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Background: Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to
develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia
classification signature.
Material and methods: A total of 808 patients with imaging data were included: N = 100 training/N = 183
external validation cases for a disease-agnostic CT hypoxia classification signature, N = 76 training/N = 39
validation cases for the H&N CT signature and N = 62 training/N = 36 validation cases for the Lung CT sig-
nature. The primary gross tumor volumes (GTV) were manually defined by experts on CT. In order to
dichotomize between hypoxic/well-oxygenated tumors a threshold of 20% was used for the [18F]-HX4-
derived hypoxic fractions (HF). A random forest (RF)-based machine-learning classifier/regressor was
trained to classify patients as hypoxia-positive/ negative based on radiomic features.
Results: A 11 feature ‘‘disease-agnostic CT model” reached AUC’s of respectively 0.78 (95% confidence
interval [CI], 0.62–0.94), 0.82 (95% CI, 0.67–0.96) and 0.78 (95% CI, 0.67–0.89) in three external validation
datasets. A ‘‘disease-agnostic FDG-PET model” reached an AUC of 0.73 (0.95% CI, 0.49–0.97) in validation
by combining 5 features. The highest ‘‘lung-specific CT model” reached an AUC of 0.80 (0.95% CI, 0.65–
0.95) in validation with 4 CT features, while the ‘‘H&N-specific CT model” reached an AUC of 0.84
(0.95% CI, 0.64–1.00) in validation with 15 CT features. A tumor volume-alone model was unable to sig-
nificantly classify patients as hypoxia-positive/ negative. A significant survival split (P = 0.037) was found
between CT-classified hypoxia strata in an external H&N cohort (n = 517), while 117 significant hypoxia
gene-CT signature feature associations were found in an external lung cohort (n = 80).
Conclusion: The disease-specific radiomics signatures perform better than the disease agnostic ones. By
identifying hypoxic patients our signatures have the potential to enrich interventional hypoxia-
targeting trials.
� 2020 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 153 (2020) 97–105 This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
6229 ER

http://crossmark.crossref.org/dialog/?doi=10.1016/j.radonc.2020.10.016&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.radonc.2020.10.016
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:s.sanduleanu@maastrichtuniversity.nl
https://doi.org/10.1016/j.radonc.2020.10.016
http://www.sciencedirect.com/science/journal/01678140
http://www.thegreenjournal.com


CT and FDG-PET based hypoxia prediction
Since the early 1930s, it has been established that solid tumors
contain oxygen-deficient (hypoxic) areas. Cells in such areas may
cause tumors to become resistant to radiotherapy and chemother-
apy, increase tumor aggressiveness, angiogenesis, and metastatic
spread, resulting in a poor prognosis [1–4].

Over the past decades various techniques [5] have been used to
determine solid tumor oxygenation status, including hypoxia
staining markers e.g. perfusion CT or 2-nitroimidazoles such as
pimonidazole and noninvasive quantitative PET imaging (most
commonly [18F]-FMISO, [18F]-HX4, [18F]-FAZA as well as other 2-
nitroimidazoles) [5–7]. In an effort to validate the heterogeneous
uptake of [18F]-HX4 at the regional tumor level, a preclinical study
found that [18F]-HX4 derived hypoxic fractions (HF) in tumors are
strongly correlated with HF’s assessed by the staining marker
pimonidazole [8]. Furthermore, a causal inference was observed
between the pretreatment tumor oxygenation status (HF’s were
altered by carbogen/nicotinamide exposure) measured by [18F]-
HX4 and the treatment efficacy with a hypoxia activated pro-
drug (HAP) TH302 that selectively kills hypoxic cells [9]. Hypoxia
PET imaging is complex to implement in clinical practice since
these PET-agents generally tend to generate smaller signal-to-
background ratios compared to e.g. [18F]-FDG [10,11] (and conse-
quently lower target-background image contrast), imaging is labor
intensive (instruction multiple bed positions and acquisitions at
multiple time point), costly (chemical process to produce the radi-
oligand is expensive), lacking of standard calibration procedures
and inconvenient for the patient due to the time-consuming acqui-
sition protocols.

Several HAP trials have failed to demonstrate efficacy in pivotal
clinical trials (e.g. Tirapazamine, Evofosfamide), putatively due to
the lack of patient selection with clearly defined high levels of
hypoxia [12]. Another contributing factors might be the complex
biology and spatiotemporal heterogeneity of the target (e.g. diffi-
culties with extravascular transport to target cells, high variability
in hypoxic compartments in relatively short periods of time)
[12,13].

Computed Tomography (CT) and 18F-FDG-PET imaging, by con-
trast, are both routinely used in clinical practice for cancer diagno-
sis and treatment planning. Radiomics is a quantitative image
analysis methodology using data-characterization algorithms to
derive imaging biomarkers [14–16].

This current study expands on previous initiatives [17] in
hypothesizing that radiomic biomarkers from CT and FDG-PET
imaging can be used to identify tumor with significant hypoxic
regions, as established using HX4-PET, FMISO-PET and FAZA-PET.
With these characteristics we believe that we could ‘‘enrich” trials
testing hypoxia targeting drugs or window-of-opportunity trial
populations using CT- and FDG-PET-based radiomics to identify
and/or follow hypoxic tumors [18,19].

The aim of this study was to develop an agnostic (multiple
tumor sites) and site specific HX4 derived CT and FDG-PET based
radiomics hypoxia signature, validate this on an external datasets
and assess the prognostic value of the signature and their associa-
tion with previously validated hypoxia-response genes. We
hypothesize that a combination of CT and FDG-PET-derived fea-
tures could lead to a model with a higher performance compared
to either modality alone.
Fig. 1. Workflow resulting in [18F]-HX4 and [18F]- FDG-PET radiomic feature
extraction and calculation of HF’s on [18F]-HX4. GTV delineations on diagnostic/
baseline planning CT were rigidly registered onto the HX4-CT and contour
transformation was performed from pre-treatment diagnostic/planning CT onto
fused HX4 PET/CT.
Materials and methods

Patient selection

Patients from six academic medical centers and eight registered
clinical trials were included in the analysis and are presented in
Supplementary Appendix A and B, consisting of six [18F]-HX4 data-
sets, one [18F]-FAZA dataset, one [18F]-FMISO and one based on the
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exogenous immunohistochemical marker pimonidazole (a 2-
nitroimidazole derivate). IRB approval was obtained for this retro-
spective analysis and informed consent was given from all patients
in the individual trials.
Image acquisition

All patients underwent pretreatment diagnostic CT/ planning
[18F]-FDG PET/CT. Pretreatment [18F]-HX4 PET static images were
acquired 2 and/or 4 h post injection (h.p.i.) [20]. When available,
only the 4 h.p.i. images were used, since this time point is related
to a plateau phase in tracer uptake that has been associated with
optimal imaging properties [8,21]. In the Boston and UCLouvain
dataset only 2 h p.i. images were available, and according to previ-
ous literature a tumor-to-background ratio (TBR) threshold of 1.2
was used instead of 1.4 [21]. Details regarding the acquisition
parameters, protocol, and scanner types are presented in Supple-
mentary appendix B, including an analysis of the SUVmean in the
background ROI as function of PET-tracer acquisition times for 10
random HX4-PET, FAZA-PET and FMISO-PET patients with head
and neck squamous cell carcinoma.
Image segmentation, analysis and ground truth hypoxia

Primary gross tumor volumes (GTV) were manually defined on
CT by experienced radiation oncologists and/or radiologists. [18F]-
FDG PET images were included only if they were performed within
a week prior or after [18F]-HX4 PET imaging, to mitigate for the
temporal changes in tumor hypoxia. For the lung, and H&N cancer
cases the clinical delineations defined on the planning [18F]-FDG
PET/CTs were transferred to the [18F]-HX4 CT by means of rigid
registration with Mirada software v 1.2.0.59 (Mirada Medical,
Oxford, UK). Air and bone were filtered out using windowing pre-
sets and the delineations were manually adjusted to reflect small
anatomical changes. For the esophageal and pancreatic cancer
cases repeated scans of the same patient were rigidly co-
registered to match the first scan using the mutual information
metric, followed by a rigid registration. The corresponding PET
images were subsequently registered using the resultant registra-
tion vectors. After registration, the tumor area in the esophagus
or pancreas, and the aorta were drawn on the [18F]-HX4 CT. Sepa-
rately acquired diagnostic contrast enhanced CT images were used
as reference for better tumor localization.

Cutoffs of 10%, 20% and 30% were used for hypoxic fractions
(HF) to dichotomize between well-oxygenized and hypoxic
tumors, in accordance with previous studies [22–25]. For the calcu-
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lation of HF’s, the following steps (See Fig. 1.) were followed in
Reggui software v.1357 (OpenReggui, Louvain-la-Neuve, Belgium):
(i) Contour GTV and aorta/muscle contour on HX4-CT. (ii) Resam-
ple and register HX4-PET to HX4-CT. (iii) Transfer GTV and aorta/-
muscle contour to HX4-PET. (iv) Calculate average SUVaorta and
average SUVmuscle (dependent on tumor site). (v) On HX4-PET flag
voxels as hypoxic (1) if SUV uptake per voxel/(mean aorta OR mus-
cle uptake) � 1.4 and non-hypoxic (0) if SUV uptake/(mean aorta
OR muscle uptake) < 1.4. (vi) Calculate a HF as the number of
hypoxic voxels/total number of VOI voxels. Additionally patients
from a separate validation dataset (ARCON-trial) with fresh frozen
biopsies obtained after 20-min i.v. infusion of 500 mg/m2 of
hypoxia marker Hypoxyprobe-1 (pimonidazole hydrochloride;
NPI, Inc., Belmont, MA) were analyzed for association of the
hypoxia radiomics signature with underlying histopathology [25].
For these cases the HF was defined as the tumor area positive for
pimonidazole relative to the total tumor area in immunohisto-
chemical analysis.
Image pre-processing and radiomic feature extraction/harmonization

International Biomarker Standardization Initiative (IBSI)-
compliant radiomic features (https://ibsi.readthedocs.io/) as well
as other non-IBSI covered features were extracted from both pre-
treatment [18F]-HX4-CT’s as well as diagnostic [18F]-FDG PET with
our in-house RadiomiX research software (supported by Oncora-
diomics, Liège, Belgium) implemented in Matlab 2017a (Math-
works, Natick, Mass). Computation of all features (including IBSI)
is described in [26,27].

Houndsfield Unit (HU) intensities beyond �1024 and +3071 HU
were clipped (assigned the value �1024 and +3071 respectively).
An image intensity discretization with a fixed bin width of 25
Table 1
Model oversight section including name of model (CTAgnostic, CTLung, etc. . .), datasets used
have a tumor with HF > 20%, hypoxia PET-tracer used to train and validate the models.

99
Houndsfield Units (HU) and a standardized uptake value (SUV) of
0,50 was used for feature extraction in CT and FDG-PET respec-
tively [28,29].

The algorithm used to convert polygonal-based segmentations
to a voxel-based mask are described in [30]. The Fractal Dimension
(FD) of the image is computed as described by Al-Kadi and Watson
[31]. One-level and undecimated three dimensional wavelet trans-
form was applied to each CT image (after resampling), which
decomposes the original image X into 8 decompositions [26].

Voxel size resampling i.e., image interpolation was omitted for
the agnostic model (See Table 1) in order to capture the full vari-
ability of the imaging data.

A total of 1222 CT and 1340 PET features were extracted from
each image, consisting of five main groups: (1) fractal features
(2) first order statistics, (3) shape and size, (4) texture descriptors
including gray level co-occurrence (GLCM), gray level run-length
(GLRLM) and gray level size-zone texture matrices (GLSZM), (5)
features from groups 1, 3 and 4 after wavelet decomposition. There
were no missing feature values. Definitions and detailed feature
descriptions are described elsewhere [14].

Images from the site-specific models were resampled to a voxel
size of 1 � 1 � 5 mm3 using cubic. This ‘standard’ voxel size was
chosen according to the highest slice thickness and the median
pixel spacing.

Radiomic feature values are potentially sensitive to inter-
scanner model, acquisition protocol and reconstruction settings
variation. The parametric ComBat statistical feature harmonization
technique presented in Appendix F was employed in our analysis
of radiomic features derived from CT. This technique was initially
developed by Johnson et al. [32] for gene expression microarray
data (even for small sample sizes) and was recently exploited in
multicenter PET, MRI and CT radiomic studies [33,34].
in training and validation (including size and tumor site), percentage of patients that

https://ibsi.readthedocs.io/
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Statistical analysis

The statistical analysis for model development was performed
with R studio software, version 3.3.4 downloadable from http://
www.R-project.org. The R packages used in this study are
described in Appendix G. Area under the curve (AUC), accuracy,
positive and negative predictive value metrics were used to assess
the performance of the models.

The independent samples Mann-Whitney test was used for
comparison of unpaired, continuous data and the chi-square and
Fisher’s exact test was used for the comparison of categorical vari-
ables. All reported statistical significance levels were two-sided,
with a significance level <0.05. Confidence intervals for accuracy
were calculated with the confusionMatrix function in the Caret
package v. 3.45. Confidence intervals for AUC were calculated with
the ROC function in pROC. By default, this function uses 2000 boot-
straps to calculate a 95% confidence interval. For reproducibility
purposes, our source code can be found on the github repository:
https://github.com/SebastianSanduleanu/RadiomicsHypoxiaSigna-
ture.git.
Machine learning model development

A random forest (RF) machine-learning classifier was computed
(default settings: 500 trees, mtry =

ffiffiffiffiffi

nr
p

:ofpredictorsÞ, with a 10-fold
cross validation treebag recursive feature elimination algorithm
(Caret package) loop reshuffled 10 times (outer resampling method
whereby features were re-ranked) was used to classify patients as
hypoxia-positive/negative based on the optimal combination of
radiomic features. The final RF model was based on the nr. of fea-
tures corresponding to the first peak in accuracy in the out of bag
training cases. Regression trees were generated in order to treat
the hypoxic fractions as a continuous variable.

Recursive feature elimination (RFE) is a feature selection
method based on iterative model construction (e.g RF) to select
features according to their performance (e.g classification error,
importance) setting one subset of features aside and then repeat-
ing the process with the rest of the features, until all features in
the dataset are exhausted. Features are then ranked according to
Fig. 2. Workflow of generated hypoxia-classification models. The agnostic classificatio
derived hypoxia-response genes (1) and the prognostic value on an independent validati
SMOTE (3–4). Site-specific (H&N, Lung) CT images were resampled to 1 � 1 � 5 mm3 an
analyzed before and after balancing the outcome classes.

100
when they were eliminated. As such, RFE is a greedy optimization
procedure.

For both the CT and FDG-PET model a synthetic minority over-
sampling method (SMOTE) was used in R studio (‘smotefamily’
package, K = 5 nearest neighbors used for generating data) on the
training dataset in order to achieve balanced classes. SMOTE is
an oversampling technique that synthesizes a new minority
instance (in feature space) between a minority instance and one
of its K nearest neighbors [35]. The order in which the features
were (pre-)processed were as following: Image resampling ?
Feature extraction ? ComBat harmonization ? SMOTE
balancing ? Recursive Feature Elimination ? Random Forrest
model with optimal amount of features.

In order to ascertain the feasibility of both agnostic (multiple
solid tumor subsites such as esophagus, pancreas, lung and head
and neck) as well as site-specific (lung and head and neck) hypoxia
signatures we have generated the models represented in Fig. 2.
Further details on the partitioning of the agnostic CT/ FDG-PET
models are presented in Table 1.
Prognostic value and correlation with hypoxia-response genes

The CT’s of 89 mainly early stage lung cancer patients acquired
prior to surgery were downloaded from The Cancer Imaging
Archive (TCIA) [14,36,37].

Primary GTV’s were defined for n = 80 NSCLC patients, the rest
(n = 9) was omitted due to lack of clear tumor boundaries on CT
without availability of [18F]-FDG PET.

Radiomic features were extracted from these images and agnos-
tic CTnon-SMOTE hypoxia signature outcome classes were generated
according to the model splitting rules. Corresponding microarray
data acquired for the imaging samples were available at National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus [38]. The results of this analysis are presented in
Appendix E.

Clinical survival data was collected from yet another external
head and neck cohort of n = 517 oropharyngeal head and neck
squamous cell carcinoma patients from the Princess Margaret Can-
cer Centre in Toronto (details on this cohort are described in Fig. 3
n signature was used to assess the association with the most relevant literature-
on cohort (2). All generated signature performances were assessed prior to and after
d radiomic feature values were harmonized, while agnostic features were directly

http://www.R-project.org
http://www.R-project.org
https://github.com/SebastianSanduleanu/RadiomicsHypoxiaSignature.git
https://github.com/SebastianSanduleanu/RadiomicsHypoxiaSignature.git


Fig. 3. (a) Training and validation AUC’s presented for HF cutoff of 20% in agnostic CT model. (b). Training and validation AUC presented for HF 20% cutoff in agnostic CT ComBat,

SMOTE model. (c) Training and validation AUC presented for HF 20% cutoff in agnostic FDG-PETSMOTE model. (d) Training and validation AUC presented for HF 20% cutoff in
agnostic (CT + FDG-PETComBat, SMOTE model. (e) Kaplan-Meier survival curves for overall survival (OS) according to the CTAgnostic, non-SMOTE hypoxia signature predicted classes
on PMH head and neck cohort (n = 517).
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CT and FDG-PET based hypoxia prediction
and Appendix D). Radiomic features were subsequently extracted
from these images and agnostic CTnon-SMOTE hypoxia signature out-
come classes were generated according to the model splitting
rules.
Radiomics quality assurance and TRIPOD statement

For additional quality assurance a radiomics quality score (RQS)
was calculated [39].

Scores were likewise calculated for the 22-item adherence data
extraction TRIPOD (Transparent reporting of a multivariable pre-
diction model for individual prognosis or diagnosis) 3 checklist.
Results

A total of 808 patients with imaging data were included, from
which 221 patients with ground-truth hypoxia-PET: 131 patients
with [18F]-HX4 PET, 14 patients with up to three [18F]-FAZA imag-
ing timepoints (n = 36) and 76 patients with [18F]-FMISO-PET.
From this total group 61 patients had available FDG-PET images
acquired within a week of hypoxia-PET. One lesion was delineated
per patient. In total n = 100 training cases were available for the
disease-agnostic CT hypoxia classification signature and n = 183
testing cases from 4 different independent validation cohorts. A
total of n = 40 training cases and n = 21 external validation cases
were available for the disease agnostic FDG-PET signature. A total
of n = 76 training cases and n = 39 external validation cases were
available for the H&N CT signature, while a total of n = 62 training
cases and n = 36 validation cases were available for the Lung CT
signature. See Supplementary Appendix C and Table 1 for an elab-
orate presentation of all model performances and for reflection of
underlying class distributions.

The agnostic CTnon-SMOTE, non-Combat RF model reached an AUC of
0.77 (0.95% confidence interval [CI], 0.67–0.87) in the CT training
set (n = 100) with a 10-fold cross validation loop reshuffled 10
times, an AUC of 0.75 (0.95% CI, 0.57–0.93) in the Boston/NKI val-
idation dataset (n = 31), an AUC of 0.73 (0.95% CI, 0.58–0.88) on the
MSKCC and an AUC of 0.71 (0.95% CI, 0.53–0.89) in the UCLouvain
validation set (n = 36) by combining 12 CT-derived radiomic fea-
tures to classify hypoxia according to a HF cutoff of 20% (Table 2).
Accuracy in the Boston/NKI validation dataset was 74%, 64% in the
MSKCC dataset and 63% in the UCLouvain validation set, with pos-
itive and negative predictive values (PPV, NPV) of 70% and 82% for
Table 2
Summary of disease-agnostic and disease-specific model performance parameters accordi

Model Patients
training

Number features
in model

AUC externa
validation

CTAgnostic 100 12 1. 0.75
2. 0.71
3. 0.73

CTAgnostic, SMOTE 148 5 1. 0.79
2. 0.76
3. 0.72

CTAgnostic, Combat, SMOTE 139 11 1. 0.78
2. 0.82
3. 0.78

(CT + FDG)Agnostic, SMOTE 64 9 0.86

(CT + FDG) Agnostic, ComBat, SMOTE 61 9 0.74

CTLung, Combat, SMOTE 98 3 0.76

CTH&N, Combat, SMOTE 118 15 0.84

GTVprim volume 100 1 1. 0.69
2. 0.52
3. 0.49
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Boston/ NKI, 65% and 50% for UCLouvain and 89 and 37% for MSKCC
respectively.

After batch normalization and synthetic minority class over-
sampling a CT model reached an AUC of 0.88 (0.95% CI, 0.94–
0.82) in the training set (n = 139) with 10-fold cross validation loop
reshuffled 10 times, an AUC of 0.78 (0.95% CI, 0.62–0.94) in the
Boston/NKI, 0.82 (0.95% CI, 0.67–0.96) in the UCL validation set
and 0.78 (0.95% CI, 0.67–0.89) in the MSKCC dataset respectively
by combining 11 CT-derived radiomic features to classify hypoxia
according to a hypoxic fraction cutoff of 20% (Table 2). A tumor
volume-alone model was unable to significantly classify patients
as hypoxia-positive/ negative with an AUC of 0.69 (0.95% CI, 0.49
to 0.89) in the Boston/ NKI, 0.52 (0.95% CI, 0.32 to 0.71) in the
UCL validation set and 0.49 (0.95% CI, 0.33 to 0.65) in the MSKCC
dataset respectively.

Accuracy in the UCL validation dataset (n = 36) was 64%, 52% for
the Boston/NKI validation dataset (n = 31) and 76% for the MSKCC
dataset (n = 76) with the CTComBat, SMOTE model, with positive and
negative predictive values of 63%, 52%, 76% and 100%, 100%, 100%
respectively.

For the lung-specific CTnon-SMOTE, ComBat signature the agnostic
RF model reached an AUC of 0.75 (0.95% CI, 0.61–0.89) in training
(n = 62, Boston, MASTRO nitro/PET-boost) and an AUC of 0.80
(0.95% CI, 0.65–0.95) in the validation set (UCL) by combining 4
CT-derived radiomic features (HF cutoff 20%, Table 2).

For the H&N-specific CTnon-SMOTE, ComBat signature the agnostic
RF model reached an AUC of 0.76 (0.95% CI, 0.63–0.89) in training
(n = 76, MSKCC) and an AUC of 0.86 (0.95% CI, 0.66–1.00) in the val-
idation set (Maastro, NKI) by combining 6 CT-derived radiomic fea-
tures (HF cutoff 20%, Table 2).

A significant survival split (P = 0.037) was found between CT-
classified hypoxia strata in an external H&N cohort (n = 517), while
117 low, but significant hypoxia gene-CT signature feature associ-
ations were found in an external lung cohort (n = 80).

For initial quality assurance of the radiomics workflow the out-
comes of the entire CT cohort was randomized. Training a CTnon-
SMOTE-model on the randomized outcomes resulted in an AUC of
0.59 (0.95% CI, 0.40–0.78) in external validation. The radiomics
quality score (RQS) was calculated [39]. This resulted in a score
of 67%. Most points were allocated for prospective trial inclusion
(7 points), the use of 3 external validation datasets (5 points) and
the use of feature reduction analysis (3 points). Scores were like-
wise calculated for the 22-item adherence data extraction checklist
of the TRIPOD (Transparent reporting of a multivariable prediction
ng to HF20% threshold. 1. Boston-NKI 2. UCLouvain 3. MSKCC.

l Confidence
Interval

Accuracy
testing

95% Confidence
Interval

PPV
(%)

NPV
(%)

1. [0.57, 0.93]
2. [0.53, 0.89]
3. [0.58, 0.88]

1. 0.74
2. 0.64
3. 0.63

1. [0.55, 0.88]
2. [0.46, 0.79]
3. [0.51, 0.74]

1.70
2.65
3.89

1.82
2.50
3.37

1. [0.63, 0.95]
2. [0.58, 0.94]
3. [0.58, 0.87]

1. 0.61
2. 0.69
3. 0.51

1. [0.42, 0.78]
2. [0.52, 0.84]
3. [0.40, 0.63]

1. 70
2. 75
3. 92

1. 57
2. 58
3. 31

1. [0.62, 0.94]
2. [0.67, 0.96]
3. [0.67, 0.89]

1. 0.52
2. 0.64
3. 0.76

1. [0.33, 0.70]
2. [0.46, 0.79]
3. [0.65, 0.85]

1. 52
2. 63
3. 76

1. 100
2. 100
3. 100

[0.68, 1.0] 0.67 [0.43, 0.85] 90.0 45.5

[0.46, 1.0] 0.71 [0.48, 0.89] 84.6 50.0

[0.59, 0.92] 0.72 [0.54, 0.86] 81 60

[0.64, 1.00] 0.76 [0.56, 0.90] 88 58

[0.49, 0.89]
[0.32, 0.71]
[0.33, 0.65]

1. 0.58
2. 0.50
3. 0.70

1. [0.39, 0.75]
2. [0.33, 0.67]
3. [0.58, 0.80]

1. 56
2. 59
3. 76

1. 67
2. 14
3. 22
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model for individual prognosis or diagnosis), which was in the ran-
ged of 0.86–0.92 statement (See Supplementary Appendix H).
Discussion

This study explores the possibility of obtaining a validated
radiomics signature consisting of CT and/or FDG-PET derived imag-
ing features for the prediction of tumor oxygenation status from
routine medical images. When applied to the external validation
datasets, our models yielded significantly higher than random
AUC’s for Boston-NKI, UCL, FDG-PET and combined CT and FDG-
PET models. Furthermore Kaplan-Meier analysis revealed a signif-
icant (P < 0.05) split in terms of overall survival (OS) between the
hypoxic and non-hypoxic CT-classified strata in an external HNSCC
cohort. There were a total of 117 significant correlations between
hypoxia response gene-radiomic features from the CTAgnostic, non-

SMOTE-signature after correction for multiple testing.
The relatively high positive predictive values in nearly all mod-

els in our opinion are a strong argument that the signature could
be implemented as a usable tool for e.g. ultrahigh dose-rate
(FLASH) radiotherapy (assuming that tumor hypoxia is needed to
have obtain the differential FLASH effect), HAP-trial patient selec-
tion, which does not directly come out of the AUC’s presented (still
a lot of false positives and negatives).

To our knowledge this is the first study to train a radiomic sig-
nature that is able to predict solid tumor hypoxia derived from HF’s
inferred from [18F]-HX4 imaging instead of a TBRmax threshold on
one single voxel [15]. Another benefit over previous study was
the use of robust feature reduction and advanced machine learning
methods on a wide array of solid tumors, the use of separate exter-
nal datasets, identification of high- and low probability of survival
patient groups classified according to the hypoxia signature and
the association between hypoxia imaging biomarkers and
hypoxia-response genes.

We believe that although the agnostic CT radiomic signature
only misclassified 3/40 patients on the ARCON dataset there is still
some discrepancy between HX4 spatially derived (volumetric)
information and single-section biopsy-derived pimonidazole
immunohistochemical staining. In a pancreatic tumor study for
instance, variance component analysis demonstrated greater
inter- than intrapatient variability of hypoxia, and furthermore
that multiple (4–5) tumor sections are required to provide a con-
sistent evaluation of its extent in individual tumors [40].

Eventually the choice of cutoff thresholds (primarily HF 20%)
was based on previous radiobiologic studies, e.g. Moulder and
Rochwell et al. [22], which reviewed 92 HF determinations in 42
tumor systems. Most solid tumors, even those with diameters of
1–3 mm, exhibit according to this study HF’s that may range from
10 to 30% [3]. In most experimental solid tumors, ~10–20% of the
viable tumor cells are found to be sufficiently hypoxic to be fully
radioresistant as measured by analyses of tumor cell survival,
tumor growth, or tumor cure [23]. With regard to the wavelet fea-
tures found in the various hypoxia classification models the follow-
ing can be said.

Wavelet transforms are used to enhance different aspects of the
image regarding spatial resolution. The features derived in e.g. the
CTSMOTE model were mainly texture and statistical-related (after
wavelet decomposition in different but mostly lower frequency
sub-bands, so different sharpening and smoothing filters had to
be applied initially): in total three texture and two statistical fea-
tures in the model.

The finding of highly ranked wavelet features could be attribu-
ted to the fact that non-enhanced CT images were used in the
training and validation of the model, possibly introducing discrep-
ancies in Poisson noise and image resolution [41,42].
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An interesting finding is that of the multiple high total lesion
glycolysis features (SUVmean X metabolic tumor volume) [43] found
in both FDG-PET and combined CT and FDG-PET models. We
hypothesize that oxygen availability to cells decreases glucose oxi-
dation, whereas oxygen shortage in hypoxic solid tumors con-
sumes glucose faster in an attempt to produce ATP via the less
efficient anaerobic glycolysis to lactate (Pasteur effect) [44].

Hypoxia-PET has been previously shown to provide repro-
ducible and spatially stable results, significant spatial correlations
with metabolic active tumor volumes on FDG-PET and prognostic
value with regard to disease free survival and local tumor control
[45–48]. Hence we believe we have identified a good ground truth
measurement of hypoxia status for comparison to CT/ FDG-PET
derived radiomics in the context of patient stratification for
hypoxia-activated prodrug trials albeit with radiotherapy (e.g
dose-escalation, dose-painting of hypoxic sub volumes) or sys-
temic therapy (e.g hypoxic cytotoxic agents, immunotherapy)..

Other strengths of this study are the use of a robust feature
selection and machine learning classifier in order to train and val-
idate the eventual models. This training method has been exten-
sively described in previous research, even in the context of
radiomic studies and is highly reproducible [49–51]. Further
strengths are the validation on multiple external cohorts and the
assessment of hypoxia according to HF’s.

Some limitations include: (i) The unbalanced data, which we
have tried to account for by applying SMOTE analysis. (ii) In this
cross-sectional study there is the concern that solid tumors are rid-
dled with areas of mild-hypoxia leading to severe hypoxia and
necrosis as well areas of acute hypoxia and re-oxygenation. The
chaotic architecture of the tumor vasculature typically results in
dynamic fluctuations in blood flow and therefore oxygen availabil-
ity. These fluctuations result in distinctive patterns and represent a
phenomenon described as ‘cycling hypoxia’, with frequencies that
have been shown to vary between seconds to hours and even days
[52]. (iii) Despite the fact that our main CT models are trained and
validated using HX4-PET with similar acquisition times, the addi-
tion of other tracers and times decreases the accuracy and robust-
ness of the study. (v) None of the datasets is complete in terms of
availability of hypoxia PET + FDG-PET + CT and known survival
outcomes.

With prospect to the future, the accurate quantification of
hypoxia using PET requires modelling of—and correcting for—tra-
cer properties, notably, the tracer distribution volume Vd [53,54].
Currently, such modelling requires a long dynamic PET imaging
protocol, which places a greater burden on patients and machine
workload, further impeding the uptake of hypoxia-PET imaging
into clinical practice. Hence, there is a pressing need to develop
simplified cost-efficient imaging biomarkers that correct for
inter-patient PET imaging agent transport variances.

Future research should in our view focus on the accrual of larger
amounts of patients in disease-specific hypoxia-PET trials, further
improving acquisition timing and signal stability in hypoxia PET
scanning protocols, correlating hypoxia PET-radiomics with 3D
tumor histology, associating robust gene expression signatures
with hypoxia radiomic signatures and training and validating mod-
els on higher volumes of data using the distributed learning
approach [55–58].

In summary, our results indicate that a CT and [18F] FDG-PET
derived radiomic signature can both accurately classify tumor
hypoxia according to literature-derived HF cutoffs. These findings
further reinforce the assumption that we can ‘‘enrich” interven-
tional trials with hypoxia-targeting agents and FLASH by identify-
ing patients with tumors likely to be hypoxic. After validation on
multi-institutional cohorts such a marker could be potentially use-
ful for patient stratification in trials and situations where [18F]-HX4
is not readily available.
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