil factor 3 (TFF3) in NEC protocol exposed mice3. Interestingly,
the effect of enteral HMO treatment on goblet cell numbers was abolished in the presence
of an inhibitor of the ER chaperone protein PDI, suggesting a mechanism behind the
protective effects of HMO administration could be induction of the unfolded protein
response (UPR)3%. In a preterm pig model of NEC, enrichment of formula feeding with a
mixture of four HMO did not prevent small intestinal adhesion and tissue invasion of
bacteria measured with fluorescence in situ hybridization staining and did not change small
intestinal mRNA expression of mucin 1 (Muc1) and Muc234,

Protein or amino acid-based feeding interventions

Lactoferrin, lysozyme, IAP and lactadherin are the protein/amino acid-based enteral feeding
interventions that have been studied in relation to barrier function in experimental models
of NEC. In a preterm pig NEC model, enteral bovine lactoferrin administration was
associated with increased intestinal permeability, as demonstrated by an increased
lactulose mannitol ratio following a dual sugar absorption test®. Enteral supplementation of
lysozyme in a rat NEC model resulted in a less permeable mucus barrier, as reflected by
reduced effective diffusivity of amine and carboxyl modified particles, less linear
movements of E. coli through intestinal mucus and reduced E. coli movement speed
through intestinal mucus®®!. In addition, lysozyme supplementation lowered the amount of
sialic acid in the intestinal mucus and was associated with an altered mucus structure
analysed with confocal imaging and SEM*3. Ex-vivo measurement of ileal barrier function
with FITC-labelled dextran 10 kD showed enteral IAP, both in low and a high dose,
prevented an increased intestinal permeability in a rat NEC model'®. Furthermore, protein
expression of claudin-1 decreased and protein expression of claudin-3 increased with IAP
administration, while occludin and ZO-1 or the mRNA expression of these proteins remained
unaltered!®®. Another study using enteral IAP reported reduced plasma endotoxemia at
higher, but not at a low dose'®. Lactadherin supplementation in a rat NEC model reduced
leakage of FITC-labelled dextran from the intestinal lumen into the blood®!. Furthermore,
enteral lactadherin administration reduced NEC induced disruption of cell junctions,
improved anchoring of TJ complexes and reduces the space between adjacent cells, as was
observed with transmission electron microscopy®l. Enteral lactadherin prevented NEC
induced increase of mRNA levels for claudin-3 and Junctional Adhesion Molecule A (JAM-A)
and the protein levels of claudin-3, JAM-A and E-cadherin®.. In addition, it administration
changed localization of claudin-3 towards the cell membranes and along the crypt-villus
junction, which was also seen in the dam fed control group®'. Localization of occludin was
also normalized by lactadherin treatment, as in the control group it was predominantly
expressed at the cell membranes along the villus. E-cadherin localization of E-cadherin was
also changed by lactadherin treatment®!. No differences in JAM-A localization were found in
NEC or lactadherin supplementation compared to controls>..
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Hormone, growth factor or vitamin-based feeding interventions

Various hormone and growth factor-based enteral feeding interventions have been shown
to improve intestinal barrier function in experimental models of NEC. Rat EGF reduced
paracellular intestinal permeability, measured with blood levels and kidney levels of
[*H]lactulose after oral administration®¥’. Transcellular permeability was not affected by the
NEC protocol or EGF treatment®?’. In addition, ileal mRNA and protein levels of occludin and
claudin-3 and jejunum mMRNA and protein levels of claudin-3 were reduced by EGF
treatment to dam fed control levels and occludin and claudin-3 in the ileum were
redistributed towards the apical and basolateral membranes along the crypt-villus axis
contributing to a functional TJ barrier'¥. JAM-A and ZO-1 were more markedly/sharply
expressed on immunofluorescence pictures following oral recombinant EGF from soybean
administration, probably indicating better incorporation in TJ complexes of these
proteins®. Enteral EGF treatment of NEC protocol exposed mice also significantly increased
the number of goblet cells (Muc2) in the ileum and thickened the villus mucus layer
compared to both NEC protocol exposed and control mice'¥. In addition, ileal mMRNA level of
Muc2 was increased by EGF treatment in rat and mouse models of NEC37137, Importantly, an
increased mRNA expression of mouse atonal homolog 1 (Math1), a transcription factor that
is important for secretory cell lineage differentiation, was found in both ileum and jejunum
upon EGF treatment, suggesting enteral EGF promotes goblet cell maturation and
differentiation®®’. Finally, SEM of ileal goblet cells showed normalization of the goblet cell
phenotype that was disturbed in NEC animals by EGF treatment, with mucin droplets on the
outer cell surface®®”. In both rat®®%21% and mouse®-”> NEC models, in which intestinal
permeability was measured by administration of oral 73 kD FITC-labelled dextran, intestinal
permeability was considerably reduced by HB-EGF treatment, both at 48 h6%62.105 72 Kh62105
and 96 h'’> after birth. Enteral HB-EGF administration significantly increased ileal mRNA
levels of Muc2 compared to both NEC protocol exposed and dam fed animals®’. Another
study reported enteral administration of HB-EGF prevented a loss of goblet cells (alcian
blue/periodic acid-Schiff (AB-PAS)) in the jejunum of NEC protocol stressed rats'’®. In
addition, bacterial adherence to intestinal villi in experimental NEC was prevented by
HB-EGF addition to formula feeding in a rat NEC model®®. The effects of enteral
administration of erythropoietin (EPO) on intestinal barrier function in NEC were assessed in
a rat NEC model®®. Paracellular intestinal permeability, measured with a FITC-labelled
dextran 10 kD assay, was almost completely reduced to control levels by enteral EPO
administration®. In addition, EPO administration prevented loss of ZO-1 in the TJ of
histological normal ileal villi from NEC exposed animals. EPO treatment, however, did not
alter claudin-1, claudin-3, E-cadherin or B-catenin protein levels in experimental NEC. It was
shown the effects of EPO on the intestinal barrier function may be PI3k/Akt signaling
pathway related®. Interestingly, in the same study, enteral administration of TGF- failed to
protect the intestinal barrier function and did not activate Akt®®. Administration of IGF1
prevented a decrease in Muc2 protein levels at 24 h in NEC protocol exposed rats and
induced an increase in Muc2 protein level at 72 h compared to control and NEC protocol
exposed animals®®. In addition, IGF1 prevented a NEC protocol decrease in secretory IgA
levels at 72 h, but not at 24 h and 48 h®.
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In contrast to hormones and growth factors, evidence for vitamin driven effects on the
intestinal barrier is scarce; Enteral vitamin A administration increased the intestinal protein
expression of the TJ proteins claudin-1, occludin and ZO-1 in a murine NEC model*'?.

Probiotic feeding interventions

Many probiotic feeding interventions can improve intestinal barrier functions in the context
of NEC. Administration of a Bifidobacterium mixture in a rat NEC model increased ileal
protein and mRNA expression of B defensin 2%, Daily orogastric administration of
Bifidobacterium infantis reduced endotoxemia by 10-fold at 48 h in a rat NEC model. In
contrast, no differences were seen when the intestinal barrier function was assessed with
an oral FITC-labelled dextran assay at 8 h, 24 h or 48 h’>. The authors suggested that
Bifidobacterium infantis may protect TJ, thereby preventing bacterial transfer, whereas
mucosal barrier loss leading to FITC-labelled dextran leakage could be dependent on other
mechanisms such as apoptosis that were not inhibited by Bifidobacterium infantis’. In a
murine NEC model, enteral administration of Bifidobacterium infantis prior to NEC induction
partially prevented internalisation of claudin-4 into the enterocyte cytoplasm and preserved
claudin-4 protein expression, occludin presence at the TJ complex and co-fractionation of
claudins-2 and -4 and the membrane lipid-raft protein caveolin 1. Moreover, in this study,
Bifidobacterium infantis administration reduced intestinal permeability as measured with an
oral FITC-dextran assay''. Bifidobacterium bifidum prevented a NEC induced increase in the
TJ proteins occludin and claudin-3 and normalized the cellular distribution and localization
of these proteins, suggesting enhanced development and formation of functional TJ in a rat
model’. In addition, although protein levels did not change, cellular distribution and
localization of adherence junctions a-catenin, B-catenin and E-cadherin were partially
normalized towards the situation in dam fed animals’®. In the same study, enteral
administration of Bifidobacterium bifidum further reduced the ileal Muc2 mRNA expression
in NEC exposed animals and did not prevent NEC induced reduction of Muc2-positive cells”.
On the other hand, Bifidobacterium bifidum treatment partially prevented NEC induced
increase of mucin 3 (Muc3) mRNA expression. TFF3 was not affected by either NEC or
Bifidobacterium bifidum treatment on mRNA level, but on protein level NEC protocol
exposed animals showed an increase in TFF3-positive cells that was completely prevented
by Bifidobacterium bifidum”. lleal mRNA expression of ZO-1, claudin-1 and occluding were
reduced (normalization towards breast fed controls) by enteral administration of
Bifidobacterium breve M-16V in a rat NEC model''’. Pre-treatment with Bacteroides fragilis
strain ZY-312 before Cronobacter sakazkii induced NEC improves the intestinal barrier
function (FITC-labelled dextran 4 kD assay) and increases the ZO-1 expression compared to
NEC protocol exposed rats that were not pre-treated!!3. In addition, intestinal protein levels
of IgA were increased following Bacteroides fragilis pre-treatment compared to NEC
protocol exposed animals'3. Enteral administration of Lactobacillus reuteri biofilms on
unloaded’, MRS loaded microspheres’, sucrose loaded microspheres’? and maltose loaded
microspheres’?, but not administration of unbound Lactobacillus reuteri’*’?, improved
intestinal barrier function measured by a functional orogastric FITC-dextran assay in a rat
NEC model. Finally, Lactobacillus rhamnosus GG reduced NEC-protocol induced mucosal
infiltration of bacteria following enteral administration?6%.
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Other enteral feeding interventions

Oral supplementation of bovine milk exosomes prevented NEC induced decrease of goblet
cells (AB-PAS, Muc2) in mice''®. The number of cells positive for GRP94, an ER chaperone
protein that has a crucial role in goblet cell maintenance and a co-receptor for Wnt signaling
was reduced in mice exposed to a NEC protocol, however, this was largely prevented by
bovine milk exosome administration!®, In addition, human breast milk exosomes partially
prevented NEC induced reduction of goblet cells (Muc2) and Muc2 mRNA expression upon
enteral administration in a mouse NEC model'’®. Enteral administration of berberine
increased ileal protein levels of Muc2 and secretory IgA”. Finally, enteral human B-defensin-
3 preserved ZO-1 protein expression that was lost by exposure to the NEC inducing protocol
in a rat NEC model®?.

Table 2.8 Effect of enteral feeding interventions that improve intestinal barrier function in
experimental animal models of NEC.

Enteral Feeding Intervention Effect on Intestinal Barrier Function (Compared to NEC Protocol Exposure
without Feeding Intervention)

Fat-based interventions

PUFA Endotoxemia (plasma) |4

DHA lleal effective diffusivity amine modified particles | 13!
lleal effective diffusivity carboxyl modified particles | 13!
lleal linear movements E. coli through intestinal mucus | 13!
lleal movement speed E. coli through intestinal mucus |31
lleal sialic acid content mucus |31
lleal mucus structure (confocal imaging/SEM) =13t

Carbohydrate/sugar-based
interventions
Hyaluronan 35 kD Intestinal permeability (functional orogastric
FITC-dextran assay) |®*
Small intestinal occludin (protein) 194
Small intestinal claudin-4 (protein) 1%
Small intestinal claudin-3 (protein) 1%
Small intestinal claudin-2 (protein) 1%
Small intestinal ZO-1 (protein) 19
Small intestinal occludin localization®*
Small intestinal claudin-3 localization®*
HMO Intestinal permeability (functional orogastric FITC-dextran assay) |38
lleal number Muc2-positive cells 13886
lleal Muc2 (mRNA) 1 (trend)3®
lleal TFF3 (mRNA) 1 (trend)3®
Mixture of four HMOs Small intestinal bacterial adhesion and tissue invasion =134
Small intestinal Mucl (mRNA) =134
Small intestinal Muc2 (mRNA) =134
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Enteral feeding interventions in the prevention of NEC

Protein/amino acid-based
interventions

IAP

Bovine lactoferrin
Lysozyme

Lactadherin

lleal intestinal permeability (ex-vivo FITC-dextran assay) | 103

lleal claudin-1 (protein) |03

lleal claudin-3 (protein) 1103

lleal occludin (protein) =103

lleal ZO-1 (protein) =103

lleal claudin-1 (mRNA) =103

lleal claudin-3 (mRNA) =103

lleal occludin (mRNA) =103

lleal ZO-1 (mRNA) =103

Endotoxemia (plasma) | 6°

Lactulose/mannitol recovery ratio in urine 1 (only in animals with NEC)3®
lleal effective diffusivity amine modified particles | 13!

lleal effective diffusivity carboxyl modified particles | 13!

lleal linear movements e coli through intestinal mucus | 13!

lleal movement speed e coli through intestinal mucus | 13!

lleal sialic acid content mucus |31

lleal mucus structure (confocal imaging/SEM) changed?3!

Intestinal permeability (ex-vivo FITC-dextran assay) |5t

lleal organization of cell junctions, anchoring of the TJ complexes and space
between adjacent Cells improved (transmission electron microscropy)°*
lleal claudin-3 (mRNA) |5t

lleal JAM-A (mRNA) |5t

lleal claudin-3 (protein) |5t

lleal JAM-A (protein) |5t

lleal E-cadherin (protein) |5t

lleal claudin-3 distribution towards cell membranes along crypt-villus junction
(normalization)®*

lleal occludin distribution towards cell membranes along villus (normalization)®*
lleal E-cadherin distribution towards cell membranes of villus and basolateral
region of crypt cells>!

lleal JAM-A distribution =5!

Hormone/growth
factor/vitamin- based
interventions

EGF

Paracellular intestinal permeability (functional orogastric [3H]lactulose assay)
‘L137

Transcellular intestinal permeability (functional orogastric [*H]Jrhamnose assay)
=137

lleal occludin (mRNA) | 137

Jejunal and ileal claudin-3 (mRNA) |37

lleal occludin (protein) |37

Jejunal and ileal claudin-3 (protein) |37

lleal occludin distribution towards apical and basolateral membrane of crypt-
villus axis3”

lleal claudin-3 distribution towards apical and basolateral membrane of crypt-
villus axis3”

lleal number of goblet cells (Muc2 protein) 1137

lleal mucus layer on top villi tips 1137

lleal Muc2 (mRNA) 1137

Jejunal and ileal Math1 (mRNA) 1137

lleal goblet cell phenotype normalized (scanning electron microscopy)*3’
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Table 2.8 (continued)

Enteral Feeding Intervention Effect on Intestinal Barrier Function (Compared to NEC Protocol Exposure

without Feeding Intervention)

Recombinant EGF from
soybean extract
HB-EGF

IGF1

EPO

Vitamin A

lleal ZO-1 more sharply expressed, better incorporation in TJ (IF)04

lleal JAM-A more sharply expressed, better incorporation in TJ (IF)104
Intestinal permeability (functional orogastric FITC-dextran assay) | 5861105175
lleal Muc2 (mRNA) 137

Jejunal goblet cell number (AB/PAS) 1176

lleal bacterial adherence to intestinal villi | (scanning electron microscope)*®
lleal secretory IgA (protein) 1

lleal Muc2 (protein) 1

Intestinal permeability (functional orogastric FITC-dextran assay) | ¢
Intestinal ZO-1 loss from TJ intact villi (protein) | ¢

Intestinal caudin-1 (protein) =%

Intestinal caudin-3 (protein) =%

Intestinal E-cadherin (protein) =5¢

Intestinal B-catenin (protein) =6

Intestinal p-Akt (protein) 166

Intestinal claudin-1 (protein) 111*

Intestinal occludin (protein) 1111

Intestinal ZO-1 (protein) 111!

Probiotic interventions

Bifidobacterium mixture

Bifidobacterium infantis

Bifidobacterium bifidum
OLB6378

lleal B defensin (protein) 111°

lleal B defensin (mMRNA) 1115

Endotoxemia (plasma) |7°

Intestinal permeability (functional orogastric FITC-dextran assay) |16

Small intestinal internalization of claudin-4 in enterocyte cytoplasm (protein)
l116

Small intestinal claudin-4 expression in TJ complex (protein) 1116

Small intestinal occludin expression in TJ complex (protein) 1116

Small intestinal co-fractioning of claudins-2 and -4 and caveolin 1 (protein) 1116
intestinal permeability (functional orogastric FITC-dextran assay) |16

lleal occludin (protein) |73

lleal claudin-3 (protein) |73

lleal occludin distribution towards crypts (normalization)”3

lleal claudin-3 distribution towards crypts and cell membrane (normalization)’?
lleal a-catenin (protein) =73

lleal B-catenin (protein) =73

lleal e-cadherin (protein) =73

lleal a-catenin distribution towards complete villus length and cell membrane
(normalization)”®

lleal B-catenin distribution towards complete villus length except for villi tips
and cell membrane (normalization)”3

lleal e-cadherin distribution towards crypts and cell membrane
(normalization)”®

lleal muc2

(MRNA) |73

lleal Muc3 (mRNA) |73

lleal TFF3 (MRNA) =73

lleal number of goblet cells (Muc2 protein) =73

lleal number of TFF3 positive cells (TFF3 protein) |73
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Table 2.8 (continued)

Bifidobacterium breve M-16V lleal ZO-1 (mRNA) |17
lleal claudin-1 (mRNa) | %7
lleal occludin (mRNA) | 117
Bacteroides fragilis strain ZY- Intestinal permeability (functional orogastric FITC-dextran assay) |3

312 Intestinal ZO-1 (protein) 1113
Intestinal secretory IgA (protein) 1113
Lactobacillus reuteri DSM Intestinal permeability (functional orogastric FITC-dextran assay) =7%72
20016
Lactobacillus reuteri Intestinal permeability (functional orogastric FITC-dextran assay) |”*

biofilm on unloaded
microspheres
Lactobacillus reuteri Intestinal permeability (functional orogastric FITC-dextran assay) |”*
biofilm on MRS loaded
microspheres
Lactobacillus reuteri Intestinal permeability (functional orogastric FITC-dextran assay) |72
biofilm on sucrose loaded
microspheres
Lactobacillus reuteri Intestinal permeability (functional orogastric FITC-dextran assay) |72
biofilm on maltose loaded
microspheres
Lactobacillus Colonic mucosal infiltration of bacteria (EUB338 staining) | 16*
rhamnosus GG
Other interventions
Bovine milk exosomes Distal ileal number of goblet cells (Muc2 protein) 1118
Distal ileal number of goblet cells (AB-PAS) 1118
Distal ileal number of GRP93 positive cells (protein) 1118
Human breast milk exosomes Distal ileal number of goblet cells (Muc2 protein) 111°
Distal ileal Muc2 (mRNA) 1119

Berberine Distal ileal Muc2 (protein) 17°
Distal ileal secretory IgA (protein) 17°
Human B-defensin-3 Terminal ileal ZO-1 (protein) 18!

1 depicts an increase, | depicts a decrease; PUFA, polyunsaturated fatty acids; DHA, docosahexaenoic acid;
HMO, human milk oligosaccharides; IAP, intestinal alkaline phosphatase; EGF, epidermal growth factor; HB-
EGF, hemoglobin-binding EGF-like growth factor; EPO, erythropoietin.

NEC pathophysiology: vascular dysfunction, hypoxia-ischemia and free radical
formation

Intestinal microvasculature alterations, hypoxia, ischemia and oxidative stress (increased
reactive oxygen and nitrogen species (together called ROS)) are important factors
contributing to NEC pathogenesis. In physiological conditions, intestinal vasodilatation
counterbalances effects of vasoconstriction, thereby facilitating appropriate intestinal blood
supply®”’. During NEC, the balance between vasodilatation and vasoconstriction is disturbed,
leading to hypoxia, ischemia and ROS formation. In premature neonates, increased vascular
resistance in the superior mesenteric artery (measured with Doppler flow velocimetry) was
associated with an increased risk of developing NEC'78. An important intestinal vasodilator
that has been studied intensively in the context of NEC is NO. NO is synthesized from
arginine by NOS. NOS has three isoforms of which inducible NOS (iNOS) and endothelial NOS
(eNOS) are of importance for NEC pathogenesis. eNOS is naturally expressed in the
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intestinal vasculature and provides background levels of NO'”. In tissue from infants with
NEC it was found that although eNOS protein expression was not reduced during NEC, eNOS
function was hampered!”. In contrast to the protective effects of low levels of NO derived
from eNOS, excessive NO production by iINOS seems to contribute to NEC
pathogenesist’’18, iNOS has been observed to be upregulated in the enterocytes of infants
with NEC'™'. NO or reactive species derived from NO have been implied to suppress
intestinal oxygen consumption®®? and inhibit enterocyte proliferation and migration””/1%,
Moreover, they increase gut barrier permeability by affecting TJ and gap junctions or
inducing enterocyte apoptosis and necrosis’”18%183 |n addition to changes in vasodilators,
higher concentrations of the potent vasoconstrictor endothelin-1 (ET-1) and
vasoconstriction are found in diseased parts of the intestine resected from NEC patients
when compared with relatively healthy parts of the same resected gut*®*. Of importance,
several inflammatory mediators, have been shown to influence vascular tone via
vasoconstrictors and vasodilators; for instance, PAF increases ET-1 mediated
vasoconstriction and thereby contributes to impaired blood flow in NECY”".

Enteral feeding and vascular dysfunction, hypoxia-ischemia and free radical
formation in animal models of NEC

Several studies have described the effect of enteral feeding interventions on either ROS,
iNOS expression, antioxidant capacity or intestinal vasculature in animal models of NEC
(Table 2.9).

Fat-based feeding interventions

Fat-based dietary interventions may reduce oxidative stress in the context of NEC. iNOS
MRNA expression was not altered by enteral administration of PUFA with or without
nucleotides*. However, pre-digested or very low-fat formula feeding reduced intestinal lipid
accumulation and accumulation of ROS in the distal ileum of NEC-protocol exposed mice®>.
In addition, both diets reduced intestinal malonaldehyde (MDA) protein levels, indicating
reduced lipid oxidation®. Enteral administration of MFGM in a rat NEC model lowered ileum
iNOS mRNA expression and MDA protein levels and prevented a NEC induced decrease of
antioxidant enzyme superoxide dismutase (SOD) protein levels®.

Carbohydrate or sugar-based feeding interventions

HMO have been shown to positively influence blood flow and reduce oxidative stress in
experimental NEC. Enteral administration of the HMO 2'-FL increased mesenteric blood flow
as measured with mesenteric micro-angiography to the levels of breast-fed mice in a murine
NEC model®. This effect was mediated through preserved eNOS expression and function®!
and reduced intestinal iINOS mRNA expression®!. In both a murine and pig model of NEC, 2'-
FL, 6’-SL and a combination of 2'-FL and 6’-SL reduced intestinal 3'-nitrotyrosine levels, a
marker for nitrogen free radical species, indicating reduced oxidative stress®?. GOS/FOS
administration increased terminal ileum mRNA expression of the anti-oxidant enzymes
SOD-1%%, SOD-33¢, glutathione peroxidase (GSH-Px)-1'3°>, GSH-Px-7'3> and catalase (CAT)!%°
in a rat NEC model.
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Protein or amino acid-based feeding interventions

Mainly amino acid-based feeding interventions have been shown to influence oxidative
stress. Enteral supplementation of both L-carnitine and L-arginine normalized the level of
thiobarbituric acid reactive substances, suggesting reduced lipid peroxidation and/or
increased antioxidant activity in a murine NEC model®. However, antioxidant enzymes
tissue SOD and CAT activity was not altered by either L-carnitine or L-arginine
supplementation®. Although L-arginine supplementation also increased nitrate levels
(stable metabolite of NO), this was not statistically significant compared to untreated NEC
protocol exposed animals®. Intestinal hypoxia, as evaluated by pimonidazole staining, was
reduced by enteral supplementation of arginine in a murine NEC model®®. This effect was
probably mediated by improved blood flow following increased vasodilatation, as arginine
supplementation to formula increased postprandial arterial diameter in the intestinal
microcirculation®®. Addition of N-acetylcysteine to standard formula reduced both ROS
levels and lipid peroxidation (MDA) in the terminal ileum of NEC-protocol exposed mice®.
Glutamine administration did not reduce terminal ileum nitric oxide production in a rat NEC
model®®. Enteral IAP administration inhibits ileal INOS mRNA expression, both in high and
lower dosages, in a rat NEC model*®°. In addition, enteral IAP dose dependently decreased
ileal levels of nitrogen free radical species®.

Hormone or growth factor-based feeding interventions

Soybean-derived recombinant human EGF reduced ileal iNOS mRNA levels upon enteral
supplementation in a rat NEC model*®®. An elegant study by Yu et al. in a rat NEC model
observed that enteral HB-EGF administration preserved villus microvascular blood flow,
prevented NEC induced changes in intestinal villus microvascular structure and significantly
increased submucosal intestinal blood flow'%. In addition, oral administration of the
hormone relaxin increases ileal blood flow measured by laser Doppler flowmetry in a rat
NEC model. In a mouse NEC model, enteral vitamin D administration decreased MDA
protein expression (reduced lipid oxidation) and increased GSH-Px protein expression!?.

Probiotic feeding interventions

Several probiotic interventions effectively reduce oxidative stress in experimental NEC.
Lactobacillus rhamnosus supplementation (both alive and dead) as well as supplementation
of Lactobacillus rhamnosus isolated microbial DNA reduced terminal ileum mRNA
expression of iNOS in a murine NEC model and in a premature piglet NEC model®. This
effect is likely mediated through TLR9 signaling, as it was not observed in TLR9 knock-down
animals®. Also oral administration of CpG-DNA, a ligand of TLR9 signaling, reduced terminal
ileum iNOS mRNA levels in mice®. Bacteroides fragilis strain ZY-312 prevents Cronobacter
sakazakii induced iNOS induction in a rat NEC model'*3. Lactobacillus reuteri DSM17938
administration increased SOD activity, SOD inhibition rate and glutathione (GSH) protein
levels while decreasing glutathione disulphide (GSSG) protein levels, MDA protein levels and
the GSSG/GSH ratio, suggesting improved antioxidant capacity and reduced oxidative
stress’. In a rat NEC model, enteral administration of Saccharomyces boulardii increased
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the mRNA expression of SOD-1'%, SOD-3%36, GSH-Px-1'3°, GSH-Px-3'3°, GSH-Px-4'%>, GHS-Px-
7%3> and CAT®> in the terminal ileum.

Other enteral feeding interventions

Oral treatment with ginger increased intestinal protein levels of the antioxidant enzymes
SOD and GSH-Px and reduced protein levels of the oxidative stress markers MDA and
xanthine oxidase (XO)™. Intestinal MDA protein levels were also significantly reduced by
oral sesamol treatment, concomitant with increased SOD protein levels'?®. In addition, levels
of the GSH-Px were increased, without reaching statistically significance'?®. Enteral
treatment with fennel seed extracts in a rat model of NEC decreased the intestinal total
oxidant status, the oxidative stress index, the amount of advanced oxidation protein
products and the concentration of lipid hydroperoxide and 8-hydroxydeoxyguanosine
(oxidized guanine, 8-OhdG), while increasing the total antioxidant status, indicating reduced
oxidative stress!??. Addition of rat amniotic fluid to formula feeding reduced intestinal
mMRNA levels of iNOS in a rat NEC model®®. Enteral administration of amniotic fluid also
reduced distal small intestinal INOS mRNA levels in a preterm pig model of NEC'?® and
terminal ileum iNOS protein and mRNA expression in a mouse model of NEC*. Interestingly,
these effects may be EGFR signaling mediated, as the effects on iINOS expression were
largely lost with co-administration of the EGFR inhibitor cetuximab or with amniotic fluid
depleted of EGF*. Berberine administration reduced ileal iINOS mRNA expression in a rat
NEC model”™. In addition, in a rat NEC model, oral administration of the flavonoid
astragaloside IV dose dependently increased distal ileum protein concentrations of GSH and
SOD, while decreasing protein levels of MDA, indicating reduction of oxidative stress by
astragaloside V%%, Finally, enteral supplementation with resveratrol, a polyphenol
produced by plants, prevented a NEC induced increase in ileal iNOS protein expression in a
rat NEC model'?’,

Table 2.9 Effect of enteral feeding interventions that reduce vascular dysfunction, hypoxia and free
radical formation in experimental animal models of NEC.

Enteral Feeding Intervention Effect on Vascular Dysfunction, Hypoxia and Free Radical Formation
(Compared to NEC Protocol Exposure without Feeding Intervention)

Fat-based interventions

PUFA Intestinal INOS (mRNA) =%

Pre-digested fat (less long lleal ROS accumulation | (DHE staining)®

chain triacylglycerol, not lleal MDA (protein) |8

dependent on intestinal lipases

Very low-fat diet lleal ROS accumulation | (DHE staining)®
lleal MDA (protein) |8

MFGM lleal iNOS (MRNA) |

Intestinal MDA (protein) |48
Intestinal SOD (protein) 148

Carbohydrate/sugar-based

interventions

2'-FL Mesenteric blood flow 1 (mesenteric micro-angiography) (eNOS dependent)®!
Intestinal INOS (mRNA) |1
Small intestinal free nitrogen species, 3-nitrotyrosine (protein) |2

6'-SL Small intestinal free nitrogen species, 3-nitrotyrosine (protein) |2

2'-FL + 6'-SL Small intestinal free nitrogen species, 3-nitrotyrosine (protein) |2
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Enteral feeding interventions in the prevention of NEC

GOS/FOS

Terminal ileum SOD-1 (mRNA) 1135
Terminal ileum SOD-3 (mRNA) 1136
Terminal ileum GSH-Px-1 1135
Terminal ileum GSH-Px-7 1135
Terminal ileum CAT 113

Protein/amino acid-based
interventions

L-Arginine

L-Carnitine

Glutamine
IAP

N-Acetylcysteine

Intestinal thiobarbituric acid reactive substances |*°
Intestinal SOD (protein) =*°

Intestinal CAT (protein) =%°

Intestinal nitrate (stable metabolite of NO) 1 (NS)*°
Intestinal hypoxia | (pimonidazole)®®

Postprandial arterial diameter intestinal microcirculation 1%
Intestinal thiobarbituric acid reactive substances |*°
Intestinal SOD (protein) =%°

Intestinal CAT (protein) =%°

Terminal ileal NO production =%

lleal iNOS (MMA) | 160

lleal free nitrogen species, 3-nitrotyrosine (protein) | 16°
lleal ROS accumulation | (DHE staining)®

lleal MDA (protein) |%

Hormone/growth factor /
Vitamin-based interventions

Recombinant
EGF from soybean extract
HB-EGF

Relaxin
Vitamin D

ileal INOS (MRNA) | 104

Villus microvascular blood flow 1 (angiography)®

Villus microvascular structure preserved (angiography, scanning electron
microscopy)1%®

Submucosal intestinal blood flow 1 (angiography)®

lleal blood flow 1 (laser Doppler flowmetry)©7

Intestinal MDA (protein) | 112

Intestinal GSH-Px (protein) 1112

Probiotic interventions

Bacteroides fragilis strain ZY-
312

Lactobacillus rhamnosus
HNOO1 (alive)

Lactobacillus rhamnosus
HNOO1 (dead, UV-radiated)
Lactobacillus rhamnosus
HNOO1 isolated microbial DNA
CpG-DNA

Lactobacillus reuteri DSM
17938

Intestinal iINOS (protein) | 113

Terminal ileal iNOS (mRNA) | (TLR9 dependent)3®
Terminal ileal iNOS (mRNA) |3°

Terminal ileal iNOS (mRNA) |3°

Terminal ileal iNOS (mRNA) |39

Terminal ileal SOD activity (U/mg protein) 17°
Terminal ileal SOD inhibition rate (%) 17°
Terminal ileal GSSG concentration (protein) |7°
Terminal ileal GSH concentration (protein) 17°
Terminal ileal GSSG/GSH ratio (protein) | 7°
Terminal ileal MDA concentration (protein) |7°
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Table 2.9 (continued)

Enteral Feeding Intervention Effect on Vascular Dysfunction, Hypoxia and Free Radical Formation

(Compared to NEC Protocol Exposure without Feeding Intervention)
Saccharomyces Boulardii Terminal ileal SOD-1 (mRNA) 1135

Terminal ileal SOD-3 (mRNA) 1136

Terminal ileal GSH-Px-1 113%

Terminal ileal GSH-Px-3 1135

Terminal ileal GSH-Px-4 1135

Terminal ileal GSH-Px-7 113%

Terminal ileal CAT 113%

Other interventions
Ginger Intestinal SOD (protein) 112
Intestinal GSH-Px (protein) 112*
Intestinal MDA (protein) |12
Intestinal XO (protein) |12
Sesamol Intestinal SOD (protein) 112°
Intestinal GSH-Px (protein) 1 (NS)2°
Intestinal MDA (protein) | 12°
Fennel seed extracts Intestinal total oxidant status (umol H.0: equivalent/g protein) |22

Intestinal oxidative stress index (total oxidant status/total antioxidant status)
llZZ

intestinal advanced oxidation protein products (ng/mg protein) |12
intestinal lipid hydroperoxide (nmol/L) |12
intestinal 8-hydroxydeoxyguanosine (8-OhdG, ng/mL) |22
intestinal total antioxidant status (mmol Trolox equivalent/g protein) 1122
Amniotic fluid intestinal INOS (mRNA) |3
distal small intestinal/terminal ileum iNOS (mRNA) | 40123
terminal ileum iNOS (protein) |%°
Berberine ileal INOS (mRNA) |7°
Astragaloside IV distal ileum GSH (protein) 1126
distal ileum SOD (protein) 1126
distal ileum MDA (protein) | 126
Resveratrol ileum iNOS (protein) |27

1 depicts an increase, | depicts a decrease; PUFA, polyunsaturated fatty acids; MFGM, milk fat globule
membrane; 2'-FL, 2'-fucosyllactose; 6'-SL, 6'-sialyllactose; GOS: galacto-oligosaccharides; FOS, fructo-
oligosaccharides; IAP, intestinal alkaline phosphatase; EGF, epidermal growth factor; HB-EGF, hemoglobin-
binding EGF-like growth factor.

NEC pathophysiology: intestinal epithelial cell death and proliferation

Several forms of cell death can be distinguished in the intestinal epithelium including
apoptosis, necrosis and necroptosis'® and all of these mechanisms have been described in
NEC pathophysiology!®'18. Whereas necrosis is uncontrolled and comes with collateral
damage, both apoptosis and necroptosis are tightly regulated by several cellular
pathways®®. Increased apoptosis is detected in the intestinal epithelium of NEC patients;
increased terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining
was observed in villus enterocytes in NEC biopsies'®! and mRNA an protein expression of
caspase 3 and Bax were found to be increased in ileum of patients with NEC compared to
controls®®’. In addition, the mRNA expression of the anti-apoptotic Bcl2 was decreased®®’.
NEC is also associated with intestinal upregulated mRNA expression of the three major
necroptosis pathway genes and mRNA expression of these genes positively correlates with

78



Enteral feeding interventions in the prevention of NEC

disease severity'®®, Also on protein level increased necroptosis is detected in specimen from
infants with NEC*®®, In experimental NEC (murine model), both pharmacological and genetic
inhibition of necroptosis decreased intestinal epithelial cell death and mucosal
inflammation, suggesting a role for necroptosis in NEC pathogenesis'®. Last, autophagy, is
observed at higher levels in NEC tissue compared to control tissue>>#. Autophagy is the
transfer of cytoplasmic components, organelles or infectious agents to lysosomes for
degradation'®. Although this is in principle a cell survival mechanism, it ultimately lead to
cell death'®®. Another mechanism that may contribute to cell death in NEC is intestinal
endoplasmic reticulum (ER) stress. In tissue of a subset of patients with acute NEC splicing of
the ER stress related protein X-box binding protein 1 (XBP1) was detected with concomitant
increased mMRNA and protein expression of ER stress markers binding immunoglobulin
protein (BiP) and C/EBP homologous protein (CHOP), suggesting increased ER stress'®.
Importantly, ER stress correlated with increased morphological damage and intestinal
inflammation and worse surgical outcome®. Finally, increased mRNA expression of spliced
XBP1 is reported in combination with increased BiP protein expression and increased
apoptosis in the crypts in NEC patients compared to controls®®..

Besides cell death, intestinal epithelial proliferation is changed during NEC. In gut
samples from infants with NEC, reduced proliferation was observed in intestinal crypts!®®. In
contrast, a study by Schaart et al. found increased proliferation in both severely and mildly
damaged small intestine and colon of infants with NEC*, indicating that NEC severity might
be an important determinant herein. Vieten et al. reported loss of villus length in the small
bowel of NEC patients, concomitant with an increased crypt depth suggesting hyperplasia
and increased numbers of proliferating cells in the remaining viable crypts in both small
intestine and colon. This suggests a compensatory proliferative response is triggered in NEC,
that is insufficient to compensate the rapid mucosal damage in NEC2. Finally, loss of
leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) positive stem cells was
observed in human intestine resected from NEC patients compared to intestine resected
from an aged-matched control infant with ileal atresia'’®.

Enteral feeding and intestinal epithelial cell death and proliferation in animal
models of NEC

An overview of enteral feeding interventions with cell death or proliferation as read-out is
presented in Table 2.10.

Fat-based feeding interventions

Both PUFA and MPL were studied in relation to cell death in experimental NEC. Pre-
treatment of rats with fish oil (rich in the PUFA DHA and EPA) reduced intestinal protein
levels of BiP and the pro-apoptotic protein caspase 12, indicating reduced intestinal ER
stress and potential protection against apoptosis®®. However, in another study, enteral
supplementation of PUFA did not reduce the level of intestinal epithelial apoptosis in
experimental NEC®. In contrast, enteral administration of MPL, which are abundantly
present in MFGM, did dose dependently decrease intestinal epithelial cell apoptosis
indicated by decreased expression of the pro-apoptotic protein Bax, increased expression of

79



Chapter 2

the anti-apoptotic protein Bcl-2 and inhibited caspase activity (expression of caspase 9 and
caspase 3 and TUNEL)®*. Formula feeding supplemented with pomegranate seed oil
normalized mean ileal villus length of NEC protocol exposed rats and increased ileal
epithelial cell proliferation®’.

Carbohydrate or sugar based feeding interventions

HMO have been shown to promote intestinal proliferation and reduce apoptosis in the
context of NEC. In a mouse NEC model, orogastric administration of HMO restored the
amount of cells positive for the proliferation marker Ki67 in the ileum?>868 whereas this
effect was not seen with supplementation with infant formula oligosaccharides®. In
addition, loss of Sox9-positive stem cells was prevented by HMO treatment, but not by
infant formula oligosaccharides®. In a preterm pig model of NEC, treatment with a mixture
of four HMO did not change small intestinal mMRNA expression of proliferating cell nuclear
antigen (PCNA)™4. Enteral administration of HMO reduced apoptosis (TUNEL)®® and
decreased ileal cleaved caspase-3 and hypoxia-inducible factor 1a (HIF1a) protein levels®® in
a murine NEC model. Both in a pig and murine NEC model, enteral administration of 2'-FL,
6'-SL and a combination of the two reduced intestinal epithelial apoptosis®?.

Protein or amino acid-based feeding interventions

Enteral administration of glutamine in a mouse model of NEC decreases intestinal epithelial
cell apoptosis (TUNEL assay) and decreases expression of pro-apoptotic proteins Bax,
caspase 9 and caspase 3 while increasing Bcl-2 protein expression (anti-apoptotic)®4. In
addition, enteral glutamine lowered caspase 3 protein expression in jejunum, ileum and
colon in a rat model of NEC*’. The potential harmful effects of nutritional interventions are
demonstrated by a study of high-dose (10 g/L) lactoferrin supplementation in a preterm pig
model of NEC. In this study, lactoferrin supplementation decreased villus length/crypt depth
ratio, suggesting decreased proliferation or increased cell death in the intestinal
epithelium3®, In addition, the Bax/Bcl-2 ratio and HIF1la protein levels were elevated by
supplementation of formula with lactoferrin, whereas protein levels of pro-caspase 3 and
cleaved caspase 3 were not affected®. These detrimental effects are likely caused by the
high dose of the lactoferrin used, as in in vitro experiments with cultured intestinal
epithelial cells a high dose, but not lower doses, of bovine lactoferrin upregulated the
expression of pro-apoptotic proteins and HIFla signaling pathway proteins and
downregulated that of anti-apoptotic proteins and proteins related to cell proliferation®. In
another study using a mouse model of NEC, enteral recombinant lactoferrin administration
(6 g/L) prevented a NEC protocol induced decrease in Ki67 immunoreactivity, preserved
beta-catenin immunoreactivity and restored LGR5 mRNA levels in the distal ileum?o,
Together, these studies demonstrate that the dose of the nutritional intervention studied is
important and should be taken into account when designing a clinical trial.

Hormone, growth factor or vitamin-based feeding interventions

Effects of hormones and growth factors on intestinal epithelial proliferation and cell death
have been studied extensively. Enteral EGF increased intestinal villus length through
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hyperplasia, but had no effect on intestinal epithelial proliferation as measured by PCNA
immunoreactivity in experimental NEC'3. In addition, EGF decreased levels of Bax'%,
increased levels of Bcl-2'%% and decreased the Bax-to-Bcl-2 ratio both on mRNA®* and
protein level?”1%3, In line, EGF markedly decreased cleaved caspase 3 immunoreactivity at
the villus tips'®. lleal protein levels of Beclin 1 and LC3Il, both important autophagy
regulators, as well as the ratio between LC3Il and LC3I| were decreased by EGF treatment in
NEC protocol exposed rats, indicating reduced autophagy?. This finding was supported by
an increase of the autophagy substrate p62 by orogastric EGF administration®>. Moreover,
whereas typical signs of autophagy such as autophagosomes, autophagolysosomes and
vacuoles were present in only NEC protocol exposed animals, these structural abnormalities
were virtually absent in NEC protocol exposed animals that were treated with enteral EGF>.
Enteral HB-EGF decreased intestinal TUNEL score and cleaved caspase 3 score in a rat NEC
model, indicating enteral HB-EGF treatment reduces intestinal epithelial apoptosis®.
However, in another study the Bax-to-Bcl-2 protein ratio was unaltered®’. Enteral HB-EGF
improved bromodeoxyuridine (BrdU)-positive cell migration along the crypt-villus axis>
and increased intestinal epithelial proliferation (number of BrdU-positive cells) in
experimental NEC®. In addition, in a mouse NEC model, enteral HB-EGF increased the small
intestinal mRNA levels of integrin subunits a5 and B1 (but not integrin subunits al, a2, a3
or a6) and the protein concentrations of integrin subunits a5 and B1 that were reduced by
the NEC inducing protocol®. Orogastric HB-EGF administration increased proliferation of
crypt epithelial cells that was reduced by NEC protocol exposure and prevents reduction of
the number of enterocytes per villus in the jejunum of rats subjected to an experimental
NEC model'’®. In addition, the number of LGR5+/prominin-1+ stem cells was significantly
increased by HB-EGF administration in NEC protocol exposed rats'7®.

In the small intestine of NEC protocol exposed animals without intestinal necrosis, Beclin
1 and LC3 immunoreactivity and Beclin 1 and LC3II protein levels were decreased and p62
immunoreactivity and protein levels were increased in EPO treated animals compared to
non-EPO treated animals!®®. In addition, cleaved caspase 3 immunoreactivity was reduced
and Bcl-2 protein levels were increased by orogastric EPO exposure®®®. In vitro evidence
from an IEC-6 cell line suggests the found effects on autophagy and apoptosis are mediated
through Akt/mTOR and MAPK/ERK signaling pathways respectively!®*.

Evidence on the effect of vitamins on intestinal cell death and proliferation are sparse.
One study investigating the effects of enteral ATRA administration found decreased levels of
apoptosis in the terminal ileum intestinal crypts and preserved proliferative capacity of
crypt intestinal epithelial cells in NEC protocol exposed mice!®. In addition, vitamin D was
shown to reduce cleaved caspase 3 protein expression, whereas Bcl-2 and Ki67 protein
expression were increased, suggesting reduced apoptosis and increased proliferation!!?,

Probiotic feeding interventions

The only probiotic feeding interventions studied in relation to intestinal cell death are
Bacteroides fragilis, Lactobacillus rhamnosus, Bifidobacterium bifidum and Bifidobacterium
breve. Pre-treatment with Bacteroides fragilis strain ZY-312 lowered intestinal protein levels
of caspase 3 and Bax and increased protein levels of Bcl-2 in a Cronobacter sakazakii-
induced rat NEC model, indicating Bacteroides fragilis modulates apoptosis upon enteral
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administration'3. In addition, treatment with Bacteroides fragilis reduced NEC-protocol
induced inflammasome expression and pyroptosis, as demonstrated by reduced protein
levels of NLRP3 inflammasome proteins (caspase-1, ASC and NLRP3), IL1B and gasdermin-
D13, Lactobacillus rhamnosus GG administration partially prevents intestinal apoptosis in a
mouse NEC model'®'. Bifidobacterium bifidum administration in a rat NEC model decreased
ileal protein levels of Bax, increased protein levels of Bcl-w, reduced the Bax/Bcl-2 ratio and
decreased the number of apoptotic cells (CC3-positive cells)’. This effect seems to be COX-2
mediated as ileal COX-2 immunoreactivity and prostaglandin E2 concentrations were
upregulated by Bifidobacterium bifidum treatment and simultaneous administration of a
COX-2 inhibitor abolished the observed reduction of apoptosis’. Last, supplementation of
formula feeding with Bifidobacterium breve M-16V in a rat NEC model reduced the ileal
mMRNA expression of caspase 3'%.

Other enteral feeding interventions

A broad range of other enteral feeding interventions has been shown to reduce intestinal
cell death and promote proliferation in experimental models of NEC. Administration of
amniotic fluid in a mouse NEC model restored terminal ileum epithelial proliferation (PCNA
immunoreactivity) in a largely EGFR dependent manner. Enteral ginger treatment in NEC
protocol exposed rats decreased TUNEL-positive, caspase 3-positive and caspase 8-positive
cell numbers and decreased caspase 3 protein levels, indicated reduced apoptosis!??.
Administration of fennel seed extracts decreased the amount of caspase 3-, caspase 8- and
caspase 9-positive cells in the terminal ileum and decreased intestinal caspase 3 protein
levels?2, Supplementation of formula feeding with preterm human milk exosomes
prevented NEC-protocol induced reduction in enterocyte proliferation in a rat NEC model'%°.
The number of Bcl-2- and caspase 3-positive cells were significantly decreased in the
intestine of NEC protocol exposed rats that were orally treated with sesamol compared to
non-treated rats'?>. Enteral administration of curcumin in a rat NEC model decreased
intestinal protein and mRNA expression of caspase 1 and NLRP3 in a SIRT1 mediated
fashion, suggesting curcumin reduces pyroptosis'?*.

Table 2.10  Effect of enteral feeding interventions that decrease intestinal epithelial cell death and
increase proliferation in experimental animal models of NEC.

Enteral Feeding Intervention Effect on Intestinal Epithelial Cell Death and Proliferation (Compared
to NEC Protocol Exposure without Feeding Intervention)

Fat-based interventions

Fish oil (richin n-3 PUFA) Small intestinal BiP (protein) |83

Small intestinal caspase 12 (protein) |83
PUFA Intestinal apoptosis (TUNEL) =%
MPL Small intestinal apoptosis (TUNEL) |3

Small intestinal Bax (protein) |8

Small intestinal Bcl-2 (protein) 18

Small intestinal caspase 9 (protein) |3

Small intestinal caspase 3 protein) |3
Pomegranate seed oil Mean ileal villus length 147

lleal epithelial cell proliferation (PCNA) 147
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Enteral feeding interventions in the prevention of NEC

Carbohydrate/sugar-based
interventions

HMO

Mixture of four HMOs
2'-FL

6'-SL

2'-FL +6'-SL

(Terminal) ileal Ki67-positive cells 1498688
lleal Sox9-positive cells 14°

Terminal ileal TUNEL (protein) |86

lleal cleaved caspase 3 (protein) |88

lleal HIF1a (protein) |38

Small intestinal PCNA (mRNA) =134

Small intestinal apoptosis (TUNEL) |°2
Small intestinal apoptosis (TUNEL) |°2
Small intestinal apoptosis (TUNEL) |*2

Protein/amino acid-based
interventions

Lactoferrin

Proximal intestinal villus length/crypt depth ratio |3¢
Middle intestinal Bax-to-Bcl-2 ratio (protein) 136
Middle intestinal HIF-1a (protein) 136

Middle intestinal pro-caspase 3 (protein) =3¢

Middle intestinal CC3 (protein) =3¢

Distal ileal Ki67 (protein) 110

Distal ileal B-catenin (protein) 1101

Distal ileal LGR5 (mRNA) 1102

L-Glutamine/glutamine

Small intestinal apoptosis (TUNEL) |8

Small intestinal Bax (protein) |8

Small intestinal Bcl-2 (protein) 18

Small intestinal caspase 9 (protein) |3

Small intestinal caspase 3 (protein) |3

Jejunum, ileum and colon caspase 3 (protein) |°7

Hormone/growth factor/vitamin-
based interventions

EGF

lleal villus length 1193

lleal epithelial proliferation (PCNA) =193

lleal Bax (mMRNA) | 193

lleal Bax (protein) |13

lleal Bcl-2 (mRNA) 1193

lleal Bcl-2 (protein) 1193

lleal Bax-to-Bcl-2 ratio (mRNA) |13

lleal CC3 villus tips (protein) | 193

lleal Bax-to-Bcl-2 ratio (protein) | 37193

lleal Beclin 1 (protein) |5°

lleal LC3II (protein) |5

lleal LC3II/LCRI ratio (protein) |>°

lleal p62 (protein) 1>°

lleal autophagy signs (autophagosomes, autophagolysosomes,
vacuoles) (transmission electron microscopy) |°°
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Table 2.10  (continued)

Enteral Feeding Intervention Effect on Intestinal Epithelial Cell Death and Proliferation (Compared
to NEC Protocol Exposure without Feeding Intervention)
HB-EGF Intestinal TUNEL score (protein) |°

Intestinal CC3 score (protein) |%°

lleal cell migration (BrdU-positive cells) 15961

Small intestinal integrin subunit a5 (mRNA) 16

Small intestinal integrin subunit 1 (mRNA) 16

Small intestinal integrin subunit al (mRNA) =51

Small intestinal integrin subunit a2 (mRNA) =51

Small intestinal integrin subunit a3 (mRNA) =51

Small intestinal integrin subunit a6 (mRNA) =51

Small intestinal integrin subunit a5 (protein) 16!

Small intestinal integrin subunit B1 (protein) 16!

lleal epithelial cell proliferation (number of BrdU-positive cells) 1>°

lleal Bax-to-Bcl-2 ratio (protein) =37

Jejunal crypt epithelial cell proliferation (PCNA) 1176

Jejunal number of enterocytes per villus 1176

Jejunal number of LGR5+/prominin-1+ stem cells 1176
EPO lleal Beclin 1 immunoreactivity |94

lleal LC3 immunoreactivity |9

Small intestinal Beclin 1 (protein) | 194

Small intestinal LC3II (protein) |1%*

lleal p62 immunoreactivity 119

Small intestinal p62 (protein) 119

lleal CC3 immunoreactivity | %4

Small intestinal Bcl-2 (protein) 119

ATRA Terminal ileal apoptosis intestinal crypts (TUNEL) |10°
Terminal ileal proliferation crypt intestinal epithelial cells (Ki67, BrdU)
T109

Vitamin D Intestinal cleaved caspase 3 (protein) |12

Intestinal Bcl-2 (protein) 1112
Intestinal Ki67 (protein) 1112

Probiotic interventions

Bacteroides fragilis strain ZY-312 Intestinal CC3 (protein) | 113
Intestinal Bax (protein) |13
Intestinal Bcl-2 (protein) | 113
Intestinal caspase 1 (protein) |13
Intestinal ASC (protein) |13
Intestinal NLRP3 (protein) |13
Intestinal IL1B (protein) |13
Intestinal gasdermin-D (protein) |13

Lactobacillus rhamnosus GG lleal CC3 (protein) |6t
lleal apoptotic index (TUNEL) | 6%
Bifidobacterium bifidum OLB6378 lleal Bax (protein) |74

lleal Bcl-w (protein) 174

lleal Bax/Bcl-w ratio |7*

lleal CC3-positive cell number |74
Bifidobacterium breve M-16V lleal caspase 3 (mRNA) |17
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Table 2.10  (continued)

Other interventions

Amniotic fluid Terminal ileal PCNA immunoreactivity 14°

Ginger Intestinal TUNEL-positive cell number |12
Intestinal C3-positive cell number |11
Intestinal C8-positive cell number |11
Intestinal caspase 3 (protein) |12

Fennel seed extracts Terminal ileal C3-positive cells number |22
Terminal ileal C8-positive cells number |22
Terminal ileal C9-positive cells number |22
Intestinal C3 concentration (protein) | 122

Preterm human breast milk exosomes Intestinal enterocyte proliferation (Brdu) 1120

Sesamol Intestinal Bcl-2-positive cell number |12
Intestinal caspase-3 positive cell number |12
Curcumin Intestinal caspase 1 (protein) |24

Intestinal NLRP3 (protein) | 124
Intestinal caspase 1 (mRNA) |12
Intestinal NLRP3 (mRNA) |24

1 depicts an increase, | depicts a decrease; PUFA, polyunsaturated fatty acids; MPL, milk polar lipids; HMO,
human milk oligosaccharides; EGF, epidermal growth factor; HB-EGF, hemoglobin-binding EGF-like growth
factor; EPO, erythropoietin; ATRA, all-trans retinoic acid.

NEC pathophysiology: microbial dysbiosis

Inappropriate microbial colonization or dysbiosis is considered to be an important factor
contributing to NEC pathogenesis?, although reports on the precise microbial colonization
patterns or strains involved are conflicting'®>. A predominance of gram-negative bacteria
from the phylum Proteobacteria, the class Gammaproteobacteria and the families
Enterobacteriaceae, Vibrionaceae and Pseudomonadaceae are most strongly linked with
NEC development!®>. Importantly, in a meta-analysis by Pammi et al. an increased relative
abundance of the phylum Proteobacteria and a decrease of the phyla Firmicutes and
Bacteroides were found prior to NEC onset!®. In addition, a higher bacterial replication rate
of all bacteria and especially Enterobacteriaceae has been linked to subsequent NEC
development!®’. Although the intrauterine environment is not sterile'®®, the major microbial
colonization undoubtedly takes place in the first hours to days after birth and is influenced
by various factors such as enteral feeding, gestational age, mode of delivery and antibiotic
use!®®2% The underdeveloped gut barrier of preterm born infants makes them vulnerable
to the effects of a disturbed microbial colonization'®. Mechanisms through which microbial
dysbiosis can contribute to NEC pathogenesis include excessive TLR4 stimulation by
endotoxin, disturbance of a balanced luminal short chain fatty acid (SCFA) content and
changes in intestinal motility2°?.

Enteral feeding and microbial dysbiosis in animal models of NEC

Unfortunately, not many enteral feeding intervention studies have taken microbial changes
into account (Table 2.11).
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Fat-based feeding interventions

BCFA form a fat-based enteral feeding intervention known to influence microbial
composition. Enteral treatment with BCFA increased the abundancy of Bacillaeceae and
Pseudomonadaceae on family level and increased the relative abundance of Bacillus subtilis
at species level in cecal samples of NEC protocol exposed rats to levels comparable to dam
fed control animals*. In addition, relative abundancy of Bacillus subtilis was higher in
healthy than in diseased animals®. Finally, BCFA administration increased the relative
abundance of the species Pseudomonas aeruginosa to levels even higher than in dam fed
animals®. As Bacillus subtilis is used as a probiotic, the BCFA induced increase in the relative
abundance of this species is considered beneficial, for Pseudomonas aeruginosa this is
unclear?,

Carbohydrate or sugar-based feeding interventions

As HMO are considered to be important prebiotics, it is not surprising these components
have been studied in relation to intestinal microbial composition. Good et al. studied the
effects of enteral treatment with the HMO 2’-FL in a murine NEC model on the abundancy of
several microbial taxa in faecal content by 16S ribosomal RNA amplicon sequence analysis.
They observed in NEC mice an increased abundancy of Enterobacteriaceae and decreased
abundancy of Lactobacillaceae following HMO treatment®’. However, the B-diversity was
also reduced, indicating a more homogenous intestinal microbiome upon enteral HMO
treatment®’. In a pig NEC model, enteral administration of 2’-FL did not reduce cecal
microbial colonization density and did not change microbial a-diversity in cecal tissue and
cecal content, however, the proportion of genus Enteroccocus in cecal content was
increased by administration of 2'-FL'33, Also in a pig NEC model, administration of a mixture
of >25 HMO components did not change the colonic relative abundance of different
genera®®?, Administration of a mixture of four HMO did not change colonic microbial
diversity (number of bacterial operational taxonomic units (OUT) per sample)!3* or the
relative abundance of different genera?®? in a preterm pig model of NEC. Within the total
microbial community, no differences were observed in clustering, however, on the
individual level HMO treated animals had a lower number of the genus Fusobacterium and
this number was, although not statistically significantly, related to NEC development®®*.

Protein or amino acid-based feeding interventions

In a preterm pig model of NEC, enriching formula feeding with caseino-glycomacropeptide
(CGMP) or osteopontin (OPN) did not influence colon microbiota composition (similar a
diversity and no significant changes in abundance of genera)'?°.

Hormone, growth factor or vitamin-based feeding interventions

Enteral vitamin A treatment in a murine NEC model had a strong influence on the microbial
composition of intestinal tract content, accounting for 67.8% and 66.1% for the total
variations observed on phylum and genus level, respectively!!!. Vitamin A treatment
specifically decreased the abundance of the phylum Proteobacteria and the genera
Escherichia-Shigella, Lactobacillus, Acinetobacter and Gemella and increased the phylum
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Bacteroidetes and the genera Romboutsia, Bacteroides and Parabacteroides''' compared to
control animals. The proportion of the phylum Firmicutes was not affected by vitamin A
administration?!?,

Probiotic feeding interventions

In a quail NEC model, oral inoculation with Bifidobacterium infantis-longum decreased cecal
bacterial counts of Clostridium perfringens, without altering counts of Clostridium difficile**.
Administration of Bacteroides fragilis strain ZY-312 in a rat NEC model partially rescued the
number of OTU in fecal samples, partially prevented a NEC induced reduction of the
abundance of phylum Bacteroidetes and decreased the relative abundance of the phylum
Proteobacteria*3. In a rat NEC model, administration of Lactobacillus reuteri biofilms on
maltose loaded microspheres shifted the fecal microbiome of NEC stressed rat pups more
towards that of breastfed control pups than unbound Lactobacillus reuteri (16S rRNA
sequencing analysis)’2. On taxa level, Lactobacillus spp. abundance, which was negatively
correlated to histological NEC severity, increased after Lactobacillus reuteri administration
(both unbound and biofilm associated) and was more effectively maintained by
administration of Lactobacillus reuteri as a biofilm on maltose loaded microspheres than by
unbound Lactobacillus reuteri’. Lactobacillus reuteri bound to maltose loaded biospheres
and unbound Lactobacillus reuteri effectively reduced the relative abundance of the
potentially pathogenic Enterobacter spp’?. Finally, enteral administration of a mixture of
probiotics (containing Bifidobacterium animalis and several Lactobacillus species) changed
the general colonization pattern in distal ileum and colon (T-RFLP analysis), with a decrease
in colonization density of Clostridium perfringens, and altered the relative proportion of
several culturable bacteria”’. It decreased the abundance of Clostridia (distal small intestinal
homogenate and colon content) and Enterococci (stomach content and distal small
intestinal homogenate) and increased the abundance of lactic acid bacteria (stomach
content and colon content), Lactobacilli (stomach content and distal small intestinal
homogenate) and total anaerobes (colon content)”’.

Other enteral feeding interventions

Enteral administration of amniotic fluid reduces distal small intestinal bacterial colonization
in a pig model of NEC. In addition, colonic bacterial composition was changed towards
controls by enteral administration of amniotic fluid'%.

Table 2.11  Effect of enteral feeding interventions that affect microbial dysbiosis in experimental animal
models of NEC.

Enteral Feeding Intervention Effect on Microbial Dysbiosis (Compared to NEC Protocol Exposure without
Feeding Intervention)

Fat-based interventions
BCFA Cecal Bacillaeceae (family) abundance 146
Cecal Pseusomonadaceae (family) abundance 146
Cecal Bacillus subtilis (species) abundance 146
Cecal Pseudomonas aeruginosa (species) abundance 14¢
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Table 2.11  (continued)

Enteral Feeding Intervention

Effect on Microbial Dysbiosis (Compared to NEC Protocol Exposure without

Feeding Intervention)

Carbohydrate/sugar-based
interventions

2'-FL

Mixture of four HMOs

Mixture of >25 HMO
components

Fecal Enterobacteriaceae (family) abundance =°*

Fecal Lactobacillaceae (family) abundance =**

Fecal microbiota B-diversity |°*

Cecal microbial colonization density (FISH) =133

a-Diversity cecal tissue =133

a-Diversity cecal content =133

Proportion Enterococcus (genus) in cecal content 1133
Colonic microbial diversity (number of OTU per sample) =34
Colonic microbial clustering =134

Colonic relative abundance genera OTU =202

Colonic number of Fusobaceterium (genus) on individual level |34
Colonic relative abundance genera OTU =202

Protein/amino acid-based
interventions

OPN

CGMP

Vitamin-based interventions
Vitamin A

Colonic microbial a diversity =12°
Colonic microbial abundance of genera =12°
Colonic microbial a diversity =12°
Colonic microbial abundance of genera =12°

Fecal Proteobacteria (phylum) abundance |, 1!
Fecal Escherichia-Shigella (genus) abundance |, !
Fecal Lactobacillus (genus) abundance {11!

Fecal Acinetobacter (genus) abundance { '*

Fecal Gemella (genus) abundance |, 1!

Fecal Bacteroidetes (phylum) abundance M1t
Fecal Bacteroides (genus) abundance M1t

Fecal Romboutsia (genus) abundance 1!

Fecal Parabacteroides (genus) abundance !

Probiotic interventions

Bifidobacterium infantis-
longum strain CUETM 89-215
Bacteroides fragilis strain
ZY-312

Lactobacillus reuteri
DSM 20016

Lactobacillus reuteri biofilm on Shift of fecal microbiome towards breastfed controls (16S sRNA sequencing)’?

maltose loaded microspheres

Cecal Clostridium perfringens (species) count 3¢
Cecal Clostridium difficile (species) count ,3°

Fecal number of OTU 113

Fecal relative abundance Bacteroidetes (phylum) 113
Fecal relative abundance Proteobacteria (phylum) J,113
Fecal Lactobacillus (genus) abundance 172

Fecal Enterobacter (genus) abundance |, 72

Fecal Lactobacillus (genus) abundance 172
Fecal Enterobacter (genus) abundance {72

88



Enteral feeding interventions in the prevention of NEC

Table 2.11  (continued)

Probiotic mixture Distal small intestinal general colonization pattern (T-RFLP analysis) changed’”
(Bifidobacterium animalis Colonic general colonization pattern (T-RFLP analysis) changed’”

DSM15954, Lactobacillus Distal small intestinal colonization density of Clostridium perfringens |7’
acidophilus DSM13241, Distal small intestinal homogenate relative proportion Clostridium (genus) |77
Lactobacillus casei ATCC55544, Colonic content relative proportion Clostridium (genus) |77

Lactobacillus pentosus Distal small intestinal homogenate relative proportion Enterococcus (genus)
DSM14025 and Lactobacillus |7

plantarum DSM13367) Stomach content relative proportion Enterococcus (genus) |7’

Colon content relative proportion lactic acid bacteria 177

Stomach content relative proportion lactic acid bacteria 177

Distal small intestinal homogenate relative proportion Lactobacillus (genus)
T77

Stomach content relative proportion Lactobacillus (genus) 177

Colon content relative proportion total anaerobes 177

Other interventions

Amniotic fluid Distal small intestinal bacterial colonization (general eubacterial probe) |13
Colonic bacterial colonization normalized
(PCA of T-RFLP analysis)?3

1 depicts an increase, | depicts a decrease; BCFA, branched chain fatty acids; 2'-FL, 2'-fucosyllactose; HMO,
human milk oligosaccharides; OPN, osteopontin; CGMP, caseinoglycomacropeptide.

NEC pathophysiology: disturbed digestion and absorption

Another factor that may contribute to NEC pathogenesis is carbohydrate maldigestion and
malabsorption. Lactases and other disaccharidases are present at lower levels in premature
infants than in term born infants, indicating that carbohydrate digestion in premature
children is hampered?®. In addition, there are some indications this may be further
disturbed in infants that develop NEC. Book et al. found that infants with NEC have higher
levels of fecal reducing substances, indicative of lactose malabsorption, than infants without
gastrointestinal disease and higher levels were often detected before onset of clinical
symptoms?%4, In tissue specimens from infants with NEC, no or only weak GLUTS, GLUT2 and
lactase protein expression was observed, while these proteins were present in control
tissue, whereas sucrose-isomaltase protein expression was preserved'®’. If carbohydrates
such as lactose are not sufficiently digested and absorbed, they will reach the colon where
they are subject to fermentation by colonic microbiota and lead to increased levels of
fermentation products such as gasses (H,, CHs, CO,), SCFA and lactate?®. These
fermentation products could contribute to intestinal damage through local acidosis,
stimulation of bacterial growth and potentially through induction of inflammation?°. In line,
a NEC study in preterm pigs showed that feeding with a maltodextrin-based formula that
was malabsorbed, was associated with increased NEC incidence and severity, altered
microbial and SCFA profiles compared to preterm pigs treated with a lactose-based formula
that is easier to absorb??’. Maldigestion and malabsorption can also result from NEC due to
enterocyte loss or brush border destruction.

Enteral feeding and disturbed digestion and absorption in animal models of NEC

The influence of enteral nutritional interventions has been studied exclusively in pig models
of NEC (Table 2.12). Importantly, in pigs and other large animals, changes in digestive
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enzyme activity and absorption in response to enteral nutrition seem to largely parallel that
of human neonates?°®2%°, making large animal models particularly suitable for changes in
digestion and absorption in the context of NEC.

Carbohydrate or sugar-based feeding interventions

Currently, the only carbohydrate or sugar-based feeding intervention that has been shown
to modestly influence digestion and absorption in experimental NEC are HMO. Enriching
formula with a mixture of four HMO in a pig NEC model did not result in altered galactose or
lactose absorption or brush border enzyme activities in the small intestine and did not
change intestinal mMRNA expression of sucrase, lactase, IAP and sodium/glucose transporter
1 (SGLT1) either'34. However, colonic butyric acid concentrations slightly decreased after
HMO administration3*. A mixture of more than 25 HMO also did not change galactose and
lactose absorption, but increased enzyme activity levels of lactase, aminopeptidase A,
aminopeptidase N and dipeptidyl peptidase IV (DPPIV) in the distal small intestine compared
to controls'3*. Feeding of preterm pigs with formula enriched by gangliosides or sialic acids
(SL) did not rescue intestinal enzyme activity or intestinal hexose absorption in an
experimental NEC model*®. Finally, in a pig NEC model, enteral administration of 2'-FL did
not improve galactose absorption or change the activity of several brush border enzymes**3.

Protein or amino acid-based feeding interventions

OPN, lactoferrin and CGMP were studied in relation to digestion and absorption in preterm
pig models of NEC. No effects were seen of OPN enriched formula diet on digestive enzyme
activity and intestinal hexose absorption!®!? A formula diet enriched with bovine
lactoferrin neither changed intestinal absorption as measured by an oral bolus of galactose
and lactose, nor changed brush border membrane enzyme activities in proximal, middle or
distal small intestine3. In another pig NEC study, lactase activity in the middle part of the
small intestine was increased by enteral supplementation of CGMP, while no effect was
observed in the proximal or distal small intestine!?°. Plasma galactose levels upon an enteral
bolus of galactose, suitable as a marker for hexose absorption, were increased in enteral
CGMP supplementation, but this difference did not reach statistical significance!?°.

Probiotic feeding interventions

In a pig NEC model, enteral administration of a probiotic mixture containing Bifidobacterium
animalis and several Lactobacillus strains increased distal intestinal enzyme activity of the
brush border enzymes aminopeptidase A and aminopeptidase N without changing lactase
and maltase enzyme activity”’.

Other enteral feeding interventions

Enteral feeding with formula supplemented with amniotic fluid increased maltase activity in
the proximal and middle small intestine and increased galactose absorption compared to
feeding with unsupplemented formula in a pig NEC model*?3.
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Table 2.12  Effect of enteral feeding interventions that affect digestion and absorption in experimental
animal models of NEC.

Enteral Feeding Intervention Effect on Digestion and Absorption (Compared to NEC Protocol Exposure
without Feeding Intervention)

Carbohydrate/sugar-based
interventions

Gangliosides Intestinal enzyme activity small intestine =100

Intestinal hexose absorption (galactose lactose absorption test) =10
SL Intestinal enzyme activity small intestine =10

Intestinal hexose absorption (galactose lactose absorption test) =10
HMO mixture of four Intestinal hexose absorption (galactose lactose absorption test) =134
components Intestinal enzyme activity small intestine =134

Colonic butyric acid (protein) 1134
Small intestinal sucrase (mRNA) =134
Small intestinal lactase (mRNA) =134
Small intestinal alkaline phosphatase (mRNA) =134
small intestinal SGLT1 (mRNA) =134
HMO mixture >25 components Intestinal hexose absorption (galactose lactose absorption test) =134
Distal small intestinal lactase enzyme activity 1134
Distal small intestinal aminopeptidase A enzyme activity 1134
Distal small intestinal aminopeptidase N enzyme activity 1134
Distal small intestinal dipeptidyl peptidase IV enzyme activity 17134
2'-FL Galactose absorptive capacity = (galactose mannitol absorption test)!33
Proximal/middle/distal small intestinal enzyme activity (sucrose, maltase,
lactase, ApN, ApA, DPPIV) =133
Colon small intestinal enzyme activity (sucrose, maltase, lactase, ApN, ApA,

DPPIV) =133
Protein/amino acid-based
interventions
OPN Intestinal enzyme activity small intestine =100.12%

Intestinal hexose absorption (galactose lactose absorption test) =100.12
bovine lactoferrin Small intestine enzyme activity =3°

Intestinal hexose absorption (galactose lactose absorption test) =3°
CGMP Middle small intestinal lactase enzyme activity 112°

Proximal small intestinal lactase enzyme activity =!2°
Distal small intestinal lactase enzyme activity =!2°
Intestinal hexose absorption (galactose lactose absorption test) =12°

Probiotic interventions

Probiotic mixture Distal small intestinal lactase enzyme activity =77
(Bifidobacterium animalis Distal small intestinal maltase enzyme activity =77
DSM15954, Lactobacillus Distal small intestinal ApA enzyme activity 177
acidophilus DSM13241, Distal small intestinal ApN enzyme activity 177

Lactobacillus casei ATCC55544,

Lactobacillus pentosus

DSM14025 and Lactobacillus

plantarum DSM13367)

Other interventions

Amniotic fluid Proximal small intestine maltase enzyme activity 1123
Middle small intestinal maltase enzyme activity 1123

1 depicts an increase, | depicts a decrease; SL, sialic acids; HMO, human milk oligosaccharides; 2'-FL, 2'-
fucosyllactose; OPN, osteopontin; CGMP, caseinoglycomacropeptide.
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NEC pathophysiology: enteric nervous system alterations

The enteric nervous system (ENS) is a large and complex division of the peripheral nerve
system that resides in the gut?!. It can morphologically be divided in the myenteric and
submucosal plexus?'®. The ENS is involved in a variety of functions including gut motility,
endocrine and exocrine secretions, microcirculation, regulation of immunity and gut barrier
integrity?'1213. Several studies have described alterations of the ENS in NEC. In intestinal
segments of infants with NEC, morphological changes were observed in myenteric plexus,
internal and external submucosal plexus concomitant with a loss of neurons and glial
cells?42%5_ In addition, vasoactive intestinal peptide and NOS immunoreactivity was lost in
the submucosal plexus of NEC patients?!>. A more recent study compared the myenteric
plexus in tissue specimens from infants with NEC during acute disease and at the moment of
stoma closure with gestational age matched control tissue?!. Acute NEC was characterized
by reduction of neuron and glial cell numbers per ganglion and a reduced number of nNOS
expressing neurons?'®, Moreover, mRNA expression of nNOS and choline acetyltransferase
(ChAT), two important regulators of intestinal motility, was reduced in acute NEC and
increased CC3 immunoreactivity was present in both submucosal and myenteric plexus of
acute NEC patients compared to control patients?¢. Although the total number of neurons
per ganglion was recovered at the moment of stoma closure, this was not the case for the
number of glial cells, the number of nNOS expressing neurons and nNOS mRNA
expression?®. Finally, Fagbemi et al. reports that ENS alterations in intestinal samples from
infants with NEC are heterogeneous??’. Whereas some infants had a disturbed architecture
of the myenteric plexus with loss of mucosal and submucosal innervation and reduced
expression of the glial cell marker glial fibrillary acidic protein (GFAP), no abnormalities were
observed in samples from other affected children?!’. Although it is still unclear whether ENS
alterations in NEC merely result from NEC or are involved in its pathophysiology, several
findings support the latter scenario. First, ablation of glial cells is a plausible upstream target
of NEC pathophysiology?'8. Second, in a rat model of NEC, neural stem cell transplantation
reduced ENS alterations and was associated with improved intestinal motility and
survival?'®. Third, in a preterm pig NEC model, region dependent changes in gut transit time
were observed before radiological signs of NEC appeared, suggesting dysmotility may
precede NEC development?®®. Enteroendocrine cells are chemo-sensing intestinal epithelial
cells that play a key role in gastrointestinal secretion, motility and metabolism and signal
amongst others through the ENS?°. They are involved in the regulation of mucosal
immunology and may be involved in NEC pathophysiology??, although, in surgical NEC
specimen, the number of enteroendocrine cells was not altered compared to controls!6®,

Enteral feeding and enteric nervous system alterations in animal models of NEC

To date, only enteral feeding interventions with HB-EGF have been studied in relation to the
ENS and enteroendocrine cells during NEC (Table 2.13). Enteral HB-EGF improved intestinal
motility measured with a dye migration assay in a rat NEC model, although a reduction of
total neuron counts in the ENS of NEC protocol exposed rats was not prevented by HB-EGF
treatment!’. In another study that used a rat NEC model, HB-EGF administration preserved
the neuronal and glial cell integrity and nNOS expression and prevented neuronal
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degeneration and apoptosis during NEC??2. Lastly, enteral administration of HB-EGF partially
prevented NEC induced reduction of enteroendocrine cells in a rat model of NEC®.

Table 2.13  Effect of enteral feeding interventions that affect the enteric nervous system in experimental
animal models of NEC.

Enteral Feeding Intervention Effect on Enteric Nervous System (Compared to NEC Protocol
Exposure without Feeding Intervention)

Hormone/growth factor/vitamin-
based interventions
HB-EGF Intestinal motility (dye migration assay) 175
Intestinal neuronal integrity Hu/D (protein) 1222
Intestinal total neuronal count Hu/D =172
Intestinal glial cell integrity GFAP (protein) 1222
Intestinal nNOS expression (protein) 1222
Intestinal neuronal apoptosis HUC/D TUNEL (protein) 1222
Intestinal neuronal degeneration HuC/D FluoJade C (protein) 1222
Jejunal entero-endocrine cells Chromogranin A (protein) 1176

1 depicts an increase, | depicts a decrease; HB-EGF, hemoglobin-binding EGF-like growth factor.

Enteral feeding interventions affecting NEC incidence and severity in human
studies

Many clinical trials have evaluated the effect of enteral nutritional interventions on NEC
incidence or NEC related mortality (Table 2.14). Unfortunately, many interventions that are
successful in animal models of NEC fail to show an effect in the clinical situation. Moreover,
the certainty of evidence is often moderate to low and almost all studies are underpowered,
which is likely to be, at least in part, responsible for the lack of successful enteral feeding
interventions in clinical trials. Supplementary Table S2.11 provides a detailed overview of
the GRADE scoring of the evidence from clinical trials, the results are summarized in Table
2.14.

Fat-based feeding interventions

In a meta-analysis including 11 randomized controlled trials (RCTs) with N=1753 neonates,
supplementation of n-3 long chain PUFA did not result in a reduced NEC incidence??. The
effect of n-3 long chain PUFA supplementation was more favourable in preterm infants <32
weeks, but did not reach statistical significance??®. In a more recent large RCT, enteral
supplementation with an emulsion rich in DHA also did not result in a reduced NEC
incidence??. Certainty of evidence is low.

Carbohydrate or sugar-based feeding interventions

In a meta-analysis, enteral administration of prebiotics (short-chain galacto-oligosaccharides
(SC-GOS), long-chain fructo-oligosaccharides (LC-FOS), pectin-derived acidic oligosaccharides
(pAOS), oligosaccharides, fructans, inulin or oligofructose) did not alter NEC incidence (RR
0.79 (95% CI 0.44-1.44))?% (low certainty of evidence).
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Protein or amino acid-based feeding interventions

A recent meta-analysis including seven RCTs reported no difference in stage Il or Il NEC with
enteral lactoferrin supplementation??®, however, with only a low grade of certainty (GRADE
approach). A meta-analysis studying the effect of enteral and parenteral arginine
administration on NEC incidence (3 RCTs included, two out of three RCTs exclusively studied
enteral administration) observed a lower risk of NEC development with arginine treatment
(relative risk (RR) 0.38, 95% Cl 0.23-0.64, number needed to treat (NNT) 6) and a
statistically significant reduction of death due to NEC (RR 0.18, 95% Cl 0.03—1.00, NNT 20)%?7,
with a moderate/low certainty of evidence (GRADE approach). Enteral glutamine
supplementation did not reduce NEC incidence in a meta-analysis??%; certainty evidence was
low (GRADE approach). Oral administration of IgG or a combination of 1gG and IgA did not
result in a reduced incidence of NEC (RR 0.84, 95% Cl 0.57-1.25), need for NEC related
surgery (RR 0.21, 95% CI 0.02-1.75) or death from NEC (RR 1.10, 95% ClI 0.47-2.59) in a
meta-analysis??®, with low to very low certaintyof evidence (GRADE approach).

Hormone, growth factor or vitamin-based feeding interventions

The effects of EPO were studied in a meta-analysis, in which no effect was found on NEC
incidence (RR 0.62 (95% ClI 0.15-2.59)?%°. Also in two more recent small RCTs, no effect was
found of enteral EPO administration on NEC incidence?3%232, A small RCT studying the effects
of enteral granulocyte colony-stimulating factor (G-CSF) also did not find a reduced NEC
incidence?®. Another RCT did not find a reduction of NEC incidence with enteral
supplementation of artificial amniotic fluid (rich in G-CSF) or artificial amniotic fluid and
recombinant human EPO?%!. Lastly, two small RCTs studied the effects of oral
supplementation of vitamin A with NEC incidence as a secondary outcome, but did not find
differences ((RR 1.14, 95% Cl 0.66—1.66)%* and (RR 0.69, 95% Cl 0.27-1.76)?% respectively).
For all these interventions, certainty of evidence was low or very low (GRADE approach).

Probiotic feeding interventions

Probiotic enteral feeding interventions are increasingly used in the neonatal intensive care
unit?®*® and are the most studied group of enteral nutritional interventions for the reduction
of NEC incidence?’. In a recent systematic review and network meta-analysis including
56 RCTs (with in total N=12,738 infants) reporting on severe NEC (stage Il or higher),
combinations of Lactobacillus spp. And Bifidobacterium spp. Or Bifodobacterium animalis
subsp. Lactis were the most effective probiotic interventions?3®. Certainty of evidence was
estimated to be moderate (GRADE approach). In addition, interventions using Lactobacillus
reuteri or Lactobacillus rhamnosus were effective against severe NEC, although the effect
size was lower than the aforementioned probiotic interventions?3® (moderate/low certainty
of evidence). Interventions using a combination of Lactobacillus ssp., Bifidobacterium spp.
and Enterococcus or a combination of Bacillus spp. and Enterococcus spp. reduced NEC
incidence with the biggest effect size, however, with only low grade of certainty (GRADE
approach)?38. Another network meta-analysis observed statistically significant reduction of
NEC incidence with probiotic interventions using Bifidobacterium lactis Bb-12 or B-94,
Lactobacillus reuteri ATCC55730 or DSM17938, Lactobacillus rhamnosus GG, the
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combination of Bifidobacterium bifidum, Bifidobacterium infantis, Bifidobacteirum longum
and Lactobacillus acidophilus, the combination of Bifidobacterium infantis Bb-02,
Bifidobacterium lactis Bb-12 and Streptococcus thermophilus TH-4 and the combination of
Bifidobacterium longum 35624 and Lacobacillus rhamnosus GG?3°. Certainty of evidence was
estimated to be moderate to low (GRADE approach). In line with the evidence from this
latter network meta-analysis, the European Society for Pediatric Gasteroenterology
Hepatology and Nutrition (ESPGHAN) committee on nutrition and the ESPGHAN working
group for probiotics and prebiotics at present conditionally recommend to provide either
Lactobacillus rhamnosus GG ATCC53103 or the combination of Bifidobacterium infantis Bb-
02, Bifidobacterium lactis Bb-12, and Streptococcus thermophilus TH-4 as a preventive
treatment to reduce NEC incidence?4.

Other feeding interventions

In a relatively small multi-center RCT, enteral administration of carotenoids did not alter
NEC incidence (OR 0.34 (95% Cl 0.07-1.66)*1. A mixture of probiotics, prebiotics and
lactoferrin did reduce the overall NEC incidence and the incidence of NEC stage 22 in a small
RCT ((RR 0.16 (95% CI 0.03—-0.77) and RR 0.56 (95% Cl 0.47-0.67) respectively)**?. For both
interventions, certainty of evidence was scored as low.

Enteral feeding interventions affecting pathophysiological mechanisms of NEC
in human studies

Evidence from human studies on enteral feeding interventions that positively influence
potential pathophysiological mechanisms behind NEC are sparse as it is difficult to study
these outcome measures in (preterm) infants (Table 2.15). Nevertheless, overlap between
mechanisms found in animal studies and effects observed in humans indicate evidence from
animal studies likely provide insights valuable to the human NEC situation.

Carbohydrate or sugar based feeding interventions

In a small RCT with 10 prebiotic supplemented and 13 only formula fed infants, 30 days of
prebiotic supplementation of formula feeding with a mixture of SC-GOS and LC-FOS
increased the percentage of gastric slow wave propagation measured with
electrogastrography and decreased the gastric half emptying times inducing a
gastrointestinal motility pattern comparable to breastmilk fed infants?*3. In another small
RCT, enrichment of formula feeding with GOS and FOS decreased intestinal transit time
(assessed by gastrointestinal passage of carmine red)*“. In addition, stool viscosity was
increased and stool pH was reduced, suggesting increased SCFA production by colonic
fermentation upon GOS and FOS administration?**. Enteral supplementation of SC-GOS, LC-
FOS and acidic oligosaccharides (AOS) to preterm infants did not change fecal IL8 or
calprotectin concentrations over time in a RCT?%,
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Table 2.15 Effect of enteral feeding interventions that affect pathophysiological mechanisms of NEC in
human studies.

Enteral Feeding Intervention Effect on Pathophysiological Mechanism (Compared to Placebo/No
Intervention)

Carbohydrate or sugar-based
interventions
(SC) GOS + (LC) FOS % Gastric slow wave propagation (electrogastrography) 1243
Gastric half emptying time (echography) |24
Intestinal transit time (passage carmine red) 1244
Stool pH | 244
Stool viscosity 1244
SC GOS + LC FOS + AOS Fecal IL8 =245
Fecal calprotectin =24°

Protein or amino acid-based
interventions
Lactoferrin Whole blood CD4+ CD25high Foxp3+ Treg cell number 1246
L-Glutamine Lactulose recovery in urine day 7 | 247
Lactulose recovery in urine day 30 | %47
Lactulose/mannitol recovery ratio in urine day 7 |2*7
Lactulose/mannitol recovery ratio in urine day 30 |?*7

Probiotic interventions

Lactobacillus reuteri % Gastric slow wave propagation (electrogastrography) 1243
Gastric half emptying time (echography) |24

Bifidobacterium lactis Lactulose/mannitol recovery ratio in urine day 30 |**®

Other interventions

Mixture of probiotics, prebiotics Serum IL5 (protein) at 0, 14 and 28 days =2%°

and lactoferrin Serum IL10 (protein) at 0, 14 and 28 days (protein) =24°

Serum IL17 (protein) at 0, 14 and 28 days =24°
Serum IFNY (protein) 0, 14 days =2*°
Serum IFNY (protein) 28 days 124°

1 depicts an increase, | depicts a decrease; SC-GOS, short chain galacto-oligosaccharides; LC-FOS, long chain
fructo-oligosaccharides.

Protein or amino acid-based feeding interventions

In a randomized controlled trial, infants orally treated with lactoferrin had a bigger increase
in CD4+ CD25Me" Foxp3+ Treg cells at discharge compared to controls?*. In a double-blinded
placebo-controlled trial, the effect of enteral administration of L-glutamine on intestinal
barrier function was assessed with a dual sugar (mannitol, lactulose) absorption test. Both
the urine recovery of lactulose and the ratio between urine recovery of lactulose and
mannitol was lower after 7 and 30 days in infants treated with L-glutamine compared to
placebo treated infants, demonstrating that L-glutamine positively influenced gut barrier
function?¥.

Probiotic feeding interventions

Thirty days of prebiotic supplementation of formula feeding with a Lactobacillus reuteri
normalized gastrointestinal motility by increasing the percentage of gastric slow wave
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propagation measured and decreasing the gastric half emptying in a small RCT with preterm
infants?*. In addition, in a small RCT, enteral administration of a formula with added
Bifidobacter lactis improved intestinal barrier function (decreased lactulose mannitol ratio
in urine) at 30 days postnatally?*®.

Other feeding interventions

Enteral administration of a mixture of probiotics, prebiotics and lactoferrin slightly increased
systemic IFNY protein levels at 28 days of life, but did not affect several other cytokines (IL5,
IL10 and IL17) in a RCT in premature infants?*°,

Interaction between feeding components and NEC

Despite the complex and rich composition of breastmilk and the concomitant presence of
many bioactive factors!®?*° that are considered a major factor in the prevention of NEC,
remarkably few studies have investigated the interaction or potential synergistic effect
between two or more of these bioactive substances. In a quail NEC model, addition of FOS
to the feeding enhanced the reduction of cecal Clostridium perfringens counts by
Bififobacteria, an effect that was not observed by FOS administration in absence of
Bifidobacteria®®®'%®. In a recent meta-analysis, enteral supplementation of lactoferrin did
not reduce the incidence of NEC (RR 0.90, 95% Cl 0.69-1.17), whereas concomitant
administration of lactoferrin and probiotics did result in a statistically significant reduction
of NEC incidence (RR 0.04, 95% Cl 0.00-0.62); however, these results need to interpreted
with caution due to (very) low certainty of evidence??®?>!. Dvorak et al. investigated
potential synergistic effects of EGF and HB-EGF in a rat model of NEC, but did not find
additional protective effects against NEC®. Similarly, D’Souza et al. did not find benefits of
combining enteral administration of the probiotic Saccharomyces Boulardii and GOS/FOS*3>,
That combined enteral administration of nutritional components can also reduce the
therapeutic effect was observed in a rat NEC model, where nucleotide administration
abolished the PUFA induced reduction of mortality, gut necrosis, endotoxemia and intestinal
PLA; and PAFR mRNA expression*>.

Enteral feeding strategies and NEC: feeding regimens, fortifiers and more

Besides the content of enteral nutrition, various other aspects of enteral feeding are likely
to be related to the risk of NEC development and should be taken into account when
designing trials studying enteral nutritional interventions for the prevention of NEC.
Although evidence is not conclusive, factors that could be of relevance, especially for high
risk populations such as ELBW infants, include the dose, duration and timing of trophic
feeding/minimal enteral nutrition, the use of human milk-derived fortifiers, feed osmolality
and standardized feeding regimens?22%3,

Discussion

Experiments in animal models of NEC provide a large amount of evidence of the beneficial
effect of enteral nutritional interventions for preventing NEC incidence, severity, signs and
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symptoms, and mortality, as well as for ameliorating several pathophysiological processes
related to NEC development including intestinal inflammation and intestinal barrier loss. A
broad range of nutritional substances has been reported to be effective in several
complementary experimental models, e.g., in different species and with different ways of
inducing NEC. Especially HMO and growth factor-based interventions such as HB-EGF and
EGF are promising as they have been shown to be effective in many experimental studies in
which they target a broad range of pathophysiological mechanisms. Although some studies
provide excellent insight in the underlying working mechanisms, addressing this for a
broader range of interventions could be of great benefit to predict potential synergistic
action between different substances of interest. This should therefore be subject of further
research.

Despite the large amount of evidence from animal models, remarkably few enteral
feeding interventions (e.g., arginine and probiotics) have been shown to be effective in
meta-analyses of clinical trials. To date, only probiotics have reduced NEC incidence in
adequately powered clinical studies and these interventions thereby form a promising
preventive therapy, although even for these interventions certainty of evidence is at best
moderate. Hence, the translation from preclinical findings in animal models to clinical
practice remains challenging. Several underlying problems may be responsible for this
arduous translation.

First, animal experiment related factors are in play. The current evidence from animal
studies needs to be interpreted with caution, primarily due to the difficulty to adequately
assess risk of bias in most animal studies and to determine certainty of evidence.
Dissemination bias is likely present in animal studies of NEC, as researchers estimate that, in
general, only around 50-60% of conducted animal studies®®*?>> and data of only 26% of
animals used are published?®>. Importantly, one of the main reasons for not publishing a
study appears to be non-statistically significant results?>*. Moreover, other sources of bias
may be present in experimental animal studies and are difficult to detect as many
methodological aspects of the studies that are important for assessment of bias are poorly
reported, both in studies incorporated in this systematic review and animal experiments in
general?*®. Additionally, adequately assessing certainty of evidence from animal studies®? is
currently hampered, since amongst others confidence intervals and power calculations are
often not reported. Due to (dissemination) bias, reports in literature of successful enteral
feeding interventions in animal models may not reflect the true biological potential of the
tested substance. Thus, based on the current evidence, it difficult to establish which
preclinically studied interventions are most promising (considered safe, clinically relevant
effect size, moderate to high certainty of evidence) and, hence, should be pursued in clinical
trials. Besides, a smooth transition from animal research to clinical practice is hampered by
the fact that experimental NEC modeling is still suboptimal. Notwithstanding the fact that
many disease characteristics and a number of pathophysiological mechanisms involved in
NEC are included in the current animal models of NEC, it is likely at least part of its complex
pathophysiology is not adequately covered by the current models?’. In addition, animal
models are inherently limited due to the difficulty of using animals that are preterm and
have bacterial colonization of the gut comparable to the human situation and differences
between human and animal physiology?>7-26°,
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Second, factors related to the conduct of clinical trials are involved. Many clinical trials are
not designed with NEC incidence as primary outcome and are underpowered to convincingly
prove a clinically significant beneficial effect. As Xiong et al. have nicely ascertained, the
number of neonates required to prove a 20% relative risk reduction with 80% power
assuming a 5% incidence of NEC is over 10,000%’. Including this amount of neonates in a
study requires multi-center and international collaboration, which is logistically challenging
and expensive. Moreover, NEC is not clearly defined and NEC diagnoses likely consist of a
mixture of ‘classical’ NEC and closely related pathologies such as transfusion-related NEC,
ischemic intestinal necrosis, spontaneous intestinal perforation and food protein
intolerance enterocolitis syndrome?6262_ |t is likely that NEC(-like) diseases require a
different treatment and that poorer effects of treatment will be found in clinical trials in
which all these disease entities are pooled as one group.

Third, it is challenging to determine the optimal therapeutic regimen (dose, frequency,
timing). Even though dose is of clear importance for the therapeutic effect®4%1, most animal
studies only test a single dose and frequency of administration and it is therefore unclear
how the dose and administration regimen used in animal studies should be translated to the
human neonate. Of note, the optimal dose for the human neonate may be very well
dependent on individual baseline levels, e.g., an infant with baseline deficit of a specific
nutritional component may benefit from a higher dosage than an infant with baseline values
within the normal range. Furthermore, timing of the feeding intervention often differs
between animal studies and clinical trials. Due to the rapid nature of NEC progression
following its onset, the value of nutritional interventions lies in prevention of NEC rather
than treatment of ongoing NEC and as such, enteral feeding interventions are used as
prevention in clinical trials. However, in animal models, enteral feeding interventions are
almost always started in parallel to a NEC inducing protocol, and can therefore probably not
be (fully) regarded as preventive. Studies looking at interventions at an earlier moment,
such as in utero nutritional interventions, are in this context valuable?3.

Last, surprisingly few animal studies have looked at enteral feeding interventions with a
combination of several bioactive substances, although this is, in light of the complex
composition of breastmilk and the multifactorial nature of NEC pathogenesis, likely to be of
pivotal importance.

Considering the abovementioned factors that hinder development of successful clinically
applicable enteral nutritional interventions to reduce NEC incidence, several aspects should
be improved. Future clinical trials investigating the potential of enteral feeding interventions
to reduce NEC incidence should be adequately powered to at least be able to fairly estimate
effect size and preferably reach statistical significance. In addition, clinical researchers
should strive for the use of a clearer definition of NEC, ideally after international consensus
regarding this definition in the field of NEC research. To this end, international collaboration
between (pre)clinical NEC researchers and clinicians is essential.

Preclinical studies remain important to further understand NEC pathophysiology and
optimize the current experimental models of NEC. In addition, the development of new
human tissue based experimental models such as intestinal organoids, NEC-in-a-dish and
gut-on-a-chip models is of importance?263.264 |n future preclinical experiments issues such
as timing of intervention and dose/treatment regimen should be taken into account.
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Negative findings should be published, which could be stimulated by voluntary or
mandatory registration of conducted (animal) studies as is more and more common practice
in the clinical research field?*>. Moreover, the reporting quality of methodological aspects in
experimental studies should be significantly improved to enable fair assessment of risk of
bias and certainty of evidence. Finally, studying combinations of the most promising single
substances based on findings in single component supplementation studies and on
biological working mechanisms is likely to be of pivotal importance for finding effective
enteral nutritional interventions that reduce clinical NEC incidence.
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Terms] OR "methods"[All Fields] OR "intervention"[All Fields] OR "interventional"[All Fields]))
OR (("nutrition s"[All Fields] OR "nutritional status"[MeSH Terms] OR ("nutritional"[All Fields]
AND "status"[All Fields]) OR "nutritional status"[All Fields] OR "nutrition"[All Fields] OR
"nutritional sciences"[MeSH Terms] OR ("nutritional"[All Fields] AND "sciences"[All Fields])
OR "nutritional sciences"[All Fields] OR "nutritional"[All Fields] OR "nutritionals"[All Fields]
OR "nutritions"[All Fields] OR "nutritive"[All Fields]) AND ("intervention s"[All Fields] OR
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"methods"[All Fields] OR "intervention"[All Fields] OR "interventional"[All Fields])) OR
("feeding"[All Fields] OR "feedings"[All Fields] OR "feeds"[All Fields]) OR ("nutrition s"[All
Fields] OR "nutritional status"[MeSH Terms] OR ("nutritional"[All Fields] AND "status"[All
Fields]) OR "nutritional status"[All Fields] OR "nutrition"[All Fields] OR "nutritional
sciences"[MeSH Terms] OR ("nutritional"[All Fields] AND "sciences"[All Fields]) OR
"nutritional sciences"[All Fields] OR "nutritional"[All Fields] OR "nutritionals"[All Fields] OR
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("alkaline phosphatase"[MeSH Terms] OR ("alkaline"[All Fields] AND "phosphatase"[All
Fields]) OR "alkaline phosphatase"[All Fields] OR "ALP"[All Fields]) AND ("necrotising
enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR ("enterocolitis"[All
Fields] AND "necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All Fields] OR
("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR "NEC"[AIl Fields])

("EGF"[AIl Fields] OR ("epidermal growth factor"[MeSH Terms] OR ("epidermal"[All Fields]
AND "growth"[All Fields] AND "factor"[All Fields]) OR "epidermal growth factor"[All Fields])
OR ("heparin binding egf like growth factor"[MeSH Terms] OR ("heparin binding"[All Fields]
AND "egf like"[All Fields] AND "growth"[All Fields] AND "factor"[All Fields]) OR "heparin
binding egf like growth factor"[All Fields] OR ("hb"[All Fields] AND "EGF"[AIl Fields]) OR "hb
egf"[All Fields]) OR ("heparin binding egf like growth factor"[MeSH Terms] OR ("heparin
binding"[All Fields] AND "egf like"[All Fields] AND "growth"[All Fields] AND "factor"[All
Fields]) OR "heparin binding egf like growth factor"[All Fields] OR ("heparin"[All Fields] AND
"binding"[All Fields] AND "EGF"[AIl Fields] AND "like"[All Fields] AND "growth"[All Fields]
AND "factor"[All Fields]) OR "heparin binding egf like growth factor"[All Fields])) AND
("necrotising enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR
("enterocolitis"[All Fields] AND "necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All
Fields] OR ("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR "NEC"[AIl Fields])
("erythropoietin"[MeSH Terms] OR "erythropoietin"[All Fields] OR "epoetin alfa"[MeSH
Terms] OR ("epoetin"[All Fields] AND "alfa"[All Fields]) OR "epoetin alfa"[All Fields] OR
"erythropoietins"[All Fields] OR "erythropoietin s"[All Fields] OR "EPO"[AIl Fields]) AND
("necrotising enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR
("enterocolitis"[All Fields] AND "necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All
Fields] OR ("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR "NEC"[AIl Fields])
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exosomes

ganglioside

glutamine

immunoglobulins

insulin like growth factor

milk fat globule membrane

("exosomal"[All Fields] OR "exosomes"[MeSH Terms] OR "exosomes"[All Fields] OR
"exosome"[All Fields] OR "exosomic"[All Fields] OR ("extracellular vesicles"[MeSH Terms] OR
("extracellular"[All Fields] AND "vesicles"[All Fields]) OR "extracellular vesicles"[All Fields])
OR ("cell derived microparticles"[MeSH Terms] OR ("cell derived"[All Fields] AND
"microparticles"[All Fields]) OR "cell derived microparticles"[All Fields] OR "microvesicle"[All
Fields] OR "microvesicles"[All Fields])) AND ("necrotising enterocolitis"[All Fields] OR
"enterocolitis, necrotizing"[MeSH Terms] OR ("enterocolitis"[All Fields] AND "necrotizing"[All
Fields]) OR "necrotizing enterocolitis"[All Fields] OR ("necrotizing"[All Fields] AND
"enterocolitis"[All Fields]) OR "NEC"[AIl Fields])

("gangliosides"[MeSH Terms] OR "gangliosides"[All Fields] OR "ganglioside"[All Fields] OR
"gangliosidic"[All Fields] OR "GD3"[All Fields] OR "GM"[AIl Fields]) AND ("necrotising
enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR ("enterocolitis"[All
Fields] AND "necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All Fields] OR
("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR "NEC"[AIl Fields])

("GIn"[All Fields] OR ("glutamine"[MeSH Terms] OR "glutamine"[All Fields] OR "I
glutamine"[All Fields]) OR ("glutamin"[All Fields] OR "glutamine"[MeSH Terms] OR
"glutamine"[All Fields] OR "glutamine s"[All Fields] OR "glutamines"[All Fields])) AND
("necrotising enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR
("enterocolitis"[All Fields] AND "necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All
Fields] OR ("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR "NEC"[AIl Fields])
("immunoglobulin s"[All Fields] OR "immunoglobuline"[All Fields] OR "immunoglobulines"[All
Fields] OR "immunoglobulins"[MeSH Terms] OR "immunoglobulins"[All Fields] OR
"immunoglobulin"[All Fields] OR ("immunoglobulin g"[MeSH Terms] OR "immunoglobulin
g"[All Fields] OR "igg"[All Fields]) OR ("immunoglobulin a"[MeSH Terms] OR
"immunoglobulin a"[All Fields] OR "iga"[All Fields])) AND ("necrotising enterocolitis"[All
Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR ("enterocolitis"[All Fields] AND
"necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All Fields] OR ("necrotizing"[All Fields]
AND "enterocolitis"[All Fields]) OR "NEC"[AIl Fields])

("somatomedins"[MeSH Terms] OR "somatomedins"[All Fields] OR ("insulin"[All Fields] AND
"like"[All Fields] AND "growth"[All Fields] AND "factor"[All Fields]) OR "insulin like growth
factor"[All Fields] OR "ILGF1"[All Fields] OR "IGF1"[All Fields]) AND ("necrotising
enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR ("enterocolitis"[All
Fields] AND "necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All Fields] OR
("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR "NEC"[AIl Fields])

((("milk fat globule"[Supplementary Concept] OR "milk fat globule"[All Fields]) AND
("membranal"[All Fields] OR "membrane s"[All Fields] OR "membraneous"[All Fields] OR
"membranes"[MeSH Terms] OR "membranes"[All Fields] OR "membrane"[All Fields] OR
"membranous"[All Fields])) OR ("milk fat globule"[Supplementary Concept] OR "milk fat
globule"[All Fields])) AND ("necrotising enterocolitis"[All Fields] OR "enterocolitis,
necrotizing"[MeSH Terms] OR ("enterocolitis"[All Fields] AND "necrotizing"[All Fields]) OR
"necrotizing enterocolitis"[All Fields] OR ("necrotizing"[All Fields] AND "enterocolitis"[All
Fields]) OR "NEC"[AIl Fields])
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Table S2.1  (continued)

Search title

Search terms used in Pubmed

oligosaccharides

osteopontin

platelet-activating factor
acetylhydrolase

polyunsaturated fatty acid

transforming growth factor

vitamin A

("gos"[All Fields] OR "FOS"[All Fields] OR ("oligosaccharides"[MeSH Terms] OR
"oligosaccharides"[All Fields] OR "oligosaccharide"[All Fields] OR "oligosaccharidic"[All
Fields]) AND ("necrotising enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH
Terms] OR ("enterocolitis"[All Fields] AND "necrotizing"[All Fields]) OR "necrotizing
enterocolitis"[All Fields] OR ("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR
"NEC"[AIl Fields])

("osteopontin"[MeSH Terms] OR "osteopontin"[All Fields] OR "osteopontine"[All Fields] OR
"osteopontins"[All Fields] OR ("opt photonics news"[Journal] OR "opn"[All Fields])) AND
("necrotising enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR
("enterocolitis"[All Fields] AND "necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All
Fields] OR ("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR "NEC"[All Fields])
("PAF-AH"[AIl Fields] OR (("platelet activating factor"[MeSH Terms] OR ("platelet"[All Fields]
AND "activating"[All Fields] AND "factor"[All Fields]) OR "platelet activating factor"[All
Fields]) AND ("acetylhydrolase"[All Fields] OR "acetylhydrolases"[All Fields]))) AND
("necrotising enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR
("enterocolitis"[All Fields] AND "necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All
Fields] OR ("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR "NEC"[All Fields])
("PUFA"[AIl Fields] OR ("fatty acids, unsaturated"[MeSH Terms] OR ("fatty"[All Fields] AND
"acids"[All Fields] AND "unsaturated"[All Fields]) OR "unsaturated fatty acids"[All Fields] OR
("polyunsaturated"[All Fields] AND "fatty"[All Fields] AND "acid"[All Fields]) OR
"polyunsaturated fatty acid"[All Fields]) OR ("fatty acids, omega 3"[MeSH Terms] OR
("fatty"[All Fields] AND "acids"[All Fields] AND "omega 3"[All Fields]) OR "omega-3 fatty
acids"[All Fields] OR "omega 3 fatty acids"[All Fields]) OR ("fatty acids, omega 6"[MeSH
Terms] OR ("fatty"[All Fields] AND "acids"[All Fields] AND "omega 6"[All Fields]) OR "omega-6
fatty acids"[All Fields] OR "omega 6 fatty acids"[All Fields]) OR ("long"[All Fields] AND
("chain"[All Fields] OR "chain s"[All Fields] OR "chains"[All Fields]) AND ("fatty acids"[MeSH
Terms] OR ("fatty"[All Fields] AND "acids"[All Fields]) OR "fatty acids"[All Fields]))) AND
("necrotising enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR
("enterocolitis"[All Fields] AND "necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All
Fields] OR ("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR "NEC"[All Fields])
("transforming growth factor beta"[MeSH Terms] OR ("transforming"[All Fields] AND
"growth"[All Fields] AND "factor"[All Fields] AND "beta"[All Fields]) OR "transforming growth
factor beta"[All Fields] OR "tgfbetal"[All Fields] OR ("tgfbeta s"[All Fields] OR "tgfbetas"[All
Fields] OR "transforming growth factor beta"[MeSH Terms] OR ("transforming"[All Fields]
AND "growth"[All Fields] AND "factor"[All Fields] AND "beta"[All Fields]) OR "transforming
growth factor beta"[All Fields] OR "tgfbeta"[All Fields])) AND ("necrotising enterocolitis"[All
Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR ("enterocolitis"[All Fields] AND
"necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All Fields] OR ("necrotizing"[All Fields]
AND "enterocolitis"[All Fields]) OR "NEC"[AIl Fields])

("vitamin a"[MeSH Terms] OR "vitamin a"[All Fields] OR ("tretinoin"[MeSH Terms] OR
"tretinoin"[All Fields] OR ("trans"[All Fields] AND "retinoic"[All Fields] AND "acid"[All Fields])
OR "all trans retinoic acid"[All Fields]) OR ("vitamin a"[MeSH Terms] OR "vitamin a"[All
Fields] OR "retinol"[All Fields] OR "retinols"[All Fields]) OR ("retinoidal"[All Fields] OR
"retinoids"[MeSH Terms] OR "retinoids"[All Fields] OR "retinoid"[All Fields])) AND
("necrotising enterocolitis"[All Fields] OR "enterocolitis, necrotizing"[MeSH Terms] OR
("enterocolitis"[All Fields] AND "necrotizing"[All Fields]) OR "necrotizing enterocolitis"[All
Fields] OR ("necrotizing"[All Fields] AND "enterocolitis"[All Fields]) OR "NEC"[AIl Fields])

122



Table S2.1  (continued)

Enteral feeding interventions in the prevention of NEC

vitamin D

("vitamin d"[MeSH Terms] OR "vitamin d"[All Fields] OR "ergocalciferols"[MeSH Terms] OR

"ergocalciferols"[All Fields] OR ("cholecalciferol"[MeSH Terms] OR "cholecalciferol"[All
Fields] OR "cholecalciferols"[All Fields] OR "colecalciferol"[All Fields]) OR
("ergocalciferols"[MeSH Terms] OR "ergocalciferols"[All Fields] OR "ergocalciferol"[All
Fields]) OR "D2"[All Fields] OR "D3"[All Fields]) AND ("necrotising enterocolitis"[All Fields] OR
"enterocolitis, necrotizing"[MeSH Terms] OR ("enterocolitis"[All Fields] AND "necrotizing"[All
Fields]) OR "necrotizing enterocolitis"[All Fields] OR ("necrotizing"[All Fields] AND
"enterocolitis"[All Fields]) OR "NEC"[AIl Fields])

Table S2.2  Embase search.

Searches Results
1 necrotizing enterocolitis/ 12218
2 nutrition/ 109194
3 feeding/ 52256
4 20r3 158880
5 land 4 533
6 limit 5 to yr="1883-2020" 513
7 erythropoietin/ 36171
8 land7 105
9 limit 8 to yr="1883-2020" 102
10  alkaline phosphatase/ 110896
11 1land10 79
12 limit 11 to yr="1883-2020" 79
13 glutamine/ 41784
14 1land13 92
15 limit 14 to yr="1883-2020" 92
16  epidermal growth factor 41340
17  heparin binding epidermal growth factor 2781
18 16 or 17 43596
19 1and18 161
20 limit 19 to yr="1883-2020" 160
21  exosome/ 32781
22 land21 33
23 limit 22 to yr="1883-2020" 30
24 ganglioside/ 9435
25 land24 8
26 limit 25 to yr="1883-2020" 26
27  somatomedin/ 16114
28 land27 17
29 limit 28 to yr="1883-2020" 17
30 milk fat/ 2925
31 1land30 10
32 limit 31 to yr="1883-2020" 9
33  osteopontin/ 17679
34  1land33 8
35 limit 34 to yr="1883-2020" 8
36  oligosaccharide/ 25624
37 1land36 113
38 limit 37 to yr="1883-2020" 110
39  polyunsaturated fatty acid/ 22681
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Table S2.2  (continued)

Searches Results
40 land39 62
41 limit 40 to yr="1883-2020" 61
42 retinoic acid/ 43088
43  land42 12
44 limit 43 to yr="1883-2020" 12
45  transforming growth factor beta/ 86269
46 land45 59
47 limit 46 to yr="1883-2020" 58
48  vitamin D/ 79604
49 land48 57
50  limit 49 to yr="1883-2020" 56
51  Immunoglobulin/ 120054
52 1land51 168
53 limit 52 to yr="1883-2020" 168
54 1 alkyl 2 acetylglycerophosphocholine esterase/ 2314
55 1and54 19
56  limit 55 to yr="1883-2020" 19
Table $2.3  Cochrane library search.

Searches Results

#1 feeding intervention 9442
#2 nutritional intervention 13452
#3 Feeding 23499
#4 nutrition 55842
#5 necrotizing enterocolitis 1999
#6 NEC 998
#7 #1 OR #2 OR #3 OR #4 77042
#3 #5 OR #6 2344
#9 #7 AND #8 922
#10 #7 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 185
#11 erythropoietin 4358
#12 EPO 2290
#13 #11 OR #12 4821
#14 #13 AND #8 44
#15 #13 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 11
#16 alkaline phosphatase 5916
#17 ALPI 30
#18 #16 OR #17 4946
#19 #18 AND #8 30
#20 #18 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 13
#21 Gln 325
#22 L-glutamine 241
#23 glutamine 2098
#24 #21 OR #22 OR #23 2159
#25 #24 AND #8 27
#26 #24 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 7
#27 EGF 603
#28 epidermal growth factor 4834
#29 HB-EGF 16
#30 heparin-bindign EGF like growth factor 10
#31 #27 OR #28 OR #29 OR #30 5067
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Table S2.3 (continued)

#32 #31 AND #8 6
#33 #31 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 2
#34 exosomes 106
#35 extracellular vesicles 118
#36 microvesciles 48
#37 #34 OR #35 OR #36 250
#38 #37 AND #8 2
#39 #37 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 0
#40 gangliosides 231
#41 GD3 27
#42 GM 15436
#43 #40 OR #31 OR #42 15654
#44 #43 AND #8 59
#45 #43 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 16
#46 insulin like growth factor 3538
#47 ILGF1 0
#48 IGF1 245
#49 #46 OR #47 OR #48 3667
#50 #49 AND #8 29
#51 #49 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 22
#52 milk fat globule membrane 61
#53 milk fat globule 78
#54 #52 OR #53 78
#55 #54 AND #8 2
#56 #54 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 2
#57 osteopontin 232
#58 OPN 273
#59 #57 OR #58 429
#60 #59 AND #8 1
#61 #59 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 0
#62 GOS 894
#63 FOS 505
#o4 oligosaccharides 1012
#65 HMO 427
#66 #62 OR #63 OR #64 OR #65 2424
#67 #66 AND #8 30
#68 #66 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 13
#69 PUFA 2024
#70 polyunsaturated fatty acid 2790
#71 omega 3 fatty acids 4973
#72 omega 6 fatty acids 2924
#73 long chain fatty acids 1748
#74 #69 OR #70 OR #71 OR #72 OR #73 7515
#75 #74 AND #8 33
#76 #74 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 13
#77 vitamin A 27965
#78 all trans retinoic acid 413
#79 retinol 2262
#80 retinoids 504
#31 #77 OR #78 OR #70 OR #80 29410
#32 #381 AND #8 109
#83 #81 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 44
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Table S2.3 (continued)

Searches Results
#84 transforming growth factor beta 869
#35 TGFbetal 234
#36 TGFbeta 447
#37 #84 OR #85 OR #86 1205
#38 #87 AND #8 2
#89 #87 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 1
#90 vitamin D 17384
#91 cholecalciferol 3066
#92 ergocalciferol 354
#93 D2 4229
#94 D3 5590
#95 #90 OR #91 OR #92 OR #93 OR #94 22866
#96 #95 AND #8 76
#97 #95 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 35
#98 immunoglobulins 2939
#99 IgG 5645
#100  IgA 4221
#101 #98 OR #99 OR #100 10801
#102 #101 AND #8 58
#103 #101 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 22
#104 PAF-AH 24
#105 platelet-activating factor acetylhydrolase 28
#106 #104 OR #105 33
#107 #106 AND #8 0
#108 #106 AND #8 with Cochrane Library publication date to Jan 2021, in Cochrane Reviews 0
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Risk of bias assessment of the included experimental animal studies (SYRCLE's risk of bias tool).

Table S2.8
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Abstract

Background

Chorioamnionitis, inflammation of the chorion and amnion, which often results from intra-
uterine infection, is associated with premature birth and contributes to significant neonatal
morbidity and mortality, including necrotizing enterocolitis (NEC). Recently, we have shown
that chronic chorioamnionitis is associated with significant structural enteric nervous system
(ENS) abnormalities that may predispose to later NEC development. Understanding time
point specific effects of an intra-amniotic (IA) infection on the ENS is important for further
understanding the pathophysiological processes and for finding a window for optimal
therapeutic strategies for an individual patient. The aim of this study was therefore to gain
insight in the longitudinal effects of intra-uterine LPS exposure (ranging from 5 hours to 15
days before premature delivery) on the intestinal mucosa, submucosa, and ENS in fetal
lambs by use of a well-established translational ovine chorioamnionitis model.

Materials and methods

We used an ovine chorioamnionitis model to assess outcomes of the fetal ileal mucosa,
submucosa and ENS following IA exposure to one dose of 10 mg LPS for 5, 12 or 24 hours or
2,4, 8 or 15 days.

Results

Four days of IA LPS exposure causes a decreased PGP9.5- and S100B-positive surface area in
the myenteric plexus along with submucosal and mucosal intestinal inflammation that
coincided with systemic inflammation. These changes were preceded by a glial cell reaction
with early systemic and local gut inflammation. ENS changes and inflammation recovered 15
days after the IA LPS exposure.

Conclusion

The pattern of mucosal and submucosal inflammation, and ENS alterations in the fetus
changed over time following IA LPS exposure. Although ENS damage seemed to recover
after prolonged IA LPS exposure, additional postnatal inflammatory exposure, which a
premature is likely to encounter, may further harm the ENS and influence functional
outcome. In this context, 4 to 8 days of IA LPS exposure may form a period of increased ENS
vulnerability and a potential window for optimal therapeutic strategies.
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Introduction

Chorioamnionitis, inflammation of the chorion and amnion during pregnancy, is associated
with premature birth and contributes to significant neonatal morbidity and mortality®3.
Chorioamnionitis typically results from a bacterial infection ascending through the birth
canal’. It is often clinically silent and therefore difficult to diagnose, but can nevertheless
affect the developing fetus*. As the fetus swallows the amniotic fluid (AF), the intestine is
directly exposed to bacterial components and inflammatory cytokines present in the AF,
which can consequently cause gut injury and inflammation®>. Moreover, during
chorioamnionitis, the fetus can develop a fetal inflammatory response syndrome (FIRS),
which is characterized by increased systemic interleukin 6 (IL-6) and interleukin 8 (IL-8)
levels®. FIRS is an independent risk factor for considerable neonatal morbidity, including the
postnatal intestinal disease necrotizing enterocolitis (NEC)*”. NEC has a high mortality of
overall 25% with both significant short-term and long-term morbidity®. Severe intestinal
inflammation is associated with NEC and can result in gut necrosis®®. Gut specimens from
NEC patients contain alterations in the enteric nervous system (ENS) including a loss of
neurons and glial cells'®!®. The ENS resides in the intestinal wall and consists of two
plexuses: the submucosal and myenteric plexus'®. It operates autonomously and regulates
diverse gastrointestinal functions such as motility, secretion, absorption, and maintenance
of gut integrity!*. ENS development is a complex process that requires coordinated
migration, proliferation, and differentiation of the involved cell types, directed outgrowth of
neurites and the establishment of an interconnected neuronal and glial cell network!>?®.
Importantly, ENS development continues in the early postnatal period'”*#, during which it is
shaped by amongst others immune cells, microbiota and enteral nutrition'’.

Recently, we have shown in a preclinical ovine model that chronic chorioamnionitis is
associated with significant structural ENS abnormalities’®. Importantly, these alterations
corresponded with those found in infants with NEC, indicating that ENS changes following
chorioamnionitis may predispose to later NEC development!®. Since inflammation is a
dynamic process and the vulnerability of the fetus to injurious exposure during intra-uterine
development varies, ENS alterations in response to inflammation can be time-dependent. As
chorioamnionitis is often clinically silent and infants born after chorioamnionitis have been
exposed to varying durations of intra-uterine inflammation, understanding time-dependent
effects of intra-uterine inflammation on the ENS is clinically important to define optimal
therapeutic strategies. Therefore, the aim of this study was to evaluate the time-dependent
effects of 5 hour to 15 days of intra-uterine LPS exposure before premature delivery, on the
intestinal submucosa, mucosa and ENS in fetal sheep.

Materials and methods

Animal model and experimental procedures

The experiments were approved by the animal ethics/care committee of the University of
Western Australia (Perth, Australia; ethical approval number: RA/3/100/928).

The ovine model and experimental procedures were previously described®?. In brief,
52 time-mated merino ewes carrying singleton fetuses were randomly assigned to eight
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different groups of six to seven animals. The pregnant ewes were IA injected under
ultrasound guidance with 10 mg Escherichia coli-derived LPS (055:B5; Sigma-Aldrich, St.
Louis, MO, USA) dissolved in saline at 5, 12, or 24 hours, or 2, 4, 8 or 15 days before preterm
delivery at 125 days of gestation (equivalent of 30-32 weeks of human gestation for the gut;
term gestation in sheep around 150 days). The study design is based on the clinically
relevant situation that the gestational age of the infant is known, but not the length of
exposure to inflammation. Hence, all samples were collected at the same gestational age
and inflammation was induced at various times before sampling. Of importance, with a half-
life time of 1.7 days, LPS persists in AF and can still be detected at 15 days?!. A group
receiving IA injections of saline at variable gestational ages comparable to LPS injections,
ranging from 5 hours to 15 days before preterm delivery, served as the controls (Figure 3.1).

15d ad 4d 2d 24h 12h 5h

/ /3 S I
// 125d GA term

surgical delivery

od

Figure 3.1  Study design. Pregnant ewes received an IA injection with 10 mg LPS at 5, 12,or 24 hor 2,4, 8
or 15 days (black arrows) before preterm delivery at 122 days of gestation (term ~150 days).
Control animals received an IA saline injection at comparable time points to LPS injections.
Timing shown in gestational days.

Fetuses were delivered by cesarean section at 125 days of gestation and immediately
euthanized with intravenous pentobarbitone (100 mg/kg). Fetuses of both sexes were used.
At necropsy, the terminal ileum was sampled and fixed in 10% formalin or snap frozen.
Formalin-fixed tissues were subsequently embedded in paraffin.

Antibodies

For immunohistochemistry, the following antibodies were used: polyclonal rabbit anti-
myeloperoxidase ([MPO]; A0398, Dakocytomation, Glostrup, Denmark) for identification of
neutrophils, polyclonal rabbit anti-bovine protein gene product 9.5 ([PGP9.5]; Z5116,
Dakocytomation) for the detection of enteric neurons, polyclonal rabbit anti-doublecortin
(Ab18723, Abcam, Cambridge, UK) for the detection of immature neurons, polyclonal rabbit
anti-glial fibrillary acidic protein ([GFAP]; Zo334, Dakocytomation) for identification of
activated enteric glial cells and polyclonal rabbit anti-S100B (PA5-16257, Invitrogen,
Carlsbad, CA, USA) which is considered a general marker of enteric glial cells.

The following secondary antibodies were used: peroxidase-conjugated polyclonal goat
anti-rabbit (111-035-045, Jackson, WestGrove, PA, USA) (MPO), peroxidase-conjugated
polyclonal swine anti-rabbit (P0399, DakoCytomation) (doublecortin) and BrightVision+
Poly-HRP-Anti Mouse/Rabbit IgG Biotin-free (ImmunolLogic, Duiven, the Netherlands)
(PGP9.5), and biotin conjugated polyclonal swine anti-rabbit (E0353, DakoCytomation)
(GFAP, S1008).
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Immunohistochemistry

Paraffin embedded formalin-fixed terminal ileum was cut into 4 um sections. Following
deparaffinization and rehydration, sections were incubated in 0.3% H202 diluted in
phosphorylated buffer saline ([PBS]; pH 7.4) to block endogenous peroxidase activity. For
PGP9.5, doublecortin and S1008, antigen retrieval was achieved with citrate buffer. Non-
specific binding was blocked for 30 minutes at room temperature with 10% normal goat
serum (NGS) in PBS (MPO), 5% NGS in PBS (doublecortin), or 5% bovine serum albumin
(BSA) in PBS (GFAP and S1008) or for 10 minutes at room temperature with 20% fetal calf
serum (FCS) in PBS (PGP9.5). Subsequently, sections were incubated with the primary
antibody of interest for one hour (MPO) or overnight (others) followed by the secondary
antibody for 30 minutes (MPO) or one hour (others). MPO, PGP9.5 and doublecortin were
recognized using a peroxidase-conjugated secondary antibody; antibodies against GFAP and
S100B were detected with avidin-biotin complex (Vectastain Elite ABC kit, Bio-connect,
Huissen, the Netherlands). Substrate staining was performed with 3-amino-9-ethylcarbazole
([AEC]; Merck, Darmstadt, Germany) (MPO), nickel-DAB (GFAP) or DAB (PGP9.5,
doublecortin and S100B). Hematoxylin (MPO, PGP9.5, doublecortin and S100B) or nuclear
fast red (GFAP) were used as nuclear counterstains.

Quantification of immunohistochemical stainings

The Ventana iScan HT slide scanner (Ventana Medical Systems, Oro Valley, AZ, USA) was
used to scan stained tissue sections. With the use of Pannoramic Viewer (version 1.15.4,
3DHISTECH, Budapest, Hungary), an overview picture of the transverse section of the ileum
was taken. Two investigators blinded to the experimental groups counted the number of
mucosal MPO-positive cells. Leica QWin Pro (version 3.4.0, Leica Microsystems, Mannheim,
Germany) was used to calculate the mucosal surface area. The average number of mucosal
MPO-positive cells corrected for total mucosal tissue surface area is reported as MPO-
positive cells per area per animal. Secondly, random images of the submucosal layer were
taken (200x). In five non-overlapping high power fields, the number of submucosal MPO-
positive cells was counted by two investigators blinded to the experimental groups. The
average number of submucosal MPO-positive cells per animal of the five power fields is
reported as MPO-positive cells per area. For PGP9.5, doublecortin, GFAP and S1008, the
surface of positively stained areas in the submucosal and myenteric ganglia and total
surface area of the muscle layer were measured (Leica QWin Pro version 3.4.0, Leica
Microsystems, Mannheim, Germany) in five non-overlapping high-power fields. The area
fraction was calculated by dividing the positively stained surface area by the total surface
area of the muscle layer. The average area fraction of the five high-power fields per animal
is given as fold increase over the control value. The control value will be stated at one. All
area fraction measurements were performed by one investigator blinded to the study
groups.

RNA extraction and real-time PCR

TRI reagent (Invitrogen)/chloroform extraction was used to extract RNA from snap frozen
terminal ileum. Afterwards RNA was reverse transcribed into cDNA using sensifast cDNA
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Synthese kit (Bioline, London, UK). Quantitative real-time PCR (qPCR) was performed with
the specific primers in Sensimix SYBR & Fluorescein Kit (Bioline) using a 384-wells qPCR
plate. gqPCR reactions were performed in a LightCycler 480 Instrument (Roche Applied
Science, Basel, Switzerland) for 45 cycles. Gene expression levels of tumor necrosis factor
alpha (TNF-a), IL-8 and IL-10 were determined to assess terminal ileum inflammation. mRNA
expression levels of neuronal nitric oxide synthase (nNOS) and choline acetyltransferase
(CHAT) were determined to assess ENS motility signaling function. LinRegPCR software
(version 2016.0, Heart Failure Research Center, Academic Medical Center, Amsterdam, the
Netherlands) was used for qPCR data processing. The geometric mean of the expression
levels of three reference genes (ribosomal protein S15 (RPS15), glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and peptidylprolyl isomerase A (PPIA)) were calculated and used as
a normalization factor. Data are expressed as fold increase over the control value.
Sequences of the primers used are shown in Table 3.1.

Data analysis

Statistical analyses were performed using GraphPad Prism (version 6.01, GraphPad Software
Inc., La Jolla, CA, USA). Data are presented as median with interquartile range. Differences
between the groups and the controls were analyzed using a nonparametric Kruskal-Wallis
test followed by Dunn’s post hoc test. Differences are considered statistically significant at
p<0.05. Differences with a p<0.10 are also taken into account because of the small study
groups and because of potential biological relevance, and described as tendencies as
previously described??. This assumption will decrease the chance of a type Il error, but
increases the chance of a type | error.

Table 3.1 Primer sequences.

Primer Forward Reverse

RPS15 5’-CGAGATGGTGGGCAGCAT-3’ 5’-GCTTGATTTCCACCTGGTTGA-3’
GAPDH 5’-GGAAGCTCACTGGCATGGC-3’ 5’-CCTGCTTCACCACCTTCTTG-3’

PPIA 5’-TTATAAAGGTTCCTGCTTTCACAGAA-3’ 5’-ATGGACTTGCCACCAGTACCA-3’
IL-8 5’-GTTCCAAGCTGGCTGTTGCT-3’ 5’-GTGGAAAGGTGTGGAATGTGTTT-3’
IL-10 5’-CATGGGCCTGACATCAAGGA-3’ 5’-CGGAGGGTCTTCAGCTTCTC-3’
TNF-a 5’-GCCGGAATACCTGGACTATGC-3’ 5’-CAGGGCGATGATCCCAAAGTAG-3’
nNOS 5’-CGGCTTTGGGGGTTATCAGT-3’ 5’-TTGCCCCATTTCCACTCCTC-3’

CHAT 5’-CCGCTGGTATGACAAGTCCC-3’ 5-GCTGGTCTTCACCATGTGCT-3’
Results

Chorioamnionitis induced intestinal inflammation

A statistically significant increase in MPO-positive cells was seen in the mucosa 4 and 8 days
after IA LPS exposure, compared to control (p<0.05; Table 3.2).
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Table 3.2 Immune cells count in the mucosal layer.
Control 5h LPS 12h LPS 24h LPS 2d LPS 4d LPS 8d LPS 15d LPS
(n=6) (n=6) (n=7) (n=7) (n=6) (n=6) (n=7) (n=6)
MPO+ cell 102 74 159 76 151 354* 332* 224
count
SD () 110 77 166 51 105 162 101 96

Values are expressed as median numbers of cells per square millimeter. SD: Standard deviation. Kruskal—
Wallis test with Dunn’s post hoc test was performed. * p<0.05 compared to control.

In the submucosa, there was an increase of MPO-positive cells in animals exposed to 4 days
of 1A LPS, and submucosal MPO-positive cells still tended to be increased after 8 days of IA
LPS exposure, compared to control (p<0.05 and p=0.08; Figure 3.2).

Examination of underlying cytokine levels revealed increased ileal IL-8 mMRNA levels after
24 hours and 4 days of IA LPS exposure, compared to control (both p<0.05; Figure 3.3). No
differences were seen in IL-10 and TNF-a mRNA levels, compared to control
(Supplementary Figure S3.1).
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Figure 3.2  Representative images of submucosal neutrophil influx reflected by MPO-positive cell
(indicated by white triangles) counts of the control (A), 4 days of IA LPS (B) and 8 days of IA
LPS group (C). D: Increased MPO count in animals exposed to 4 and 8 days of IA LPS. * p<0.01
compared to control. # p=0.08 compared to control.
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Relative IL-8 gene expression (AU)

Figure 3.3  Relative gene expression of IL-8 in arbitrary unit (AU). Increased IL-8 gene expression in
animals exposed to 24 hours and 4 days of IA LPS. * p<0.05 compared to control.

Chorioamnionitis induced enteric nervous system alterations

The PGP9.5-positive and doublecortin-positive surface areas in the submucosal plexus were
unchanged in all groups compared to control (Supplementary Figure S3.2). In the myenteric
plexus, the PGP9.5-positive surface area was decreased after 4 days of IA LPS exposure,
compared to control (p<0.05; Figure 3.4).
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Figure 3.4  Representative images of PGP9.5 immunoreactivity in the submucosal and myenteric plexus
of the control (A) and 4 days IA LPS group (B). Area fraction of PGP9.5 in the myenteric plexus
(C) as fold increase over the control value. C: PGP9.5-positive surface area was decreased in
animals exposed to 4 days of IA LPS. * p<0.05 compared to control.

This reduction was resolved after 8 days of IA LPS exposure. At this time point, the
doublecortin-positive surface area tended to be decreased in the myenteric plexus of LPS
exposed animals, compared to control (p=0.07; Figure 3.5).
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In the submucosal plexus, no differences in the GFAP-positive surface areas were observed
(Supplementary Figure S3.3), while in the myenteric plexus, the GFAP-positive surface area
was increased in animals exposed to 2 days of IA LPS, compared to control (p<0.05; Figure
3.6).
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Figure 3.5  Representative images of doublecortin immunoreactivity in the submucosal and myenteric
plexus of the control (A) and 8 days of IA LPS group (B). Area fraction of doublecortin in the
myenteric plexus (C) as fold increase over the control value. C: Doublecortin-positive surface
area tended to be decreased in animals exposed to 8 days of IA LPS. # p=0.07 compared to
control.
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Figure 3.6  Representative images of GFAP immunoreactivity in the submucosal and myenteric plexus of
the control (A) and 2 days of IA LPS group (B). Area fraction of GFAP in the myenteric plexus (C)
as fold increase over the control value. C: GFAP-positive surface area in the myenteric plexus
was increased in animals exposed to 2 days of 1A LPS. * p<0.05 compared to control.
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The S100B-positive surface area in the submucosal plexus tended to be decreased in
animals exposed to 8 days of IA LPS, compared to control (p=0.09; Figure 3.7). In the
myenteric plexus, the S100B-positive surface area was decreased in animals exposed to 4
days of IA LPS, compared to control (p<0.05; Figure 3.7). No differences in nNOS and CHAT
MRNA expression were observed between the groups (Supplementary Figure S3.4).
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Figure 3.7  Representative images of S100B immunoreactivity in the submucosal and myenteric plexus of
the control (A), 4 days of IA LPS (B) and 8 days of IA LPS group (C). Area fraction of S100B in
the submucosal (D) and myenteric plexus (E) as fold increase over the control value. D: S100B-
positive surface area tended to be decreased in animals exposed to 8 days of IA LPS. # p=0.09
compared to control. E: S100B-positive surface area is decreased in animals exposed to 4 days
of IA LPS. * p<0.05 compared to control.

Discussion

In the current study, mucosal and submucosal intestinal inflammation were observed in the
terminal ileum after 4 days of IA LPS exposure. On mRNA level, gut inflammation (IL-8) also
occurs after 24 hours of IA LPS exposure, and this time point overlaps with the fetal
systemic immune response, characterized by increased circulatory IL-6 levels®. In utero
gastro-intestinal transit studies showed it takes approximately 24 hours for the swallowed
AF to reach the mid-ileum (unpublished findings). Hence, this early inflammatory response
in the terminal ileum is probably not caused by a local process, but solely the result of fetal
systemic inflammation. In line, previous research in the same ovine model has shown that
chorioamnionitis induced gut inflammation is the combined effect of direct gut exposure to
LPS and a lung-mediated systemic inflammatory response®. It is possible that the early
intestinal IL-8 peak contributes to the submucosal and mucosal increase of inflammatory
cells at 4 days of IA LPS exposure through stimulation of chemotaxis?.
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Interestingly, the most evident signs of ENS alterations were also seen after 4 days, and
after 8 days of IA LPS exposure. After 4 days IA LPS exposure, the myenteric plexus PGP9.5-
positive surface area was decreased, indicating a loss of enteric neurons and/or reduction of
PGP9.5 immunoreactivity of enteric nerve cells. Since the doublecortin-positive (immature
neurons) surface area remained unchanged, this was probably the result of affected mature
neurons. The reduced PGP9.5-positive surface area after 4 days of IA LPS exposure was
recovered after 8 days of IA LPS exposure. The doublecortin-positive surface area tended to
decrease at this time point. These findings might indicate that an initial loss of mature
neurons is compensated by an accelerated maturation of immature neurons. Whether such
an accelerated maturation is sufficient to fully compensate for the identified loss of neurons
remains to be elucidated. These findings combined with the unaltered PGP9.5-positive and
doublecortin-positive surface area after 2 and 7 days of IA LPS exposure in a previous
study'®, show that the ENS changes found are time-dependent and may recover following
prolonged intra-uterine inflammation. Interestingly, in a previous study, a similar loss of
mature neurons was observed after chronic IA exposure to UP, indicating that different
inflammatory triggers can induce similar ENS damage?®.

Enteric glial cells are important for neuronal maintenance, survival, and function??, and
are capable of generating enteric neurons in response to injury?>26, In addition, enteric glia
respond, in @ manner similar as reactive astrogliosis in the central nervous system, to ENS
injury and inflammation by changing both their morphology and their expression of key
proteins such as GFAP?72%, The neuronal loss in the myenteric plexus after four days of LPS
exposure is accompanied with a reduced S100B-positive surface area, likely representing a
loss of glial cells and/or loss of S100B immunoreactivity within glial cells, as was earlier
described during chronic IA UP exposure®®. Interestingly, this loss of neurons and glial cells is
preceded by an increased myenteric plexus GFAP immunoreactivity after 2 days of LPS
exposure. It is likely that the observed glial cell response results from fetal systemic
inflammation and/or intestinal inflammation, since pro-inflammatory cytokines have been
shown to induce GFAP expression in enteric glial cells?®. Moreover, as activated enteric glial
cells can secrete various cytokines and other mediators involved in the infiltration and
activation of immune cells3%3!, the observed glial cell reaction can contribute to the
intestinal influx of neutrophils observed after 4 days of IA LPS exposure. Since a glial cell
response in the context of intestinal inflammation can be destructive®? and eventually
neuroregenerative®, it is to date unclear whether it contributes to the loss of neurons and
glial cells or is a protective mechanism that falls short with prolonged inflammation.

In this study, the most profound ENS changes were found in the myenteric plexus,
rather than the submucosal plexus. This is in concordance with earlier findings in fetal lambs
that were chronically IA exposed to UP¥. Moreover, inflammation driven pathological
changes of the ENS are more often found in the myenteric plexus than in the submucosal
plexus3*. The mechanisms behind this apparent increased vulnerability of the myenteric
plexus remain to be elucidated. At present, we can only speculate about the mechanisms
responsible for the observed differences because multiple possible explanations are in play.
First, since the ENS undergoes rapid structural growth in utero, the composition of the
submucosal and myenteric plexus might be differently altered by the combination of
ongoing developmental processes and LPS exposure. Alternatively, the migratory pattern of
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cells in these plexi might be different during this essential developmental period of the ENS.
Second, the macrophages in the plexus, which are in close proximity to neuronal cell bodies
and nerve fibers, undergo differentiation towards a multitude of subsets depending on
microenvironment but also depending on developmental stage and bacterial colonization.
Our findings indicate that these cells play a role in the differential response of the
submucosal and myenteric plexus, although the reason for that remains speculative.
Notably, the transcriptional profiles of macrophages gradually differ from the lumen to the
myenteric plexus. As a result, the macrophages closer to the lumen play an important role
by sampling luminal bacteria and initiating adaptive immune responses to clear pathogenic
bacteria, whereas macrophages in the muscularis, which are comparatively more distant
from luminal stimulation, are primarily involved in tissue protection and regulation of the
activity of enteric neurons and peristalsis3>3®. It is tempting to speculate that phenotypical
differences of these immune cells following exposure to a bacterial stimulus in the different
plexi are involved in the observed differences between the submucosal and myenteric
plexus.

At present, it is unclear whether the observed changes have postnatal functional
consequences. As the mRNA expression of CHAT and nNOS are unchanged, in utero motility
signaling function could be unaltered. This confirms and extends previous findings in fetal
lambs chronically IA exposed to UP?. The resolved inflammation and the recovery of
(immature) neurons and glial cells after fifteen days of IA LPS exposure indicate that damage
due to IA LPS exposure probably can be repaired in utero. Nevertheless, it is likely that a
child that is born prematurely with ongoing inflammation due to FIRS will experience
additional postnatal inflammatory stimuli such as mechanical ventilation®” or sepsis®®. The
effects of these postnatal exposures on the ENS should be studied in order to shed light on
the long-term consequences of (intra-uterine) inflammation for ENS development and
function. Notably, 4 to 8 days after the start of intra-uterine infection could very well be the
window of vulnerability in which additional inflammation may have a higher impact as the
ENS is already affected at this time point.

A limitation of this study is the relatively low number of animals per group, which is an
unavoidable shortcoming of the translational large animal model. Secondly, the current set-
up with the fixed moment of premature birth does not exclude a potential influence of
gestational age at start of intra-uterine infection. Thirdly, in the current study we were
unable to unravel the mechanisms behind the observed changes, as no serial sampling was
applied following a specific injection time point.

In summary, submucosal intestinal inflammation was detected after 4 days of IA LPS
exposure that coincided with gut mucosal and fetal systemic inflammation. At the same
time point, a loss of PGP9.5 and S100B immunoreactivity in the myenteric plexus was
observed. These changes are preceded by a glial cell response with systemic inflammation
and local gut inflammation. Although initial ENS damage seemed to recover after prolonged
IA LPS exposure, additional postnatal inflammatory hits that a premature born child is likely
to encounter may further harm the ENS and influence functional outcomes. In this context,
4 to 8 days after the start of an intra-uterine infection may be a window of increased ENS
vulnerability, indicating that therapeutic interventions should ideally start before or at this
time point.
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Figure $S3.2  Area fraction of PGP9.5 (A) and doublecortin (B) in the submucosal plexus (C) as fold increase
over the control value. The PGP9.5-positive and doublecortin-positive surface areas in the
submucosal plexus were unchanged in all groups compared to control.
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differences in the GFAP-positive surface areas were observed in the submucosal plexus
compared to control.
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Abstract

Background

Chorioamnionitis, inflammation of the fetal membranes during pregnancy, is often caused
by intra-amniotic (IA) infection with single or multiple microbes. Chorioamnionitis can be
either acute or chronic, and is associated with adverse postnatal outcomes of the intestine,
including necrotizing enterocolitis (NEC). Neonates with NEC have structural and functional
damage to the intestinal mucosa and the enteric nervous system (ENS), with loss of enteric
neurons and glial cells. Yet, the impact of acute, chronic, or repetitive antenatal
inflammatory stimuli on the development of the intestinal mucosa and ENS has not been
studied. The aim of this study is therefore to investigate the effect of acute, chronic, and
repetitive microbial exposure on the intestinal mucosa, submucosa and ENS in premature
lambs.

Materials and methods

A sheep model of pregnancy was used in which the ileal mucosa, submucosa, and ENS were
assessed following IA exposure to lipopolysaccharide (LPS) for 2 or 7 days (acute),
Ureaplasma parvum (UP) for 42 days (chronic) or repetitive microbial exposure (42 days UP
with 2 or 7 days LPS).

Results

IA LPS exposure for 7 days or IA UP exposure for 42 days caused intestinal injury and
inflammation in the mucosal and submucosal layer of the gut. Repetitive microbial exposure
did not further aggravate injury of the terminal ileum. Chronic IA UP exposure caused
significant structural ENS alterations characterized by loss of PGP9.5 and S10083
immunoreactivity whereas these changes were not found after re-exposure of chronic UP-
exposed fetuses to LPS for 2 or 7 days.

Conclusion

The in utero loss of PGP9.5 and S100B immunoreactivity following chronic UP exposure
corresponds with intestinal changes in neonates with NEC, and may therefore form a novel
mechanistic explanation for the association of chorioamnionitis and NEC.
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Introduction

Preterm birth is a common and major worldwide health issue, contributing to significant
neonatal morbidity and mortality®. Around one in every ten births is preterm, accounting for
approximately 15 million premature newborns each year?. Due to complications, over one
million premature newborns will die shortly after birth®*. Chorioamnionitis, defined as
inflammatory cell infiltration of fetal membranes, is frequently associated with preterm
birth and typically occurs due to an ascending bacterial infection>” that can be acute or
chronic®. Intra-uterine exposure of preterm infants to chorioamnionitis is associated with an
increased risk of adverse neonatal outcomes®'9, including necrotizing enterocolitis
(NEC)>*+12, Adverse gastrointestinal outcomes have been associated with both systemic
fetal inflammatory response syndrome (FIRS) and direct exposure of the gut to swallowed
infected amniotic fluid*'34, Chorioamnionitis can occur with intact membranes, which is
common for genital mycoplasmas, such as Ureaplasma species (spp.), present in the lower
genital tract of women®®>. The Ureaplasma spp. can cause chronic chorioamnionitis that
does not evoke a maternal response, but is still associated with adverse fetal outcomes?®. In
an experimental large animal model, we previously showed that an Ureaplasma parvum
(UP) serovar 3 infection up to 14 days prior to delivery causes fetal gut inflammation with
damaged villus epithelium, gut barrier loss and severe villus atrophy'’.

The injury caused by intra-uterine Ureaplasma spp. exposure might derive from the
direct inflammatory reaction, as well as from potential interactions with other inflammatory
stimuli. Chorioamnionitis is often polymicrobial, as over 65% of positive amniotic fluid
cultures lead to the identification of two or more pathogens’. In this context, we previously
showed that cerebral and lung immune activation following intra-amniotic (IA)
lipopolysaccharide (LPS) exposure was prevented when these animals were chronically pre-
exposed to UP serovar 3'®%°. This illustrates that interactions between different microbes
can occur, leading to organ-specific sensitization or preconditioning.

The enteric nervous system (ENS) consists of enteric neurons and glial cells,
autonomously regulates gastrointestinal activity (i.e., secretion, absorption, and motility),
and contributes to gut integrity?°. The formation of the ENS requires coordinated migration,
proliferation, and differentiation of neural crest progenitors, directed neurite growth, and
establishment of a network of interconnected neurons and glia?>?2. Although these
processes mostly occur in utero, an important part of ENS development takes place
postnatally?®?*. Neonates with NEC have structural and functional damage of the
submucosal and myenteric plexus, including loss of enteric neurons and glial cells*>?”. The
involvement of chorioamnionitis in the induction of adverse intestinal outcomes including
NEC combined with the presence of ENS abnormalities in NEC, prompted us to study the
impact of an antenatal infection on the ENS.

The aim of this study was therefore to investigate the effect of acute IA exposure to LPS
and chronic exposure to UP on the intestinal mucosa and ENS in fetal lambs using a well-
established sheep model of chorioamnionitis. In addition, we investigated the potential
interactions of repetitive IA microbial stimuli by acute exposure to LPS in ovine fetuses that
were chronically pre-exposed to UP.
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Materials and methods

Animal model and experimental procedures

All experiments were approved by the animal ethics committee of the University of Western
Australia (Perth, Australia).

The animal model and experimental procedures were previously described?®. Briefly, 39
date-mated merino ewes were randomly assigned to six different groups of between five
and eight animals, to receive IA injections under ultrasound guidance. Verification of the IA
injections was done by amniotic fluid electrolyte analysis. The date-mated pregnant ewes
received an IA injection of an in vitro cultured strain HPA5 of UP serovar 3 (2 x 10° color-
changing units [CCU])?® 42 days prior to delivery (at 82 days of gestation, which corresponds
to the second trimester in humans), or E. coli-derived LPS (O55:B5; Merck, Darmstadt,
Germany), 10 mg in two mL of saline, 2 days or 7 days prior to delivery (at respectively 122
and 117 days of gestation). Previously, we have shown that the half-life time of LPS in the
amniotic fluid is relatively long (1.7 days) and that the LPS amount is higher than the
essential threshold of 1mg for at least 5 days?®*°. Chronic sustained UP infection was
confirmed by positive culture of amniocentesis samples at intermediate time points and
sterile amniotic fluid samples collected at caesarean delivery as previously described®. Two
or 7 days LPS exposure (prior to caesarean delivery) represents an acute inflammatory
challenge. To evaluate the combined effect between these inflammatory modalities, a
subgroup of chronically UP infected ewes received IA LPS at 35 and 40 days post UP
infection (i.e. 7 or 2 days LPS exposure prior to delivery following 42 days of UP infection). A
group receiving IA injections of sterile saline (2 or 7 days prior to delivery; respectively 6 and
2 animals which were pooled) served as controls (Figure 4.1). Fetuses were surgically
delivered at 124 + 2 days of gestational age (term gestation in sheep = 150 days), equivalent
of approximately 30 weeks of human gestation. After delivery, fetuses were euthanized with
intravenous pentobarbital (100 mg/kg). For this experiment, fetuses of both sexes were
used.

82 days 117 days 122 days
control y r
&N
t - 1 &
* saline
2 days LPS : 5@.
1
7 days LPS ' LPS
42 days UP 7y 2 1 uP
R |
UP + 2 days LPS

UP + 7 days LPS

| =p| =p| =p

surgical delivery
at 124 + 2 days gestational age

Figure 4.1 Different intervention study groups. All injections were delivered by ultrasound-guided
amniocentesis. Timing shown in gestational days.
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Sampling

During necropsy, blood and terminal ileum samples were collected. lleum samples were
fixed in 10% formalin and embedded in paraffin, or snap frozen in liquid nitrogen. Where
insufficient paraffin-embedded material was available for study, additional material was
generated by paraffin embedding snap frozen tissue samples: frozen tissue blocks were
defrosted, fixed in 4% formaldehyde at room temperature overnight and transferred to 70%
ethanol prior to embedding in paraffin with the use of a vacuum infiltration processor.

Antibodies

The following antibodies were used for immunohistochemistry: polyclonal rabbit anti-
myeloperoxidase ([MPO]; A0398, Dakocytomation, Glostrup, Denmark) for identification of
neutrophils, polyclonal rabbit anti- cluster of differentiation 3 ([CD3]; A0452,
Dakocytomation) for the detection of T cells, polyclonal rabbit anti-bovine protein gene
product 9.5 ([PGP9.5]; Z5116, Dakocytomation) for the detection of enteric neurons,
polyclonal rabbit anti-doublecortin (Ab18723, Abcam, Cambridge, UK) for the detection of
immature neurons, polyclonal rabbit anti-glial fibrillary acidic protein ([GFAP]; Zo334,
Dakocytomation) to detect enteric glial cell reactivity/activation3? and polyclonal rabbit anti-
S100B (PA5-16257, Invitrogen, Carlsbad, CA, USA) as a marker for enteric glial cells.

The following secondary antibodies were used: peroxidase-conjugated polyclonal goat
anti-rabbit (111-035-045, Jackson, WestGrove, PA, USA) (MPO), peroxidase-conjugated
polyclonal swine anti-rabbit (P0399, DakoCytomation) (doublecortin) and BrightVision+
Poly-HRP-Anti Mouse/Rabbit IgG Biotin-free (ImmunolLogic, Duiven, the Netherlands)
(PGP9.5), and biotin conjugated polyclonal swine anti-rabbit (E0353, DakoCytomation) (CD3,
GFAP, S1008).

Immunohistochemistry

Formalin-fixed terminal ileum was embedded in paraffin and 4 um sections were cut. After
deparaffinization and rehydration, endogenous peroxidase activity was blocked with 0.3%
H,0, diluted in phosphate buffered saline ([PBS]; pH 7.4). Antigen retrieval was performed
with citrate buffer for CD3, PGP9.5, doublecortin and S100B stainings. Non-specific binding
was blocked for 30 minutes at room temperature with 10% normal goat serum (NGS) in PBS
(MPO), 5% NGS in PBS (doublecortin), or 5% bovine serum albumin (BSA) in PBS (CD3, GFAP
and S100B). For PGP9.5, non-specific binding was blocked for 10 minutes at room
temperature with 20% fetal calf serum (FCS). Thereafter, sections were incubated with the
primary antibody of interest and subsequently incubated with the respective secondary
antibody. MPO, PGP9.5 and doublecortin were detected by using a peroxidase-conjugated
secondary antibody and antibodies against CD3, GFAP and S1008 were detected with avidin-
biotin complex (Vectastain Elite ABC kit, Bio-connect, Huissen, the Netherlands). Substrate
staining was performed for MPO with 3-amino-9-ethylcarbazole ([AEC]; Merck, Darmstadt,
Germany). Immunoreactivity for CD3 and GFAP was detected by using nickel-DAB.
Immunoreactivity for PGP9.5, doublecortin and S100B was detected by using DAB.
Haematoxyline (MPO, PGP9.5, doublecortin and S100B) or nuclear fast red (CD3 and GFAP)
were used as counterstain for nuclei.
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Qualitative analysis of damage of the terminal ileum

H&E slides were analyzed by two independent investigators blinded to the experimental set-
up, to assess damage of the terminal ileum. A scoring system from Oto 4 was used to
describe the severity of histological injury. Scoring was as follows: 0 no damage, 1 disrupted
epithelial lining, but no loss of enterocytes, 2 disrupted epithelial lining, mild enterocyte loss
from the villus tips, 3 disrupted epithelial lining, moderate enterocyte loss from villus tips,
some debris in the lumen and 4 abundant enterocyte loss from villus tips, abundant debris
in the lumen and severe shedding of villus tips.

Quantification of immunohistochemical stainings

The stained tissue sections were scanned with the Ventana iScan HT slide scanner (Ventana
Medical Systems, Oro Valley, AZ, USA). Of these images, viewed with Panoramic Viewer
(version 1.15.4, 3DHISTECH, Budapest, Hungary), random images of regions of interest were
taken (200x).

Two investigators blinded to the study groups counted the MPO-positive and CD3-
positive cells in three to five non-overlapping high-power fields in the mucosa and
submucosa. The average MPO- and CD3-positive cells per area are reported for each animal.
The percentage of area in the submucosal and myenteric ganglia positively stained for
PGP9.5, doublecortin, GFAP and S100p was determined in five non-overlapping high power
fields using Leica QWin Pro software (version 3.4.0, Leica Microsystems, Mannheim,
Germany) by an investigator blinded to the study groups. Relative area staining was
calculated by dividing the positively stained areas of the ganglia of the submucosal or
myenteric plexus by the total area of the muscle layer. The data are expressed as fold
increase over the control value.

RNA extraction and quantitative real-time PCR

RNA was extracted from snap frozen terminal ileum tissue using TRI reagent
(Invitrogen)/chloroform extraction. Isolated RNA was DNase treated to remove possible
contamination with genomic DNA by using the RQl RNase-Free DNase kit (Promega,
Madison, WI, USA) and afterwards reverse transcribed into cDNA using oligo(dT)12-18
primers (Invitrogen) and Moloney murine leukemia virus (M-MLV) reverse transcriptase
(Invitrogen). Quantitative real-time PCR (qPCR) reactions were performed with a LightCycler
480 Instrument (Roche Applied Science, Basel, Switzerland) using the SensiMix™ SYBR® No-
ROX Kit (Bioline, London, UK) for 45 cycles. mRNA levels of IL-1B, IL-6, IL-10, tumor necrosis
factor alpha (TNF-a) and interleukin-1 receptor-associated kinase 3 (IRAK3) were
determined to assess inflammation of the terminal ileum. mRNA levels of neuronal nitric
oxide synthase (nNOS) and choline acetyltransferase (CHAT) were determined to assess
motility signaling functions of the ENS using LinRegPCR software (version 2016.0, Heart
Failure Research Center, Academic Medical Center, Amsterdam, the Netherlands). The
geometric mean of the mRNA levels of three reference genes (ribosomal protein S15
(RPS15), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and peptidylprolyl isomerase
A (PPIA)) were calculated and used as a normalization factor. The data are expressed as fold
increase over the control value. Primer sequences are shown in Table 4.1.
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Table 4.1 Primer sequences.

Primer Forward Reverse

RPS15 5’-CGAGATGGTGGGCAGCAT-3’ 5’-GCTTGATTTCCACCTGGTTGA-3’
GAPDH  5-GGAAGCTCACTGGCATGGC-3’ 5’-CCTGCTTCACCACCTTCTTG-3’
PPIA 5’-TTATAAAGGTTCCTGCTTTCACAGAA-3’ 5’-ATGGACTTGCCACCAGTACCA-3’
IL-1B8 5’-AGAATGAGCTGTTATTTGAGGTTGATG-3’ 5’-GTGAGAAATCTGCAGCTGGATGT-3’
IL-6 5’-ACATCGTCGACAAAATCTCTGCAA-3’ 5-GCCAGTGTCTCCTTGCTGTTT-3’
IL-10 5’-CATGGGCCTGACATCAAGGA-3’ 5’-CGGAGGGTCTTCAGCTTCTC-3’
TNF-a 5’-GCCGGAATACCTGGACTATGC-3’ 5’-CAGGGCGATGATCCCAAAGTAG-3’
IRAK3 5’-AGTGTGTAGGTAACACAGCCC-3’ 5’-TGCTGGTCATGCTTATGGCA-3’
nNOS 5’-CGGCTTTGGGGGTTATCAGT-3’ 5’-TTGCCCCATTTCCACTCCTC-3’
CHAT 5’-CCGCTGGTATGACAAGTCCC-3’ 5’-GCTGGTCTTCACCATGTGCT-3’

Data analysis

Data are presented as median with interquartile range. Statistical analyses were performed
using GraphPad Prism (version 6.01, GraphPad Software Inc., La Jolla, CA, USA). A
nonparametric Kruskal-Wallis test followed by Dunn’s post hoc test was used to analyze
statistically significant group differences. Differences were considered statistically significant
at p<0.05. Given the relatively small animal numbers per group, we also reported actual p-
values between p20.05 and p<0.10 and interpreted these as potentially biologically
relevant. This assumption will decrease the chance of a type Il error, but increases the
chance of a type | error.

Results

Intestinal damage and inflammation in the terminal ileum due to
chorioamnionitis

There was a higher intestinal damage score for all experimental groups, compared to
control (p<0.005 for 7d LPS group, p<0.05 for 42d UP group and 42d UP + 7d LPS group and
p=0.06 for 42d UP + 2d LPS group all compared to control; Figure 4.2), except for the
animals exposed to 2 days of LPS. Pre-exposure with UP did not augment mucosal injury in
the LPS-treated groups.
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Figure 4.2  Increased mucosal injury in all groups, except for the animals exposed to 2 days LPS. # p=0.06,
* p<0.05 and ** p<0.005 compared to control.
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A statistically significant increase in MPO-positive cells was seen in the mucosa 7 days after
LPS exposure, compared to control (p<0.05; Figure 4.3). Chronic UP infection also caused an
elevation of mucosal MPO-positive cells, compared to control (p=0.08; Figure 4.3).
Furthermore, combining these two inflammatory insults resulted in an increased mucosal
MPO-positive cell count compared to control (p<0.005; Figure 4.3) and this experimental
group tended to be increased when compared to the UP + two-day LPS-exposed group
(p=0.07; Figure 4.3). LPS exposure 2 days prior to delivery was insufficient to induce mucosal
MPO-positive cell infiltration. Pre-exposure to UP in combination with LPS administration
did not alter the number of mucosal MPO-positive cells, compared to LPS alone, both after 2
days and 7 days.
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Figure 4.3  Representative images of mucosal neutrophil influx reflected by MPO-positive cell (indicated
by white triangles) counts of the control (A), 7 days LPS (B), UP (C) and UP prior to 7 days LPS
group (D). E: Increased MPO count in animals exposed to 7 days LPS, UP and UP prior to 7 days
LPS. # p=0.08, * p<0.01, ** p<0.005 compared to control.
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While chronic UP infection and acute LPS exposure 2 days pre-delivery did not have any
effect on mucosal CD3-positive T cell presence, those animals receiving LPS 7 days pre-
delivery (both uninfected and chronic UP infected groups) as well as chronic UP infected
animals receiving LPS 2 days pre-delivery all showed apparent elevated levels of CD3-
positive T cell infiltration (Figure 4.4). However, the only comparison to achieve p<0.05
significance was that of uninfected and chronic UP infected animals receiving LPS 2 days
pre-delivery (Figure 4.4).
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Figure 4.4  Representative images of mucosal T cell influx reflected by CD3-positive cell (indicated by
white triangles) counts of the control (A) and UP prior to two-day LPS (B). C: Increased CD3
count in animals exposed to UP prior to 2 days LPS compared to the 2 days LPS group.

For investigation of submucosal inflammation, there was an increase of MPO-positive cells
in the seven-day LPS group and submucosal MPO-positive cells tended to be increased in
the chronic UP infection group, compared to control (p<0.05 and p=0.06; Figure 4.5).
Additional acute LPS insult (2 or 7 days pre-delivery) in chronic UP infected animals resulted
in increased variability and loss of significance in the MPO cell infiltration compared to 2 or
7 days of LPS alone.

The greatest increase of submucosal CD3-positive cells was observed in two-day LPS-
exposed chronic UP infected animals, which was significantly increased compared to control
or acute two-day LPS stimulation alone (both p<0.05; Figure 4.6) and appeared more potent
than in chronic UP infected animals receiving LPS at 7 days pre-delivery (p=0.08; Figure 4.6).
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Figure 4.5 Representative images of submucosal neutrophil influx reflected by MPO-positive cell
(indicated by white triangles) counts of the control (A), 7 days LPS (B) and UP (C). D: Increased
MPO count in animals exposed to 7 days LPS and UP. # p=0.06, * p<0.05 compared to control.

Examination of underlying cytokine levels revealed increased IL-1 mRNA levels only in
uninfected or chronic UP infected animals when LPS was administered 2 days pre-delivery
(p<0.05 compared to 7d LPS group; and p<0.01 compared to 42d UP group, p<0.05
compared to 42d UP + 7d LPS group and p<0.05 compared to control respectively; Figure
4.7A). Whereas IL-18 mRNA levels had dropped to baseline again if LPS was administered 7
days pre-delivery (Figure 4.7A). IL-6 and IL-10 mRNA levels were not altered (data not
shown) and the only group showing apparent TNF-a mRNA level elevation were the chronic
UP infected animals additionally receiving LPS 2 days pre-delivery (p=0.07; Figure 4.7B).

IRAK3 mRNA levels were increased significantly only in animals exposed to 2 days of LPS
alone compared to control (p<0.05; Figure 4.7C).
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Representative images of submucosal T cell influx reflected by CD3-positive cell (indicated by
white triangles) counts of the control (A) and UP prior to 2 days LPS group (B). C: Increased
CD3 count in animals exposed to UP prior to 2 days LPS. * p<0.05 compared to control.
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Relative mRNA levels of IL-18 (A), TNF-a (B) and IRAK3 (C) in arbitrary unit (AU). A: Increased
IL-18 mRNA level in animals exposed to 2 days LPS and UP prior to 2 days LPS. * p<0.05
compared to control. B: Increased TNF-a mRNA level in animals exposed to UP prior to 2 days
LPS. # p=0.07 compared to control. C: Increased IRAK3 mRNA level in animals exposed to 2 days
LPS. * p<0.05 compared to control.
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ENS alterations in the terminal ileum due to chronic IA UP exposure

The PGP9.5-positive surface area in the submucosal plexus tended to be decreased in
animals chronically infected for 42 days with UP, compared to control (p=0.08; Figure 4.8).
Similarly, chronic UP infected animals had a diminished PGP9.5-positive surface area in the
myenteric plexus (p<0.05; Figure 4.8).
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Figure 4.8  Representative images of PGP9.5 immunoreactivity in the submucosal and myenteric plexus
of the control (A) and UP group (B). Area fraction of PGP9.5 in the submucosal plexus (C) and
myenteric plexus (D) as fold increase over the control value. C: PGP9.5-positive surface area
tended to be decreased in the submucosal plexus of animals exposed to UP. # p=0.08
compared to control. D: Decreased PGP9.5-positive surface area in the myenteric plexus of
animals exposed to UP. * p<0.05 compared to control.

Doublecortin-positive surface areas were not altered in either the submucosal or the
myenteric plexus (data not shown).

In the submucosal plexus, the GFAP-positive surface area tended to be increased in
groups receiving LPS either 2 or 7 days pre-delivery, compared to control (p=0.07 and
p=0.09; Figure 4.9), while in the myenteric plexus, the GFAP-positive surface area was only
increased in the group receiving LPS 7 days pre-delivery, compared to control (p<0.05;
Figure 4.9). For both of these regions, concomitant chronic infection by UP appeared to
mute these effects.
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Figure 4.9  Representative images of GFAP immunoreactivity in the submucosal and myenteric plexus of
the control (A), 2 days LPS (B) and 7 days LPS group (C). Area fraction of GFAP in the
submucosal plexus (D) and myenteric plexus (E) as fold increase over the control value. D:
GFAP-positive surface area tended to be increased in the submucosal plexus of animals exposed
to 2 and 7 days LPS. ## p=0.07 and # p=0.09 compared to control. E: Increased GFAP-positive
surface area in the myenteric plexus of animals exposed to 7 days LPS. * p<0.05 compared to
control.

S100B-positive surface areas were unaltered in the submucosal plexus for all conditions
(data not shown), while in the myenteric plexus, the S100B-positive surface area was
significantly decreased in the chronic UP infected group, compared to control (p<0.05;
Figure 4.10), but this effect appeared to be counteracted by acute stimulation by LPS at
either 2 or 7 days pre-delivery.

No differences in nNOS and CHAT expression were observed between the groups (data
not shown).
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Figure 4.10 Representative images of S100B immunoreactivity in the submucosal and myenteric plexus of
the control (A) and UP group (B). Area fraction of S1008 in the myenteric plexus (C) as fold
increase over the control value. C: S100B-positive surface area was decreased in the myenteric
plexus of animals exposed to UP. * p<0.05 compared to control.

Discussion

In this study, we investigated the effect of acute, chronic, and combined microbial exposure
as an antenatal infectious trigger (chorioamnionitis) on the mucosa, submucosa and ENS of
the terminal ileum of premature lambs.

Both acute LPS and chronic UP exposure caused mucosal inflammation and injury to the
terminal ileum. Although the inflammatory signature differed between these groups,
mucosal injury was not aggravated in the combined exposure groups. Prenatal IA exposure
to 7 days of LPS and to chronic 42-day infection by UP both provoked an influx of
neutrophils (MPO-positive cells) in the intestine. By contrast, T cell (CD3-positive cells)
numbers remained unaltered in the chronic UP and 2 day LPS groups compared to control
group, but were increased in the UP + 2 day LPS-exposed animals, indicating a potential
synergistic effect of both inflammatory stimuli in inducing an adaptive mucosal immune
response. We observed a similar effect in the submucosa: while either LPS exposure or UP
infection induced innate immune changes in the ileum, T cell alterations only occurred in
the presence of combined UP and LPS exposure. Based on the current findings, we can only
speculate on the mechanism behind this synergistic effect. In previous in vitro studies,
signaling via Toll-like receptor (TLR) 1, 2 and 6 by Ureaplasma spp. increased LPS-mediated
inflammation3*34, Additionally, TNF-a mRNA levels tended to be increased in the UP
infected animals receiving LPS 2 days pre-delivery, while TNF-a levels were not increased
upon single exposure to either UP or LPS alone. By contrast, no synergistic effect of UP and
LPS exposure on intestinal IL-13 mRNA levels was found in the current study. This is
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supported by our IRAK3 mRNA findings, a negative regulator of TLR signaling®®, which
remained unaltered in combined exposure of UP infected animals to LPS. Based on these
joined findings, it is tempting to speculate that UP + LPS induced upregulation of cell
adhesion molecules, and consequently temporarily increased diapedesis, could at least in
part be responsible for the observed increase in CD3-positive cells. The latter suggestion is
supported by previous in vitro findings showing enhanced endothelial protein expression of
the cell adhesion molecule CXCR7 following co-incubation with LPS and UP, which was not
observed in independently UP or LPS-exposed cells®.

Interestingly, other ovine studies have reported a suppressive immune effect in the
premature lung and brain after chronic UP exposure prior to acute LPS exposure!®®, Taken
together, these data show that cells might be sensitized, preconditioned or remain
unaffected following chronic UP infection, indicating organ dependent responses. The
mechanisms responsible for organ specific effects of a second hit chorioamnionitis remain
to be elucidated.

The ENS closely interacts with intestinal immune cells®. As such, ENS alterations can
both result from intestinal inflammation and modulate it3%%. In this study, the most evident
signs of ENS alterations were seen after chronic UP infection, which caused a reduced
PGP9.5-positive surface area in both plexuses, likely representing a loss of enteric neurons.
Alternatively, this might represent a loss of PGP9.5 immunoreactivity of enteric neurons.
The doublecortin-positive (immature neurons) surface area in chronically UP-infected
animals was unchanged, indicating that a decrease of mature neurons is responsible for the
observed neuronal cell loss. As the period between 10 and 18 weeks of gestation is
considered to be of paramount importance for both morphological and functional
maturation of the ENS**#!, one might assume that the timing of our inflammatory challenge
during this vulnerable second trimester is the key determinant for the observed effects,
rather than the nature of the microbial trigger. The loss of enteric neurons in the myenteric
plexus following chronic UP infection coincides with a reduced S100B-positive surface area,
suggesting a reduced number of enteric glial cells. However, a reduction of S100B
immunoreactivity within glial cells could be involved in the observed effect as well. Enteric
glial cells are known to contribute to neuronal maintenance, survival and function®2.
Interestingly, the S100B-positive surface area was less reduced in the groups exposed to an
additional LPS challenge in combination with chronic UP infection and the median of the
PGP9.5-positive surface area was higher in these groups. In support, previous studies have
shown that enteric glial cells are capable of generating enteric neurons in response to
injury®44, indicating that glial cells could be the driving cells behind the loss or gain of
neurons in our model. As a hallmark of their high level of cellular plasticity*, enteric glia can
respond to inflammatory cues and ENS damage by alternating their morphology and
expression of key proteins such as GFAP, in a process similar to reactive astrogliosis*®*. In
this study, GFAP immunoreactivity was increased in both plexuses in the LPS-exposed
animals, indicating that a glial response is induced by intestinal inflammation?®. An enteric
glial cell response was not detected in chronic UP infected animals, despite signs of
intestinal inflammation, suggesting normalization of GFAP levels within this period.
Interestingly, pre-conditioning through chronic UP infection prevented GFAP upregulation in
response to the overlapping second challenge with LPS in the glial cells in both plexuses, as no
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altered GFAP immunoreactivity was seen following subsequent IA LPS exposure. Whether this
is solely protective or can contribute to the ENS damage seen in chronic UP exposure is
unclear, as activation of enteric glia in the context of intestinal inflammation has been
described to be both destructive* and potentially neuroregenerative®. We may conclude
from the aforementioned findings that enteric glial cells are already able to react to
inflammatory cues prenatally. Importantly, our results suggest that these cells play an
important role in neuronal survival and neurogenesis in the intra-uterine setting.

At present, the postnatal consequences of the detected loss of mature neurons and glial
cells following UP exposure in the second trimester remain unknown. A similar decrease in
enteric neurons has been described in models of experimental colitis, which show that
neuronal loss persists after recovery of inflammation®! and is accompanied by decreased
colonic motility>2. Based on these combined findings it is likely that the observed changes in
utero will result in ENS dysfunction postnatally.

Interestingly, several studies describe intestinal changes in patients with acute NEC that
are similar to those found after chronic UP infection, namely loss of both enteric neurons?-
27,53 and glial cells?>?7.

Moreover, it has been suggested that ablation of enteric glial cells may be an upstream
target of NEC pathology®*. A potential causal role of the ENS in NEC pathophysiology is
further supported by a rat study in which increased NEC survival and intestinal motility was
associated with improvement of ENS changes, including an increase in enteric neurons?’.
Collectively, our findings form a novel mechanistic explanation for the reported association
of chorioamnionitis and NEC.

A limitation of this study is that it only enables us to study the effects of UP and LPS
exposure at one timepoint, preventing us from dissecting the role of the different
inflammatory triggers (LPS and UP) of inflammation duration (acute and chronic). In
addition, group sizes are small, which is an inherent shortcoming of the translational ovine
model used.

In summary, an acute inflammatory stimulus with LPS or a chronic inflammatory
stimulus with UP causes intestinal injury and inflammation in the mucosal and submucosal
layers of the gut. Combined overlapping microbial exposure does not aggravate injury of the
terminal ileum. Most importantly, chronic UP infection causes structural ENS alterations
characterized by PGP9.5 and S100B immunoreactivity loss. Whether the observed ENS
alterations result in functional abnormalities after birth remains to be elucidated. However,
the observed changes in utero correspond with findings in neonates with NEC, which
underlines the concept that NEC pathophysiology may already have its origin in utero.
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Chapter 5

Abstract

Background

Necrotizing enterocolitis (NEC), characterized by severe intestinal inflammation and in later
stages bowel necrosis, is one of the most common intestinal emergencies in premature
neonates. Alterations of the enteric nervous system (ENS) and immature intestinal motility
are associated with NEC in babies and large animal models. Since experimental mouse NEC
models are important for understanding NEC pathophysiology, it is essential to study ENS in
these models of NEC. To this end, we studied the ENS and intestinal transit in a well-
characterized mouse NEC model.

Materials and methods

NEC was induced in newborn C57BL/6 mice by formula feeding, supplementation of oral
commensal bacteria and LPS, asphyxia and cold stress. Mature neurons (NeuN), immature
neurons (doublecortin), glial cells (S100B), presynaptic vesicles (synaptophysin) and
intestinal transit were studied in a time window from 24h to 72h of exposure to the NEC
protocol.

Results

An early increase in glial cells was observed in the submucosal plexus at 24h in pups
exposed to the NEC protocol. Also, mice in the experimental NEC group at different times
examined (7-72h) had more mature neurons and glial cells and an increase in presynaptic
vesicles in the submucosal and myenteric plexus compared to controls. At 24h, intestinal
transit was increased, whereas a decrease of the intestinal motility was detected at 48h.

Conclusion

As glial cell alterations were the first to emerge following NEC protocol exposure, glial cell
changes may be a driving force behind later ENS alterations. The time-dependent changes in
intestinal motility could not be fully explained by histological data, indicating that functional
read outs of gut motility are of importance when studying ENS changes in NEC.
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Introduction

Necrotizing enterocolitis (NEC), characterized by severe intestinal inflammation and—in
later stages—bowel necrosis, is one of the most common intestinal emergencies in
premature neonates!. It affects around 5 to 10% of very low birth weight infants and
incidences are rising, which is primarily caused by improved early survival rates of
premature newborns?3. Mortality generally ranges from 15 to 30%, but increases up to 50%
for extremely low birth weight babies treated surgically**°. Infants that do survive are at
increased risk for long-term morbidities such as growth retardation®” and
neurodevelopmental delay®®.

The pathogenesis of NEC is multifactorial and still incompletely understood; however,
immaturity of the intestinal immune system and abnormal bacterial colonization are clearly
involved in the etiology of the excessive inflammation'°. In addition, immature gut motility
is regarded as a risk factor for NEC development!®. Consistently, alterations of the enteric
nervous system (ENS) are associated with NEC; in intestinal specimens from infants with
NEC, structural ENS abnormalities including loss of neurons and enteric glial cells have been
found'*13, In addition, reduced expression of neuronal nitric oxide synthase (nNOS) and
choline acetyltransferase (CHAT), markers for motility signaling functions of the ENS, during
acute NEC suggest a functional impairment of the ENS**. Finally, several studies indicate that
ENS alterations and dysmotility are involved in NEC pathophysiology; in a preterm pig NEC
model*® and a mouse NEC model'® motility changes were observed prior to intestinal
inflammation and NEC development. Additionally, pharmacological recovery of gut motility
in a mouse NEC model reduced NEC severity?.

The ENS autonomously regulates gastrointestinal activity, including secretion,
absorption, and motility and it contributes to gut integrity*'8. Furthermore, it is involved in
the shaping of the mucosal immune system and the intestinal microbiome!’'°. Development
of the ENS requires a complex coordinated migration, proliferation and differentiation of
neural crest progenitors, directed neurite growth, and establishment of a network of glial
cells and interconnected neurons?®?!, In premature neonates the ENS is still immature?°,
reflected by immature migrating motor complexes and mixing motor patterns?®, and ENS
development continues postnatally under the influence of several neutrophins such as cell
line-derived nerve growth factor (GDNF)?>22, As NEC research in infants is notably difficult
for ethical reasons and as it is subjected to many clinical confounding factors, animal models
of NEC are frequently used®?2%. Interestingly, ENS alterations in conjunction with altered
intestinal motility remain essentially unstudied in models of NEC. To bridge this knowledge
gap, we studied the ENS and intestinal transit over time in a well-established mouse NEC
model®.

Materials and methods

Experimental design

The animal studies were approved by the Northwestern University Institutional Animal Care
and Use Committee (Chicago, IL, USA) and the National Research Council’s guide for the
care and use of laboratory animals was followed. Male and female C57BL/6 mice from
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Jackson Laboratory (Bar Harbor, ME, USA) were housed in a barrier facility and dams were
mated overnight to obtain timed pregnancies. After natural delivery, less than 24h-old pups
(from each litter) were randomly assigned to the two experimental groups: control and NEC.
Birth weight was recorded and was similar between the groups. Mouse pups assigned to the
NEC group were separated from the dams and placed in a humidified 37°C incubator. NEC
was induced as previously described?. Briefly, at the initiation of the study period, 10% CFU
of standardized commensal bacteria including 5 mg/kg LPS were administered by orogastric
gavage within 24h after birth. Thereafter, enteral feeding by orogastric gavage was initiated
and repeated every 3h. Pups were fed with Esbilac (PetAg, Hampshire, IL, USA) formula (33
g dissolved in 100 mL water), 30, 40 and 50 uL on day 1, 2 and 3 respectively. In addition,
pups were exposed to a short period of asphyxia (100% nitrogen for 60 seconds) followed
by cold stress (4 degrees for 10 minutes) twice daily. Pups remaining with the dams and
being dam fed during the entire study period served as controls. Mouse pups were
continuously monitored for signs of distress (abdominal distension, lethargy, respiratory
distress) and pups were euthanized by decapitation if severe distress was present. Those
surviving were euthanized at the end of the 72h study period. Time of death or euthanasia
was documented and a 72h survival curve was defined. Subgroups of pups were euthanized
after 24h and 48h to study early changes of the ENS following NEC protocol exposure. After
euthanasia, intestines were collected and fixed with 10% buffered formalin for histological
analyses. Pups found dead were excluded from the analyses. The remaining 85 mouse pups
(72h experiments) were used for the 72h survival and histological analyses (control: n=28
and NEC protocol: n=57). For the 24h experiment, 18 mouse pups were used for histological
analyses (control: n=10 and NEC protocol: n=8) and 28 mouse pups for mRNA analyses
(control: n=13 and NEC protocol: n=15; of note, due to limited RNA yields, not all genes
could be tested for all animals). In addition, 29 mouse pups were used for analysis of
intestinal transit at 24h (control: n=8 and NEC: n=9) and 48h (control: n=5 and NEC: n=7).

Antibodies

The following primary antibodies were used for immunohistochemistry: polyclonal rabbit
anti-doublecortin (Ab18723, Abcam, Cambridge, UK) to detect immature neurons,
monoclonal mouse anti-neuronal nuclear protein (NeuN) (clone A60, IHCR1001, Merck,
Darmstadt, Germany) to identify mature neurons, polyclonal rabbit anti-S100p (PA5-16257,
Thermofisher, Waltham, MA, USA) for the detection of glial cells and monoclonal rabbit
anti-synaptophysin (Ab32127, Abcam, Cambridge, UK) for the identification of pre-synaptic
vesicles. Secondary antibodies used were: biotin-conjugated polyclonal donkey anti-rabbit
(711-065-152, Jackson, West Grove, PA, USA) (for detection of doublecortin), biotin
conjugated polyclonal goat anti-mouse (E0433, DakoCytomation, Glostrup, Denmark) (for
detection of NeuN) and biotin-conjugated polyclonal swine anti-rabbit (E0353
DakoCytomation, Glostrup, Denmark) (for detection of S100B and synaptophysin).

Histochemical stainings and histological analysis

Formalin-fixed intestine was embedded in paraffin and 4-um sections were cut. A
Haematoxylin and Eosin (H&E) staining was performed to determine the NEC severity stage
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as explained below. H&E slides were scored on severity of intestinal histological injury as
previously described.? In short, H&E slides were assessed by two independent investigators
blinded to the experimental groups (X.Y. and I.G.D.P.) to determine the intestinal damage
score based on the area of worst injury. The following scoring system was used as previously
described?: Grade 0: intact villi; 1: superficial epithelial cell sloughing; 2: mid-villus necrosis;
3: complete villus necrosis; 4: transmural necrosis. Mice with damage scores 22 were
considered to have NEC.

Immunohistochemistry

After deparaffinization and rehydration of paraffin-embedded sections, endogenous
peroxidase activity was blocked with 0.3% H,0, diluted in phosphorylated buffer saline
(PBS). Heat-mediated antigen retrieval was performed by boiling in 10 mM sodium-citrate
buffer (pH 6.0). Non-specific binding was blocked for 30 minutes at room temperature with
5% bovine serum albumin (BSA) in PBS (doublecortin, NeuN and S1008), or 5% normal goat
serum (NGS) in PBS (synaptophysin). Thereafter, sections were incubated with the primary
antibody of interest and subsequently incubated with the selected secondary antibody. The
primary antibodies were visualized with an avidin-biotin complex (Vectastain Elite ABC kit,
Bio-connect, Huissen, the Netherlands). Immunoreactivity for doublecortin and S100B was
detected by using diaminobenzidine (DAB). Immunoreactivity for NeuN and synaptophysin
was detected by using nickel-3, 3’-DAB. Haematoxylin (doublecortin and S100B8) or nuclear
fast red (NeuN and synaptophysin) were used as counterstain.

Analyses of immunohistochemical stainings

The stained tissue sections were scanned with the Ventana iScan HT slide scanner (Ventana
Medical Systems, Oro Valley, AZ, USA). Of these images, viewed with Ventana Image Viewer
(version 3.1.4, Ventana Medical Systems, Oro Valley, AZ, USA), random snapshots of cross
sections of the small intestine were taken (200x).

Doublecortin (immature neurons), NeuN (mature neurons), S100B (glial cells) and
synaptophysin (presynaptic vesicles) were studied as markers for the ENS. Doublecortin,
NeuN, S10083 and synaptophysin positively stained areas in the submucosal and myenteric
ganglia were measured in five non-overlapping high power fields by calculating the area
fraction (%) with Leica QWin Pro (version 3.4.0, Leica Microsystems, Mannheim, Germany).
The area fraction was calculated by dividing the positively stained areas in the ganglia of the
submucosal or myenteric plexus by the total surface of the muscle layer. The average area
fraction per high-power field per animal is given. The area fractions were measured by an
investigator blinded to the study groups.

Intestinal transit

Mice included for the intestinal transit experiment were subjected to the same
experimental set-up as described above. At 24h after subjection to the NEC protocol
(control: n=8 and NEC: n=9) and at 48h after subjection to the NEC protocol (control: n=5
and NEC: n=7), both NEC pups and littermate dam fed controls were gavaged with 20 ul of
5% Evans Blue (in 1.5% carboxymethylcellulose) after 4h of fasting. Pups were euthanized
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10 minutes after gavage and the total length of the intestine and the length covered by
Evans Blue dye were measured (colon excluded). The intestinal transit was expressed as the
percentage of small intestinal length covered by Evans Blue (Figure S5.1).

Real-time qPCR

To determine mRNA expression of several genes involved in neurotransmitter formation
and reuptake (SERT, TPH2, CHAT and nNOS) and genes involved in ENS development (RET
and GDNF) in dam fed controls and mice exposed to the NEC protocol for 24h, RNA isolation
from full-wall thickness intestinal samples and RT-gPCR were performed as previously
described?. Briefly, following sacrifice, mice intestines were preserved in RNAprotect Tissue
Reagent (Qiagen, Valencia, CA, USA). Tissues were homogenized and RNA was isolated with
the Qiagen RNeasy Mini Kit (Qiagen, Valencia, CA, USA). Prior to RT-qPCR, cDNA was
synthesized using the cDNA Archive kit (Life Technologies, Carlsbad, CA, USA). Subsequently,
real-time PCR was performed using Power SYBR Green 2X master mix (Life Technologies) for
cDNA amplification and run on an ABI 7500 Fast real-time PCR System (Applied Biosystems,
Foster City, CA, USA) (95°C for 10 min, followed by 40 cycles of 95°C for 15 seconds, then
60°C for 60 seconds). An overview of the primers that were used is presented in Table 5.1.
The mRNA expression of the housekeeping gene GAPDH was used for data normalization.

Table 5.1 Primer sequences.

Primer Forward Reverse

GAPDH 5’-GAACGGATTTGGCCGTATTG-3’ 5’-TGAGTGGAGTCATACTGGAACATGT-3’
SERT 5’-CCGCAGAGCTCTCAGTCTTGT-3’ 5’-CCCTGACTAGCTCTTGGTTCTTG-3’
TPH2 5’-CAACTGCGGGCGTATGG-3’ 5’-TCGGAAAGAGCATGCTTCAA-3’

CHAT 5’-CCCTGCAGGAAAAGCTCTTG-3’ 5’-CCAGTATTCAGAGACCCAATTGG-3’
nNOS 5’-GGTCTTCGGGTGTCGACAA-3’ 5’-GCACGTCCTGTACATATTTCTTTGG-3’
RET 5’-GAAGGCGAGTTTGGAAAAGTTG-3’ 5-TGGGAGGCGTTTTCTTTCAG-3’

GDNF 5’-GTGACTCCAATATGCCTGAAGATTATC-3’ 5’-TCAGTCTTTTAATGGTGGCTTGAA-3’

Statistical analyses

Statistical analyses were performed using GraphPad Prism 6.01 (GraphPad Prism, La Jolla,
CA, USA). 72h survival was analysed by log-rank test and NEC severity scoring with a Mann-
Whitney U test. For the immunohistochemical read-outs from the 72h experiment, data
were tested for normality with the D'Agostino and Pearson omnibus normality test.
Differences among two groups were measured with an unpaired T-test for normally
distributed data (NeuN myenteric plexus, S100B myenteric plexus, synaptophysin myenteric
plexus, doublecortin both plexuses) or Mann-Whitney U test for non-normally distributed
data (other read-outs). Immunohistochemical read-outs for the 24h experiment, transit
time and mRNA expression read-outs were analysed with a Mann-Whitney U test. Finally,
correlation between postnatal age / survival duration and ENS outcomes for the 72h
experiment were analysed with Spearman Rank-order Correlation with IBM SPSS Statistics
Version 27.0 (IBM Corporation, Armonk, NY, USA). Differences are regarded statistically
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significant at p<0.05. Data are presented as mean with standard deviation (SD; normally
distributed data) or median with interquartile range (IQR; non-normally distributed data).

Results

Histological NEC severity scoring and 72h survival

The animals subjected to the NEC protocol had an increased histological NEC severity score
(p<0.0001; Figure 5.1) and a significant lower survival than control animals (p<0.0001;
Figure 5.2). Of the 57 mouse pups subjected to the NEC protocol, 21 developed NEC
(histological NEC severity score >2).
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Figure 5.1  Histological NEC severity score of the 72h experiment. H&E slides were scored on a 0 to 4
scale for intestinal damage (25). NEC severity score was increased in animals subjected to the
NEC protocol, compared to dam fed animals. Data points represent individual mouse
pups.****p<0.0001.
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Figure 5.2  Survival analysis of the 72h experiment. The animals subjected to the NEC protocol (n=57) had
a significant lower survival than control animals (n=28).****p<0.0001.
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ENS alterations: neurons (NeuN, doublecortin)

Compared to control animals (Figure 5.3A), the NeuN-positive surface area (mature
neurons) was increased in animals subjected to the NEC protocol in the 72h experiment
(Figure 5.3B), in both the submucosal plexus (p<0.05; Figure 5.3C) and the myenteric plexus
(p<0.001; Figure 5.3D). No differences were observed in NeuN-positive surface area
between control and NEC protocol exposed animals at 24h (Figure 5.3E, 5.3F). The
doublecortin-positive surface area (immature neurons) was unaltered by NEC protocol
exposure in the 72h and the 24h experiment in both plexuses (Figure S5.2).
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Figure 5.3  Representative images of NeuN immunoreactivity in the submucosal and myenteric plexus of
control animals (A) and animals subjected to the NEC protocol (B). NeuN positive surface area
was increased in the submucosal (C) and myenteric plexus (D) of animals subjected to the NEC
protocol in the 72h experiment compared to the control group. NeuN-positive surface area was
unaltered in the submucosal (E) and myenteric plexus (F) of animals subjected to the NEC
protocol for 24h compared to the control group. Data points represent individual mouse pups.
Scale bars indicate 100 um. *p<0.05, ***p<0.001.
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ENS alterations: glial cells (S1008)

Compared to controls (Figure 5.4A, 5.4C, 5.4D) S100B immunoreactivity (glial cell marker)
increased following NEC protocol exposure in both the submucosal and the myenteric
plexus in the 72h experiment (p<0.001 and p<0.05 respectively; Figure 5.4B, 5.4C, 5.4D). At
24h, increased S100B immunoreactivity was also observed in the submucosal plexus
(p<0.01; Figure 5.4E), but not in the myenteric plexus (Figure 5.4F), following NEC protocol
exposure compared to dam fed controls.
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Figure 5.4  Representative images of S100B immunoreactivity in the submucosal and myenteric plexus of
control animals (A) and animals subjected to the NEC protocol (B). S100B-positive surface area
was increased in the submucosal (C) and myenteric plexus (D) of animals subjected to the NEC
protocol in the 72h experiment compared to the control group. S100B-positive surface area was
increased in the submucosal (E), but not in the myenteric plexus (F) of animals subjected to the
NEC protocol at 24h compared to the control group. Data points represent individual mouse
pups. Scale bars indicate 100 pm. *p<0.05, **p<0.01, ***p<0.001.
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ENS alteration: presynaptic vesicles (synaptophysin)

Synaptophysin was used as a marker for presynaptic vesicles. Compared to controls (Figure
5.5A), synaptophysin immunoreactivity was increased in animals exposed to the NEC
protocol in the 72h experiment (Figure 5.5B) in both the submucosal (p<0.0001; Figure
5.5C) and the myenteric plexus (p<0.0001; Figure 5.5D). After 24h, no differences were
observed in synaptophysin immunoreactivity between the groups (Figure 5.5E-5.5F).
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Figure 5.5  Representative images of synaptophysin immunoreactivity in the submucosal and myenteric
plexus of control animals (A) and animals subjected to the NEC protocol (B). Synaptophysin-
positive surface area was increased in the submucosal (C) and myenteric plexus (D) of animals
subjected to the NEC protocol in the 72h experiment compared to the control group.
Synaptophysin-positive surface area in submucosal (E) and myenteric plexus (F) was not
affected by NEC protocol exposure in the 24h experiment. Data points represent individual
mouse pups. Scale bars indicate 100 um. ****p<0.0001.

238



Alterations of the enteric nervous system and intestinal motility in a mouse model of NEC

Intestinal transit

The intestinal transit was increased in animals 24h after subjection to the NEC protocol,
compared to control (p<0.01; Figure 5.6A). At 48h after subjection to the NEC protocol, the
intestinal transit was decreased, compared to control (p<0.05; Figure 5.6B).
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Figure 5.6  Intestinal transit expressed as the percentage of small intestinal length covered by Evans
Blue. The intestinal transit was increased in animals 24h after subjection to the NEC protocol,
compared to controls (A). After 48h exposure to the NEC protocol, intestinal transit was
decreased compared to controls (B). Data points represent individual mouse pups. *p<0.05,
**p<0.01

Formation and reuptake of neurotransmitters and RET / GDNF expression

MRNA expression of genes involved in formation and reuptake of neurotransmitters was
studied in animals exposed to the NEC protocol for 24h to shed light on the increased
intestinal transit at this time point. mRNA expression of SERT (serotonin reuptake
transporter) decreased following NEC protocol exposure (p<0.05; Figure 5.7A). mRNA
expression of TPH2 (tryptophan hydroxylase, involved in serotonin formation in the ENS),
CHAT (choline acetyltransferase, involved in acetylcholine formation) and nNOS (neuronal
nitric oxide synthase, involved in NO formation) remained unaltered following NEC protocol
exposure compared to controls (Figure 5.7B-5.7D). Last, GDNF and its receptor RET were
studied for their role in ENS development?’. No differences were observed in RET or GDNF
MRNA expression in mice that were exposed to the NEC protocol for 24h compared to dam
fed controls (Figure 5.7E-5.7F).
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Figure 5.7 mRNA expression of various genes involved in formation and reuptake of neurotransmitters
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and enteric nervous system development in the 24h experiment. mRNA expression of SERT
decreased after 24h of NEC protocol exposure compared to controls (A). mRNA expression of
TPH2, CHAT, nNOS, RET and GDNF remained unaltered after 24h NEC protocol exposure
compared to controls (B-F). Data are reported as relative expression compared to dam fed
controls (set at 1). Data points represent individual mouse pups. *p<0.05
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Discussion

In the current study, we investigated the ENS and intestinal transit in a well-established
mouse NEC model in which NEC was induced in newborn C57BL/6 mice by formula feeding,
oral commensal bacteria with LPS supplementation, asphyxia and cold stress.

Key findings of the current study are the increase in mature neurons (NeuN) and enteric
glial cells (S100R) in the mice subjected to the NEC protocol in the 72h experiment, which
were accompanied by an increase in presynaptic vesicles (synaptophysin). Enteric glial cells
are increasingly recognized for their regulatory function in gastrointestinal homeostasis and
their neuroprotective capacities during inflammation?2°, Ablation of enteric glial cells in a
transgenic mouse model leads to a fulminant jejuno-ileitis, resembling NEC, with
degeneration of myenteric plexus neurons® and has recently been linked to increased NEC
severity!®. Thus, the increased S100B surface area in the NEC protocol exposed mice is
probably a compensatory response of glial cells to intestinal inflammation that was
previously shown in this NEC modelPl. Since glial cell alterations emerged before (i.e., at
24h) and paralleled (i.e., in the 72h experiment) neuronal changes, the increased numbers
of glial cells may be a driving force behind the increase of neurons and presynaptic vesicles.
Although the complex cross-talk between enteric glial cells and ENS neurons is incompletely
understood®?, neurotrophic factors released by glial cells, such as glial-cell line derived
neurotrophic factor (GDNF) and brain derived neurotrophic factor (BDNF) are clearly
involved in their interaction33*34. GDNF is involved in the development of the ENS?%?7 and its
protein expression is upregulated during inflammation®, as is induced during this
experimental NEC protocol®. It has been implicated to promote neuronal proliferation3 and
in vitro work from Bottner et al., reports that stimulating a rat enteric nerve cell culture with
GDNF increased synaptophysin mRNA expression®. BDNF was reported to reduce
inflammation mediated apoptosis of enteric glial cells in vitro3’. Moreover, a recent study by
Kovler et al. observed that BDNF expression was reduced in human and experimental NEC,
and that administration of BDNF in a mouse NEC model rescued intestinal motility,
decreased intestinal TLR4 signalling and inflammation and improved histological gut
outcome?’®. Future studies are needed to unravel the role of neurotrophic factors in ENS
changes in the neonatal setting and the time course of these changes. Interestingly,
increased synaptophysin immunoreactivity was previously also observed in utero in the
context of perinatal asphyxia®, a known risk factor for NEC development®. Whether the
increased presence of presynaptic vesicles during NEC alters ENS signalling and whether this
plays a role in intestinal motility changes and intestinal injury during NEC development
remain to be elucidated.

Our findings are in accordance with observations of hyperplasia of glial cells and
hypertrophy and hyperplasia of neuronal cell bodies in inflammatory bowel disease,
characterized by intestinal inflammation, but typically no necrosis®. By contrast, other
studies on ENS abnormalities in NEC, both in human specimen!''*3 and a rat NEC model*#!
report a loss of both glial cells and neurons, with the most severe lesions in the regions
prone to intestinal ischemia®?. A reduction of neurons was also reported in a mouse NEC
model with a different NEC induction protocol, with amongst others a longer exposure time
to the experimental NEC protocol of 96h*. Importantly, findings of ENS alterations in
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human NEC are based on specimens obtained during surgery and/or post-mortem, and may
not be representative for changes in early and/or less severe NEC in infants. Based on these
combined findings, it is tempting to speculate that our data may represent a relatively
milder disease state with an ENS response that predisposes to glial cell and neuronal loss at
a later time point. This suggests that different rodent NEC models and different durations of
post NEC induction follow up can be used to gain longitudinal insight in the ENS changes
during NEC pathophysiology. To extrapolate these findings to the clinical setting, functional
ENS analyses, such as measurements of transit time and intestinal motility are of vital
importance.

We observed an increased intestinal transit in animals subjected to the NEC protocol for
24h, indicating increased intestinal motility. This most likely results from an immunological
host response and subsequent diarrhoea®*-*¢ rather than structural alterations of the ENS,
since no differences were observed in synaptophysin immunoreactivity at 24h and the
MRNA expression of genes related to neurotransmitter formation were unaltered.
Decreased mRNA expression of SERT (serotonin reuptake transporter) at 24h could be
involved, since it is associated with increased synaptic levels of serotonin, a
neurotransmitter that is important for gastrointestinal motility*’. Nevertheless, other
intestinal cell types besides than neurons express SERT*, including enterocytes, and, in the
current study set-up, we cannot dissect which cell types are responsible for the overall
decrease in SERT mRNA.

Next to its potential role in altering intestinal motility, downregulation of SERT and
increased serotonin signalling could contribute to NEC pathogenesis, as genetic deletion of
SERT increased intestinal inflammation and systemic manifestations in a mouse NEC model*®
and some clinical cases of NEC have been related to maternal use of selective serotonin
reuptake inhibitors*. Of note, the effect of serotonin on intestinal inflammation depends on
its cellular source; whereas TPH1 knock-out mice, which lack serotonin production by
enterochromaffin cells, were protected against experimental colitis®®, TPH2 knock-out mice,
which lack neuronal serotonin production, were more severely affected>!. Downregulation
of SERT mRNA expression in our model likely results from inflammation, as it has previously
been described in the epithelium of IBD patients with active disease compared to
controls®?°3 and in human colon organoids upon TNFa administration2.

In contrast to the increased intestinal motility at 24h, intestinal transit decreased at 48h
of exposure to the NEC protocol. This suggests that neuronal signalling function is disturbed
following prolonged exposure to the NEC protocol, despite the presence of sufficient
amounts of presynaptic vesicles (i.e., increased synaptophysin immunoreactivity in NEC
protocol exposed animals in the 72h experiment). Additional studies are needed to unravel
the mechanisms behind the reduced intestinal motility following exposure to the NEC
protocol. Moreover, it highlights that including a functional assay of gut motility is of
importance when studying ENS changes in NEC.

A limitation of this study is that, due to the size of the mouse intestines, we could not
distinguish between the different anatomical parts of the small intestine, or varying disease
severities within parts of a single intestine. In addition, the translation of these rodent
findings into the clinic is challenging as biopsies from NEC patients, that are available for
research, exclusive