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Introduction

Arrhythmogenic Cardiomyopathy (AC) is an inherited pathology of the heart for which in 
60% of probands a (likely-)pathogenic mutation can be found [1,2]. It is characterized 
by fibrofatty replacement, primarily affects the right ventricle, and predisposes to 
ventricular arrhythmias and sudden cardiac death in young individuals [3,4]. Probands 
and family members are screened and monitored, as they are likely to develop the disease 
themselves [5,6]. To prevent sudden cardiac death in apparently healthy individuals, early 
detection of pro-arrhythmic tissue substrates is important.

Definitive diagnosis of AC is based on the presence of transmural fibro-fatty 
replacement of RV myocardium at biopsy, autopsy, or surgery [7,8]. As assessment 
of transmural myocardium is not possible in most patients, 2010 Task Force Criteria 
(TFC) guide the diagnosis of AC [9]. Unfortunately, the overlap of TFC with other disease 
expressions makes it difficult to differentiate between AC and, for example, pulmonary 
artery hypertension, Brugada syndrome, and Athlete’s heart [10]. The use of personalized 
computational modelling can provide more insight in the patient’s underlying myocardial 
disease substrates.

A patient-specific cardiac model can function as a Digital Twin, a virtual representation 
of reality based on comprehensive physical and functional description of the heart [11]. 
Digital Twins often are personalized to represent non-invasive data that is easily accessible 
[12,13]. The personalized computational model provides more insight in the Digital Twin’s 
myocardial tissue properties, which reflects the patient’s underlying myocardial disease 
substrates. As tissue properties are directly related to tissue function and composition, the 
properties provided by the Digital Twin might have predictive value for disease progression 
and might improve arrhythmogenic risk stratification.

The choice of cardiovascular computational model determines the possible 
representations of the Digital Twin and which properties can be estimated. Over the 
years, these models became more detailed. Starting with simulation of only global 
haemodynamics [14], nowadays cardiac models give insight in tissue mechanics [15,16] 
and are used for preclinical research and clinical application [17–19]. The level of detail 
on the tissue ranges from generalized constitutional laws with phenomenological active 
behaviour to multi-scale models coupling mechanics on the organ level to cellular 
electrophysiology [20]. As models have been improved in their ability of reproducing 
clinical data, the challenge now is to personalize these models to clinical data to create 
the Digital Twin [13,18].

The development of creating the Digital Twin is a multi-disciplinary problem engineers 
together with clinicians try to solve. Many challenges have been acknowledged to develop 
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Digital Twins and to successfully integrate them in clinical practice [13,17,18,21]. This can 
be summarized into six main challenges:
- Problem Challenge. Define the pathology, its characteristics, and its typical expressions 

that should be mimicked by the Digital Twin.
- Measurement Challenge. Clinical data containing valuable information on the pathology 

should be selected.
- Model Challenge. The computational model must have the ability to reproduce the 

selected clinical data must be chosen.
- Parameter Challenge. Computational models are often complex and extended, 

therefore, an identifiable parameter subset sensitive to the measurements must be 
defined.

- Optimization Challenge. This method must be suited for the complex parameter space 
to the selected measurements.

- Translational Challenge. Clinically relevant information should be extracted from the 
Digital Twin and translated to the clinics.

Each of these challenges should be addressed to develop a modelling framework to create 
a Digital Twin.

In this Thesis, we will focus on creating the Digital Twin of patients with AC. Two 
challenges have already been addressed in previous studies. It has been shown that right 
ventricular deformation abnormalities have prognostic value for disease progression [22] 
and arrhythmic risk stratification [23] (Measurement Challenge). Furthermore, it has been 
shown that the CircAdapt model [15,24] is a fast computational model which is able to 
reproduce these deformation abnormalities [25,26] (Model Challenge). In this thesis, we 
will verify whether deformation patterns produced by the CircAdapt model can be used 
for patient-specific modelling and we will use this information to develop a modelling 
framework to generate the Digital Twin of the AC heart.

Aim

The aim of this Thesis is to get more insight in the underlying myocardial disease substrate 
in early-stage AC patients. To do so, we will address the six challenges of creating the 
Digital Twin. The modelling framework will have information of regional myocardial 
deformation (i.e. tissue strain) as input which then is simulated with the CircAdapt model 
where we are making it personal. The subset of model parameters used for optimization 
will be selected based on an extensive sensitivity and identifiability analysis. Two 
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optimization protocols will be investigated to create a Digital Twin. These protocols will 
then be applied to a large patient cohort to investigate the underlying tissue substrate.

We explored the possibility to estimate patient-specific model parameters of regional 
RV segments in the CircAdapt model in Chapter 2. This chapter mostly focusses on 
the RV, resulting in a relatively simple optimization problem solved with a gradient-
based parameter estimation algorithm. In this feasibility study, it is demonstrated that 
deformation patterns can be used as input of the modelling framework and that the 
CircAdapt model is able to reproduce these deformation patterns (Problem, Measurement, 
and Model Challenge).

Because of the high number of model parameters in the CircAdapt model, we did an 
extensive sensitivity and identifiability analysis in Chapter 3 to objectively select the 
parameter subset for parameter optimization. The sensitivity analysis was performed 
with the Morris screening method [27]. Parameter identifiability was quantified based 
on the diaphony using Monte Carlo simulations [28]. Parameter subset reduction was 
performed based on identifiability and validated by optimizing parameters with particle 
swarm optimization [29] (Parameter and Optimization Challenge).

After defining the optimal parameter subset, we used this subset in Chapter 4 to 
patient-specific personalize the CircAdapt model to a large cohort of 68 individuals with 
a desmosomal mutation related to AC [26]. We compared the estimated tissue properties 
with severity of deformation abnormalities and with clinical stage based on 2010 TFC 
(Translational Challenge).

Measurement uncertainty inevitably affects model parameter estimations. When 
investigating tissue properties in a longitudinal study design, this uncertainty might 
influence the estimation and thereby should be taken into account. Therefore, in Chapter 
5, we applied a Bayesian inference approach to estimate posterior distributions of model 
parameters rather than only providing point estimates. To do so, we applied adaptive 
multiple importance sampling [30,31] to randomly draw samples to form the posterior 
distribution (Optimization and Translational Challenge).

In Chapter 6, we applied the Bayesian inference algorithm explored in Chapter 5 on a 
large cohort of 82 probands and family members without structural abnormalities present 
at baseline. In total, 313 datasets at baseline and follow-up were included to investigate 
the age penetrance of AC. Both clinical measures as well as computationally estimated 
tissue properties were investigated (Translational Challenge).

The concluding Chapter 7 discusses the different approaches described in this Thesis 
in a more global context. Strengths and weaknesses of our framework are discussed and 
opportunities offered by our modelling framework are hypothesized.
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Abstract

Arrhythmogenic cardiomyopathy (AC) is an inherited cardiac disease clinically 
characterized by life-threatening ventricular arrhythmias and progressive cardiac 
dysfunction. Current electrocardiographic and structural imaging methods fail to detect 
early-stage AC-related myocardial disease in mutation carriers. We propose a cardiac 
imaging-based personalized modelling approach that enables the identification and 
characterization of regional electro-mechanical tissue abnormalities in the vulnerable 
right ventricular (RV) free wall of AC mutation carriers.

RV tissue deformation data from 2 controls and 8 mutation carriers, covering various 
stages of AC disease, were used to personalize the CircAdapt model of the human heart 
and circulation. This resulted in estimates of contractility and stiffness in the apical, 
midventricular, and basal segments of the RV.

Apex-to-base heterogeneity in tissue properties, with increased stiffness and 
decreased contractility in the RV basal region, was found in most patients and was largest 
in late-stage AC disease. Future studies should evaluate whether early-stage tissue 
heterogeneity is predictive for arrhythmic events or AC disease progression.
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Introduction

Arrhythmogenic Cardiomyopathy (AC) is considered as an inherited cardiomyopathy 
predisposing to ventricular arrhythmias, sudden cardiac death (SCD), and more rarely 
(bi)ventricular dysfunction and heart failure [1,2]. A genetic mutation is found in up to 
60% of probands, mostly affecting desmosomal genes [3]. To prevent sudden cardiac 
death in these apparently healthy AC mutation carriers, early detection of pro-arrhythmic 
tissue substrates is important. Current conventional electrocardiographic and structural 
imaging methods lack sensitivity to detect early-stage AC-related myocardial disease in 
genotype-positive AC family members.

In a recent study [4], Mast et al. showed that regional right ventricular (RV) deformation 
abnormalities exist in most individuals with a pathogenic plakophillin-2 (PKP2) or 
desmoglein-2 mutation, even in those classified as subclinical (concealed) or electrical 
stage AC patients according to the 2010 International Task Force Criteria [5]. In the same 
study, generic patient simulations obtained with a biophysical model of the human heart 
and circulation suggested that those regional RV deformation abnormalities originate from 
regional contractile dysfunction either or not in combination with myocardial stiffening.

In a follow-up study [6], Mast et al. showed that early-stage AC mutation carriers 
with an abnormal pattern of basal RV deformation are more likely to progress into a more 
advanced AC disease stage than those with normal basal RV deformation. RV mechanical 
dispersion has also been reported in early stage AC patients [7] and has been found to be 
associated with arrhythmic outcome [8].

These observed regional differences in RV myocardial deformation suggest the 
existence of a detectable heterogeneity in local tissue properties in early-stage AC. 
A biophysical model of the human heart and circulation, such as the CircAdapt Model 
[9,10], describes the mechanistic link between myocardial tissue properties and regional 
myocardial deformation, based on well-established physics and physiology principles. 
We therefore hypothesize that cardiac imaging-based personalization of the CircAdapt 
model can reveal the severity of AC-related RV tissue disease. In this study, we aimed to 
explore the potential of personalizing the CircAdapt model to patient-specific characterize 
regional differences in RV myocardial tissue properties.

Methods

Patient Cohort
A total of 2 control subjects and 8 mutation carriers (4 male, age 33.8±14.9 years) were 
selected from the previously introduced AC cohort [4]. Selection was based on covering the 
spectrum of AC disease severity. Longitudinal RV strain was measured in three segments 
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(apex, mid, and base) using a standard echocardiographic deformation imaging protocol 
that has been described in more detail elsewhere [11]. LV and RV end diastolic volumes 
(154±26mL and 184±38mL, respectively) and stroke volume (85±21mL) were obtained 
by cardiac magnetic resonance imaging (CMR) performed on a 1.5-T scanner (Achieva, 
Philips Healthcare, Best, the Netherlands), according to standard AC protocol [12].

Based on their RV basal strain pattern, the subjects were classified in three subgroups, 
representing increasing severity of AC disease [5]. One mutation carrier and two controls 
had normal RV deformation (Type-I), four mutation carriers showed mildly abnormal 
deformation (Type-II), and three showed severely abnormal deformation (Type-III).

Personalized Model Simulation
The CircAdapt model was used to simulate cardiac pump function and cardiovascular 
system dynamics [9]. CircAdapt is a lumped-parameter model which couples regional 
myocardial tissue mechanics in the cardiac walls to pump mechanics and haemodynamics 
of a geometrically simplified four-chamber heart model and closed-loop circulation. Its 
MultiPatch module [13] was used to divide the RV free wall in three tissue segments, 
representing the basal, midventricular, and apical regions.

Passive and Active Tissue Behaviour
The CircAdapt model has been extensively explained elsewhere [13]. In this study, we aim 
to patient-specific estimate RV tissue parameters describing cardiac myofibre mechanics. 
In brief, cardiac myofibre mechanics were modelled using a Hill-type contraction model 
including active (myofibre contraction) and passive (soft tissue deformation of the 
myocardium) stress components [13]. In this model, passive fibre stress is described by 
a nonlinear relation depending on sarcomere length (
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 a scaling factor, referred to as 
stiffness in the remainder of this study, and 

𝑙𝑙!" 
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 the exponent determining the degree of 
non-linearity. We assumed 
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𝑙𝑙!
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.
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	 𝜎𝜎%,(*+ = 	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 ⋅ 𝑆𝑆(𝑡𝑡, 𝑙𝑙!, 𝑙𝑙!$)	

 

 to be constant, i.e. 10 and 1.8 µm, respectively.
The active fibre stress is a function 
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 of time (
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), sarcomere length (
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	 𝜎𝜎%,(*+ = 	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 ⋅ 𝑆𝑆(𝑡𝑡, 𝑙𝑙!, 𝑙𝑙!$)	

 

), and contractile 
element length (
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) multiplied by a scaling factor SfAct.

𝑙𝑙!" 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
 

𝑘𝑘# 
 

𝑆𝑆 
 

𝑡𝑡 
 

𝑙𝑙!$ 
 
𝑙𝑙! 

	

	

	
𝜎𝜎%,'(! = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ,-

𝑙𝑙!
𝑙𝑙!"
.
)!
− 11	

 

	 𝜎𝜎%,(*+ = 	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 ⋅ 𝑆𝑆(𝑡𝑡, 𝑙𝑙!, 𝑙𝑙!$)	

 

2.2

In the rest of this study, contractility refers to this scaling factor.
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Parameter Estimation Protocol
The CircAdapt model was personalized by fitting simulated RV strain patterns to the 
patient’s RV strain patterns, since this region is typically first-affected. To that end, 
parameters related to regional RV stiffness and contractility, relative systole duration, 
and LV and RV cavity and wall volume were adjusted for each patient. RV stiffness and 
contractility were estimated by minimizing the error between a set of simulated and 
measured RV strain indices, together capturing the pattern of regional RV deformation 
(Table 2.1 and Figure 2.1): time-to-peak-pre-stretch (TTPP), peak pre-stretch, time-to-
50%-shortening (TT50), time-to-peak-strain (TTPS), peak strain (PS), and end systolic 
strain (ESS). LV end diastolic volume was fitted by changing the LV cavity volume while 
maintaining wall thickness constant. RV wall and cavity volume were changed to fit RV 
global longitudinal strain. Relative systolic duration was estimated from time to pulmonary 
valve closure.

Table 2.1. Indices used for estimation of contractility and stiffness.

Index Definition Constant

TTPP

Χ! 
 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 

/ 10 ms

PP

Χ! 
 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 

/ 1 %

TT50

Χ! 
 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 

/ 10 ms

TTPS

Χ! 
 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 

/ 10 ms

ESS

Χ! 
 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 

/ 1 %

PS

Χ! 
 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 
/ 1 %

TTPP: Time to peak pre-stretch; PP: Peak Pre-stretch; TT50: Time to 50% shortening; TTPS: Time to peak 
strain; ESS: End Systolic Strain; PVC: Pulmonary Valve Closure; PS: Peak Strain

Figure 2.1. Indices used for fitting. Arrows represent the indices TTPP (1), Peak Pre-Stretch (2) TT50 (3), TTPS 
(4) End Systolic Strain (5), and Peak Strain (6), as described in Table 2.1.

  2
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To minimize the squared sum of error in the indices, the trust-region algorithm was used. 
The algorithm stopped when the estimated step size of the parameters became smaller 
than 0.1% of the original value. The regional tissue parameters described earlier were 
estimated in iterative steps until convergence to improve convergence of the parameter 
estimation algorithm. To quantify the goodness of the fit, the unitless mean squared strain 
error (Χ! 

 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 

) of the three segmental RV strain patterns was calculated as the squared sum of 
difference in strain between simulation and measurement, normalized to the cycle time 
for better comparison between subjects.

Χ! 
 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 

2.3

with 

Χ! 
 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 

 and 

Χ! 
 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 

 being simulated and measured strain at time

𝑙𝑙!" 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
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𝜎𝜎%,'(! = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ,-

𝑙𝑙!
𝑙𝑙!"
.
)!
− 11	

 

	 𝜎𝜎%,(*+ = 	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 ⋅ 𝑆𝑆(𝑡𝑡, 𝑙𝑙!, 𝑙𝑙!$)	

 

, respectively. A 
perfect fit would result in an Χ! 

 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	

	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 

(max(𝜖𝜖#$%&') −max(𝜖𝜖#&()
)) 

!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$
 

!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()
$ 

!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$
 

(min(𝜖𝜖#$%&') −min(𝜖𝜖#&()
)) 

 

 of zero. The error is squared to increase the weight of 
larger differences in strain error. To quantify the degree of tissue heterogeneity for each 
type of AC disease, the standard deviation of the three segmental parameter values was 
calculated per subject and averaged for each subgroup.

Numerical Implementation
Simulations were performed in MATLAB 2017a (MathWorks, Natick, MA, USA). Simulations 
were run on a PC with 8 GB RAM and an Intel i7-7600U (2.8 GHz, 2 cores).

Results

The simulated strains obtained from the personalized models are in good agreement with 
the measurements. The median Χ! 

 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
 

!𝑡𝑡!!,#$%&' − 𝑡𝑡!!,#&()$ 
(max(𝜖𝜖#$%&') −max(𝜖𝜖#&())) 
!𝑡𝑡*+%,#$%&' − 𝑡𝑡*+%,#&()$ 
!𝑡𝑡-&(.,#$%&' − 𝑡𝑡-&(.,#&()$ 
!𝜖𝜖!/0,#$%&' − 𝜖𝜖!/0,#&()$ 
(min(𝜖𝜖#$%&') −min(𝜖𝜖#&())) 

 

 of all estimations is 2.6, with a minimum and maximum 
of 0.5 and 16, respectively. The strain of two good and two bad estimations with Χ! 
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 are 
shown in Figure 2.2.

Figure 2.3 shows the mean estimated contractility and stiffness relative to the apical 
estimations for apical, mid, and basal segments. Both contractility and stiffness are more 
homogeneously distributed in Type-I, with a het erogeneity of 18% in contractility and 
a heterogeneity of 23% in stiffness. In Type-II and Type-III, the parameters are more 
heterogeneously distributed with a heterogeneity of 23% in contractility and 83% in 
stiffness in Type-II, and a heterogeneity of 39% in contractility and 161% in stiffness in 
Type-III. On average, basal contractility decreases and stiffness increases for Type-II and 
Type-III, leading to an increase of RV tissue heterogeneity with progression of AC disease.
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Figure 2.2. Two best (first and third from left) and two worst fits (second and fourth from left) in terms of Χ! 
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 of 
Type-II and Type-III patients. The vertical line represents the closure of pulmonary valve in both measurements 
and model. Onset QRS is taken to be the zero-strain reference point.

Figure 2.3. Fitted contractility and stiffness normalized to the apical values. The mean estimated values of 
contractility 
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 per type (large dots) are shown with bars representing the standard 
deviation of the individual subjects (small dots).
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Discussion

The main outcome of this study is the characterization of the tissue mechanisms underlying 
deformation abnormalities in AC subjects using a patient-specific modelling-based 
approach. The results suggest that AC disease progression, defined as the level of RV 
basal deformation abnormality, is associated with growing RV apex-to-base heterogeneity 
in contractile dysfunction and myocardial stiffening. The patient-specific simulations of 
the subjects with a Type-II deformation pattern, which was previously found in about half 
of the subclinical mutation carriers, revealed decreased basal contractility and increased 
basal stiffness compared to the apex. This finding is in line with the hypothesis by Mast 
et al. [4].

These predicted changes in contractility and stiffness may be explained by fibro-fatty 
replacement, which is conventionally detected by late gadolinium enhancement (LGE). 
However, LGE was detected in only one Type-II and one Type-III patient. This suggests 
that our method may reveal tissue abnormalities other than detected by LGE. This could 
also be in line with a limited sensitivity of LGE in the RV due to, for example, the typical 
thin RV lateral wall, and the presence of more diffuse fibrosis in AC patients [14].

Tissue behaviour of the RV lateral wall depends not only on its intrinsic tissue 
properties, but also on mechanical interaction with the LV lateral and septal wall. This 
study focusses on the RV, because this is typically the first affected area in PKP2 mutation 
carriers [15]. In later disease stages, LV involvement can be observed at the macroscopic 
level [5], but also in early stages, as AC-related genes may be expressed differently in the 
LV [16]. Additionally to these pathological findings, cardiac differences between subjects 
due to patient’s length, weight, lifestyle, and other factors will lead to subject-to-subject 
differences in both LV and RV tissue characteristics. Therefore, including LV tissue in the 
parameter estimation protocol might improve goodness of fit in the RV and reduce model 
discrepancy in the LV. Additionally to EDV, LV strain should be included in the objective 
function to more reliably estimate LV tissue properties. By including LV tissue properties in 
the estimation, ventricular interaction via the septum in the TriSeg module should improve 
the estimation of RV tissue properties.

Currently, one fitting protocol with a fixed starting point is used. In the future, 
uniqueness of the solutions should be investigated. Future work can also develop the 
current estimation protocol by including other strain indexes to remove local minima, 
or by including other parameters to better capture the disease’s mechanics. Gradient 
based optimization algorithms have a chance to find local minima in complex models, so 
other derivative-free optimization techniques should be considered to improve accuracy 
of the fitting protocol [17]. Finally, this study focuses on a relatively small cohort of PKP2 
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mutation carriers only. Future work should include a larger clinical sample size of a 
genetically more heterogeneous cohort of AC mutation carriers to evaluate the ability of 
the simulation based electromechanical substrates to stratify arrhythmic risk.

Conclusion

We presented a patient-specific modelling approach and showed its ability to reproduce 
regional RV deformation abnormalities in AC mutation carriers by introducing apex to base 
heterogeneity in regional tissue properties. Estimation of model parameters is limited 
to regional RV parameters. To improve the reliability of the estimations, future studies 
should include both RV and LV deformation in the objective function and both RV and 
LV parameters in the set of parameters included in the optimization. A sensitivity and 
identifiability analysis should support the choice of model parameters included in the 
estimation. Other optimization techniques should be investigated in order to improve 
convergence.
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Abstract

Arrhythmogenic Cardiomyopathy (AC) is an inherited cardiac disease, clinically 
characterized by life-threatening ventricular arrhythmias and progressive cardiac 
dysfunction. Patient-specific computational models could help understand the disease 
progression and may help in clinical decision making.

We propose an inverse modelling approach using the CircAdapt model to estimate 
patient-specific regional abnormalities in tissue properties in AC subjects. However, 
the number of parameters (n=110) and their complex interactions make personalized 
parameter estimation challenging. The goal of this study is to develop a framework for 
parameter reduction and estimation combining Morris Screening, quasi-Monte Carlo 
simulations, and Particle Swarm Optimization (PSO). This framework identifies the best 
subset of tissue properties based on clinical measurements allowing patient-specific 
identification of right ventricular tissue abnormalities.

We applied this framework on 15 AC genotype positive subjects with varying degrees 
of myocardial disease. Cohort studies have shown that atypical regional right ventricular 
(RV) deformation patterns reveal early-stage AC disease. The CircAdapt model of 
cardiovascular mechanics and haemodynamics already demonstrated its ability to capture 
typical deformation patterns of AC subjects. We, therefore, use clinically measured cardiac 
deformation patterns to estimate model parameters describing myocardial disease 
substrates underlying these AC-related RV deformation abnormalities.

Morris screening reduced the subset to 48 parameters. Quasi-Monte Carlo and PSO 
further reduced the subset to a final selection of 23 parameters, including regional tissue 
contractility, passive stiffness, activation delay, and wall reference area.
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Introduction

Arrhythmogenic Cardiomyopathy (AC) is an inherited cardiomyopathy, clinically 
characterized by the occurrence of ventricular arrhythmias, sudden cardiac death (SCD), 
and predominantly right ventricular (RV) dysfunction [1,2]. A pathogenic genetic mutation, 
mostly affecting desmosomal genes, is found in up to 60% of probands. This mutation 
may result in fibro-fatty replacement of the myocardium, which can be a substrate for 
life-threatening arrhythmias and may already occur in an early stage without overt signs of 
disease using conventional screening tools [3]. To prevent SCD in these apparently healthy 
AC mutation carriers, early detection of pro-arrhythmic tissue substrates is important.

The diagnosis of AC is based on a set of criteria described in the revised 2010 Task 
Force Criteria (TFC), with the electrocardiogram (ECG) and cardiac imaging as central 
elements [4]. By using these conventional screening tools, mutation carriers can be 
classified into three categories: 1) a concealed stage with no abnormalities, 2) an electrical 
stage with electrical abnormalities, but no structural abnormalities, and 3) a structural 
stage with both electrical and structural abnormalities. Conventional electrocardiographic 
and structural imaging methods as described in the 2010 TFC are specific but may lack 
sensitivity to detect early-stage AC-related myocardial disease in genotype-positive AC 
patients and family members [5].

Mast et al. [5] found local RV deformation abnormalities in the absence of 
electrocardiographic and structural 2010 TFC. These abnormal deformation patterns 
were derived from speckle tracking echocardiography in individuals with a pathogenic 
Plakophillin-2 (PKP2) or Desmoglein-2 (DSG2) mutation [5]. In a follow-up study by 
the same group, these deformation abnormalities were related to disease progression 
from a concealed stage to a stage where subjects had developed electrical or structural 
abnormalities [6], which suggests that identifying the underlying substrate responsible for 
these strain abnormalities would help us understand disease progression and ultimately 
help in arrhythmic risk stratification.

In the initial study by Mast et al. [5], generic in silico patient simulations were performed 
using the CircAdapt model. This model is a biophysical model of the human heart and 
circulation describing the mechanistic link between myocardial tissue properties and 
regional myocardial strain based on well-established physical and physiological principles 
[7]. These simulations suggest that regional RV strain abnormalities in AC patients originate 
from regional contractile dysfunction either or not in combination with myocardial stiffening.

Generic simulations as described above give insight into the disease origin for the 
generic population, but do not contain patient-specific data. Therefore, we hypothesize 
that cardiac deformation imaging-based personalisation of the CircAdapt model not only 
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may reveal the severity of AC-related RV tissue disease, but also may help to monitor or 
even to predict disease progression, and therefore may support clinical decision making.

To use the CircAdapt model for clinical decision support in AC subjects, it is essential to 
assess which model parameters can be uniquely identified given this model and available 
data. The CircAdapt model as configured for this study contains 110 parameters. Due 
to mechanical interactions within and between the walls of the heart on one hand and 
between heart and circulation, on the other hand, the model acts highly non-linear, 
non-monotone, and non-additive. This behaviour, combined with the limited amount of 
available clinical data, challenges the identifiability of the parameters. Therefore, patient-
specific modelling of cardiac deformation characteristics is challenging.

Reducing the dimensionality of the model is necessary for patient-specific modelling. 
This can be done with a screening method such as Morris screening [8]. It is based on a 
one-at-a-time method, where the effect of individual parameter changes on the model 
output is evaluated. The method is designed to account not only for their individual effect 
but also interactions. It has been demonstrated to be a proxy for the variance-based 
total sensitivity index of a parameter [9]. Therefore, it is a suitable method to reduce 
dimensionality of the model.

Due to the complexity of the model, Morris screening does not result in a sufficiently 
reduced parameter subset. By performing actual runs of patient-specific parameter 
estimation using quasi-random Monte Carlo simulations, the quality of estimation 
using different parameter subsets can be assessed and compared. Using the diaphony 
[10] obtained from quasi-random Monte Carlo simulations, the relative importance of 
parameters can be determined, which guides the subset reduction. Particle Swarm 
Optimization (PSO) [11,12] can be used for parameter estimation. Because the subset 
reduction is based on the size of parameter input space, results are biased. By comparing 
the estimations following from PSO, the subset reductions are validated independent of 
input space size.”

The goal of this study is to introduce a parameter reduction and estimation framework 
allowing personalization of models with many parameters. Though this approach is more 
widely applicable, we focus on the identification of the best subset of model parameters 
essential to accurately simulate patient-specific RV deformation using the CircAdapt 
model. This framework reduces the parameter subset in two steps based on importance 
and identifiability. First, the Morris Screening Method (MSM) was applied to exclude the 
unimportant parameters given the choice of model output and model structure. Second, 
a quasi-Monte Carlo (qMC) fitting algorithm was used on the reduced parameter subset to 
determine the parameters that are identifiable by comparing simulate RV deformation curves 
to measured RV deformation in AC-related mutation carriers. Parameter reduction was done 
based on the importance and identifiability of the parameters and validated using PSO.
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Methods

Patient Cohort
A total of 15 AC subjects (6 males and 9 females, age 21.0 ± 15.2 years) were included in 
this study. The subjects were selected from a larger cohort from the University Medical 
Center Utrecht, which has been previously described in more detail by Mast et al. [5]. The 
study was approved by the local institutional ethics review board. The selected cohort was 
ensured to contain subjects with PKP2 and DSG2 mutations and to cover a wide range of 
AC disease severity according to the 2010 TFC [4]. Six of the included subjects were in a 
concealed stage, four showed electrical criteria, and five also showed structural criteria.

The echocardiographic protocol has been described in more detail elsewhere [13]. In 
brief, all data were obtained on a Vivid 7 or Vivid E9 ultrasound machine (GE Healthcare, 
Horten, Norway) using a broadband M3S transducer. All echocardiographic studies were 
analysed for structural abnormalities fulfilling 2010 TFC [4]. To quantify myocardial 
deformation, the conventional apical 2-, 3- and 4-chamber views and the RV-focused 
4-chamber view were stored for offline left ventricular (LV) and RV deformation analysis 
by a single operator, blinded for clinical data. Two-dimensional speckle tracking was 
performed using EchoPAC version 202 (GE Healthcare, Horten, Norway), in order to obtain 
longitudinal strain curves of the LV free wall (LVfw), inter-ventricular septum (IVS), and the 
apical, mid, and basal segment of the RV free wall (RVfw). LV strain curves were acquired 
according to the standardized 18-segment model [14]. For IVS deformation, the 6 regional 
septal strain curves were averaged. For the LVfw deformation, the remaining 12 curves 
were averaged. The “Measurements” panel of Figure 3.1 shows an example of measured 
deformation, whereby decreasing longitudinal strain corresponds to shortening of the 
tissue and increasing strain to lengthening.

Cardiac Mechanics Model: the CircAdapt Model
The CircAdapt model is a lumped parameter model simulating haemodynamics and wall 
mechanics of the heart and circulation. The one-fibre model links global haemodynamics 
to local wall tension by assuming spherical walls [15]. The simplified ‘TriSeg’ ventricular 
geometry couples the LVfw and RVfw via the IVS allowing inter-ventricular interactions 
[16]. The ‘MultiPatch’ module [7] subdivides the RVfw into three segments with equal wall 
tension, allowing heterogeneity in tissue properties within the RVfw. No abnormal LVfw and 
IVS strains were found in the cohort. Therefore, tissue properties in the IVS and LVfw were 
assumed homogeneous and, thus, the tissue was modelled as a single segment representing 
the mechanics of the entire wall. Phenomenological models of active and passive myofibre 
stress generation were used to describe tissue mechanics of each wall segment [7]. 
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A total of 110 CircAdapt parameters were identified and included in the analysis. This set 
consists of a group of 60 ventricular parameters (i.e. 12 parameters for each of the 3 RVfw 
segments, the IVS, and the LVfw) and a group of 50 parameters belonging to the other non-
ventricular modules of CircAdapt, such as pulmonary and systemic circulations, valves, 
and atria. All parameters are presented, along with their value range, in Supplemental 
Table S3.1. The parameter input-space was based on reference values as used in previous 
work [7]. Because AC is mostly affecting myocardial tissue properties in the RV basal 
region in this cohort [5], a wide range was assigned to parameters describing tissue 
properties in both the RV midventricular and basal segment. In contrast, a smaller range 
was assigned to all other parameters to account for inter-subject variability.

Engineering strain of the sarcomere was extracted from the model and compared with 
measured strain. In measured strain, the reference length was taken as the length at the 
onset of the QRS complex, which was obtained using an electrocardiogram. To calculate 
engineering strain in the model, the reference length was defined as the length at the 
estimated onset of the QRS complex as done in previous studies [17].

Two-Step Parameter Subset Reduction Approach
Figure 3.1 shows an overview of the methodology used for parameter subset reduction. 
We applied a two-step approach composed of screening in the first step and parameter 
estimation and reduction in the second. This framework works with normalized input and 
uses the output of the model for subset reduction. Therefore, the framework is invariant 
of the CircAdapt model and could be applied to various other models.

In the first step, we performed MSM iteratively to screen the input-space and eliminate 
unidentifiable parameters given the chosen input-space size of the model as well as the 
chosen output measures. In the second step, we performed qMC simulations to identify 
preferred areas within the sample input-space (i.e. the best realisations) where the 
modelled strain was close to the measured strain. These areas indicated the identifiability 
of the parameters relative to the input-space, where unidentifiable parameters are 
expected to be distributed uniformly and identifiable parameters are expected to have a 
preferred area. Using these results, the parameter subset was reduced by omitting non-
identifiable parameters. We applied PSO for accurate parameter estimation to validate the 
reduced subset whether the reduction was not induced by the choice of the input-space 
size. This is done by comparing the average goodness of fit of the cohort, obtained with 
different parameter subsets. MSM and PSO were repeated until further reduction was 
not beneficial.
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Figure 3.2: (a) Strain indices for one strain curve as used in Morris Screening Method. The same indices are 
included for the three RVfw segments, as well the LVfw and IVS segment. The indices are time to 10%, 50%, 
and 90% shortening (1,2,3), prestretch (4), systolic strain (5), post-systolic strain(6), and peak strain (7). The 
verticle dashed line indicates closure of the pulmonary valve. (b) Area used to calculate fit error Χ! 
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. Each trajectory started at a randomly chosen point on the grid and 
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 is considered a proxy of the variance-
based total sensitivity index [9]. Consequentially, unimportant parameters could be 
considered insensitive to the model output and therefore omitted from the parameter 
subset. A parameter input 
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 was considered to be unimportant if it is unimportant for 
all output 
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3.3

We aimed for 1000 successfully completed trajectories to represent the entire input-
space. Convergence check was done using a leave-one-out method on all trajectories, 
i.e. when omitting one trajectory, the total set of sensitive parameters should not change. 
A new subset including all relevant parameters was defined. MSM was repeated until 
no parameters could be omitted to reduce the input-space as much as possible, which 
resulted in the final sensitivity analysis subset (see Figure 3.1).

Step 2a: Parameter Estimation using Quasi-Monte Carlo
The simulations obtained with qMC were used to identify preferred areas in the input-
space which best described the cohort data and thereby identified the parameters that 
have the most influence on the fits within the chosen input-space size. In this step, the 
model output was compared to the measured strain. Within the input-space, one million 
quasi-random simulations were performed for which the input samples were generated 
using the Sobol low-discrepancy sequence [18].

For each patient, the fit error as described below was calculated for each simulation. 
Because simulations may become numerically unstable in case of non-physiological 
parameter combinations, the error for these crashed simulations was set to infinite. 
For each parameter subset for each patient, a distribution plot containing the best 100 
simulations was made for visualisation of the input-space for these simulations. To 
quantify parameter preference, the diaphony 
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3.4

Thereby, the diaphony was used as a measure for homogeneity, with 
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= 1 when all parameters had 
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Step 2b: Parameter Estimation using Particle Swarm Optimization
Unless qMC runs with a very large number of samples, the qMC estimations do not find an 
accurate fit due to the large input-space and can only be used to find trends in parameter 
preference. For validation of the parameter subset reduction based on qMC, the global 
minimum of each subset should be found and compared. For this purpose, PSO was 
applied [11,12].

PSO is an evolutionary algorithm, where a population of candidate solutions move 
through the input-space driven by their own history and the history of the population. For 
PSO, the simulations with least fit error from qMC were used as starting points to improve 
the initial solution guess. Initially, the speed was set to zero. During each iteration, a 
dimensionless velocity  

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 of particle 

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 was updated depending on its previous velocity 
and the distance to the local and global minima, by using

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

3.5
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#		 .		

 
 

 the dimensionless location of particle

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

at time  

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

, 

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

  its local optimum, 

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 the 
swarms optimum, 

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 the inertia damping factor, 

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 and 

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 the inertia constants to change 
the velocity towards the local and global optimum, and 

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 a vector with random numbers 
following the standard uniform distribution 

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

. The same settings were chosen 
as used by Eberhart and Shi [19], i.e. a population size of 30, and using dimensionless 
constant values which met Clerc’s constriction method to enforce convergence [20], i.e.  

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 = 0.279 and  

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 =  

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 =  1.49445.
The fit error was set to be infinite when the particle was outside the defined parameter 

space (Supplemental Table S3.1) to ensure physiological values. We assumed a particle 

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

 converged when the dimensionless “energy” was below 0.1 for all particle. The energy 
of a particle was defined as

𝑑𝑑!  
𝑁𝑁" = 100  
  

	 𝑑𝑑! = |
1
𝑁𝑁"
(𝑒𝑒!#$%!
&"

|	 		

𝑑𝑑! = 0  
𝑑𝑑! = 1  
 

𝒗𝒗',)  
𝑘𝑘  
 

	
𝒗𝒗'*+,)	 = 𝑤𝑤 ⋅ 𝒗𝒗𝒕𝒕,𝒌𝒌 + 𝑐𝑐+ ⋅ 𝒁𝒁𝟏𝟏 ⋅ 1𝒙𝒙',) − 𝒙𝒙0#,%4	

+𝑐𝑐# ⋅ 𝒁𝒁# ⋅ (𝒙𝒙',) − 𝒙𝒙',1)		
		

𝒙𝒙',)  
𝑡𝑡, 𝒙𝒙0#,% 
 𝒙𝒙',1 
 𝑤𝑤 
𝑐𝑐+ 𝑐𝑐# 
 𝚭𝚭𝒊𝒊  
Ζ ∈ 𝒰𝒰(0,1). 
 𝑤𝑤 = 0.729  
𝑐𝑐+ = 𝑐𝑐# = 1.49445.  

 

	 𝐸𝐸) = 𝒗𝒗)# + 1𝒙𝒙',) − 𝒙𝒙0%4
# + 1𝒙𝒙',) − 𝒙𝒙14

#		 .		

 
 

3.6

Simulations were stopped when all particles converged, or when the limit of 1,000 
iterations was reached.

Step 2c: Subset Validation and Reduction
Using the fit error Χ! 

 

	 𝛸𝛸! =
$∮ 𝜖𝜖"#$%&(𝑡𝑡) − 𝜖𝜖"%'((𝑡𝑡)+

!

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
	 	

ϵ!"#$% 
 

ϵ!$&' 
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 resulting from PSO, previous subset reduction was validated. If the 
fit error Χ! 
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 in the reduced subset was similar to that in the larger subset, the reduced 
subset was accepted and further reduction was applied. If not, another reduction of the 
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previous subset was performed. The subset was considered optimal when all parameters 
were identifiable and thus no further reduction could be made.

Reduction of the subset was based on the diaphony, which was calculated for each 
parameter in each patient separately. For each parameter, the maximum diaphony of the 
subjects is used. The parameters with the lowest diaphony were omitted in the new subset.

Fit Error
In MSM, no patient data was included and strain indices were identified to find the 
identifiability of model parameters to these indices. In qMC and PSO, however, patient 
data was included. As discussed before, it is unknown which combination of strain indices 
fully captures the myocardial strain patterns in all segments. To avoid that the parameter 
reduction is influenced by the choice of the strain indices, the whole strain curve of 
all segments was used to compute the fitting error. To reduce the effect of drift in the 
measurement, only strain from the onset of the QRS-complex up to 50% of relaxation of 
the global RV strain was included as shown in Figure 3.2.

The fit error as used in qMC and PSO is composed of the squared error of each 
segment, 𝐴𝐴!"#
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3.7

From preliminary studies, it is known that if modelled and measured RV strain match, 
modelled LVfw and IVS strain curves do not necessarily have to match the measured data. 
Therefore, we not only used all three RVfw segments but also constrained the strain of 
IVS and LVfw to fit.

The fit error also contains the error in cycle time. The cycle time 
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 [s] was included in 
the input-space to perform one qMC for all AC datasets. Therefore, the squared difference 
between modelled and measured cycle time 
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3.8
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Numerical Implementation
To reduce computational cost, a C++ version based on the CircAdapt model as in Walmsley 
et al. [7] was used was developed. Equations were linearized using the Newton-Raphson 
method and were time-integrated using the Adams-Bashford method with a variable 
timestep 
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) = 2ms. All other coding, including MSM, qMC, and PSO, was 
done in MATLAB 2018a (MathWorks, Natick, MA, USA). Simulations were run on a PC with 
16 GB RAM and an Intel i7-8700 (3.2 GHz, 6 cores).

Results

Morris Screening Method
Out of 3000 trajectories, 1014 were successful in the sense that all simulations 
converged. Non-converged simulations had numerical instabilities due to parameter value 
combinations being non-physiological. In the successful trajectories, 48 parameters were 
relevant for all strain indices. Especially tissue properties of the ventricles were important 
to describe ventricular strain. Relative parameters were not dependent on one single 
trajectory, i.e. by leaving one trajectory out, the same parameters remained important.

The second screening step used 2500 trajectories, of which 1064 were successful. In 
this step, three parameters were unimportant and were omitted. The third step used 2000 
trajectories and 1016 were successful. In this step, only one parameter was unimportant. 
Because the computational cost outweighed the expected parameter reduction, no further 
screening was done. Remaining parameters in the final subset after screening were all 
related to LVfw, IVS, or RVfw tissue properties except for one parameter related to the 
left atrium.

Subset Reduction: Quasi-Monte Carlo & Particle Swarm Optimization
One million qMC simulations were run multicore with a total computational time of 4 days 
for each subset. Computational time of PSO that ran single-core was approximately 8 
hours for each subject.

For the initial qMC subset, we added 5 parameters in the RV wall to the 48 parameters 
remaining from MSM to ensure that all three segments had the same properties. This 
resulted in a total of 53 parameters (par53). For par53, the success rate of simulations 
was 97%. Other simulations had numerical instabilities due to similar reasons as in MSM. 
The minimum diaphony was 0.0674, the maximum diaphony was 0.9722. The SSE of the 
best estimation of qMC and PSO are shown in Figure 3.3. As expected, all fit errors Χ! 
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from PSO were lower than those from qMC.
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The first reduction omitted the remaining atrial parameter, the relaxation time constant 
of the LVfw and IVS, the shortening velocity in the LVfw, wall volume of the three RVfw 
segments, and a passive stiffness-related parameter in the three RVfw patches, resulting 
in 40 parameters (par40). The success rate was 98%, and the best 100 realisations had 
a minimum and maximum diaphony of 0.12 and 0.97.

The second reduction omitted LVfw and IVS volume, the contraction time constant in 
the three RVfw patches, shortening velocity in the three RVfw patches, and mean arterial 
pressure, resulting in 31 parameters (par31). The success rate was 98%. The minimum 
diaphony was 0.080 and the maximum diaphony was 0.97.

The third reduction omitted the contraction time constant in the LV, and the zero-
stress sarcomere length in IVS and the three RVfw patches, resulting in 26 parameters 
(par26). The success rate was 98%. The minimum diaphony was 0.10 and the maximum 
diaphony was 0.97.

In the fourth reduction, the linear stiffness component of the three RVfw patches was 
omitted, resulting in 23 parameters (par23). The success rate was 97%. The minimum 
and maximum diaphony were 0.13 and 0.97, respectively.

In a fifth step, all LVfw and IVS parameters were removed, resulting in 16 parameters 
(par16). For this set, the success rate was 96% with the minimum and maximum diaphony 
0.098 and 0.97, respectively.

The minimum error in qMC and the error of the global minimum of the PSO for the 
subsets par53, par26, par23, and par16 are shown in Figure 3.3. By decreasing the 
parameter subset size, the average error of qMC decreased for all subsets. By applying 
PSO, the mean Χ! 
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 decreased for all subsets compared to the Χ! 
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 after qMC. Decreasing 
the number of parameters increased the mean Χ! 
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 from 14 in par53 to 21 in par23 after 
applying PSO. Removing LVfw parameters from par23 to par16 resulted in the largest 
increase in Χ! 
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 from 21 in par23 to 29 in par16 after applying PSO.

Fits
An example strain fit for each of the subsets par53, par23, and par16 is shown in Figure 
3.4. In par53, par23, and par16, modelled strains are still similar to measured strains 
despite the increase in fit error. In the par23 and par16, RV strain fit quality is similar. 
By eyeballing, all parameter subsets are able to capture the strain morphology. The 
qMC distribution and PSO estimations of these fits are shown in Figure 3.5. Estimated 
parameter values in par16 are similar to the estimated parameters in the larger subsets.
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Figure 3.3: Minimum Summed Squared Error (Χ! 
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) after quasi-Monte Carlo (left) and after Particle Swarm Opti-
mization (right) of the subsets, where parX indicates the number of parameters included. Green lines indicate 
subjects in the concealed stage, the light and dark red lines indicate subjects in the electrical and structural 
stage. Black-white lines show the average summed squared error of all subjects including standard deviation.

Figure 3.4: Example fits from Particle Swarm Optimization of par53 (left), par23 (middle), and par16 (right) of 
the best fit (top; subject 12) and worst fit (bottom; subject 14) of subjects with abnormal strain. For subject 
12, the summed squared error was 8.2, 13, and 17 for par53, par23, and par16, respectively. For subject 14, 
the summed squared error was 14, 30, and 37, respectively.
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Figure 3.5: Normalized Estimations resulting from quasi-Monte Carlo (qMC) and Particle Swarm Optimization 
(PSO) of subject 12 (top) and subject 14 (bottom) of the subset with 53, 23, and 16 parameters (par53, par23, 
and par16, respectively). Included parameters are indicated by the yellow bars. The best 100 simulations from 
qMC are shown in grey, the global optimum from PSO is shown in the thick black-white line.

Discussion

We successfully designed a new framework to find non-identifiable parameters and to 
select and estimate a small subset of identifiable parameters from the CircAdapt model 
to simulate regional RV tissue deformation in AC mutation carriers. This subset could 
be used to simulate patient-specific RV strain in AC mutation carriers revealing specific 
regional heterogeneities of RV tissue properties. This selection is done in a two-step 
approach. First, using MSM, the number of parameters successfully reduced from 110 
to 48. Second, using qMC and PSO, the subset was further reduced to 23 parameters, 
including local contractility, passive stiffness, activation delay, and wall reference area of 
LVfw, IVS, and RVfw as well as cardiac output, heart rate, AV-delay, and relative systole 
duration (i.e. myofibre twitch duration). Further reduction to 16 parameters resulted in 
an unrealistic subset in which LVfw and IVS parameters were excluded.

Morris Screening Method allows Reduction of the Parameter Subset
It is demonstrated that Morris Screening is a successful method to identify unimportant 
parameters in cardiovascular models. Donders et al. found that 16 out of 73 parameters 
were important in a model for brachial flow and systolic radial pressure using MSM [21]. 
MSM has also been applied to an LV finite-element model [22] to investigate the effect of 
model parameters on local strain. A total of 3 parameters in 16 segments were included 
in the sensitivity analysis, but the model contained many more parameters. The authors 
only included measured time to peak strain, decreasing the complexity of the problem.

In this study, MSM removed over half of all parameters in three screening rounds. The 
relevance of a parameter depends on its own behaviour but also on the chosen parameter 
value range. Since simulations in the three screening rounds were not compared to the 
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measurements, we could not validate the chosen range. Therefore, the relevance of some 
parameters might be under- or overestimated. We presumed that parameters identified by 
MSM as non-identifiable were not important to model patient-specific strain in AC-related 
mutation carriers because AC is a myocardial pathology and all ventricular tissue-related 
parameters were still in the subset. On top of that, in a preliminary one-at-a-time study 
(results not shown), these parameters did not influence strain significantly compared to 
parameters related to the pathology. Based on these observations, we concluded that we 
did not miss out any important parameters in the subset resulting from MSM.

Quasi-Monte Carlo and Particle Swarm Optimization allows Further Reduction 
based on Clinical Strain

Further decrease in the number of parameters was done by applying qMC. Validation 
was done with PSO. Within the smaller subsets par23 and par16, all parameters were 
identifiable and therefore, the subset is usable for patient-specific parameter estimation. 
For these subsets, modelled strain sufficiently resembled the measured strains.

PSO has been previously used for parameter estimation in a study by Mineroff et al. [23], 
who interestingly, also used the CircAdapt model. They used the CircAdapt model to model 
volumes and pressures in the cardiac cycle and showed that PSO is a suitable algorithm for 
patient-specific estimation of parameters in the CircAdapt model. A total of 9 parameters 
were estimated combining cardiac tissue properties and circulation parameters

Although only a small part of the input-space has been explored by qMC, trends 
in parameter values can be seen already in the largest subset (par53). In the smaller 
parameter sets (par31, par26, par23, par16), there were more parameters with a larger 
diaphony, suggesting the model converged to a unique point.

Selected Parameters may describe AC Disease Progression
Parameters included in the final subset (par23) are likely to be related to AC disease 
progression. As earlier hypothesized, our framework selects contractility and stiffness 
as important parameters for describing strain in AC mutation carriers. The parameter 
SfAct scales the active force generation and is a measure for contractility. The parameter 
k1 scales the passive stress nonlinearly and is a measure for stiffness. Because disease 
progression in AC mutation carriers has been found to be associated with functional 
and structural myocardial changes (e.g. fibro-fatty replacement of myocytes [1], altered 
calcium handling [24], and fibrosis [25]), contractility and stiffness are likely to change 
during disease progression. Activation delay dT is in this model defined as the difference 
in time of activation between the segments and the IVS, whereas the activation of IVS 
is set to be the model’s atrioventricular delay. Abnormal electrical activation is found in 
AC subjects [26] and therefore, it is important to include it in the final subset. It is known 
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that altered activation delay is related to AC disease. The remaining four parameters 
in the final subset par23 were heart rate, cardiac output, relative systole duration, and 
atrioventricular delay. All these parameters have an influence on ventricular mechanics 
during both ejection and filling (preload) and are therefore important for patient-specific 
modelling of strain.

The parameter subset reduction is applied to the CircAdapt model, which has a low 
computational cost. The final parameter subset is inherent to the CircAdapt model, 
although, it could give insight in which tissue properties should indicate to model AC 
disease substrates in more complex models such as three-dimensional electro-
mechanical cardiac models ([27,28]). These models are computationally more expensive 
compared to the CircAdapt model, so applying our parameter reduction framework would 
increase the computational cost and patient-specific parameter would be challenging. 
These more complex models, however, could give more insight in the mechanisms playing 
a role on a more local scale.

Limitations
In this study, we compare measured longitudinal strain with simulated strain along the 
myofibre. Because RV subendocardial myofibres are predominantly directed longitudinally 
[29], it is assumed that any potential difference between the two is negligible.

The objective function to minimize the error between measured and modelled 
strain is an important choice for fit quality and computational time. In this study, we 
did not investigate how to optimize the objective function, and therefore we used the 
area between measured and modelled strain curves. By using this objective function, we 
did not correct for any measurement errors, such as time-misregistration between the 
four echo views, beat-to-beat variability or inter- and intra-observer variability. Future 
studies could investigate how to design an objective function using strain indices or other 
measurements, such as valve timings, blood flow velocity, or ejection fraction, to develop 
a more efficient fitting algorithm with an objective function invariant of measurement 
uncertainties. This should result in potentially better fits.

Future Work
This study focusses on the development of a platform enable to reduce the number of 
model parameters while conserving the model’s ability to simulate measured strain and is 
not designed to draw any conclusions on the clinical applications of fitting of deformation 
curves. Future work will focus on optimizing the parameter estimation algorithm regarding 
computational time and assess the accuracy and precision of the fits. This allows us to 
apply parameter estimation on a larger cohort which might expand our knowledge about 
the disease and its progression.

  3



46 | Chapter 3

Accuracy of the parameter estimation algorithm could be estimated by repeating 
the algorithm to determine the precision, and by using synthetic data for determining 
trueness. Both are assessable using the parameter estimation framework. Using ground 
truth measurements for determining trueness instead of synthetic data is more difficult 
or even impossible. Firstly because we used a lumped parameter model, whereby the 
parameters are the lumped effect of the tissue and secondly because these ground truth 
measurements are challenging to obtain. While estimated regional mechanical activation 
delays can potentially be compared to non-invasive or invasive electrical mapping data, it 
is challenging to compare regional passive and contractile tissue function parameters to 
ground truth measurements. Because these tissue properties are not directly measurable, 
our inverse modelling approach could give more insight into the underlying substrate.

Other measurements, such as voluminal information or valvular flows, may have added 
value to our framework and might improve accuracy and precision. However, this requires 
reassessment of parameter sensitivity and identifiability and more parameters might 
remain in the final parameter subset increasing the complexity of parameter estimation. 
Future work will show whether sufficient predicting information is captured from strain, 
or whether more complexity is necessary.

Although recent studies have demonstrated good reproducibility of echocardiographic 
RV strain measurements [5,30,31], future studies should quantify the uncertainty of 
the parameter estimation caused by inter- and intra-observer variability of RV strain 
measurements

In this cohort, neglecting LVfw and IVS parameters (from par23 to par16) only had a 
small influence on parameter estimation. However, by not estimating LVfw and IVS tissue 
properties, no abnormalities in these walls could be found. In later stadia of the disease 
and in other cohorts with other mutations, AC is also expressed with LV involvement [32]. 
Therefore, par23 rather than par16 was considered the final subset.

Conclusion

To identify the set of parameters needed for patient-specific modelling of RV myocardial 
disease in AC mutation carriers using the CircAdapt model, we set up a framework for 
parameter subset reduction. Using MSM and qMC, we successfully reduced the number of 
parameters from 110 to 23. The final subset includes regional tissue contractility, passive 
stiffness, activation delay, and wall size. By estimating these parameters using PSO, 
the CircAdapt model was still able to accurately simulate strain in AC-related mutation 
carriers. Future work should use strain indices instead of the whole curve to optimize the 
fitting algorithm. This will allow us to apply the algorithm on larger cohorts, as well as to 
relate estimated parameters to disease progression and outcome.
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Supplemental Material

Table S3.1: Model parameters after Morris Screening. Continues on next page.

Parameter Name
Lower
boundary

Upper
boundary pa

r5
3

pa
r4

0

pa
r3

1

pa
r2

6

pa
r2

3

pa
r1

6

SfAct RVapex 96kPa 144kPa ✓ ✓ ✓ ✓ ✓ ✓

SfPas RVapex 18kPa 27kPa ✓ ✓ ✓ ✓

k1 RVapex 8 12 ✓ ✓ ✓ ✓ ✓ ✓

dT RVapex -0.025ms 0.025ms ✓ ✓ ✓ ✓ ✓ ✓

Ls0Pas RVapex 1.7µm 1.9µm ✓ ✓ ✓

vMax RVapex 5.6µm/ms 8.4µm/ms ✓ ✓

TR RVapex 0.2ms 0.3ms ✓ ✓

TD RVapex 0.2ms 0.3ms ✓

VWall RVapex
AmRef RVapex

16.792mL
3440mm2

25.188mL
5160mm2

✓
✓

✓ ✓ ✓ ✓ ✓

dLsPas RVapex 0.48 0.72 ✓

SfAct RVmid 0kPa 120kPa ✓ ✓ ✓ ✓ ✓ ✓

SfPas RVmid 11kPa 228kPa ✓ ✓ ✓ ✓

k1 RVmid 5 50 ✓ ✓ ✓ ✓ ✓ ✓

dT RVmid -0.025ms 0.075ms ✓ ✓ ✓ ✓ ✓ ✓

Ls0Pas RVmid 1.7µm 1.9µm ✓ ✓ ✓

vMax RVmid 0.01µm/ms 7µm/ms ✓ ✓

TR RVmid 0.2ms 0.3ms ✓ ✓

TD RVmid 0.2ms 0.3ms ✓

VWall RVmid
AmRef RVmid

16.792mL
3440mm2

41.98mL
5160mm2

✓
✓

✓ ✓ ✓ ✓ ✓

dLsPas RVmid 0.01 1.2 ✓

SfAct RVbase 0kPa 120kPa ✓ ✓ ✓ ✓ ✓ ✓

SfPas RVbase 11kPa 228kPa ✓ ✓ ✓ ✓

k1 RVbase 5 50 ✓ ✓ ✓ ✓ ✓ ✓

dT RVbase -0.025ms 0.075ms ✓ ✓ ✓ ✓ ✓ ✓

Ls0Pas RVbase 1.7µm 1.9µm ✓ ✓ ✓

vMax RVbase 0.01µm/ms 7µm/ms ✓ ✓

TR RVbase 0.2ms 0.3ms ✓ ✓

TD RVbase 0.2ms 0.3ms ✓

VWall RVbase
AmRef RVbase

16.792mL
3440mm2

25.188mL
5160mm2

✓
✓

✓ ✓ ✓ ✓ ✓

dLsPas RVbase 0.01 1.2 ✓

Ls0Pas LA 1.7µm 1.9µm ✓

SfAct LV 96kPa 144kPa ✓ ✓ ✓ ✓ ✓

k1 LV 8 12 ✓ ✓ ✓ ✓ ✓

dT LV -0.025ms 0.025ms ✓ ✓ ✓ ✓ ✓

vMax LV 5.6µm/ms 8.4µm/ms ✓

TR LV 0.2ms 0.3ms ✓ ✓ ✓
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Table S3.1 (continued)

Parameter Name
Lower
boundary

Upper
boundary pa

r5
3

pa
r4

0

pa
r3

1

pa
r2

6

pa
r2

3

pa
r1

6

TD LV 0.2ms 0.3ms ✓

VWall LV
AmRef LV

76.808mL
7840mm2

115.212mL
11760mm2

✓
✓

✓
✓

✓ ✓ ✓

SfAct SV 96kPa 144kPa ✓ ✓ ✓ ✓ ✓

k1 SV 8 12 ✓ ✓ ✓ ✓ ✓

Ls0Pas SV 1.7µm 1.9µm ✓ ✓ ✓

TD SV 0.2ms 0.3ms ✓

VWall SV
AmRef SV

25.888mL
3920mm2

38.832mL
5880mm2

✓
✓

✓
✓

✓ ✓ ✓

p0 9.76kPa 14.64kPa ✓ ✓

q0 4.08L/min 6.12L/min ✓ ✓ ✓ ✓ ✓ ✓

tCycle 0.6s 1.25s ✓ ✓ ✓ ✓ ✓ ✓

dTauAv -0.025ms 0.025ms ✓ ✓ ✓ ✓ ✓ ✓

TimeFac 0.5 1.5 ✓ ✓ ✓ ✓ ✓ ✓
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Abstract

Arrhythmogenic Cardiomyopathy (AC) is an inherited cardiac disease, characterized by 
life-threatening ventricular arrhythmias and progressive cardiac dysfunction. The aim of 
this study is to use computer simulations to non-invasively estimate the individual patient’s 
myocardial tissue substrates underlying regional right ventricular (RV) deformation 
abnormalities in a cohort of AC mutation carriers.

In 68 AC mutation carriers and 20 control subjects, regional longitudinal deformation 
patterns of the RV free wall (RVfw), interventricular septum (IVS) and left ventricular 
free wall (LVfw) were obtained using speckle-tracking echocardiography. We developed 
and used a patient-specific parameter estimation protocol based on the multi-scale 
CircAdapt cardiovascular system model to create virtual AC subjects. Using the individual’s 
deformation data as model input, this protocol automatically estimated regional RVfw and 
global IVS and LVfw tissue properties.

The computational model was able to reproduce clinically measured regional 
deformation patterns for all subjects, with highly reproducible parameter estimations. 
Simulations revealed that regional RVfw heterogeneity of both contractile function and 
compliance were increased in subjects with clinically advanced disease compared to 
mutation carriers without clinically established disease (17±13% vs.8±4%, p=0.01 and 
18±11% vs.10±7%, p<0.01, respectively). No significant difference in activation delay 
was found.

Regional RV deformation abnormalities in AC mutation carriers were related to reduced 
regional contractile function and tissue compliance. In clinically advanced disease stages, 
a characteristic apex-to-base heterogeneity of tissue abnormalities was present in the 
majority of the subjects, with most pronounced disease in the basal region of the RVfw.
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Introduction

Arrhythmogenic cardiomyopathy is an inherited heart muscle disorder characterized 
by fibrofatty replacement of primarily the right ventricular (RV) myocardium, which 
predisposes to ventricular arrhythmias and sudden cardiac death in young individuals 
[1,2]. Variable disease expression is found in familial AC [3], ranging from sudden cardiac 
death (SCD) in young individuals to a lifelong absence of any phenotype. To prevent 
apparently healthy AC mutation carriers from SCD, early detection of potentially pro-
arrhythmic tissue substrates is important.

Using speckle-tracking echocardiography, our groups [4] found distinct regional RV 
deformation abnormalities in AC mutation carriers. Predominantly the basal (subtricuspid) 
part of the RV free wall was affected, even in the absence of electrocardiographic or 
structural 2010 Task Force Criteria (TFC, [5]). Using computer simulations, it was 
hypothesized that these deformation abnormalities resulted from a decreased contractility 
and an increased stiffness within this segment. In a follow-up study, these RV deformation 
abnormalities were found to be associated with AC disease progression [6]. Another 
approach, as reported by Sarvari et al. [7] showed that RV mechanical dispersion, 
defined as the standard deviation in time-to-peak strain, is a marker for arrhythmic 
events in AC patients. The latter study demonstrate the prognostic value of RV longitudinal 
strain, while the disease substrates underlying the deformation abnormalities remain 
unknown. Together with the first study by Mast et al. [4], these studies suggest that 
identification of the disease substrate causing RV deformation abnormalities could be 
used to better understand disease progression and support risk stratification. Patient-
specific characterization of the electromechanical disease substrates in early-stage AC 
may lead to better arrhythmic risk stratification and ultimately to the identification of 
possible therapeutic targets, thereby enabling personalized medicine. Since invasive 
tissue characterization is accompanied by important risks, and is rarely performed, non-
invasive ways of tissue characterization should be investigated.

The aim of this study is to non-invasively estimate the pathophysiological substrates 
underlying regional deformation abnormalities in the individual AC mutation carrier, using 
imaging-based patient-specific computer simulations. We use a parameter estimation 
protocol based on a previously established framework [8] which simulates myocardial 
deformation to identify regional tissue properties.
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Methods

Patient Cohort
This study was performed on a previously reported consecutive cohort of pathogenic 
desmosomal mutation carriers, who were evaluated at the UMC Utrecht in the Netherlands 
between 2006 and 2015 [4]. During this period, 87 subjects carrying a pathogenic 
plakophilin-2 (PKP2), desmoglein-2 (DSG2), or desmoplakin (DSP) mutation were 
evaluated. Additionally, 20 healthy volunteers were included as control subjects. The 
study was approved by the local institutional ethics review board.

The echocardiographic protocol has been detailed elsewhere [9]. Briefly, all 
echocardiographic data were obtained on a Vivid 7 or Vivid E9 ultrasound machine (GE 
Vingmed Ultrasound, Horten, Norway) using a broadband M3S transducer and were 
analysed for fulfilling 2010 TFC for structural abnormalities [5]. Only exams during sinus 
rhythm were eligible for inclusion. Conventional 2-, 3-, and 4-chamber views, as well as 
an RV-focused apical 4-chamber view, were used to visualize the RV lateral free wall 
(RVfw), interventricular septum (IVS), and LV free wall (LVfw). Cineloops were stored for 
offline two-dimensional speckle tracking using EchoPAC v. 202 (GE Vingmed Ultrasound, 
Horten, Norway). A single observer, blinded to clinical information, obtained segmental 
longitudinal strain curves of the RVfw and the LV.

In this study, we focussed on regional heterogeneity of RVfw tissue abnormalities 
because the RVfw is the most affected area in pathogenic desmosomal mutation carriers 
[10]. Therefore, three segmental deformation patterns of the RVfw (i.e. apical, mid-
ventricular and basal) were used to personalize the computational model (Figure 4.1). 
Additionally, two global deformation patterns of the LVfw and IVS were used to ensure 
realistic mechanical boundary conditions for the RVfw in terms of ventricular interaction. 
Global LVfw and IVS deformation patterns were obtained by averaging the 12 LVfw and 
6 IVS segmental deformation curves, respectively, using the standardized 18-segment 
model [11].

Cardiac magnetic resonance imaging (CMR) was performed on a 1.5-T scanner 
(Achieva, Philips Healthcare, Best, the Netherlands), according to standard AC protocols 
[12], and included measurements of the RV end diastolic volume, RV ejection fraction, 
and LV ejection fraction. LV stroke volume was used to personalize cardiac output (CO) 
in the computer simulations.
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Figure 4.1: Methodology. Right ventricular (RV), interventricular septal (IVS), and left ventricular (LV) strain 
were obtained using speckle-tracking echocardiography, and cardiac output was obtained using cardiovascular 
magnetic resonance imaging (CMR). Using a fully automatic estimation protocol, virtual subjects reproducing 
the clinical measures were generated and local tissue properties were extracted.

For further analysis, RV disease substrates were categorized by three different non-
invasive imaging approaches, which have been published previously:
1. following the revised 2010 TFC [5], AC can be divided into three consecutive clinical 

stages: a) subclinical (concealed) stage with absence of any 2010 TFC, except for 
harbouring a pathogenic mutation; b) electrical stage, with only electrocardiographic 
(ECG) or Holter abnormalities; and c) structural stage, with structural abnormalities on 
non-invasive imaging, regardless of the history of ventricular arrhythmias or presence 
of ECG or Holter abnormalities [5,13].

2. based on the pattern of basal RVfw deformation following the predefined criteria 
published by Mast et al. [4]. A Type-I pattern is defined as normal deformation; a Type-II 
pattern is characterized by delayed onset of shortening, reduced systolic peak strain and 
minor post-systolic shortening; a Type-III pattern is characterized by little or no systolic 
peak strain, predominantly systolic stretching and major post-systolic shortening;

3. based on RV mechanical dispersion (RVMD), an index of segmental heterogeneity 
in contraction in the RVfw and IVS. RVMD was calculated on 6 segments of the 
RV, including the IVS, and defined as the standard deviation of the segmental time 
intervals from onset Q/R on the surface ECG to peak negative strain [7]. A previously 
established cut-off value of 30ms [14] was used in this study to define a group with 
low and high RVMD.
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Computer Simulations
Regional RV, IVS, and LV myocardial deformation were simulated using the CircAdapt 
model [15], which is a closed-loop lumped parameter computer model of the human 
heart and circulation. It enables simulation of cardiac haemodynamics and regional wall 
mechanics, using a phenomenological model describing active and passive myofibre 
mechanics [16]. Ventricular interactions are modelled using the TriSeg model using the 
concept of conservation of energy [17]. LVfw and IVS were modelled as a single segment 
representing the mechanics of the entire wall. Three RVfw segments representing the 
apical, mid-ventricular, and basal regions were modelled using the previously validated 
MultiPatch model [16].

Patient-Specific Simulation Protocol
Computer simulations were personalized by automatically tuning model parameters to 
optimize the modelled myofibre strain to measured longitudinal strain (Figure 4.1). A 
parameter subset with 21 parameters essential for modelling regional RVfw, IVS, and 
LVfw deformation in AC mutation carriers was previously identified [8] and shown in 
Supplementary Table S4.1. CO and heart rate (HR) were direct input parameters of the 
model and thereby set from the measurements. The former was obtained from CMR 
data, while the latter was obtained from the RV focused 4-chamber view. The other 19 
parameters describe the size of the RVfw, IVS, and LVfw (3 model parameters), myocardial 
twitch duration and thus relative systolic duration (1 parameter), and three regional tissue 
properties per myocardial segment being contractility, compliance, and activation delay 
(i.e. 15 model parameters in total).

Objective function
The objective function describes the agreement between modelled and measured strain. 
Measured strain is by definition relative to the stretch on 𝑡𝑡 = 𝑡𝑡! 
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4.1

Using the objective function, goodness of the simulation is quantified relative to the 
measurements. It is unknown which strain indices identify the strain. Therefore, the used 
objective function is based on the full strain curve. To reduce the effect of drift, and reduce 
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the effect of the atria on the estimate, only strain is used from start of QRS complex up to 
50% of relaxation. The modelled onset of shortening is matched with the measured onset 
of shortening. The quadratic difference of each segment is defined as
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4.2

The used segments are the apical, mid, and basal segment of the RVfw, and the LVfw 
and IVS strain.

To prevent the parameter estimation protocol from exploring non-physiological area 
in the input space, a maximum mean left atrial pressure is added as a penalty function. 
There are signs of increased atrial volumes in this cohort [18], but no invasive pressure 
measurements are available. Therefore, we cannot rule out increased diastolic pressures. 
No pulmonary hypertension was observed in this cohort, so it can be assumed that the 
mean left atrial pressure (mLAP) not exceeds 15 mmHg [19]. To constrain our simulation 
results to physiological values without having too much effect on the estimation protocol, 
we use a threshold mLAP of 
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4.3

The final objective function results in
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Parameter Estimation protocol
Parameters were individually estimated using a parameter estimation framework 
previously described in more detail [8]. This framework estimates model parameters using 
the clinical data as described above and results in a virtual subject that reproduces the 
clinical data. In brief, the parameter estimation framework consisted of two steps. First, 
with CO and HR set to the measured values, 5000 quasi-random Monte Carlo simulations 
were performed from which the best 60 simulations were used as initial candidate 
solutions. Second, these candidate simulations were optimized using the stochastic multi-
swarm particle swarm optimization (MSPSO, [20,21]). MSPSO is an evolutionary algorithm, 
where a population of candidate solutions moves through the input space driven by their 
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history and the history of a changing subpopulation. Eventually, this parameter estimation 
protocol results in a virtual patient, from which regional tissue properties can be extracted.

Local tissue properties
RVfw contractility, compliance, and activation delay were extracted from the resulting 
virtual patient simulations and the heterogeneity of these tissue properties was 
investigated. Due to the nonlinearity, non-monotonicity, and non-additivity of the lumped 
system, the individual estimated parameters were not interpreted directly, but local tissue 
properties were derived from the simulated time signals of myofibre stress and strain. As 
the RVfw is typically most affected in desmosomal mutation carriers [1], we focus on the 
heterogeneity in regional RVfw tissue properties. To limit the degrees of freedom in the 
model, parameters in the LV and IVS were not estimated on a segmented level, but in a 
single segment representing the entire wall to include ventricular interaction.

Regional myocardial contractility, compliance, and activation delay were used to 
quantify regional mechanical tissue properties. In brief, segmental contractility was 
defined as the maximum rate of active stress rise 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝑚𝑚𝑟𝑟𝑚𝑚
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𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶	𝐷𝐷𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶"&' −
𝜎𝜎!"#	|#"$%

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟
							− 𝐶𝐶,-	!"#/0!#/&'	

	 𝑌𝑌&,(,2,/ = 𝛼𝛼/ + 𝑑𝑑&,/ + 𝑑𝑑(,/ + 𝑑𝑑2,/ 		 	

 

	 𝐼𝐼𝐶𝐶𝐶𝐶#3$2 =
𝜎𝜎45

𝜎𝜎45 + 𝜎𝜎6#&'(
5 		

 
 

𝑟𝑟 
𝛼𝛼/ 
𝑑𝑑&,/ 
𝑑𝑑(,/ 
𝑑𝑑2,/ 

) relationship, obtained using 
a preload manipulation. This is the regional equivalent of the slope of the global end 
diastolic pressure-volume relation. Furthermore, regional activation delay was defined as 
the time delay of onset active stress development relative to the first activated segment. 
Their equations are given by

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝑚𝑚𝑟𝑟𝑚𝑚
𝑑𝑑𝜎𝜎!"#
𝑑𝑑𝐶𝐶

		

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝜎𝜎$!%
	

𝐶𝐶"&' = 𝐶𝐶|
(!)*+!"#*#

	

𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶	𝐷𝐷𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶"&' −
𝜎𝜎!"#	|#"$%

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟
							− 𝐶𝐶,-	!"#/0!#/&'	

	 𝑌𝑌&,(,2,/ = 𝛼𝛼/ + 𝑑𝑑&,/ + 𝑑𝑑(,/ + 𝑑𝑑2,/ 		 	

 

	 𝐼𝐼𝐶𝐶𝐶𝐶#3$2 =
𝜎𝜎45

𝜎𝜎45 + 𝜎𝜎6#&'(
5 		

 
 

𝑟𝑟 
𝛼𝛼/ 
𝑑𝑑&,/ 
𝑑𝑑(,/ 
𝑑𝑑2,/ 

4.5
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝑚𝑚𝑟𝑟𝑚𝑚

𝑑𝑑𝜎𝜎!"#
𝑑𝑑𝐶𝐶

		

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝜎𝜎$!%
	

𝐶𝐶"&' = 𝐶𝐶|
(!)*+!"#*#

	

𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶	𝐷𝐷𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶"&' −
𝜎𝜎!"#	|#"$%

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟
							− 𝐶𝐶,-	!"#/0!#/&'	

	 𝑌𝑌&,(,2,/ = 𝛼𝛼/ + 𝑑𝑑&,/ + 𝑑𝑑(,/ + 𝑑𝑑2,/ 		 	

 

	 𝐼𝐼𝐶𝐶𝐶𝐶#3$2 =
𝜎𝜎45

𝜎𝜎45 + 𝜎𝜎6#&'(
5 		

 
 

𝑟𝑟 
𝛼𝛼/ 
𝑑𝑑&,/ 
𝑑𝑑(,/ 
𝑑𝑑2,/ 

4.6

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝑚𝑚𝑟𝑟𝑚𝑚
𝑑𝑑𝜎𝜎!"#
𝑑𝑑𝐶𝐶

		

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝜎𝜎$!%
	

𝐶𝐶"&' = 𝐶𝐶|
(!)*+!"#*#

	

𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶	𝐷𝐷𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶"&' −
𝜎𝜎!"#	|#"$%

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟
							− 𝐶𝐶,-	!"#/0!#/&'	

	 𝑌𝑌&,(,2,/ = 𝛼𝛼/ + 𝑑𝑑&,/ + 𝑑𝑑(,/ + 𝑑𝑑2,/ 		 	

 

	 𝐼𝐼𝐶𝐶𝐶𝐶#3$2 =
𝜎𝜎45

𝜎𝜎45 + 𝜎𝜎6#&'(
5 		

 
 

𝑟𝑟 
𝛼𝛼/ 
𝑑𝑑&,/ 
𝑑𝑑(,/ 
𝑑𝑑2,/ 

4.7

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝑚𝑚𝑟𝑟𝑚𝑚
𝑑𝑑𝜎𝜎!"#
𝑑𝑑𝐶𝐶

		

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝜎𝜎$!%
	

𝐶𝐶"&' = 𝐶𝐶|
(!)*+!"#*#

	

𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶	𝐷𝐷𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶"&' −
𝜎𝜎!"#	|#"$%

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟
							− 𝐶𝐶,-	!"#/0!#/&'	

	 𝑌𝑌&,(,2,/ = 𝛼𝛼/ + 𝑑𝑑&,/ + 𝑑𝑑(,/ + 𝑑𝑑2,/ 		 	

 

	 𝐼𝐼𝐶𝐶𝐶𝐶#3$2 =
𝜎𝜎45

𝜎𝜎45 + 𝜎𝜎6#&'(
5 		

 
 

𝑟𝑟 
𝛼𝛼/ 
𝑑𝑑&,/ 
𝑑𝑑(,/ 
𝑑𝑑2,/ 

4.8

Reproducibility
To determine reproducibility, a separate validation set was used. Two separate observers 
blinded to clinical data performed deformation analysis twice in nine subjects with a 
pathogenic desmosomal mutation, resulting in four different deformation datasets 
per patient. Each dataset was used three times as input for the estimation framework 
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described above. Inter- and intra-observer agreement, as well as the uniqueness of 
parameter estimation were determined using the intraclass correlation coefficient (ICC) 
[22]. To calculate this coefficient, the average estimation of patient 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝑚𝑚𝑟𝑟𝑚𝑚
𝑑𝑑𝜎𝜎!"#
𝑑𝑑𝐶𝐶

		

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝜎𝜎$!%
	

𝐶𝐶"&' = 𝐶𝐶|
(!)*+!"#*#

	

𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶	𝐷𝐷𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶"&' −
𝜎𝜎!"#	|#"$%

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟
							− 𝐶𝐶,-	!"#/0!#/&'	

	 𝑌𝑌&,(,2,/ = 𝛼𝛼/ + 𝑑𝑑&,/ + 𝑑𝑑(,/ + 𝑑𝑑2,/ 		 	

 

	 𝐼𝐼𝐶𝐶𝐶𝐶#3$2 =
𝜎𝜎45

𝜎𝜎45 + 𝜎𝜎6#&'(
5 		

 
 

𝑟𝑟 
𝛼𝛼/ 
𝑑𝑑&,/ 
𝑑𝑑(,/ 
𝑑𝑑2,/ 

 was considered the 
true estimation (

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝑚𝑚𝑟𝑟𝑚𝑚
𝑑𝑑𝜎𝜎!"#
𝑑𝑑𝐶𝐶

		

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝜎𝜎$!%
	

𝐶𝐶"&' = 𝐶𝐶|
(!)*+!"#*#

	

𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶	𝐷𝐷𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶"&' −
𝜎𝜎!"#	|#"$%

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟
							− 𝐶𝐶,-	!"#/0!#/&'	

	 𝑌𝑌&,(,2,/ = 𝛼𝛼/ + 𝑑𝑑&,/ + 𝑑𝑑(,/ + 𝑑𝑑2,/ 		 	

 

	 𝐼𝐼𝐶𝐶𝐶𝐶#3$2 =
𝜎𝜎45

𝜎𝜎45 + 𝜎𝜎6#&'(
5 		

 
 

𝑟𝑟 
𝛼𝛼/ 
𝑑𝑑&,/ 
𝑑𝑑(,/ 
𝑑𝑑2,/ 

) and errors originate from inter-observer variability 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝑚𝑚𝑟𝑟𝑚𝑚
𝑑𝑑𝜎𝜎!"#
𝑑𝑑𝐶𝐶

		

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝜎𝜎$!%
	

𝐶𝐶"&' = 𝐶𝐶|
(!)*+!"#*#

	

𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶	𝐷𝐷𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶"&' −
𝜎𝜎!"#	|#"$%

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟
							− 𝐶𝐶,-	!"#/0!#/&'	

	 𝑌𝑌&,(,2,/ = 𝛼𝛼/ + 𝑑𝑑&,/ + 𝑑𝑑(,/ + 𝑑𝑑2,/ 		 	

 

	 𝐼𝐼𝐶𝐶𝐶𝐶#3$2 =
𝜎𝜎45

𝜎𝜎45 + 𝜎𝜎6#&'(
5 		

 
 

𝑟𝑟 
𝛼𝛼/ 
𝑑𝑑&,/ 
𝑑𝑑(,/ 
𝑑𝑑2,/ 

, intra-observer 
variability 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝑚𝑚𝑟𝑟𝑚𝑚
𝑑𝑑𝜎𝜎!"#
𝑑𝑑𝐶𝐶

		

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝜎𝜎$!%
	

𝐶𝐶"&' = 𝐶𝐶|
(!)*+!"#*#

	

𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶	𝐷𝐷𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶"&' −
𝜎𝜎!"#	|#"$%

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟
							− 𝐶𝐶,-	!"#/0!#/&'	

	 𝑌𝑌&,(,2,/ = 𝛼𝛼/ + 𝑑𝑑&,/ + 𝑑𝑑(,/ + 𝑑𝑑2,/ 		 	

 

	 𝐼𝐼𝐶𝐶𝐶𝐶#3$2 =
𝜎𝜎45

𝜎𝜎45 + 𝜎𝜎6#&'(
5 		

 
 

𝑟𝑟 
𝛼𝛼/ 
𝑑𝑑&,/ 
𝑑𝑑(,/ 
𝑑𝑑2,/ 

, and inter-simulation variability 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝑚𝑚𝑟𝑟𝑚𝑚
𝑑𝑑𝜎𝜎!"#
𝑑𝑑𝐶𝐶

		

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝜎𝜎$!%
	

𝐶𝐶"&' = 𝐶𝐶|
(!)*+!"#*#

	

𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶	𝐷𝐷𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶"&' −
𝜎𝜎!"#	|#"$%

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟
							− 𝐶𝐶,-	!"#/0!#/&'	

	 𝑌𝑌&,(,2,/ = 𝛼𝛼/ + 𝑑𝑑&,/ + 𝑑𝑑(,/ + 𝑑𝑑2,/ 		 	

 

	 𝐼𝐼𝐶𝐶𝐶𝐶#3$2 =
𝜎𝜎45

𝜎𝜎45 + 𝜎𝜎6#&'(
5 		

 
 

𝑟𝑟 
𝛼𝛼/ 
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The interclass correlation coefficient for each of the error origins is
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Statistical analysis and Computational Setup
Continuous data were presented as mean ± SD. Normal distribution was tested using the 
Shapiro-Wilk test. Comparison between subgroups of continuous variables was done 
using a one-way analysis of variance, t-test, Kruskal-Wallis, or Mann-Whitney U test 
as appropriate. Bonferroni correction was used to adjust for multiple comparisons. All 
statistical analyses were performed in Python 3.6.4 using the packages SciPy (modified 
BSD License) and statsmodels (modified BSD License).

The CircAdapt model was coded in C++ and compiled using MSVC 14.1. All other code 
was written in Python and interpreted with Python 3.6.4. The parameter estimation protocol 
was written for single thread computation. The estimation of subjects ran parallel on 
Windows 10 system (AMD Ryzen Threadripper 3970X 32-Cores 4.5GHz and 128GB RAM).

Results

From the 87 AC mutation carriers who were evaluated, 3 subjects were excluded due to 
inadequate echocardiographic imaging quality and 16 were excluded due to missing CMR 
data. All remaining exams were obtained during sinus rhythm. The 68 AC mutation carriers 
included in this study (18 probands and 50 family members) had a mean age of 39 ± 17 
years and 41 (60%) were female. Among the different pathogenic mutations, PKP2 was 
most common in this cohort (90%). A total of 20 control subjects (9 [45%] females, mean 
age 28 ± 6 years) were also included in the study. Using the 2010 TFC, 18 (26%) mutation 
carriers were classified in the subclinical stage, 15 (22%) in the electrical stage, and 35 
(51%) in the structural stage. The median time between echocardiography and CMR was 
26 days (interquartile range [-7, 398 days]). (Table 4.1)

Typical examples of measured and simulated ventricular deformation curves in a 
control subject and subjects in the subclinical, electrical, and structural AC disease stages 
are shown in Figure 4.2. Most healthy controls (n=20, 100%) and subclinical stage subjects 
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(n=12, 67%) had a Type-I deformation pattern and thus showed relatively homogeneous 
deformation patterns in the three RVfw segments. However, 6 (33%) subclinical subjects 
had an abnormal Type-II deformation pattern in the RVfw basal segment. Most subjects 
in the electrical stage showed heterogeneous deformation patterns with predominantly 
basal abnormalities (Type-II: n=8 [53%] and Type-III: n=3 [20%]), which were even more 
severe in the structural stage subjects (Type-II: n=10 [29%] and Type-III: n=23 [66%]).

Contractility
Overall, heterogeneity in regional RVfw contractility was higher in the electrical 
and structural stage groups compared to the subclinical stage and control groups 
(control: 9.98±4.27%; subclinical:7.57±4.47%; electrical: 17.23±15.92%; structural: 
16.94±13.28%, p=0.011). In general, the basal contractility was lower compared to the 
apical contractility (Figure 4.3). A few individuals (n=9, 13%), however, were found to 
have lower apical than basal contractility. No significant difference was found in average 
RVfw contractility (control: 363±175 kPa/s ; subclinical: 373±131kPa/s; electrical: 
421±167kPa/s; structural: 442±174kPa/s) (p=0.470).

Figure 4.2: Typical regional right ventricular free wall (RVfw) strain patterns. Control subjects and most subjects 
in subclinical stage showed homogeneous strain patterns. Most subjects in the electrical and structural stage 
showed abnormal heterogeneous strain patterns.
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Table 4.1: Clinical Characteristics.

Controls 
(n = 20)

Subclinical Stage 
(n = 18)

Electrical Stage 
(n = 15)

Structural Stage 
(n = 35)

Age, yrs 28±6 27±14 40±17$ 44±16^^ p<0.001  

Female 9 (45%) 11 (61%) 12 (80%) 18 (51%)

BSA, m2 1.87±0.17 1.80±0.21 1.84±0.17 1.91±0.22 p=0.280

Probands 0 (0%) 0 (0%) 0 (0%) 18 (53%)

AC diagnosis 0 (0%) 0 (0%) 5 (33%) 35 (100%)

2010 TFC 

Structural 0 (0%) 0 (0%) 35  (100%)

Depolarization 1 (6%) 12 (80%) 17 (49%)

Repolarization 1 (6%) 3 (20%) 20 (57%)

Arrhythmia 0 (0%) 5 (33%) 32 (91%)

Mutations

PKP2 mutation 15 (83%) 14 (93%) 32 (91%)

DSG2 mutation 3 (17%) 1 (7%) 2 (6%)

DSP mutation 0 (0% 0 (0%) 1 (3%)

CMR

CO,  L/min/m2 3.7±0.6 3.3±0.5 3.5±0.6 3.2±0.8 p=0.041

RV-EDVi, mL/m2 108±17 87±17 94±12 132±41* p<0.01   

LV-EDVi, mL/m2 98±14 85±13 93±14 91.8±15 p=0.063

RVEF, % 54±6 56±8 51±6 36±11* p<0.001

LVEF, % 61±7 58±4 57±7 56±9 p=0.182

LGE presence 0 (0%) 0 (0%) 0 (0%) 20 (57%)

Echocardiography

HR 62±10 67±16 63±11 58±9 p=0.088

LV-GLS, % -21.1±1.7 -20.0±1.7 -19.0±3.0 -17.8±3.3* p<0.001

LVEF, % 60.6±6.9 58.4±4.3 56.6±6.8 55.8±9.2 p=0.159

RV-GLS, % -27.6±4.0 -25.4±3.6 -21.7±4.7$ -15.0±5.6* p<0.001

RV basal pattern

Type-I 20 (100%) 12 (67%) 4 (27%) 2 (6%)

Type-II 0 (0%) 6 (33%) 8 (53%) 10 (29%)

Type-III 0 (0%) 0 (0%) 3 (20%) 23 (66%)

RVMD, ms - 16.4±7.5 ^ 32.2±16.1 50±27 p<0.01

AC: Arrhythmogenic Cardiomyopathy; TFC: Task Force Criteria (both minor and major criteria included); 
PKP2: plakphilin-2; DSG2: desmoglobin-2; DSP: desmoplakin; CMR: cardiovascular magnetic resonance 
imaging; CO: cardiac output; RV: right ventricle; LV: left ventricle; EDVi: end diastolic volume indexed for 
BSA; RVEF: right ventricular ejection fraction; LVEF: left ventricular ejection fraction; LGE: late gadolinium  
enhancement; HR: Heart rate; GLS: global longitudinal strain; RVMD: right ventricular mechanical 
dispersion; *: p<0.05 structural stage versus all other groups (Bonferroni correction) ; ^: p<0.05 structural 
stage versus control group and subclinical stage; $: p<0.05 electrical stage versus control
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Compliance
Heterogeneity in regional RVfw compliance was increased in the electrical and structural 
stage groups compared to the subclinical stage and control groups (control: 9.16±4.84%; 
subclinical: 10.46±7.11%; electrical: 12.49±9.63%; structural: 18.45±11.00%, p=0.002). 
On average, compliance was lower in the basal segment compared to the apical segment 
(Figure 4.3). Average RVfw compliance was not significantly different between the groups 
(control:500±325 %/kPa; subclinical: 551±561 %/kPa ;electrical: 1002±723 %/kPa; 
structural: 742±595 %/kPa, p=0.094).

Activation delay
No significant difference was found in heterogeneity of regional RVfw activation delay 
(control: 10±11ms; subclinical: 8.9±10.1ms; electrical: 21±30ms; structural:18±22ms, 
p=0.267). However, the electrical and structural stage groups contained more individuals 
with a relatively late activated basal segment than the subclinical stage and control groups.

Basal deformation patterns
The simulations revealed that heterogeneity in RVfw contractility was increased in 
compared to the Type-I and control groups (control: 9.98±4.27%; Type-I: 6.52±5.20%; 
Type-II: 12.19±11.25%; Type-III: 21.81±14.09%, p<0.001). Also, the heterogeneity in 
compliance was increased in the groups with Type-II and Type-III RV basal deformation 
patterns compared to the Type-I and control groups (control: 9.16±4.84%; Type-I: 
9.43± 5.78%; Type-II: 13.00±8.46%; Type-III: 20.63±11.74%, p<0.001). No significant 
difference was found in activation delay (control: 10.0±11.1ms; Type-I: 8.4±6.3ms; Type-
II:16.6±25.5ms; Type-III: 21.3±24.7ms, p=0.472).

Right ventricular mechanical dispersion
Increased RVMD in pathogenic desmosomal mutation carriers was only related to 
increased heterogeneity in contractility (20.0±14.7%) compared to the group with 
normal RVMD (7.70±4.99%) (p<0.001). Regional heterogeneities of both compliance and 
activation delay were not significantly different between subjects with low and high RVMD 
(compliance: 16.0±10.5% vs 13.8±10.2%, p=0.054; activation delay: 20.6±26.0ms vs 
11.1±15.6ms, p=0.195).

Parameter estimation
The estimated RV tissue properties were highly reproducible, with a minimum inter- and 
intra-observer ICC of 0.91 and 0.86, respectively. Reproducibility of the simulations was 
sufficient, with a minimum ICC of 0.76. In all simulations of the same subject, the trend 
in local RVfw heterogeneity was similar. Supplemental Table S4.2 shows the ICC of the 
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estimated model parameters and Supplemental Table S4.3 shows the ICC of the individual 
estimated tissue properties.

The simulations ran on average in 25 ± 10 hours per patient. The duration of the 
simulations depended on the heart rate, the quality of the initial subset, and the number 
of beats needed to find a haemodynamic stable simulation for each random state. The 
average dimensional error between modelled and measured strain was 0.84 ± 0.35.

Figure 4.3: Estimated Tissue Properties. In the top row, RV regional estimations of contractility, compliance, 
and activation delay are shown relative to the mean value. In the bottom row, the standard deviation of these 
three properties is shown in a boxplot, characterized by 2010 TFC (subclinical, electrical, structural), strain 
morphology (Type-I, Type-II, and Type-III), and RV mechanical dispersion (RVMD). * indicates a significant 
difference with p<0.05

Discussion

In this study, patient-specific simulations were successfully used to estimate regional 
RVfw tissue properties from echocardiographic deformation imaging data in 68 subjects 
with a pathogenic AC mutation and 20 control subjects. Regional heterogeneities of 
contractility and compliance in the RV free wall were largest in subjects in the structural 
disease stage. Our patient-specific simulations suggested that structural abnormalities 
according to the 2010 TFC were associated with an increased heterogeneity in RVfw 
myocardial tissue contractility and compliance. The most advanced disease substrates 
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were found predominantly in the RVfw basal segment. To our knowledge, this is the 
first time that regional ventricular tissue properties are quantified using patient-specific 
simulations based on non-invasively measured longitudinal strain patterns. This method 
reveals potentially important information about myocardial disease substrates and 
thereby paves the way for personalized medicine.

In a previous study, we showed that desmosomal mutation carriers with more advanced 
AC disease stages have the most abnormal RV basal deformation pattern [4]. In the same 
study, using computer simulations it was concluded that this abnormal mechanical 
behaviour of the RV cannot be explained by an electromechanical activation delay alone. 
Non-personalized simulations representing subgroups of AC mutation carriers showed 
that at least some degree of local mechanical dysfunction was needed to reproduce 
the measured RV deformation abnormalities. A recently published sensitivity analysis 
[8] confirmed that model parameters related to both activation delay and mechanical 
dysfunction are essential to reproduce myocardial deformation using the CircAdapt 
model [8]. The current study extends this previous work by estimating patient-specific 
myocardial substrates in all three RVfw segments and by including the LV mechanics 
for a more realistic approach of the patient’s haemodynamics. These patient-specific 
simulations confirmed hypothesis that abnormal deformation patterns are related to 
increased regional heterogeneity in contractility and compliance without a heterogeneity 
in activation delay [4].

AC mutation carriers classified with structural abnormalities according to the 2010 
TFC, being wall motion abnormalities such as akinesia, dyskinesia, or aneurysm in 
combination with RV dilatation or impaired RV systolic function measured by either CMR or 
echocardiography [5]. These structural abnormalities result from fibrofatty replacements 
of the RV myocardium, which affects regional wall motion and eventually global RV 
systolic function [2]. Also our computer simulations revealed the largest heterogeneity 
of RVfw tissue properties in the patients with structural stage disease, with the basal 
region of the RVfw being most affected by the disease. The few structural stage subjects 
with a relatively low heterogeneity of RV tissue properties showed highly impaired RV 
deformation with decreased contractility and compliance in all three segments, suggesting 
highly advanced AC disease.

Our patient-specific simulations suggested that the RV apex-to-base heterogeneity 
of mechanical behaviour in the more advanced AC disease stages is mostly due to 
decreased basal contractility and compliance. Several potential causes for AC-related 
changes in active and passive myocardial tissue properties have been identified in clinical 
and pre-clinical studies. One is the fibrofatty replacement of the myocardium[2], which 
results in loss of contractile function and a change in passive tissue behaviour. Besides, 
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Cerrone et al. found altered calcium transients in mice with a loss of PKP2 expression, 
including an increased calcium transient with an increased time-to-peak and a slower 
decay [23], suggesting a change in contractile function. To identify the exact (sub)cellular 
mechanisms underlying the regional RV deformation abnormalities in AC subjects beyond 
changes of tissue contractility and compliance, a more complex model of the myocardial 
electromechanics is needed.

In previous clinical studies, RVMD was associated with arrhythmic outcome [7]. In 
our modelling study, a higher RVMD was associated with an increased heterogeneity 
of contractility in the RVfw, but not with myocardial compliance. These contractile 
abnormalities could reflect calcium handling abnormalities, which form a possible pro-
arrhythmic substrate. Interestingly, using the classification defined by Mast et al. [4], an 
abnormal Type-III deformation pattern was reproduced by both abnormal contractility 
and abnormal compliance. Where RVMD is based only on timing of the longitudinal 
strain, the pattern classification is based on information of both timing and amplitude. 
Our computer simulations suggest that both classifications can detect a different kind of 
tissue substrate.

An RVfw apex-to-base heterogeneity was already present in the deformation 
measurements of healthy controls, resulting in heterogeneity in estimated tissue 
properties. Some level of ‘physiological’ heterogeneity in deformation is to be expected, 
since regional differences of ventricular tissue properties, such as activation delay [24], 
action potential morphology [25], and wall thickness [26], also exist in healthy hearts. 
Because the control group and subclinical group have a similar heterogeneity in tissue 
properties, it can be assumed that the observed heterogeneity in regional RV tissue 
properties is not abnormal.

Study Limitations
Estimations are based on the average CO obtained from CMR and on regional LV and 
RV strain obtained from speckle tracking echocardiography. CMR volumes were used 
because they provided the most reliable non-invasive estimation of CO and ventricular 
volumes. Because the CMR and the echocardiographic examination cannot be performed 
simultaneously, there is a potential mismatch between the two measurements. This 
mismatch might result in global under- or overestimation of ventricular tissue properties but 
is not expected to have a significant effect on the heterogeneity in RVfw tissue properties.

The deformation measurements were obtained from four different heartbeats. We 
did not correct for any measurement errors, such as timing errors between the four echo 
views, beat-to-beat variability, or respiration. Future studies could investigate how to 
design an objective function using strain indices or other measurements, such as valve 
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timings, blood flow velocity or ejection fraction, to develop a more efficient fitting algorithm 
with an objective function invariant of measurement uncertainties.

Future Work
A longitudinal study, in which follow-up data is included, should be performed to reveal 
whether and how this disease substrate progresses in individuals, and whether any kind of 
disease evolution could be used for prediction of arrhythmic outcome in a clinical setting.

The majority of this retrospective study cohort consisted of PKP2 mutation carriers. 
Future prospective verification studies are needed to confirm our findings and to 
determine whether our results can be extrapolated to AC patients with a different genetic 
background. The CircAdapt model is not limited to modelling AC disease substrates, so 
future work could also explore to which extent this framework is applicable to identify 
disease substrates in other cardiac pathologies.

Conclusion

We presented a patient-specific modelling approach and showed its ability to reproduce 
regional ventricular deformation patterns and to estimate the underlying tissue properties 
in AC mutation carriers. Patient-specific simulations revealed that regional RV deformation 
abnormalities were related to reduced contractile function and tissue compliance. In most 
subjects, a characteristic apex-to-base heterogeneity of tissue abnormalities was present, 
whereby the basal region of the RVfw was most affected. Tissue abnormalities were 
most pronounced in the subjects with a clinically more advanced disease stage. Future 
studies should investigate whether simulation-based characterization of patient-specific 
disease substrates can be used for personalised prediction of AC disease progression or 
arrhythmic events.
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Abstract

Computational models of the cardiovascular system are widely used to simulate 
cardiac (dys)function. Personalization of such models for patient-specific simulation 
of cardiac function remains challenging. In this study, we present a methodology for 
patient-specific estimation and uncertainty quantification of parameters in the closed-
loop CircAdapt model of the human heart and circulation using echocardiographic 
deformation imaging. Based on patient-specific estimated parameters we aim to 
reveal the mechanical substrate underlying deformation abnormalities in patients with 
arrhythmogenic cardiomyopathy (AC).

We used adaptive multiple importance sampling to estimate the posterior distribution 
of regional myocardial tissue properties. This methodology is implemented in the 
CircAdapt cardiovascular modelling platform and applied to estimate active and passive 
tissue properties underlying regional deformation patterns, left ventricular volumes, and 
right ventricular diameter. First, we tested the accuracy of this method and its inter- and 
intraobserver variability using nine datasets obtained in AC patients. Second, we tested 
the trueness of the estimation using nine in silico generated virtual patient datasets 
representative for various stages of AC. Finally, we applied this method to two longitudinal 
series of echocardiograms of two pathogenic mutation carriers without established 
myocardial disease at baseline.

Tissue characteristics of virtual patients were accurately estimated with a highest 
density interval containing the true parameter value of 9% (95% CI [0 – 79]). Variances 
of estimated posterior distributions in patient data and virtual data were comparable, 
supporting the reliability of the patient estimations. Estimations were highly reproducible 
with an overlap in posterior distributions of 89.9% (95% CI [60.1 – 95.9]). Clinically 
measured deformation, ejection fraction, and end diastolic volume were accurately 
simulated. In presence of worsening of deformation over time, estimated tissue properties 
also revealed functional deterioration.

This method facilitates patient-specific simulation-based estimation of regional 
ventricular tissue properties from non-invasive imaging data, taking into account both 
measurement and model uncertainties. Two proof-of-principle case studies suggested 
that this cardiac Digital Twin technology enables quantitative monitoring of AC disease 
progression in early stages of disease.
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Introduction

Computational models of the cardiovascular system are widely used to simulate cardiac 
(dys)function and related clinical application of therapies for cardiac disease [1]. Various 
attempts to generate a Digital Twin of the human heart have been made [2]. Previously, 
we proposed a framework to create a Digital Twin [3] for quantification of the disease 
substrate underlying abnormal tissue deformation in patients with arrhythmogenic 
cardiomyopathy (AC) [4].

Inheritable AC primarily affects the right ventricle (RV) and predisposes to ventricular 
arrhythmias and sudden cardiac death in young individuals [5,6]. Therefore, early disease 
detection is important. We previously determined an in silico disease substrate with 
decreased regional RV contractility and compliance, with the potential to predict disease 
progression on a patient-specific level [4]. This method was, however, not able to include 
uncertainty present in both measurement and model.

Uncertainty will inevitably play a role in comparing estimated properties and thus 
Bayesian inference methods should be used to estimate the posterior distribution of model 
parameters, rather than only providing point estimates. Cardiovascular computational 
models are in general complex, meaning that the posterior distribution cannot be 
calculated analytically. Various techniques have been proposed to solve this problem, 
in which Markov chain Monte Carlo (MCMC) methods are often used [7–9]. Adaptive 
multiple importance sampling (AMIS) is an important alternative to MCMC since it enables 
estimation of the posterior distribution in a model with a relatively high number of input 
parameters [10,11].

In this study, we apply AMIS to quantify parameter uncertainties in Digital Twins 
based on echocardiographic deformation imaging. We validate the methodology based 
on both in silico generated virtual data and datasets obtained from patients with AC and 
mutation positive family-members at risk of developing the disease. Furthermore, we use 
longitudinal series of echocardiograms in two AC patients to validate clinical applicability 
of this methodology.

Materials and Methods

This section and Figure 5.1 elucidate the methodology used to estimate parameters and 
related uncertainties using the CircAdapt model. First, we elaborate the mathematical 
basis and implementation of AMIS, which is generally applicable. Secondly, we describe 
the mathematical problem and introduce the included clinical measurements and the 
computational model used for the likelihood function. Finally, we explain the simulation 
protocol. The source code as well as the virtual patient datasets are available.

  5
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Mathematical basis of adaptive multiple importance sampling
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Figure 5.1: Non-invasive measurements were used as input for a fully automatic automated uncertainty quan-
tification algorithm. This algorithm produced a Digital Twin based on estimated parameters with accompanying 
uncertainty. This Digital Twin can be used to get more insight in the estimated tissue properties. RVfw: right 
ventricle free wall; LVfw: left ventricle free wall; IVS: inter ventricular septum; HR: heart rate; EDV: end diastolic 
volume; EF: ejection fraction; RVD: right ventricular diameter;
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[11]. The set of samples 
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 to optimally recycle past simulations following 
the adaptive multiple importance sampling (AMIS) (see Figure 5.2) [10].

Figure 5.2: Visualization of adaptive multiple importance sampling. In the first iteration, samples 𝒚𝒚 = ℳ(𝜽𝜽)  are drawn 
from a uniform distribution and stored in the sample set 
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  times.

Each iteration in this algorithm consists of two stages. First, samples are drawn from 
the proposal distribution and weights of all samples are updated. Second, the proposal 
distribution is updated based on the new sample weights.
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 the 
total number of samples. Samples drawn from poorly performing proposal distributions 
are eliminated through the erosion of their low weights [10].

The likelihood function is defined based on the normalized dimensionless summed 
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 used in this study is 
described in the Section ‘Problem Description’. We assumed a non-informative uniform 
prior and neglected all interactions between individual errors. Furthermore, annealed 
adaptive importance sampling [12] was used to prevent the algorithm from premature 
convergence [13,14], resulting in a likelihood
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Update proposal distribution
Each iteration, the proposal distribution is updated based on all drawn samples in the 
sample set
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. In the updated proposal distributions, 
samples were drawn along the principal component axes of the weighted sample set
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This protocol ran for at least 500 iterations. Additional iterations were performed in the 
case that the effective sample size 
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was not fulfilled. The Kish effective 
sample size 
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  was used [15],which is defined as
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5.6

Problem description

Clinical data
Patient-specific simulations were based on echocardiographic data from AC mutation 
carriers in various disease stages. Besides clinically measured LV and RV regional 
deformation imaging data, the LV end diastolic volume (EDV), LV ejection fraction 
(EF) and right ventricular basal diameter (RVD) were used as model input. We used 
echocardiographic data of nine pathogenic AC mutation carriers which were evaluated 
in the University Medical Center Utrecht, the Netherlands. As previously described [4], 
deformation analyses of these echocardiograms were performed twice by two observers 
to determine clinical inter- and intra-observer variability. Lastly, longitudinal datasets with 
>2 echocardiograms per patient at different time points were used to explore applicability 
of the model for follow-up of tissue properties over time. These longitudinal datasets 
were acquired from AC mutations carriers which were evaluated in the Oslo University 
Hospital, Norway.

All echocardiographic data were obtained on a Vivid 7, Vivid 9 or Vivid E95 ultrasound 
machine (GE Vingmed, Horten, Norway). The echocardiographic protocol was described 
previously [16]. In this study, we focused on the right ventricular free wall (RVfw). This 
is typically the most affected area in AC mutation carriers [17], which is expressed in 
typical deformation abnormalities (delayed onset of shortening, decreased peak systolic 
strain, post-systolic shortening, and increased RV mechanical dispersion) [16]. Therefore, 
deformation patterns of three RVfw segments (apical, mid-ventricular and basal) were 
used as input for our modelling framework (Figure 5.1) [4]. Additionally, LV free wall (LVfw) 
and interventricular septal (IVS) deformation patterns were included to ensure realistic 
mechanical boundary conditions for the RVfw in terms of ventricular interaction. These 
patterns were obtained by averaging the 12 LVfw and 6 IVS segmental deformation curves, 
respectively, using the standardized 18-segment model [18].

  5
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Computational model of heart and circulation
Clinical measures were simulated using the CircAdapt model. This model is a fast 
biomechanical lumped parameter model of the heart and circulation. Via the one fibre 
model [19], wall stress is related to cavity pressure. The TriSeg module allows inter-
ventricular interaction over the IVS [20]. Phenomenological material laws prescribe the 
stress-strain relation in the spherical walls. The MultiPatch module allows for regional 
heterogeneity of tissue properties within a single wall [21] and is used to describe the 
heterogeneity in the RVfw. Three segments were created in the RVfw to model the 
mechanics in the three different RVfw segments (apical, mid-ventricular, and basal).

The parameter subset  
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 included for estimation was based on a previous sensitivity 
analysis [4] and is shown in Table 5.1. Parameters included were regional parameters 
describing the constitutive behaviour of active (SfAct) and passive stress (k1), activation 
delay (dT), reference wall area (AmRef), and global parameters relative systole duration 
(RSD), and CO. Heart rate (HR) in the model was set to match clinically measured HR to 
ensure equal cycle lengths in measured and modelled signals.

Strain was defined as the segmental displacement relative to its reference length at 
end diastole. Additionally, EF, EDV, and RVD were included. Modelled EDV was defined 
as the maximum cavity volume of the LV cavity assuming perfect valve behaviour. EF was 
defined as the ratio of stroke volume over maximum volume. RVD was defined as the 
maximum cavity diameter between the RVfw and IVS.

Likelihood function
As shown in Equation 5.4, the likelihood function was based on the summed squared error 
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. This error consists of the error in strain of the 5 segments and on the error in EF, EDV, 
and RVD. Because the measured diastolic strain is less reliable due to the drift affecting 
most of this phase, we only included strain during the systolic phase in this study. This 
systolic phase was defined from the onset of the QRS complex until 100ms after peak 
strain of the segment with longest shortening phase.

To account for dependencies in strain, we included weighted dimensionless errors 
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 to be the sum of all individual weighted dimensionless errors 

𝑒𝑒!,#$%&  

 

𝑒𝑒'!!"#$%
&  

 

𝑒𝑒()&  

 

 𝑒𝑒()&  

 

𝑒𝑒(*+&   

 

𝑒𝑒!"#$  

 

𝑒𝑒$ 

 
𝑑𝑑𝑑𝑑/𝑑𝑑𝑡𝑡,-. 

 
∞ 
 

𝑝𝑝(𝜃𝜃|𝑧𝑧) > 𝑝𝑝(𝜃𝜃/01$|𝑧𝑧) 
 

𝚾𝚾𝒐𝒐𝒐𝒐𝒐𝒐𝟐𝟐 = 𝟖𝟖. 𝟗𝟗 

:

𝑁𝑁!"#$%&! = ∑ 𝑛𝑛!"#$%&!,(
)!"#$*+
(,-   

Θ 

𝑁𝑁&.. > 10 ⋅ 𝑛𝑛/ 

 

	 𝑁𝑁&.. =
[∑ 𝑤𝑤(𝜃𝜃)/∈1 ]2

∑ (𝑤𝑤(𝜃𝜃)2)/∈1
.		

 

𝛸𝛸2 = 3 4𝑒𝑒3,!&42 + 𝑒𝑒3̇,!&42 7
!&4∈!&4#&)6!

+ 3 𝑒𝑒73!%"#$
2

()6&8∈()6&8!&4

+ 3 𝑒𝑒#2
#∈[:;,:<=,>=<]

	.		

 

5.7



| 83Uncertainty quantification of tissue properties 

Standard deviations used to normalize each individual term were manually estimated a priori 
to meet differences between the inter- and intraobserver datasets. Standard deviations 
used to normalize EF, EDV, and RVD were set a priori in consultation with clinical partners.

Table 5.1: parameters included in the optimization protocol

Model 
parameter

Unit Description Sample 
distribution

Parameter 
range

Parameter Location

Rv
 A

pe
x

RV
 M

id

RV
 B

as
e

IV
S

LV
fw

SfAct kPa Active stress scaling factor logit-uniform [0, 1000] x x x x x

k1 - Stiffness exponent logit-uniform [1, 100] x x x x x

dT ms Activation delay logit-uniform [-200, 800] x x x x x

AmRef cm2 Eccentric hypertrophy log-uniform [0,
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] combined x x

RSD - Global systolic duration scaling log-uniform [0,
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] global

Q0 L/min Cardiac Output log-uniform [0,
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𝚾𝚾𝒐𝒐𝒐𝒐𝒐𝒐𝟐𝟐 = 𝟖𝟖. 𝟗𝟗 

] global

Total: 20

RV tissue properties
To relate our simulations to clinical measures, four RV tissue properties were investigated, 
namely contractility, activation delay, compliance, and myocardial work. Segmental 
contractility was defined as the maximum rate of active stress rise, which can be seen 
as the equivalent of the maximum rate of ventricular systolic pressure rise (
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) 
on a local tissue level. Segmental wall compliance was defined as the slope of the end 
diastolic myofibre stress-strain relationship at time before first ventricular activation and 
can be interpreted as the regional equivalent of the slope of the global end

diastolic pressure-volume relation. Myocardial work density was defined as the area 
within the stress-strain loop and can be interpreted as the regional equivalent of global 
stroke work.

Simulation protocol

Uncertainty Quantification of Real Patient datasets
Nine clinical datasets in which the echocardiographic images were analysed twice by 
two independent observers were included to test reproducibility, leading to 36 datasets. 
For each individual dataset, parameters were estimated three times resulting in 108 
estimations in total. Since no ground truth exists for estimated model parameters, only 
the reproducibility of estimations was evaluated. Three kinds of reproducibility were 
investigated, namely computational reproducibility, reproducibility including interobserver 
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variability, and reproducibility including intraobserver variability. First, computational 
reproducibility was defined as the reproducibility of the exact same clinical dataset and 
quantified by the mutual information (MI) between two model parameter estimations. The 
same protocol was repeated three times with a different random seed. To calculate the MI, 
two distributions were discretized into 100 bins. The MI was then defined as the overlap 
divided by the union of the distributions. Secondly, reproducibility including interobserver 
variability was tested on the nine patient datasets, whereby a second blinded observer 
performed deformation imaging analysis on the same echocardiographic loops as the first 
observer. It was defined as MI between two estimated model parameter distributions from 
two datasets observed by the two different observers. Finally, reproducibility including 
intraobserver variability was quantified similarly from two different datasets, whereby 
the observer performed the deformation analysis again after at least two weeks, blinded 
to previous results. The median MI with 95% confidence interval (CI) of all parameter 
estimations was reported. In case the estimations from different observations fully 
overlap, MI=100%. In case of no overlap at all, MI=0%.

Uncertainty Quantification of Virtual Patient datasets
To test the trueness of the estimation, in silico generated virtual patients were generated. 
To ensure these virtual patients to be representable for real AC patients, nine virtual 
patients were created based on the nine real patient datasets. For each real patient, the 
simulation with maximum likelihood was selected. The output of this simulation was used 
as virtual patient dataset, which was used as input of the modelling framework.

Trueness of the virtual estimations was tested by comparing the estimated distribution 
with the known true parameter values. For each parameter, the highest density interval 
(HDI) for which the true value is in the interval was calculated. The HDI was defined 
as the area of the distribution for which the posterior holds 
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. The 
distribution was approximated with a histogram with bin width defined by the Freedman-
Diaconis rule [22]. The HDI for each parameter should be near 0% meaning the true value 
is near the maximum a posteriori.

Application in longitudinal datasets
Two subjects with a baseline and two follow-up echocardiograms were selected (Table 
5.2). For all six datasets, clinical data was extracted and the datasets were estimated 
independently of each other, similarly as described above. The two longitudinal sets of 
estimated tissue properties were investigated. Due to the retrospective nature of this 
study, LV EDV was only available at baseline. We assumed that it did not change during 
follow-up.
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Table 5.2: Patient characteristics of the two subjects at baseline and follow-up used in the likelihood function

Subject 1 Subject 2

Time after baseline [yr] 0 4.5 9.1 0 5.2 7.3

LV EDV [mL] 112 * * 150 * *

LV EF [%] 61 61 61 59 64 57

RVD [mm] 43 43 42 45 38 40

* LV EDV was only recorded at baseline. It was assumed not to change during follow-up

Code implementation
The CircAdapt model was written in C++. All other code was written in Python. Each 
individual dataset was solved sequentially and independently. The source code of the 
CircAdapt model has been made available before [3]. All other source code is publicly 
available on Zenodo (https://doi.org/10.5281/zenodo.5084657). Datasets were estimated 
in parallel with Python 3.9.4 on a AMD Ryzen Threadripper 3970X.

Figure 5.3: Measured and estimated strain of real subject (left) and violin plots of estimated parameters (right). 
Deformation patterns and regional heterogeneity was well captured by the model. The best simulation in the 
sample set was in good agreement with to the patients dataset (
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Results

Uncertainty Quantification of Real Patient datasets
Regional deformation characteristics were accurately simulated close to the measured 
deformation and with reasonable uncertainty (Χ!"#$ = 9.4	(95%	𝐶𝐶𝐶𝐶	[5.4 − 20.9])) 

 

(Χ!"#$ = 2.0	(95%	𝐶𝐶𝐶𝐶 = [1.2 − 3.0]) 
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Figure 5.3 (left) shows a representative example. The modelled strain followed the pattern 
of clinically measured strain during systole and heterogeneity between the segments 
was well captured. A 1D representation of the convergence of the proposal distribution, 
corresponding to the estimated model parameters is shown in Figure 5.4. In the first 
50 iterations, the proposal distribution decreased, increased, and moved to the area of 
interest. From the 50th iteration, most proposal distributions stabilized. This behaviour 
was also observed in estimations in other datasets.

The estimated posterior distributions of the model parameters (Figure 5.1) of most 
parameters were estimated with small variances, except for parameters SfAct and k1, 
because they were unidentifiable in some segments. The posterior correlation matrix 
(Figure 5.5) shows the correlation between estimated posterior distributions. Notable 
are the correlations between model parameters SfAct, k1, dT, and AmRef describing 
mechanics in the same wall segment. Additionally, there was a high correlation between 
different segments for the model parameters dT and AmRef. From the two global 
parameters, only RSD seemed to correlate with dT.

Figure 5.4: Convergence of estimated model parameters. The distributions on the right show the final estimated 
posterior distribution.

Figure 5.3 (right) shows the estimated regional RV model parameters and the RV tissue 
properties contractility, activation delay, compliance, and work density. The RV tissue 
properties were estimated with distributions with a smaller variance compared to the 
estimated model parameters. A decrease in basal contractility, compliance, and work 
density with respect to the apical and mid segment was found which is in line with the 
abnormal basal deformation pattern.

Figure 5.5 (bottom) shows the correlation between posterior model parameter 
distributions with the RV tissue properties contractility, compliance, and work density. 
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Contractility was mostly correlated with SfAct, AmRef, and CO. In the RVapex and RVmid, 
contractility was not only dependent on the parameters prescribing its own segmental 
mechanics, but also on the parameters prescribing other segmental mechanics. Similar 
results were observed for compliance, which was correlated with SfAct, k1, and dT. 
Compliance showed no correlation with AmRef, RSD, and CO. Work density was mostly 
correlated with CO.

Estimated model parameters were highly reproducible. Computational reproducibility 
was found with an MI of 89.9% (95% CI [60.1 – 95.9]). The reproducibility error given inter- 
and intraobserver variability were estimated with an MI of 86.5% (95% CI [46.0 – 95.2]) 
and 85.9% (95% CI [43.7 – 95.3]), respectively.

Uncertainty Quantification of Virtual Patient datasets
Nine virtual patients were created based on the nine real-patient estimations. As an 
example, Figure 5.6 shows the virtual patient based on the patient results described 
above. Regional deformation characteristics were simulated close to the virtual patients 
deformation characteristics
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. The true parameter 
values were well captured by the estimated distributions. The HDI of the true parameter 
values was 9% (95% CI [0 – 79]). Heterogeneity in model parameters was well preserved. 
The width of the distribution in virtual fits was similar to that in the original patient 
estimation.

Application: Longitudinal datasets
Two subjects with a baseline and two follow-up echocardiograms were included in this 
study (Table 5.2). The first subject had a follow-up examination after 4.5 and 9.1 years 
and the second subject after 5.2 and 7.3 years. Results of these case studies are shown 
in Figure 5.7 and Figure 5.8.

Subject 1 developed an abnormal deformation pattern of the basal RV segment at last 
follow-up which was not seen at baseline. Computer simulations showed homogeneous 
RV contractility, activation delay, compliance, and work at baseline. In the last follow-up 
examination, an apex-to-base heterogeneity in compliance and work density was present.

Subject 2 showed normal RV deformation patterns at baseline and did not develop clear 
deformation abnormalities during follow-up. Contractility, activation delay, compliance, 
and work density were estimated homogeneously at baseline. In the final follow-up, a 
small apex-to-base heterogeneity in compliance was present.
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Figure 5.5: Posterior correlation matrix of the estimated model parameters (top) and the correlation between 
the posterior distribution of model parameters and derived tissue properties (bottom).
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Figure 5.6: Measured and estimated strain of virtual subject (left) and violin plots of estimated parameters 
(right). Estimated properties are close to the true properties (black dot) and the heterogeneity is well captured. 
The best simulation in the sample set was closely related to the virtual patients dataset (
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Figure 5.7: Longitudinal estimations subject 1. Echocardiographic deformation imaging was performed at 
baseline, and after 4.5 and 9.1 years of follow-up. Computer simulations showed homogeneous RV contrac-
tility, activation delay, compliance, and work at baseline. At last follow-up, subject 1 developed an abnormal 
deformation pattern of the basal RV. Estimation of RV tissue properties from these deformation data showed 
an apex-to-base heterogeneity in activation delay, compliance and work density.
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Figure 5.8: Longitudinal estimations subject 2. Echocardiographic deformation imaging was performed at 
baseline, and after 5.2 and 7.3 years of follow-up. Subject 2 had normal RV deformation patterns at baseline 
and did not develop clear deformation abnormalities during follow-up. Contractility, compliance, and work 
density were estimated homogeneously at baseline.

Discussion

In this work, we successfully applied adaptive multiple importance sampling (AMIS) to 
estimate posterior distributions of model parameters describing local passive and active 
tissue behaviour based on echocardiographic deformation measurements. Estimated 
deformation closely resembled the clinically measured myocardial deformation with 
a realistic level of uncertainty originating from both the measurement and the model. 
Estimated RV tissue properties reflected progression of the disease substrate over time 
present in the clinical case studies.

Model-based inference
Personalization of cardiac computational models is becoming more popular and several 
approaches have been proposed. Schiavazzi et al. [7] used MCMC to estimate model 
parameters in a simplified model of the single-ventricular heart in a close-looped 
circulation, based on clinically measured pressures and flows. Corrado et al. [23] used 
a Reduced Order Unscented Kalman Filter to estimate model parameters to optimize 
body surface potential maps and myocardial displacement. Meiburg et al. [8] used 
the Unscented Kalman Filter to predict post-intervention haemodynamics after trans-
aortic valve implantation. Zenker [24] used importance sampling to estimate model 
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parameters in a cardiovascular model. Dhamala et al. [25] used high-dimensional Bayesian 
optimization for parameter personalization of a cardiac electrophysiological model. 
Coveney and Clayton[26] used history matching to calibrate the maximum conductance 
of ion channels and exchangers in two detailed models of the human atrial action potential 
against measurements of action potential biomarkers. Daly et al. [27] used sequential 
Monte Carlo Approximate Bayesian Inference to quantify the uncertainty amplification 
resulting in a cellular action potential model. Camps et al. [28] used the same technique to 
estimate key ventricular activation properties based on non-invasive electrocardiography 
and cardiac magnetic resonance imaging.

These studies used computational models with different levels of model complexity 
in both anatomical and physiological detail. Complex models allow personalization with 
a high number of details, however, they suffer from a high-dimensional unknown space 
increasing the difficulty of personalization due to unidentifiability of the model parameters. 
This problem can be solved by reducing the complexity of the optimization problem by 
assuming global model parameters [29] or regional model parameters [30]. However, this 
does not reduce the computational cost and increases model discrepancy. It is suggested 
to use a surrogate model to approximate the exact posterior probability density function 
[31], but this creates a new source of uncertainty. Including model discrepancy in the 
estimation often fails due to the non-identifiability between model parameter estimations 
and model discrepancy [32]. The pseudo-true parameter value found by ignoring model 
discrepancy can still be valuable for clinical interpretation.

Another approach is to reduce the complexity of the model. Various lumped parameter 
models of the heart and circulation have been used for fast personalization [7,8,24]. 
The cost of low complexity may lead to an increase in model discrepancy due to model 
assumptions and simplifications [32]. It was, however, demonstrated before that the 
CircAdapt model is highly efficient in simulating regional mechanics and is able to simulate 
realistic haemodynamics [21,33]. We previously showed that the CircAdapt model can 
simulate segmental mechanics with a similar spatial resolution as in clinical strain imaging 
measurements with low discrepancy [4,21]. Therefore, we assume the CircAdapt model 
is a suitable model for modelling regional strain in AC patients.

In this study, we chose importance sampling because it is highly effective for complex 
high-dimensional models [11]. The computational cost of our model was approximately 
1000 times higher compared to the calculation of the probability density of a sample 
drawn from the proposal distribution. Therefore, AMIS was the most suitable variant to 
optimally reuse all samples [10].

Efficiency of AMIS heavily depends on the definition of the proposal distribution 
[11]. A wider proposal distribution ensures to visit the full input space of interest, but is 
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accompanied by a risk of non- converging estimations due to the high number of samples 
with a low sample weight. On the other hand, a more narrowed search has the risk of finding 
a local minimum in which the wrong posterior is estimated, or the risk of collapsing when 
the weight of the found minimum drops to zero. As the number of samples goes to infinity, 
the sample weight will be equally distributed. However, for the limited number of samples 
drawn, an optimal balance should be found. We successfully implemented annealed 
adaptive importance sampling to prevent the model from premature convergence while 
still being able to narrow the proposal distribution in the later iterations. More research 
should go into defining the proposal distribution or the initial proposal distribution.

In this study, it took approximately 16h per dataset to converge. This time includes 
generating the proposal distributions, generating samples, running simulations, obtaining 
the likelihood function, and calculating the sample weights. The total duration mainly 
depends on the duration of each individual simulation, since the number of iterations in 
the estimations was equal or close to 500. The duration of each simulation depended on 
heart rate, numerical stability, and number of beats needed to get a haemodynamically 
stable solution. Computational time can be reduced in future studies, since AMIS allows 
parallel calculation of simulations. This reduction in computational time will be essential 
for clinical application of our method on a larger scale.

Uncertainty Quantification in Arrhythmogenic Cardiomyopathy
Cardiovascular models are, in general, complex models with a multitude of parameters. 
To create Digital Twins with the CircAdapt model, we used a parameter subset that we 
determined in a previous study [3]. This subset includes model parameters related to 
regional RV contractile function, compliance, and activation delay. This is in line with 
functional and structural myocardial changes found in AC patients (e.g. fibro-fatty 
replacement of myocytes [6], altered calcium handling [34], and fibrosis [35]) and early 
generic simulation based hypotheses [36]. These structural changes might cause abnormal 
electrical activation observed in patients with AC [37]. The RV tissue properties are useful 
to quantify the substrate, however, the model cannot distinguish the cellular origin of the 
substrate.

The likelihood function was based on our prior knowledge of the pathology. It is not 
trivial how to include this information as the amount of uncertainty and its dependencies 
is not known but heavily affects the posterior distribution. In this study, we limited the 
objectives in the likelihood function to only that information in the longitudinal study that 
our model can simulate realistically. The main contributor is regional RV strain, as regional 
deformation abnormalities are found in early stages of the disease [36,38–42]. LV strain, 
RVD, LV EF, and LV EDV are included in the likelihood to personalize geometric properties 
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of the model. Because of the complex geometry of the thin-walled RV, our 2D imaging 
methods did not provide a comprehensive measure of RV size and wall thickness. In future 
studies, 3D imaging methods might provide a more comprehensive inclusion of geometric 
variability of the RV. The RVD was included to account for large geometrical differences 
between patients and geometrical changes over time. Wall volumes were not included in 
the parameter subset because they were unidentifiable given the available measurements.

Dependencies in strain were partially included by including strain rate and strain 
differences. Based on the used likelihood function, posterior distributions were estimated 
with a relatively wide variance (Figure 5.4) suggesting not all parameters are identifiable. 
The low reproducibility in some parameters (HDI 95% CI [0-79%]) is probably related 
to this unidentifiability. Heterogeneity in model parameters is, however, well preserved, 
suggesting that measurements that are sensitive to segment-averaged model parameters 
should also be included in the likelihood function. Further prospective studies could 
investigate the error propagation of dependent and independent uncertainties, whether 
all components of the likelihood are essential to include, and which other measurements 
should be included to increase the identifiability of the model parameters.

Derived tissue properties were estimated more precise and reproducible compared 
to model parameters, suggesting that different parameter combinations can result in the 
same haemodynamic state. Mechanics of the three RV segments were modelled with 
the same mathematical equations, however, they have different interactions with the 
surrounding walls as shown in Figure 5.5. Compliance in the basal segment was estimated 
more precise compared to the other segments (Figure 5.12). This results from the non-
linear behaviour of the model, as basal model parameters were differently estimated due 
to basal deformation abnormalities. Therefore, compliance in the basal segment was less 
correlated with the other segments.

In this study, we used a single definition for myocardial contractility and compliance 
related to other more global definitions. There is no consensus on a single indicator for 
contractility and compliance, and often multiple (non-invasive) measures are used to 
get an impression. For contractility, the maximum pressure-time derivative 
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is the most commonly used index of contractility in the field of drug safety assessment 
[43]. Although this measure is preload and afterload dependent, the regional stress-time 
derivative as local equivalent gives insight in the regional differences in RV contractile 
function. Other global measures have been proposed to bypass preload and afterload 
dependencies, such as 
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 at a specific pressure [43] or end systolic pressure-
volume relation [44]. New techniques might be useful for future validation of RV tissue 
properties, such as shear wave imaging [45] to quantify cardiac stiffness.

The gold-standard assessment of RV stiffness (inverse of compliance) is the end 
diastolic pressure-volume relation [46]. The local equivalent is the models material law 
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describing the stress-sarcomere length relation. The actual amount of stress prescribed by 
this law depends on the sarcomere length during the cycle [19]. Due to the complexity of 
the model, which includes mechanics based on sarcomere length, an accurate estimation 
of compliance is difficult. The compliance measure as used in this study only includes the 
compliance at the end diastolic sarcomere length and is therefore load-dependent. To 
obtain a load-independent measure, more information on the loading conditions should 
be included in the likelihood distribution.

Case study and future research directions
The two subjects included in the case study showed different behaviour over time. The 
first subject developed an abnormal basal RV deformation pattern during follow-up which 
was reflected in changes in estimated local tissue properties. The second subject did not 
develop clear deformation abnormalities, but did develop slight abnormal heterogeneity 
in tissue properties. In both cases, only small changes in estimations were observed from 
baseline to follow-up. It has previously been shown that heterogeneity in deformation 
patterns has prognostic value for disease progression [38] and life-threatening arrhythmia 
[39]. Although no further follow-up of these subjects was available, we can hypothesize 
our model might identify abnormal tissue substrates before this is clearly visible in 
deformation patterns. Further studies should investigate whether our approach is able 
to detect AC in an early stage and whether it has added prognostic value.

In this study, we estimated model parameters to predict tissue mechanics under 
mechanical loading similar to loading during measurement. To achieve this, we included 
CO in the parameter subset and EDV and EF in the likelihood function. The model could 
be used for predicting the behaviour of the heart under different loading conditions. 
This could facilitate the study of loading effects of drug interventions in the Digital Twin. 
Besides, the effect of exercise, which is an important modulator of phenotypic expression 
of AC [47], could be studied in the Digital Twin. For the latter, a virtual cardiac exercise 
performance test as proposed by Van Loon et al.[48] could be used to give more insight 
in the severity of the substrate and possible triggers for disease progressions. To allow 
the CircAdapt model to extrapolate its state to other loading conditions such as exercise, 
more information should be included.

Limitations
Uncertainties are assumed statistically independent and additive, however, this is in 
fact more complicated. Measurements have multiple sources for uncertainty. We have 
only included inter- and intra-observer variability of the speckle tracking imaging in our 
study. Global longitudinal strain has proven to be reproducible, however, it has been 
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shown that beat-to-beat variability affects segmental peak strain, end systolic strain and 
post-systolic strain.[49] More research should elucidate the origin of this uncertainty, its 
effect on normalized strain morphology as included in our study, and how to optimally 
include uncertainty in defining the likelihood function. This could also facilitate inclusion 
of realistic noise on virtual patient datasets, which was outside the scope of this study.

AC is not only characterized by structural disease manifestation, but electrophysiologic 
substrates play an important role as well [50]. Currently, the CircAdapt model only contains 
the lumped effect of electrophysiology to describe the mechanical behaviour. Future 
studies could extend the model with a more detailed electromechanical coupling, such 
as proposed by Lyon et al. [51], to be able to describe the electrophysiologic substrate.

Conclusion

We presented a patient-specific modelling approach taking into account uncertainties. 
With this approach, we were able to reproduce regional ventricular deformation patterns 
and estimate the underlying tissue properties in AC mutation carriers with an acceptable 
level of uncertainty. Virtual estimations were precise and real-world estimations were 
highly reproducible. Two subjects in our case study revealed the evolution of early-
stage AC disease over time using longitudinal follow-up datasets. Future studies should 
apply our method on a larger cohort and investigate the course of early stage RV disease 
development at individual as well as patient population levels.
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Abstract

Arrhythmogenic cardiomyopathy (AC) is a heritable cardiomyopathy characterized by 
fibrofatty replacement of primarily the right ventricular (RV) myocardium and risk of life-
threatening ventricular arrhythmias. Life-long repeated cardiac imaging of relatives at 
risk is important to detect penetrant disease in an early stage. However, it is currently 
not known whether structural disease progression occurs in all age groups, hampering 
age-tailored follow-up protocols.

To evaluate structural progression in different stages of life, in order to facilitate age-
tailoring of follow-up protocols in early AC.

We included 82 early stage AC patients and genotype positive family members (57% 
female, age 39 ± 17 years, 10% probands) from a consecutive cohort evaluated at Oslo 
University Hospital, Rikshospitalet, Norway. Patients were divided into three groups based 
on age at baseline: early presenters (<30 years), mid-life presenters (30-50 years) and 
late presenters (>50 years). A total of 313 baseline and follow-up echocardiographic 
assessments were included with a mean follow-up of 6.7 ± 3.3 years. Both global and 
segmental deformation characteristics deteriorated in all three age-groups. Regional RV 
tissue properties were estimated based on patient specific deformation characteristics 
using a recently developed computational modelling framework. The development of 
local tissue substrates in the RV free wall was expressed in increased heterogeneity in 
estimated RV tissue properties.

This study showed that deformation imaging can be used to follow-up disease 
progression in early AC. Patient-specific computer simulations showed the development 
of a tissue substrate affecting regional RV tissue properties. Since structural progression 
was seen in all age-groups, age-tailoring of follow-up intervals for cardiac imaging is not 
supported by our data.
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Introduction

Arrhythmogenic cardiomyopathy (AC) is a heritable cardiomyopathy characterized by 
fibrofatty replacement of primarily the right ventricular (RV) myocardium and risk of life-
threatening ventricular arrhythmias [1,2]. Variable disease expression is found in familial 
AC [3], ranging from sudden cardiac death (SCD) in young individuals to a lifelong absence 
of any phenotype. To prevent apparently healthy AC mutation carriers from SCD, early 
detection of potentially pro-arrhythmic tissue substrates is important.

AC has an age-related penetrance, whereby patients classically present in the third 
or fourth decade of life with symptomatic ventricular arrhythmias [3–7]. However, with 
increased use of genetic testing for AC, carriers of a (likely-)pathogenic variant across 
all age-groups are recognized and included in extensive cardiac screening protocols. 
When a clear phenotype is absent on initial screening, these patients frequently 
undergo cardiac imaging examinations for detection of early signs of structural disease. 
It is however currently not known whether structural disease progression occurs in all 
age groups, hampering age-tailored follow-up protocols. On top of that, conventional 
echocardiographic measurements included in the 2010 diagnostic task force criteria (TFC) 
[8] lack sensitivity for detection of early structural disease substrates in AC.

Echocardiographic deformation imaging has emerged over the past decade as a 
valuable tool for both early detection and prognosis in AC

[9–15]. In this study, we used echocardiographic deformation imaging for follow-up of 
mechanical alterations in patients with early AC. Besides, we performed imaging-based 
patient-specific computer simulations to estimate tissue properties of the underlying 
disease substrate. By using these two methods, we aimed to evaluate structural 
progression in different stages of life, in order to facilitate age-tailoring of follow-up 
protocols in early AC.

Methods

Study design and population
We included a consecutive cohort of AC patients and genotype positive family members 
which were evaluated at Oslo University Hospital, Rikshospitalet, Norway, between 
1997 and 2020 with at least two complete clinical evaluations. Part of this cohort was 
reported in previous follow-up studies in AC patients [16,17]. Patients with previous 
myocardial infarction and congenital heart disease were excluded. To focus on patients 
with early stage structural disease, patients with a major echocardiographic 2010 task 
force criterion (TFC) at baseline were excluded. Also patients who experienced a life-
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threatening ventricular arrhythmia (VA, defined as a documented history of sustained 
ventricular tachycardia, aborted cardiac arrest, or appropriated ICD therapy) at or prior 
to inclusion were excluded.

Clinical characteristics were recorded at baseline. Patients were divided into three 
age-groups: early presenters (<30 years), mid-life presenters (30-50 years) and late 
presenters (>50 years). Time to first life-threatening VA was recorded prospectively from 
time of inclusion. End of observation was cardiac transplantation, death, or last-clinical 
follow-up by December 1, 2020.

All patients gave written informed consent. The study complied with the declaration of 
Helsinki and was approved by the Regional Ethical Committee of South-Eastern Norway.

Echocardiography
All available complete echocardiographic examinations in sinus rhythm between 
inclusion and last clinical follow-up were analysed. Inclusion was defined at the time of 
first echocardiography on compatible hardware (GE Vivid 7, E9, or E95, EchoPac 203, GE 
Vingmed, Horten, Norway). Presence of echocardiographic TFC[8] and left ventricular 
(LV) volumes were measured at baseline. LV ejection fraction (EF) by Simpson’s biplane 
method and RV basal diameter (RVD) were measured during follow-up. Speckle tracking 
deformation imaging of both the LV and RV was performed in all examinations, according 
to previously described protocols [14,18,19]. We assessed segmental RV deformation 
patterns in an RV-focused 4-chamber view, whereby a single wall tracing of the RV free wall 
was automatically divided into a basal, mid, and apical segment. Timing of the pulmonary 
valve closure was assessed by Doppler traces in the RV outflow tract, obtained in the 
parasternal short-axis view. The following deformation parameters were measured in the 
basal segment: time to onset of shortening (or electromechanical interval) [19], systolic 
peak strain[20], and the amount of post-systolic shortening [9]. (definitions in supplemental 
material) Based on these parameters, a distinction into 3 different deformation patterns 
has previously been observed in AC and simulated using a computational model [10,21]. 
Type I is normal deformation; type II is characterized by delayed onset of shortening, 
reduced systolic peak strain, and minor post-systolic shortening; type III is characterized 
by little or no systolic peak strain, predominantly systolic stretching, and major post-
systolic shortening. The left ventricular global longitudinal strain (GLS) was calculated in 
a 16-segment left ventricular model [14]. RV free wall longitudinal strain (RVFWLS) was 
defined as the peak negative strain from the global RV free wall deformation characteristic. 
All measurements were performed by a single observer blinded to clinical information.



| 105Monitoring age-related penetrance 

Computational simulations
Based on echocardiographic data, patient specific simulations were performed with 
the CircAdapt model [22], which is a closed-loop lumped parameter computer model of 
the human heart and circulation. It enables simulation of cardiac haemodynamics with 
ventricular interactions based on regional wall mechanics, using a phenomenological 
model describing active and passive myofibre mechanics [23,24]. We used a previously 
developed modelling framework for patient specific estimation of tissue properties in the 
CircAdapt model [25]. This framework uses, besides LV and RV deformation data, also 
EDV, EF and RVD as input. Measurement uncertainty was included in the framework and 
resulted in an uncertainty on the estimated tissue properties. Four RV tissue properties 
were estimated: contractility, compliance, activation delay and myocardial work. In brief, 
segmental contractility was defined as the maximum rate of active stress rise, which 
can be seen as the equivalent of the maximum rate of ventricular systolic pressure rise 
(dP/dtmax) on a local tissue level. Segmental wall compliance was defined as the slope 
of the end diastolic myofibre stress–strain relationship at time before first ventricular 
activation and can be interpreted as the regional equivalent of the slope of the global 
end diastolic pressure–volume relation. Myocardial work density was defined as the 
area within the stress–strain loop and can be interpreted as the regional equivalent of 
global stroke work [25].

Statistical analysis
Statistical analyses were performed using IBM SPSS 25.0 (IBM Corp, Armonk, NY, USA) 
and Stata SE 16.1 (StataCorp LLC, TX, USA). Values were expressed as mean with standard 
deviations (SDs) and standard error (SE), frequencies with percentages or median with 
interquartile range (IQR), and were compared by Fisher’s exact test for dichotomous 
variables and Kruskal Wallis test for continuous variables.

We assessed progression in the three age-groups by entering key parameters from 
the echocardiographic assessment and the model estimations of RV tissue properties 
into a linear mixed model with random intercept and exchangeable covariance structure. 
Heterogeneity in estimated tissue properties was assessed as the normalized standard 
deviation of tissue properties of the 3 RV free wall segments and was also entered into the 
linear mixed model. P-values were two-sided, and values <0.05 were considered significant.

Results

Clinical characteristics
We included 82 early stage AC patients and genotype positive family members (57% female, 
age 39 ± 17 years, 10% probands, Table 6.1). A (likely-)pathogenic variant was found in 92% 
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of patients, mostly located in the PKP2 gene (84%). During a mean follow-up time of 6.7 ± 
3.3 years, a total of 355 echocardiograms were performed (average of 4 exams per patient, 
range 2 – 9). Fourty-two exams were excluded due to irregular heart rhythm or inadequate 
visualization of one or more RV free wall segments.During follow-up, 6 patients experienced 
a first life-threatening VA, after a mean of 4 years (range 0.2 – 8.9 years).

Progression of deformation abnormalities
In a linear mixed model analysis of 313 echocardiographic assessments, both global 
(Figure 6.1) and segmental (Figure 6.2) deformation characteristics deteriorated in all 
three age-groups. Deterioration in LVEF was not observed in any of the age groups (-0.03% 
per year [95% CI -0.16 to 0.09], but LV function deteriorated by absolute 0.1% per year 
(95% CI 0.05 to 0.15) worsening of GLS. Deterioration was faster in the RV lateral wall, 
expressed by a mean worsening of absolute 0.6% per year (95% CI 0.46 to 0.70). The 
three segmental deformation characteristics used to classify RV deformation type showed 
that the basal segment was most impaired in all age-groups, whereby an apex-to-base 
gradient was maintained during follow-up. (Figure 6.2) When displaying progression 
of the deformation types during follow-up (Figure 6.3), the deformation pattern of the 
basal segment was most frequently impaired (type II or III). Progression to a more 
abnormal deformation pattern occurred in all age groups, whereby the pattern in the 
basal segment deteriorated in about half of the cases and in the mid segment in about 
one third. Deformation in the apical segment was normal in most cases, and progression 
to an abnormal deformation pattern was less likely. (Yearly progression rates and mean 
values at baseline and last follow-up are provided in Supplemental Table S6.1)

Table 6.1. Baseline table. Values are mean ± SD, median (IQR), or frequencies (%).

Total
(n = 82)

Age <30
(n = 27)

30<Age<50
(n = 32)

Age>50
(n = 23)

p-value

Age (years) 39 ± 17 20 ± 6 39 ± 6 60 ± 7 <0.001

Female sex, n (%) 47 (57%) 15 (56%) 20 (63%) 12 (52%) 0.723

Proband, n (%) 8 (10%) 0 (0%) 4 (13%) 4 (17%) 0.064

Follow-up time (years) 6.5 ± 3.1 7.1 ± 2.9 6.9 ± 3.5 5.2 ± 2.5 0.109

VA during follow-up, n (%) 6 (7%) 0 (0%) 4 (13%) 2 (9%) 0.197

Pathogenic mutation, n (%) 75 (92%) 27 (100%) 29 (91%) 19 (83%) 0.077

PKP2, n (%) 69 (84%) 24 (89%) 28 (88%) 17 (74%) 0.326

DSG, n (%) 5 (6%) 2 (7%) 1 (3%) 2 (9%) 0.616

DSP, n (%) 1 (1%) 1 (4%) 0 (0%) 0 (0%) 0.610

Abbreviations: DSG2, desmoglein-2 gene; DSP, desmoplakin gene; PKP2, plakophilin-2 gene; VA, life-
threatening ventricular arrhythmias.
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Figure 6.1. Progression of left ventricular (LV) ejection fraction (LVEF), LV global longitudinal strain (LV GLS), 
and right ventricular free wall longitudinal strain (RVfwLS), separated by age-group. Shown p-values are for 
progression during follow-up.

Figure 6.2. Progression of segmental deformation parameters of the right ventricle (RV), separated by age-
group. Shown p-values are for progression during follow-up.
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Progression of modelled RV tissue properties
Progression of the estimated contractility, compliance, activation delay, and work density 
was not consistently seen. (Figure 6.4, Supplemental Table S6.2) Contractility of the basal 
segment decreased in the first two age-groups (p = 0.005 and p = 0.022, respectively). 
Estimated compliance increased in the apical segment in all age-groups. When focusing 
on heterogeneity within the RV free wall, a clear increase was seen for all estimated RV 
tissue properties in patients below the age of 30 at inclusion. (Figure 6.5, Supplemental 
Table S6.3) In the two older age-groups, increasing heterogeneity was also observed, but 
not significant in all four tissue properties.

Figure 6.3. Progression of right ventricular (RV) deformation types in the three RV free wall segments, sepa-
rated by age-group.
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Figure 6.4. Progression of modelled right ventricular tissue properties, separated by age-group.

Case studies of progression
Subject 1 experienced a life-threatening ventricular arrhythmia 2.9 years after baseline 
evaluation (Figure 6.6). During the first examination, RV deformation was slightly abnormal 
in the basal segment, with delayed onset of shortening, slightly reduced peak strain and 
mild post-systolic shortening. During follow-up, deformation patterns became increasingly 
abnormal in all RV segments, whereby the basal pattern was most effected. The apex-to-base 
heterogeneity was also expressed in the estimated RV tissue properties. Heterogeneity was 
first observed in the activation delay and later also in contractility, compliance and work density.

Subject 2 experienced a life-threatening ventricular arrhythmia 5.7 years after baseline 
evaluation (Figure 6.7). During the first examination, RV deformation was slightly impaired, 
but contraction in the three segments of the RV free wall was homogeneous. During follow-
up, contraction became increasingly heterogenic, whereby deformation in the basal and 
mid segment was most abnormal. The apex-to-base heterogeneity was also expressed 
in the estimated RV tissue properties of the two follow-up examinations and preceded 
the arrhythmic event.
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Figure 6.5. Progression of heterogeneity in estimated RV tissue properties between the three RV free wall 
segments, separated by age-group.

Figure 6.6. Case study patient 1. The patient experienced a life-threatening ventricular arrhythmia 2.9 years 
after the baseline evaluation.
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Figure 6.7. Case study patient 2. The patient experienced a life-threatening ventricular arrhythmia 5.7 years 
after the baseline evaluation.

Discussion

In this study, we have used echocardiographic deformation imaging and computational 
simulations to evaluate structural disease progression in different age-groups in early AC. 
We found that LV GLS and most right ventricular deformation abnormalities progressed 
in all age-groups. Based on these finding, age-tailoring of follow-up intervals would not 
be recommended.

The computational model was not able to provide extra insight in the underlying 
disease substrate when looking at absolute values of estimated RV tissue properties on 
a group level. However, a clear increase in regional heterogeneity revealed progressive 
local tissue substrates on a group level. On top of that, when applying computational 
simulations accounting for uncertainty on a patient specific level, estimations can provide 
extra insight in the etiology of progressive substrates.

Age-related penetrance in AC
(Likely-)pathogenic AC variants are associated with incomplete penetrance and varied 
disease expression. The penetrance is age-related with onset typically observed in the 
third and fourth decade of life [3,4,6,7]. Disease expression is, however, recognized in 
adolescents [3,26,27]. Therefore, a recent expert consensus statement recommended 
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clinical evaluation with 12-lead ECG, ambulatory ECG and cardiac imaging every 1-3 years 
starting at 10-12 years of age [7].

While early recognition of disease expression is valuable, prevention of SCD is the most 
important goal of AC screening. Prior studies report SCD rates up to 23% at presentation, 
mainly in young AC patients [3,4]. In a cohort study of AC patients who presented ³50 years 
of age, ventricular tachycardia and pre-existing structural abnormalities were common, 
but sudden cardiac death was not observed [5]. The latter raises the question at what 
age you can stop the frequent and demanding screening of AC patients and relatives. In a 
position statement from 2010, it was suggested that serial screening of relatives can be 
stopped at the age of 50-60 years, due to completed penetrance [28]. Our study showed 
progression of deformation abnormalities in both early-, mid-, and late-presenters without 
an overt structural AC phenotype at baseline, contradicting the statement of completed 
penetrance after 50 years of age.

Progression of deformation abnormalities
Our study showed that deformation imaging is a useful technique for follow-up of structural 
disease progression in AC. In a previous study on serial evaluation of AC relatives, one-
third showed electrical progression during 4 year follow-up and structural progression 
was rare [29]. However, structural progression was measured by increase in structural 
2010 TFC, which lack sensitivity for detection of early disease manifestation [30]. We 
have previously shown that RV deformation patterns are superior for detection of early 
disease [31]. In Figure 6.3 of the current study, these RV deformation types showed to be 
a robust classification method during serial analyses, which is able to detect progression 
over time. In segmental analyses, all deformation parameters were worse in the basal 
segment. This is in line with previous studies in other cohorts, which showed that the 
subtricuspid segment of the RV lateral wall is the earliest and most severely affected 
area in AC [10,21,32,33].

Progression of modelled RV tissue properties
Definitive diagnosis of AC is based on the presence of transmural fibro-fatty replacement 
of RV myocardium at biopsy, autopsy, or surgery [34,35]. As assessment of transmural 
myocardium is not possible in the vast majority of patients, TFC guide the diagnosis of 
AC [8]. The use of personalized computational modelling can give more insight in the 
patient’s underlying substrate as estimated tissue properties are directly related to 
tissue composition. We have previously developed a patient-specific computer modelling 
approach to estimate tissue properties of the underlying disease substrate based on 
echocardiographic deformation data [10,25,36,37]. In the current study, we applied this 
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modelling approach on serial echocardiographic examinations in a large cohort to achieve 
more insight in the development of early structural disease substrates in AC.

On a group level, repeated estimation of mean RV tissue properties did not add value 
over the follow-up of deformation parameters. Since the model is based on deformation 
characteristics, which are load dependent, more information on loading conditions during 
the examination should be added for precise estimation of tissue characteristics. Therefore, 
we concluded that more information is needed for reliable estimation of absolute values of 
RV tissue properties. On the individual patient level, displaying uncertainty can facilitate 
more reliable interpretation and make the estimations more useful.

While estimating absolute values of tissue characteristics will require more 
information, heterogeneity in deformation patterns was well captured in the estimated 
tissue properties. Local deformation abnormalities, reflecting local disease substrates, 
resulted in heterogenic tissue estimations very early in the disease. Hereby, the model 
has the potential to show the consecution of development of local electric and structural 
abnormalities.

In the two case studies of patients who experienced a life-threatening ventricular 
arrhythmia while no overt structural phenotype was found by conventional TFC, RV 
deformation abnormalities and heterogeneity in estimated tissue properties preceded 
the arrhythmic event. These cases illustrate the potential use of the modelling approach 
on a patient specific basis, as estimated abnormalities which are present prior to an event 
might have predictive value. The number of events in this study was however too low to 
draw any firm conclusions from these findings.

Clinical implications
Cascade genetic screening confronts clinicians with an increasing group of patients at 
risk of severe arrhythmic events, but without an overt phenotype at first evaluation. 
These patients undergo frequent cardiac evaluations to detect early signs of disease-
penetrance. While conventional echocardiographic TFC lack sensitivity for detection of 
early disease substrates [29,31], this study supports the use of deformation imaging as a 
robust follow-up method for AC patients in the out-patient department. Our data showed 
structural progression in all investigated age-groups, including early presenters (age < 
30 years at baseline) and late presenters (age > 50 years at baseline). These findings 
do not support age-tailoring of cardiac imaging follow-up intervals at the out-patient 
department. However, since other studies reported low risks of SCD in older relatives, 
structural progression in this group may be of limited value compared to younger relatives. 
Future studies with long follow-up of a large cohort of patients >50 years are needed to 
determine the relation between structural progression and risk of SCD in this group.
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The patient-specific computational model supported deformation imaging findings 
and enabled a link between deformation abnormalities and local tissue substrates. Future 
studies could investigate the predictive value of the estimated tissue properties and test 
whether inclusion of more information on the patients’ haemodynamic state is essential.

Limitations
Since we excluded patients with overt structural disease at baseline, our cohort had a 
lower event rate than the average AC cohort. This resulted in a group of only 6 patients 
who experienced a life-threatening VA during follow-up, which is too small to search for 
risk factors in deformation imaging or estimated tissue properties on a group level.

Due to the high prevalence of patients with mutations in the PKP2 gene, the 
generalizability to patient populations with other dominating mutations is uncertain.

Conclusion

This study showed that deformation imaging can be used to follow-up disease progression 
in early AC. Patient-specific computer simulations showed the development of a tissue 
substrate affecting contractility, compliance, and activation delay. Since structural 
progression was seen in all age-groups, age-tailoring of follow-up intervals for cardiac 
imaging is not supported by our data.
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Supplementary Material

Supplemental Table S6.1. Values at inclusion and last follow-up are mean (SD). Yearly progression rate with 
standard errors. P-values for progression are calculated by linear mixed model statistics with exchangeable 
covariance structure and random intercept.

At inclusion 
(n=82)
(SD)

Progression 
rate, 1 year 
(SE)

At last follow-up 
(n=82)
(SD)

p-value for 
progression

LVEF, %
 Age 0-30
 Age 30-50
 Age 50+

58.52 (4.40)
59.22 (3.60)
57.97 (3.96)
58.48 (5.73)

-0.03 (0.06)
-0.11 (0.09)
0.02 (0.10)
-0.07 (0.18)

58.83 (4.15)
58.44 (4.15)
58.97 (3.84)
59.09 (4.70)

0.603
0.201
0.835
0.699

LV GLS, %, n=313
 Age 0-30, n=108
 Age 30-50, n=132
 Age 50+, n=73

-20.08 (1.93)
-20.11 (1.79)
-20.02 (2.09)
-20.14 (1.95)

0.10 (0.02)
0.10 (0.04)
0.08 (0.04)
0.15 (0.06)

-19.58 (2.10)
-19.56 (2.34)
-19.55 (1.81)
-19.66 (2.25)

<0.001
0.012
0.023
0.022

RVFWLS, %
 Age 0-30
 Age 30-50
 Age 50+

-25.33 (6.05)
-25.56 (5.78)
-25.59 (6.00)
-24.71 (6.64)

0.58 (0.06)
0.43 (0.10)
0.65 (0.10)
0.70 (0.13)

-21.50 (5.91)
-22.22 (5.35)
-21.09 (6.52)
-21.22 (5.82)

<0.001
<0.001
<0.001
<0.001

Peak systolic strain base
 Age 0-30
 Age 30-50
 Age 50+

-22.78 (7.51)
-23.21 (7.57)
-23.00 (7.60)
-21.97 (7.57)

0.71 (0.06)
0.67 (0.11)
0.70 (0.10)
0.84 (0.13)

-17.40 (6.52)
-17.81 (6.63)
-17.23 (6.91)
-17.16 (6.08)

<0.001
<0.001
<0.001
<0.001

Peak systolic strain mid
 Age 0-30
 Age 30-50
 Age 50+

-25.76 (6.26)
-25.95 (5.97)
-26.17 (6.17)
-24.96 (6.91)

0.58 (0.07)
0.41 (0.10)
0.67 (0.10)
0.72 (0.14)

-21.84 (6.09)
-22.59 (5.55)
-21.59 (6.59)
-21.31 (6.15)

<0.001
<0.001
<0.001
<0.001

Peak systolic strain apex
 Age 0-30
 Age 30-50
 Age 50+

-27.54 (5.89)
-27.55 (4.89)
-27.70 (6.02)
-27.30 (6.95)

0.43 (0.08)
0.19 (0.12)
0.56 (0.12)
0.59 (0.18)

-25.42 (6.01)
-26.38 (4.57)
-24.72 (6.89)
-25.27 (6.30)

<0.001
0.105
<0.001
0.001

Onset base (ms)
 Age 0-30
 Age 30-50
 Age 50+

96.00 (56.40)
94.22 (63.93)
96.03 (58.51)
98.04 (45.26)

4.1 (0.7)
4.4 (1.2)
3.4 (1.0)
5.6 (1.3)

122.38 (55.25)
119.11 (62.51)
121.81 (54.11)
127.00 (49.58)

<0.001
<0.001
0.001
<0.001

Onset mid (ms)
 Age 0-30
 Age 30-50
 Age 50+

69.17 (46.55)
55.78 (42.60)
72.94 (53.75)
79.65 (37.52)

3.3 (0.7)
3.7 (1.0)
3.0 (1.1)
3.7 (1.4)

87.29 (49.51)
83.70 (44.23)
88.62 (54.91)
89.65 (49.41)

<0.001
<0.001
0.007
0.009

Onset apex (ms)
 Age 0-30
 Age 30-50
 Age 50+

58.28 (35.58)
50.78 (35.04)
56.56 (36.01)
69.48 (34.34)

2.1 (0.6)
2.2 (1.0)
1.9 (0.9)
2.5 (1.2)

72.94 (40.51)
66.93 (37.93)
75.69 (46.60)
76.17 (34.87)

<0.001
0.027
0.030
0.038

Post-syst. shortening base
 Age 0-30
 Age 30-50
 Age 50+

7.87 (15.39)
5.67 (17.46)
9.01 (15.41)
8.88 (12.96)

0.76 (0.17)
0.60 (0.25)
1.10 (0.27)
0.07 (0.38)

11.62 (18.90)
11.03 (20.42)
14.35 (20.60)
8.52 (14.23)

<0.001
0.016
<0.001
0.856
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Supplemental Table S6.1. (continued)

At inclusion 
(n=82)
(SD)

Progression 
rate, 1 year 
(SE)

At last follow-up 
(n=82)
(SD)

p-value for 
progression

Post-syst. shortening mid
 Age 0-30
 Age 30-50
 Age 50+

2.05 (5.29)
1.38 (5.20)
2.10 (4.82)
2.78 (6.09)

0.45 (0.12)
0.09 (0.10)
0.85 (0.23)
0.13 (0.23)

4.38 (12.66)
2.24 (4.15)
7.15 (18.58)
3.04 (8.06)

<0.001
0.371
<0.001
0.580

Post-syst. shortening apex
 Age 0-30
 Age 30-50
 Age 50+

0.50 (1.17)
0.39 (0.76)
0.68 (1.38)
0.36 (1.27)

0.34 (0.07)
0.02 (0.03)
0.63 (0.14)
0.22 (0.12)

2.23 (7.15)
0.57 (1.48)
4.30 (10.35)
1.31 (4.92)

<0.001
0.617
<0.001
0.054

LVEF, left ventricular ejection fraction; LV GLS, left ventricular global longitudinal strain; RVFWLS, right 
ventricular free wall longitudinal strain.

Supplemental Table S6.2. Values at inclusion and last follow-up are mean (SD). Yearly progression rate with 
standard errors. P-values for progression are calculated by linear mixed model statistics with exchangeable 
covariance structure and random intercept.

At inclusion 
(n=82)
(SD)

Progression rate, 
1 year
(SE)

At last follow-up 
(n=82) p-value for 
progression

p-value for 
progression

Contractility base, MPa/s
 Age 0-30
 Age 30-50
 Age 50+

455.116 (132.925)
449.171 (119.957)
481.458 (146.787)
425.445 (125.355)

-5.473 (1.687)
-7.409 (2.652)
-5.825 (1.933)
-7.58 (4.154)

422.837 (136.938)
412.581 (135.470)
434.399 (154.782)
418.789 (115.124)

0.001
0.005
0.022
0.855

Contractility mid, MPa/s
 Age 0-30
 Age 30-50
 Age 50+

480.433 (117.575)
471.521 (106.577)
509.287 (115.090)
450.751 (128.761)

-1538 (1446)
-1448 (2245)
-3517 (2238)
4304 (3339)

474.570 (113.836)
474.260 (106.125)
486.931 (130.727)
457.735 ( 99.002)

0.288
0.436
0.116
0.197

Contractility apex, MPa/s
 Age 0-30
 Age 30-50
 Age 50+

467.850 (118.692)
472.776 (113.608)
481.884 (122.978)
442.541 (119.662)

-2.362 (1.515)
-3.794 (2.307)
-3.536 (2.398)
3.730 (3.407)

459.076 (118.832)
457.487 (106.345)
470.409 (140.351)
445.174 (102.358)

0.119
0.100
0.140
0.274

Compliance base, 1/kPa
 Age 0-30
 Age 30-50
 Age 50+

1.24e-05 (1.12e-05)
1.09e-05 (9.18e-06)
1.38e-05 (1.38e-05)
1.23e-05 (9.25e-06)

1.04e-06 (5.16e-07)
2.43e-07 (2.75e-07)
1.45e-06 (5.29e-07) 
2.49e-06 (2.33e-06)

2.20e-05 (5.37e-05)
1.41e-05 (1.38e-05)
1.58e-05 (1.76e-05)
3.98e-05 (9.75e-05)

0.044
0.377
0.006
0.285

Compliance mid, 1/kPa
 Age 0-30
 Age 30-50
 Age 50+

1.87e-05 (1.73e-05)
1.38e-05 (1.05e-05)
2.02e-05 (1.62e-05)
2.25e-05 (2.36e-05)

1.17e-06 (6.28e-07)
4.75e-07 (4.06e-07)
5.88e-07 (6.22e-07)
5.86e-06 (2.77e-06)

3.26e-05 (6.66e-05)
2.14e-05 (2.23e-05)
2.43e-05 (3.02 e-05)
5.73e-05 (1.16e-04)

0.062
0.242
0.345
0.035

Compliance apex, 1/kPa
 Age 0-30
 Age 30-50
 Age 50+

2.61e-05 (2.42e-05)
1.89e-05 (1.91e-05)
3.07e-05 (2.65e-05)
2.82 e-05 (2.50e-05)

3.12e-06 (7.26e-07)
2.41e-06 (7.55e-07)
3.18e-06 (7.26e-07)
4.43e-06 (2.07e-06)

5.58e-05 (6.18e-05)
4.62e-05 (4.05e-05)
5.64e-05 (7.14e-05)
6.62e-05 (6.84e-05)

<0.001
0.001
0.008
0.032

Activation delay base, ms
 Age 0-30
 Age 30-50
 Age 50+

83.61 (63.77)
72.81 (53.30)
94.77 (68.58)
80.75 (68.22)

1.2 (0.9)
1.6 (1.4)
0.5 (1.2)
2.1 (2.2)

85.82 (69.53)
94.74 (85.20)
87.76 (60.99)
72.67 (60.79)

0.156
0.250
0.659
0.355
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Supplemental Table S6.2. (continued)

At inclusion 
(n=82)
(SD)

Progression rate, 
1 year
(SE)

At last follow-up 
(n=82) p-value for 
progression

p-value for 
progression

Activation delay mid, ms
 Age 0-30
 Age 30-50
 Age 50+

75.42 (47.40)
72.06 (39.56)
78.90 (45.13)
74.53 (59.32)

1.3 (0.7)
0.7 (0.9)
1.8 (1.1)
0.6 (1.5)

78.34 (55.22)
80.09 (44.46)
85.81 (64.55)
65.89 (52.67)

0.049
0.458
0.105
0.718

Activation delay apex, ms
 Age 0-30
 Age 30-50
 Age 50+

70.70 (44.28)
70.79 (35.54)
70.80 (42.20)
70.45 (56.72)

0.7 (0.6)
-0.1 (0.9)
1.1 (0.9)
0.4 (1.5)

68.26 (45.21)
70.74 (40.15)
72.76 (46.59)
59.08 (49.35)

0.251
0.899
0.212
0.780

Work density base, kPa
 Age 0-30
 Age 30-50
 Age 50+

4437.11 (1518.13)
4155.70 (1290.09)
4709.47 (1734.44)
4388.53 (1439.48)

-18.6 (18.7)
-55.9 (25.9)
5.2 (31.2)
-7.4 (42.0)

4349.26 (1790.30)
3975.06 (1363.42)
4619.96 (2195.16)
4411.89 (1591.03)

0.321
0.031
0.867
0.860

Work density mid, kPa
 Age 0-30
 Age 30-50
 Age 50+

4760.22 (1477.71)
4459.76 (1197.44)
5106.32 (1663.42)
4631.40 (1464.22)

-6.5 (13.8)
-9.4 (19.8)
-15.4 (22.7)
25.6 (31.0)

4807.39 (1729.39)
4549.55 (1388.68)
5083.16 (2190.07)
4726.39 (1332.26)

0.637
0.635
0.498
0.410

Work density apex, kPa
 Age 0-30
 Age 30-50
 Age 50+

4859.82 (1747.30)
4642.50 (1353.06)
5113.13 (2038.61)
4762.51 (1749.26)

-0.2 (19.6)
2.7 (25.6)
-26.3 (33.8)
75.4 (42.1)

5122.76 (1994.36)
4892.43 (1780.15)
5317.75 (2392.85)
5121.85 (1646.44)

0.992
0.916
0.436
0.073

Supplemental Table S6.3. Normalized heterogeneity between three RV free wall segments at inclusion and last 
follow-up are mean (SD). Yearly progression rate with standard errors. P-values for progression are calculated 
by linear mixed model statistics with exchangeable covariance structure and random intercept.

At inclusion 
(n=82)

Progression 
rate, 1 year 
(SE)

At last 
follow-up 
(n=82)

p-value for 
progression

Normalized Contractiltiy, %
 Age 0-30
 Age 30-50
 Age 50+

10.99 (5.94)
10.67 (7.02)
10.63 (5.25)
11.86 (5.61)

0.46 (0.11)
0.51 (0.14)
0.47 (0.18)
0.38 (0.31)

13.26 (9.95)
13.68 (11.12)
13.98 (10.97)
11.78 (6.75)

<0.001
<0.001
0.008
0.220

Normalized Compliance, %
 Age 0-30
 Age 30-50
 Age 50+

44.84 (16.69)
43.10 (13.23)
46.94 (19.27)
43.96 (16.86)

1.07 (0.27)
1.53 (0.39)
0.55 (0.42)
1.69 (0.73)

55.53 (18.18)
56.33 (18.12)
52.96 (16.63)
58.19 (20.53)

<0.001
<0.001
0.187
0.020

Normalized Work Denisty, %
 Age 0-30
 Age 30-50
 Age 50+

12.44 (8.57)
11.22 (5.89)
13.52 (11.42)
12.35 (6.50)

1.07 (0.23)
0.80
1.27
1.71

17.47 (17.80)
16.75 (14.91)
19.59 (23.15)
15.36 (11.69)

<0.001
0.001
<0.001
0.032

Activation delay, ms
 Age 0-30
 Age 30-50
 Age 50+

16.40 (16.56)
14.99 (11.24)
18.11 (24.09)
15.67 (6.00)

0.80 (0.25)
0.81 (0.40)
0.71 (0.38)
1.10 (0.57)

19.92 (19.51)
21.20 (29.58)
20.16 (14.65)
18.09 (7.65)

<0.001
0.044
0.057
0.052
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General Discussion

The aim of this Thesis was to get more insight in the myocardial disease substrates 
observed in early-stage Arrhythmogenic Cardiomyopathy (AC) patients. To do so, we 
developed a modelling framework for patient-specific estimation of model parameters 
representing regional myocardial tissue properties. This modelling framework used 
the CircAdapt model of the human heart and circulation [1,2] as engine and clinically 
measured regional deformation patterns as input.

In Chapter 2, we developed a simple protocol in which right ventricular (RV) model 
parameters were estimated with a gradient-based parameter estimation protocol, 
minimizing the error between measured and simulated strain indices. Main findings were 
1) that the CircAdapt model can reproduce deformation patterns, 2) that more information 
on LV deformation should be included to enable a more reliable description of the RV 
afterload, and 3) a more robust parameter optimization algorithm should be used in order 
to cope with the non-linear parameter space.

Using this knowledge, we performed an extensive sensitivity and identifiability analysis 
in Chapter 3 to identify the most important parameters to simulate both LV and regional RV 
deformation patterns using our model. Over hundred model parameters were identified. 
Based on the sensitivity analysis performed with the Morris screening method [3] and 
identifiability analysis based on the diaphony obtained from Monte Carlo simulations 
[4], the parameter set was reduced to a smaller subset containing 23 parameters. Most 
important parameters related to active and passive stress development and, hence, 
contractility and passive stiffness of the myocardium. Making additional assumptions, 
we combined three parameters into one which reduced the parameter subset to the final 
21 parameters used in the following chapters. In Chapter 4, we used this parameter 
subset to estimate patient-specific model parameters in a large cohort of 68 individuals 
with a desmosomal mutation related to AC. These estimations showed that abnormal 
deformation patterns in AC patients were related to increased heterogeneity in tissue 
contractility and compliance.

To get more insight in the development of the myocardial tissue substrate underlying 
abnormal deformation patterns in early-stage AC patients, we studied a cohort in 
Chapters 5 and 6 at baseline and during follow-up. As measurement uncertainty inevitably 
affects the model estimation, uncertainty might affect the results in a longitudinal study 
design more than in the previous chapters describing cross-sectional data. To include 
measurement uncertainty in the framework, we implemented a Bayesian inference 
method in Chapter 5 to estimate the posterior distributions rather than a single point 
estimate. Using this method, we were able to estimate the reliability of the estimation. 
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In Chapter 6, this method was applied to longitudinal follow-up data obtained in a large 
cohort of 82 subjects without structural abnormalities defined by the Task Force Criteria 
(TFC) and the age-related prevalence of AC progression was investigated. It was shown 
that AC-related evolution of deformation abnormalities and related heterogeneity of RV 
tissue properties occurs independent from age.

In this final chapter, we discuss the current state of the creation of the Digital Twin of 
early-stage AC patients. First, we discuss the novel insight in AC tissue characterization 
using the Digital Twin, which mainly focusses on the research presented in Chapters 4 
and 6. Then, we discuss how the main findings of these chapters depend on the choices 
made in Chapters 2, 3, and 5. Also, we hypothesize which technological advancements 
might improve the quality of our modelling framework. Finally, we discuss the impact of 
the research presented in this Thesis and frame the potential for clinical translation of the 
Digital Twin technology. In this Thesis, we have addressed the six challenges introduced 
in Chapter 1 (Figure 7.1), which were the Problem Challenge, the Measurement Challenge, 
the Model Challenge, the Parameter Challenge, the Optimization Challenge, and the 
Translational Challenge.

Figure 7.1 Modelling framework (top) and challenges of (bottom) creating a Digital Twin. The identified chal-
lenges are related to different aspects of the modelling framework. The lower two arrows indicate the most 
important dependencies as discussed in this chapter.
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Using the Digital Twin – Novel insights in Arrhythmogenic Car-
diomyopathy tissue characterization

The role of the Digital Twins has gained impact in clinics. The first Digital twins are being 
used for diagnosis [5], stratification [6], and intervention planning [7,8]. The Digital Twin 
can be used to get more insight in the myocardial tissue substrate underlying the abnormal 
deformation patterns (Chapter 4). Better understanding of the substrate is important 
because the lack of diagnostic tools to diagnose early-disease stages [9]. Patients with 
AC may receive treatments like lifestyle changes, anti-arrhythmic drugs, ablation, and ICD 
implantation [10] which all have a high impact on quality of the patient’s life. Therefore, 
reliable risk stratification is important in early-stage or preclinical AC, as these subjects 
may experience sudden cardiac death as first symptom [11,12]. The 2010 TFC [13] and 
guidelines [10,14] have been developed to guide the diagnosis and risk stratification of AC. 
In this Thesis, we have followed the 2010 TFC to distinguish between subclinical subjects, 
patients with only electrical, and patients with both electrical and structural abnormalities 
(Chapters 2, 3, and 4). After the publication of the 2010 TFC, various evaluations of 
the current diagnostic criteria and differential diagnosis have been performed [15–18] 
and updated consensus statements and guidelines have been published [10,14]. The 
prognostic value of regional deformation abnormalities has been demonstrated [19–22] 
and this Thesis emphasizes the value of deformation imaging.

In this thesis, we applied the modelling framework to two cohorts which were both 
described elsewhere [9,23,24]. These studies focussed on the development of deformation 
characteristics and its predictive value. Therefore, deformation patterns were available 
for most subjects. Because studies in this Thesis were performed in retrospect, the 
availability of other clinical data was limited. As a result, voluminal information obtained 
from cardiac magnetic resonance imaging (CMR) was used in Chapters 2, 3, and 4 while 
echocardiographic voluminal information was used in Chapters 5 and 6. This may affect 
the model estimations, as these two sources have a systematic difference in voluminal 
measurements [25]. The effect of the different measurements on the outcome of the 
Digital Twin should be investigated and the results of this should be included in the design 
of a prospective study. As the systematic difference between echocardiographic and CMR 
data only holds for global estimations, we assume regional heterogeneities are marginally 
affected by this measurement uncertainty.

In line with previously published hypotheses based on generic simulations [9], most 
of our patient-specific simulations revealed heterogeneity in contractility and compliance 
rather than activation delay as main cause of the tissue deformation abnormalities 
observed in AC subjects. Estimated tissue properties in the basal segment of the RV 
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were most abnormal, which is in line with typical expression of the disease [9,19,26,27]. 
The decreased contractility and compliance in the basal segment may be directly related 
to fibro-fatty replacement of myocardial tissue [28,29]. Our findings emphasize the 
high clinical value of deformation patterns because they reveal heterogeneity in tissue 
properties (Chapter 4). By expanding and improving our modelling framework, the 
estimated Digital Twin might be used in the future to aid diagnosis and to improve 
risk stratification.

Despite the abnormal electrical activation patterns that may be observed in AC patients 
[30], only abnormal activation delay was observed on an individual level (Chapter 4). 
Late activated basal segments are not expected to significantly affect pump function, as 
their contractile function was in most cases severely reduced. Although not histologically 
validated, it is likely that abnormal tissue properties are caused by fibro-fatty tissue 
replacement. Late activated segments infiltrated with fibro-fatty tissue can be a substrate 
for arrhythmias [31]. Only little arrhythmic events were reported in the study cohort used 
in Chapter 6. In future studies, applying this method on a larger cohort with a higher 
number of arrhythmic events could show whether this modelling framework can add value 
to current arrhythmic risk prediction models.

Creating the Digital Twin – The Modelling Framework

Garbage in, Garbage out
The quality of the Digital Twin is heavily influenced by the quality of the measurements. 
The deformation patterns obtained from echocardiography are easy to obtain and more 
accessible than those obtained with CMR. Automatic segmentation of the wall can 
standardize deformation imaging and thereby improve its accuracy and reproducibility 
[32]. The downside of echocardiography is its sensitivity to noise and artifacts [33]. The 
framework developed in this Thesis is developed using patient data of relatively good 
quality (Chapter 3 and 5). Datasets with artifacts were removed from the cohort studies 
(Chapter 4 and 6). Therefore, the effect of artifacts on the estimation of the Digital 
Twin is unknown. Noise was included as measurement uncertainty in Chapter 5 and 6, 
however, this was limited to uncertainty of the offline analysis. Future work should further 
investigate which amount and type of noise and artifacts are acceptable. Given the general 
principle of “Garbage in, garbage out”, it is crucially important to define what level of 
measurement uncertainty is acceptable when creating Digital Twins.

Despite all sources of uncertainty present in echocardiographic deformation patterns, 
it has been demonstrated that deformation patterns have predictive value in AC patients 
[20,34]. Therefore, we aimed to combine these patterns with a physics- and physiology-
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based computational model to obtain more information than from the patterns alone. In 
Chapter 3, we selected the model parameters essential to reproduce regional deformation 
patterns. Further reduction of the parameter subset resulted in an increase in model 
discrepancy, meaning these parameters form the basis for the myocardial tissue substrate 
possibly found in the Digital Twin. We have limited the amount of clinical information 
used for creating the Digital Twin to the data available in these large cohorts due to 
the retrospective nature of the study. Chapter 6 demonstrates that the current set of 
measurements is not sufficient, as wide posterior distributions are estimated. Rather 
than only addressing the research question “What is the tissue substrate underlying the 
clinical data?” in the sensitivity analysis (Parameter Challenge), the research question 
“In which clinical data is the tissue substrate expressed?” should be addressed as well 
(Measurement Challenge). These two questions form a recursive search to the optimal 
combination of clinical data and model parameters to create the best Digital Twin of AC 
patients (Figure 7.1), given the research question being addressed.

In Chapters 4, 5, and 6, we found that derived tissue properties are estimated more 
accurately than properties explicitly represented by model parameters given the available 
clinical data. More research should be done on which estimated tissue properties have 
clinical value. The estimated tissue properties should be interpreted as a pseudo-true 
value related to real tissue properties which may have clinical value. To use the Digital Twin 
to estimate the absolute values of tissue properties (Translational Challenge), estimated 
results should be validated with real-world data. This change in clinical translation should 
be followed by a re-formulation of the problem (Problem Challenge) which affects the 
choice of measurements, model, and model parameters identified. All challenges should 
be re-addressed to be able to estimate the absolute values of tissue properties.

Estimation of pump function
The main function of the heart is to pump blood through the body to meet the body’s 
demands. The amount of pumped blood is quantified by Stroke Volume or Cardiac Output, 
which in the CircAdapt model is controlled by the pressure-flow control which contains two 
parameters describing heart rate and time-averaged venous return [1]. In our sensitivity 
analysis (Chapter 3), these two parameters seemed to be most sensitive to deformation 
indices. Therefore, reliable measurements of cardiac output and stroke volume are 
important. This important input information was limitedly available in the cohort studies 
used in this thesis (Chapters 4 and 6). Future studies should prospectively include more 
clinical data on ventricular cavity and wall volumes.

In Chapter 3, we showed that the mean aortic pressure is not identifiable given 
the available data. This parameter was removed from the subset, and set to its default 
value of 92mmHg. Thereby, global pump function in terms of work is mostly affected by 
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cardiac output. It is only minimally affected by diastolic pressure, as simulations with 
high diastolic pressure were assumed to be not physiological and thus rejected so most 
model parameters are related to the distribution of load over the wall segments. As only 
voluminal information is included in the estimation of pump function, pump function 
was not reliably estimated. Because the total pump work is the sum of local myocardial 
work [35], the absolute values of the derived tissue properties are not reliable and only 
heterogeneity in tissue properties can be used for clinical translation. To improve the 
reliability, target tissue properties should be prospectively included in the problem 
definition such that measurements and model parameter selection can be dedicated to 
these model outcomes (Figure 7.1).

Increasing model detail and additional measurements can improve the accuracy of 
the Digital Twin

In Chapter 5, we observed not all parameters were identifiable. As the model parameter 
subset cannot be further reduced because model discrepancy will increase, the 
model could be changed (Model Challenge) or measurements can be added to the set 
(Measurement Challenge). Adding measurements to the modelling framework will change 
the dynamics of the estimation as more information is available to estimate the posterior 
parameter values. As this is limited to those signals the chosen model is able to reproduce, 
the choice of model must be re-evaluated. Currently, two modules exist which allows 
to increase the level of detail in the CircAdapt model without significantly increase the 
computational cost. First, a 1D wave propagation model has been developed recently as a 
module for the circulation [36]. This module simulates arteries as a 1D model rather than 
lumped cavities. It also includes the backward propagation of waves, and has been used 
to describe cardiovascular fetal to neonatal transition [37]. Using this module, afterload 
of the heart is modelled more realistically.

Second, myocardial active behaviour could be modelled using a electrophysiological 
model rather than a phenomenological model. Recently, Lyon et al. developed an 
electromechanical cardiomyocyte model [38], which combines the O’Hara-Rudy dynamic 
model describing cellular electrophysiology and Calcium cycling [39] with the MechChem 
model describing contraction of the sarcomere and tension development [40,41]. This 
novel cardiomyocyte model could be implemented in the CircAdapt model as a module to 
replace the currently used phenomenological description for active stress (Equation 2.2). 
This module might be able to reproduce the cellular abnormalities found in mice models 
[42] while implemented in a whole-heart haemodynamic circulation. If so, it may further 
increase accuracy of the Digital Twin and its value for clinical translation.
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When these modules are simulated in the CircAdapt model, tissue mechanics and 
cavity haemodynamics will still be simulated using the one-fibre and TriSeg modules [1,2], 
respectively. The geometric and structural simplicity of these modules is essential to 
create a fast and reliable computational model of cardiac mechanics and haemodynamics, 
but might limit the measurements that are possible to simulate. It could be considered 
to replace the one-fibre and TriSeg modules by more complex mechanical finite element 
models (FEM) [43]. Because these models contain a more detailed description of the 
geometry, they might have a lower discrepancy with real-world data and therefore might 
improve the estimations. The spatial resolution, however, is more detailed compared to 
the clinical measurements used in this Thesis, which complicates the identifiability of the 
model parameters (Parameter Challenge).

Different parameters will be available when these suggestions are taken into 
account. Therefore, the parameter subset of interest should be reidentified (Parameter 
Challenge). With these new models, less parameters might be needed to reproduce clinical 
measurements which improves the identifiability of the model. Currently, only systolic part 
of strain is included in the likelihood function. We did not include diastolic strain because 
of the higher uncertainty due to drift compensation [44]. Because diastolic strain reflects 
filling of the ventricle, it is likely to contain more information on the passive material 
behaviour. Future work is needed to investigate how to reliably include diastolic strain in 
the modelling framework.

As an alternative to diastolic strain, valvular flow velocity patterns can be used. As they 
are known to reflect pressure gradients between the cardiac cavities [45], they potentially 
contain valuable information which is not enclosed in strain patterns. This information 
may improve the identifiability of the current parameter subset. However, valvular 
flow velocities are dependent on both ventricular as well as atrial or arterial behaviour. 
Therefore, by re-evaluating the parameter subset (Parameter Challenge), atrial and arterial 
model parameters are likely to be sensitive and therefore should be considered. This may 
be a valuable extension of the modelling platform, especially because right atrial dilatation 
has been observed in AC patients [46].

The biggest overall challenge is to find a balance between low model discrepancy, high 
parameter identifiability, high accuracy, low computational cost, and easy implementation 
in clinical workflow. It might be tempting to keep adding measurements, adding model 
parameters, or increase model complexity to improve the quality of the Digital Twin to non-
invasively estimate myocardial tissue and cardiac pump properties. Due to limited time 
available to provide all measurements and the need to quickly translate measurements 
into interpretable results for clinical decision support, the number of measurements 
needed for the Digital Twin should be limited. However, correctly designed modelling 
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frameworks can provide accurate pseudo-true estimations which might have similar or 
even better predictive values compared to the true properties. The downside of using 
pseudo-true estimates is that validation requires more complex studies compared to 
non-invasive computational estimates of real properties.

Computational cost of creating the Digital Twin
Because the CircAdapt model is a lumped parameter model, most model parameters 
cannot be measured directly. Therefore, we have focussed on creating a Digital Twin using 
methods for parameter inference. These techniques are computationally more expensive, 
as many model evaluations need to be done to estimate model parameters. Due to 
limitations in the likelihood definition, the parameter describing heart rate was directly 
set from the measurements. Especially using Adaptive Multiple Importance Sampling 
(Chapter 5), in which posterior model parameter distributions were estimated, it would 
have been better to estimate rather then set the heart rate to also include uncertainty 
of the heart rate. Future work is needed to investigate the error propagation originating 
from this mapping.

For the purpose of this Thesis, we have attempted to reduce computational cost by 
means of optimizing the implementation. The version of the CircAdapt model used in this 
Thesis was originally developed in MATLAB [47] and this version was used in Chapter 
2. The computational cost is approximately 2 seconds per heartbeat in the reference 
state, depending on the machine. To reduce computational cost, we have implemented 
the model in C++ to be able to do an extensive sensitivity analysis in Chapter 3. In this 
implementation, one heart beat takes approximately 10 milliseconds in the reference 
state. Especially the sensitivity analysis in Chapter 3 was intractable before, since one 
reduction step would have taken over 2 years rather than the 4 days. Therefore, this 
implementation was essential for the study designs used in this Thesis.

Challenge the Challenges
Given the multidisciplinary character of the technology, patient-specific modelling and 
the creation of the Digital Twin of a patient’s heart has been approached from different 
angles, each giving rise to specific challenges [8,43,48,49]. We aimed to summarize 
these challenges into 6 main challenges (Figure 7.1). The inter-dependent nature of 
these challenges is well illustrated by the optimization protocol (Optimization Challenge) 
handling the general function 𝒚𝒚 = ℳ(𝜽𝜽) , which suggests that Measurement Challenge 
(the measurements 𝒚𝒚 = ℳ(𝜽𝜽) ), Model Challenge (the computational model 𝒚𝒚 = ℳ(𝜽𝜽) ), and Parameter 
Challenge (the parameter subset 𝒚𝒚 = ℳ(𝜽𝜽) ) could be combined into one main challenge. This 
would be a more theoretical approach, whilst we determined the set of measurements 
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(Measurement Challenge) from the clinical perspective independent from the model. 
Most challenges identified by others can be considered sub-challenges or out of scope 
for this Thesis, such as the challenge considering the availability of high-quality datasets 
[50], the integration and accessibility of data with healthcare organizations caused by 
infrastructural, regulatory, and social reasons [48], or the decision upon boundary and 
initial conditions [8].

Impact

The estimated prevalence of AC is 1 in 1000 to 5000 [51,52]. Family screening of first-
degree relatives of probands is an important for identifying those at risk for sudden cardiac 
death [11,12]. Currently, only 40% of family members are screened [12] due to a lack 
of adequate screening infrastructure and due to anxiety and distress associated with 
the personal experience of a life-threatening arrhythmia or a recent family bereavement 
from an inheritable cardiac condition [53,54]. For those who are screened and monitored, 
accurate risk stratification is essential to not burden the patient more than needed.

In this impact section, we hypothesize on the potential added value of the Digital 
Twin approach presented in this Thesis for early recognition of AC and for arrhythmic risk 
stratification.

Digital Twin as a tool to get more insight in physiology
Computational models are used to get insight in the working mechanisms of the heart, 
its diseases and their treatments. As demonstrated in this Thesis, they can be used to 
reveal functional information that can’t be measured without injuring the patient, e.g. 
pressures, or can’t be measured at all, e.g. myofibre stress [43]. Over the years, various 
types of models have been developed to investigate cardiac pathologies. In the recent 
decade, the Digital Twin approach is becoming more popular [48,55] and models are now 
personalized to reveal the (patho)physiology of one single patient rather than the cohort.

Although work in this thesis is limited to the development of a modelling framework 
to create a Digital Twin of early-stage AC patients, this platform can easily be extended to 
other pathologies. It has been shown that the CircAdapt model is able to reproduce clinical 
data for different pathologies, including pulmonary hypertension [56], valvulopathies [57], 
left bundle branch block [58], and heart failure [59]. These simulation studies aimed 
at getting more insight in the physiology of the population or predict responses in the 
population, and thereby shows the model could be personalized to these pathologies 
(Model Challenge). Creating the Digital Twin of patients in the population might reveal 
new insights in the variety of disease expression.

  7
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Digital Twin as a tool for teaching
To extend the application range of the comprehensive CircAdapt model from research 
to education, the interactive user-friendly CircAdapt Simulator has been developed as 
an environment that can be used by medical students with the aim to improve their 
understanding of cardiovascular haemodynamics and related physiology [60]. This tool 
is available as a free download from www.circadapt.org. It is implemented in the medical 
curriculum at Maastricht university to teach haemodynamics and cardiac mechanics in 
healthy physiology, in valvopathies, and in congenital heart diseases, and it has been 
adapted by other universities. The CircAdapt Simulator in the current version does not 
use the full potential of the model, as it is limited to global pressures, volumes, and flows 
limiting the tool to teach general pump function in (patho)physiology.

The computational framework developed in this Thesis could add opportunities to 
the CircAdapt Simulator tool. As the Digital Twin reveals more details on the complex 
physiology and pathophysiology of the individual patient and the differences between 
patients, cardiac pathologies can be simulated more accurately and realistically. When 
(regional) myocardial data are added to the visualizations in the CircAdapt Simulator, the 
tool could be used to teach the pathophysiology in many more pathologies.

Digital Twin as a tool for precision medicine and aid clinical decision
Precision medicine is becoming more popular and big steps have been made to improve 
disease diagnosis and management [61]. Precision medicine is data-science driven and 
often includes genomics to create subgroups to better prescribe treatment strategies 
[62]. Also in AC, genomics is included in the 2010 TFC and geno-positive subjects are 
likely to develop AC [13]. In the two cohorts studied in Chapters 4 and 6, the pathogenic 
plakophilin-2 mutation is dominant. Although these subjects are at high risk of developing 
AC, Chapter 6 shows that early stage disease can be found in all age groups. In the future, 
the Digital Twin could aid precision medicine by better characterizing and quantifying the 
myocardial tissue substrate.

As computational models are maturing, the step to add value to the process of 
clinical decision taking becomes smaller. As shown in this Thesis, Digital Twins can reveal 
information currently not measurable. This information can be used in randomized clinical 
trials to quantify its predictive and differential value. Reduction of computational cost is 
essential to implement a computational framework as presented in this Thesis into clinical 
workflow. Different protocols have been proposed to do so, including machine learning 
approaches and model emulator approaches [51]. These approaches can be used to 
increase the speed of parameter inference or as a direct inverse of the computational model.
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Digital Twin as a tool for in silico trials to partially guide and reduce animal experiments
The CircAdapt model has been used to generate hypotheses which can guide further trials 
[63,64]. These studies predicted the effect of a clinical device on a population level. By 
using Digital Twins rather than a generic simulations, a more realistic cohort could be 
created to improve the predictive value of these in silico trials. Outcome of these trials 
can generate hypotheses and thereby guide the design of real clinical trials and animal 
studies. The chance of a positive result from these will increase, reducing the amount of 
trials and animal studies needed.

The work presented in this thesis demonstrates how the Digital Twin can be 
used to get more insight in the myocardial tissue substrate without the direct use of 
animal experiments. Without this in silico approach, biopsy could give insight in the 
tissue substrate but is limited to endocardial tissue. It is highly invasive, has a risk on 
complications, and is likely to produce false negatives [65,66]. Autopsy generally only 
gives insight in later stage AC. Alternatively, animal studies can be used to get insight in 
the tissue substrate. Necropsy on sacrificed animals could reveal insight in the substrate 
which is not possible to get with non-invasive measurements [67]. The Digital Twin could 
be used to estimate tissue properties without the need to sacrifice animals, reducing 
animal burden.

Digital Twin as a tool for virtual diagnostics
Cardiac stress testing is a test used in the diagnosis of various pathologies [68]. Potentially 
diseased subjects are stressed to increase the loading of the heart to better reveal the 
substrate. Cardiac stress tests are not included in the diagnosis of AC [10,13], but it has 
been shown that present deformation abnormalities increase during stress-test [69]. As 
exercise is associated with disease progression [70,71], performing a cardiac stress test 
could be considered unethical. As alternative, an in silico cardiac stress test could be 
performed with the Digital Twin. This could be used to better estimate arrhythmic risk or 
disease progression as result of exercise.

The Digital Twin could also be used as a tool to guide the diagnosis path. For 
established pathologies, guidelines aid professionals to diagnose and develop treatment 
strategies according to the best available evidence [10]. However, for less established 
pathologies, the best diagnosis and treatment strategies are unknown. Using the model 
framework developed in Chapter 5, not only insight in the myocardial tissue substrates 
is obtained, also regular clinical measurements can be obtained. Given the available 
evidence at that time, the Digital Twin can provide information on possible diagnosis and 
which measurements should be considered to improve differential diagnosis. This may 
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reduce time spent in the hospital by the patient, which increases quality of life of the 
patient and reduces healthcare cost.

Conclusion

This Thesis presents a novel patient-specific modelling framework that enables 
non-invasive estimation of myocardial tissue properties in individual patients with 
Arrhythmogenic Cardiomyopathy (ACM). The use of non-invasive clinical data combined 
with physics and physiology gives more insight in the substrate underlying abnormal 
characteristics observed in clinics. Digital Twin simulations revealed that ACM disease 
expression, in terms of regional right ventricular deformation abnormalities, is related to 
increased regional heterogeneity of myocardial contractility and compliance. Longitudinal 
Digital Twin simulations of subjects with early-stage or preclinical ACM demonstrated 
that the development and further evolution of tissue property heterogeneity occurs 
independent of age. The basal segment of the right ventricular free wall was consistently 
found to have a decreased contractility and compliance compared to the apical segment, 
which is in line with the current paradigm. The Digital Twin modelling framework presented 
in this Thesis can easily be applied to cardiac pathologies other than ACM. Once all 
challenges are overcome, the Digital Twin technology can be used for personalized clinical 
decision support and thereby pave the way for precision medicine.
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Summary

Arrhythmogenic cardiomyopathy is an inherited pathology of the heart. In 60% of 
probands, a (likely-)pathogenic mutation can be found. Even before disease expression, 
mutation carriers are already at risk of sudden cardiac death. To prevent sudden cardiac 
death in apparently healthy individuals, early detection of pro-arrhythmic tissue substrates 
is important. This thesis aims to get more insight in the myocardial disease substrate in 
patients with early-stage arrhythmogenic cardiomyopathy using a Digital  Twin approach. 
In the Digital Twin approach, a biophysical model is personalized to clinical measurements. 
Unlimited features describing myocardial behavior can be extracted from this Digital Twin. 
Therefore, it may reveal myocardial (mal)function underlying the measurements.

In this thesis, the CircAdapt model of cardiovascular system is used as biophysical 
model. This model allows fast calculation of regional myocardial mechanics and global 
hemodynamics. To explore the ability of personalizing this model, a simple protocol was 
made which focused on optimizing the right ventricular model parameters (Chapter 
2). This protocol confirmed that the CircAdapt model was able to reproduce clinically 
measured deformation. A more robust parameter optimization algorithm was needed to 
cope with the non-linear parameter space and to further personalize the model. 

Keeping the high complexity of the problem in mind, an extensive sensitivity and 
identifiability analysis was performed (Chapter 3). The most important model parameters 
needed to model left and right ventricular deformation were identified using the Morris 
Screening method and using Monte Carlo simulations. By reducing the number of 
model parameters, reproducibility of the estimation was improved. The final subset 
includes regional tissue contractility, passive stiffness, activation delay, and wall size. 
Subsequently, a parameter optimization protocol based on Particle Swarm Optimization 
was designed. We demonstrated that the CircAdapt model was still able to accurately 
simulate deformation in subjects with genetic mutations related to arrhythmogenic 
cardiomyopathy. 

The parameter optimization protocol was applied to a cohort of 68 patients with 
arrhythmogenic cardiomyopathy and 20 control subjects who were evaluated at the UMC 
Utrecht in the Netherlands between 2006 and 2015 (Chapter 4). Simulations revealed 
that in subjects with clinically advanced disease compared to mutation carriers without 
clinically established disease, regional RVfw heterogeneity of both contractile function 
(17±13% vs. 8±4%, p=0.01) and compliance (18±11% vs. 10±7%, p<0.01) was increased 
and. No significant difference in activation delay was found.

The estimations obtained in Chapter 3 and 4 contain noise. Among others, 
measurement uncertainty propagates through the optimization adding noise. This is 
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negligible on a population level, but will affect the individual result. Therefore, in Chapter 
5, a Bayesian optimization approach was applied to include measurement uncertainty. 
Hereby, a posterior distribution was estimated rather than a single point. This allows to 
predict whether disease substrate deteriorates over time, or not. To do so, the Adaptive 
Multiple Importance Sampling algorithm was used, which iteratively updates the proposal 
distribution of the model parameters. This algorithm was shown to be accurate as virtual 
estimations were precise and real-world estimations were highly reproducible. This 
algorithm was applied to a case study of two subjects and revealed the evolution of early-
stage AC disease over time using longitudinal follow-up datasets. 

In Chapter 6, the Bayesian optimization approach as shown in Chapter 5 was 
applied to a cohort of 82 early stage patients with arrhythmogenic cardiomyopathy from 
a consecutive cohort evaluated at Oslo University Hospital, Rikshospitalet, Norway. A 
total of 313 baseline and follow-up echocardiographic assessments were included with 
a mean follow-up of 6.7 ± 3.3 years. Patients were divided into three groups based on 
age at baseline: early presenters (<30 years), mid-life presenters (30-50 years) and late 
presenters (>50 years). In all three age-groups, both global and segmental deformation 
characteristics deteriorated. The development of local tissue substrates in the RV free 
wall was expressed in increased heterogeneity in estimated RV tissue properties. This 
chapter showed that deformation imaging and patient-specific computer simulations can 
be used to follow-up disease substrate progression in patients with early arrhythmogenic 
cardiomyopathy. 

With this thesis, we aimed to get more insight in the myocardial disease substrates 
observed in early-stage arrhythmogenic cardiomyopathy. By doing so, we developed a 
modelling framework for patient-specific estimation for model parameters representing 
regional myocardial tissue properties. With this framework, the tissue properties were 
estimated. This revealed the patient-specific tissue substrate underlying abnormal tissue 
deformation. Chapter 7 discusses the results and main findings of the different chapters in 
a broader perspective. It addresses the limitations of this optimization framework, but also 
the possibilities within the context of arrhythmogenic cardiomyopathy and cardiovascular 
diseases in general as this framework can be easily adapted for other purposes. With this 
optimization framework, we are one step closer to use patient-specific computational 
simulations in precision medicine, Making it Personal.
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