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1
Introduction

In recent decades, medical imaging has become a clinical cornerstone in diagnosing, 
managing and following up different diseases and clinical presentations [1,2]. 
Concurrently, much attention has been directed towards the applications of artificial 
intelligence (AI) on medical imaging with its different modalities, including computed 
tomography (CT), magnetic resonance imaging (MRI) and positron emission 
tomography (PET) scans. Advances in computational powers and machine learning 
algorithms, combined with the abundance of medical images, provided an opportunity 
for this field to grow exponentially [3]. These artificial intelligence methods include, 
but are not limited to, handcrafted radiomic features (HRFs) combined with machine 
learning, and deep learning (Figure 1) [4,5]. 

The main hypothesis motivating radiomics analysis is that quantitative imaging features 
decode biologic information of the region of interest (ROI) [6,7]. Both HRFs and 
DL provide possible alternatives to current clinical standards of care, since they can 
potentially provide fast, accurate, non-invasive and cost-effective means of clinical 
decision support, given that it has been extensively validated, and was developed while 
considering the sensitive nature of these techniques to variations in the medical imaging 
datasets. 

Figure 1: Handcrafted radiomics and deep learning approaches (reprinted from Ibrahim et al.[6]).
* Segmentation is not a necessity for DL approaches.
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Handcrafted radiomic features
Handcrafted radiomics refer to the high throughput extraction of quantitative features 
from medical images, which are then mined to look for correlations with biologic 
characteristics with the outcome being studied [8]. HRFs are extracted by applying 
predefined mathematical formulas on the array of values representing the medical image. 
An ROI is defined and HRFs are extracted thereof. A machine-learning algorithm is 
then used to develop a radiomic signature. Different groups of HRFs have been defined, 
including shape, intensity and texture features, and can be extracted from original and 
filtered images. These features are mined for correlations with biologic outcomes.

Many studies reported on the potential applications of HRFs-based signatures to predict 
patient outcomes, such as classification of lesions [9-11], response to therapy [12,13] 
and survival [8,14]. Nonetheless, a number of limitations has been identified [15,16]. 
A major identified limitation is the sensitivity of HRFs to temporal (test-retest) and 
image acquisition changes [17-19], which currently limits the translation of radiomic 
signatures to clinical practice.  Figure 2 is an example of an HRF extracted from scans 
of the same volume of interest acquired with different imaging parameters. One scan 
was acquired with the standard kernel and a voxel size of (0.39x0.39x1.25 mm3), while 
the other scan was acquired with the edge kernel and a voxel size of (0.49x0.49x1.25 
mm3). As illustrated, there was a large variation in the value of the HRF (NGTDM_
Complexity), which are attributed to these variations in imaging parameters. The impact 
of these variations on the reproducibility of HRFs is not well understood. Moreover, 
several methods, such as image resampling and ComBat harmonization, have been used 
as potential methods to harmonize HRFs extracted from scans acquired differently. 
Nevertheless, the effects of these methods on the reproducibility of HRFs are yet to be 
investigated and understood.

Figure 2: Thesis outline.
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Deep learning
Deep learning is defined as data driven modeling techniques that employ the principles 
of simplified human neuronal interaction [5]. The artificial neuron models are the 
foundation units used to create complex chains of interactions named collectively as 
the DL layers. These layers are further combined to create the DL architectures. DL 
architectures are trained for recognition of problem related patterns in the data being 
analyzed to provide an automated tool to perform tasks. DL applications including, 
but are not limited to, automated segmentation [20,21] and classification [22,23] of 
medical images have become major focuses of AI research in medical imaging. 

Deep features are more complicated in comparison to and some methods are being 
developed to help understand the mechanisms HRFs, and DL are generally considered 
a ‘black box’. Yet, much attention has been paid to the explainability of DL models /
factors based on which a DL algorithm makes a decision, such as Gradient weighted 
class activation mapping (Grad-CAM) method [24]. Grad-CAM generates an activation 
map that is superimposed on the original image to help visualize the reason for decision 
by DL algorithms. 

Objectives, aims and Outline of the thesis

The overarching objective in this thesis was to gain more insights into the applications 
of HRFs and DL in medical imaging analysis, in an effort to guide developing AI-
based tools as clinical decision support systems. For HRFs, based on the literature, the 
hypotheses that HRFs are subject to inter-reader variability, test retest variability, and 
are sensitive to variations in imaging parameters were tested. In addition, the hypothesis 
that a quantitative score can be used to assess the reproducibility of HRFs across scans 
acquired differently was tested. More specifically, the objectives were (i) to evaluate 
the current conventional HRFs workflow on scans acquired with different imaging 
parameters (Chapters 3 and 4); (ii) to investigate the effect of variations in imaging 
parameters on the reproducibility of features and some of the proposed methods to 
address the variations (Chapters 5-10); (iii) to develop a methodology to quantitatively 
assess the reproducibility of HRFs across scans acquired differently (Chapter 11). For 
DL, the main objective was to investigate the potential applications of DL to perform 
clinical tasks (Chapters 12 and 13).

The thesis is composed of 5 parts and 16 chapters. The description of these parts and 
chapters is below (see also figure 3).
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Part 1: Introduction and a proposal of robust radiomic analysis 
framework

Chapter 1 is an introduction to the work carried out in this thesis, highlighting the 
main objectives of the work presented, and an outline of the thesis.

Chapter 2 serves as a general introduction to the applications of HRFs and DL methods 
in medical imaging. It is a review on the current applications of radiomics and the 
challenges radiomics currently faces. It further contains a proposal for a new radiomics 
framework that focuses on the reproducibility of HRFs based on the literature and 
previous experiments. 

Part 2: Evaluation of the conventional handcrafted radiomics 
workflow

Chapter 3 is an experiment to assess the interpretability and generalizability of radiomic 
signatures developed using the conventional radiomics workflow on scans acquired 
differently. This work thoroughly investigated the modeling or a radiomic signature that 
can predict the complete pathologic response of breast tumors using HRFs extracted 
from breast MRI scans, in an effort to study the generalizability of radiomic signatures 
developed on scans acquired differently.

In Chapter 4, similar to Chapter 3, the work investigated the interpretability and 

Figure 3: Thesis outline.
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generalizability of radiomic signatures that can assess axillary lymph node status of 
breast cancer patients on MRI scans. The findings of this study further consolidated our 
conclusions derived in Chapter 3.

Part 3: The effects of variations in medical imaging on HRFs and 
validation of the proposed framework

Chapter 5 is a comprehensive review on the current harmonization methods used in 
radiomics analyses. It serves as a motivation for the investigation of potential of some 
of the harmonization methods to harmonize HRFs extracted from scans acquired 
differently. 

Chapter 6 is an experiment that was aimed to investigate the reproducibility of CT based 
HRFs on phantom scans. The scans analyzed in this experiment (n=13) were acquired 
using different imaging vendors, models, acquisition and reconstruction parameters. 
The impact of ComBat harmonization on the reproducibility of HRFs was also assessed. 
It also serves as a validation for the framework proposed in Chapter 2.

In Chapter 7, an investigation into the effects of variations in in-plane resolution, while 
all other parameters are fixed, on the reproducibility of HRFs. Two sets of phantom 
scans, each composed of 7 phantom CT scans, were acquired similarly, except for 
the in-plane resolution. Concurrently, the impact of 10 different image resampling 
methods and ComBat harmonization on the reproducibility of HRFs was investigated. 
Additional analyses have been performed at the remark of another research group to 
further consolidate the findings and recommendations presented in the original study.

Chapter 8 describes a proof of concept on the reproducibility of HRFs extracted from 
CT based hepatocellular carcinoma HRFs in different imaging phases (arterial and 
portal venous phases). Furthermore, the potential of ComBat harmonization to remove 
the effects of differences in imaging phase has also been investigated. 

In Chapter 9, the aim was to assess the inter-reader variability of MRI breast HRFs. 
In the experiment, a set of breast MRI scans were segmented by a number of medical 
doctors with varying experience in medical image segmentation. The agreement in HRF 
values extracted from these scans was then assessed to determine the sensitivity of HRFs 
to inter-reader variability. 

Chapter 10 describes a test-retest experiment to assess the reproducibility of MRI breast 
HRFs. In this experiment, a number of healthy female volunteers underwent breast MRI 
scanning at two time points with multiple acquisitions at each time point. The study 



further presents an analysis of the effect of different image preprocessing techniques on 
the reproducibility of HRFs.

In Chapter 11, further investigations into the collective effects of differences in different 
numbers of imaging parameters on the reproducibility of CT based HRFs are presented. 
A large set of phantom CT scans were analyzed. In addition, a novel score to assess the 
reproducibility of HRFs across CT scans acquired differently was developed based on 
the knowledge acquired from all the analyses performed.

Part 4: Some application of DL on medical images

Chapter 12 investigates the potential of a DL algorithm to detect metastatic bone disease 
on scintigraphy scans. This multicenter study included cancer and no-cancer patients, 
and the performance of the developed software was compared to that of uninformed 
nuclear medicine physicians in an in-silico trial. Furthermore, the explainability of the 
developed software was enhanced using Grad-CAM method.
 
Chapter 13 describes a DL software that can automatically detect and segment NSCLC 
on CT scans. The software consists of a pipeline that consists of several steps to ensure 
robustness of the software. The performance of the software was tested in an in-silico 
trial.

Part 5: General discussion and future perspectives

Chapter 14 serves as a general discussion regarding the work presented in this thesis, 
with recommendations and future prospects of the application of AI-based methods in 
clinical practice. 
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Abstract

The advancement of artificial intelligence concurrent with the development of medical 
imaging techniques provided a unique opportunity to turn medical imaging from 
mostly qualitative, to further quantitative and mineable data that can be explored for 
the development of clinical decision support systems (cDSS). Radiomics, a method for 
the high throughput extraction of hand-crafted features from medical images, and deep 
learning -the data driven modeling techniques based on the principles of simplified 
brain neuron interactions, are the most researched quantitative imaging techniques. 
Many studies reported on the potential of such techniques in the context of cDSS. Such 
techniques could be highly appealing due to the reuse of existing data, automation of 
clinical workflows, minimal invasiveness, three-dimensional volumetric characterization, 
and the promise of high accuracy and reproducibility of results and cost-effectiveness. 
Nevertheless, there are several challenges that quantitative imaging techniques face, and 
need to be addressed before the translation to clinical use. These challenges include, 
but are not limited to, the explainability of the models, the reproducibility of the 
quantitative imaging features, and their sensitivity to variations in image acquisition 
and reconstruction parameters. In this narrative review, we report on the status of 
quantitative medical image analysis using radiomics and deep learning, the challenges 
the field is facing, propose a framework for robust radiomics analysis, and discuss future 
prospects.
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Introduction

Advances in artificial intelligence applications, combined with those in medical imaging, 
have led to the gradual conversion of digital medical images into high-dimensional data 
appropriate for data mining and data science techniques [1]. Meanwhile, computing 
power and quantitative image analysis (QIA) techniques have made enormous progress, 
and the application of quantitative imaging techniques on medical imaging gained 
exponential momentum [2]. Currently, radiomics and deep learning are the most 
researched techniques on medical imaging. 

Broadly, radiomics refers to the use of computational or statistical approaches to extract 
large numbers of quantitative features from a number of medical imaging modalities, 
such as computed tomography (CT), magnetic resonance imaging (MRI), and positron 
emission tomography (PET), to develop predictive models ultimately aiming to enable 
personalized clinical management [3–5]. Radiomic features are quantitative descriptions 
of the intensity, shape, volume, and texture of the region of interest (ROI), with the 
recent addition of more abstract features such as radial gradient and radial deviation 
[6]. Radiomics features are broadly divided into histogram-based and texture features. 
Different statistical methods are used to calculate the radiomics features. The methods 
include first-order statistics, which depends on the values of single voxels (histogram-
based features for e.g. maximum and minimum intensity); second-order statistics, 
which depends on the relation between two voxels (for e.g. grey-level co-occurrence 
matrix (GLCM) features), and higher-order statistics (relations among three or more 
voxels, for e.g. neighborhood grey-tone difference matrices (NGTDM) features) [7,8]. 
The main hypothesis behind radiomics analysis is that radiomic features decode or 
correlate with the molecular characteristics, phenotype, and genotype of the region of 
interest (ROI) under study. This information can be used in combination with other 
patient information to improve patient management. Moreover, as the tumors are of 
heterogeneous nature [9,10], clinical approaches, such as tissue biopsies, might fail to 
characterize the entirety of the tumor [11]. In contrast, Radiomics takes the whole tumor 
region (or even the surrounding or healthy tissue) into account, which enables a better 
characterization [3]. Furthermore, frequent clinical imaging can transform radiomics into 
a non-invasive, easily repeatable, and cost-effective longitudinal approach for cDSS [12]. 

Deep learning (DL) is a field of data driven modelling techniques that utilizes the 
principles of simplified neuron interactions [13]. Using artificial neurons started to draw 
attention decades ago [14], but it only became a major research focus recently [15–17].  
The artificial neuron model is used as a foundation unit to create complex chains of 
interactions - DL layers. These layers are used to generate even more complex structures 
- DL architectures. The neural network (NN) training procedure is typically a cost-
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function minimization process. The cost function measures the error of predictions based 
on the ground truth labels [18]. Due to the high complexity of the network architectures, 
computational limitations are reached when trying to solve the optimization task 
analytically. Henceforth, iterative algorithms are used to overcome this issue. Commonly, 
these algorithms are variations of the gradient descent (GD). GD iteratively moves in 
the direction of steepest descent of the cost function, in order to find a local minimum. 
During the model training process, every image from the training dataset contributes 
to the cost minimization process. Thereby, a DL network learns how to solve a problem 
directly from existing data, and apply it to data it has never seen. These complex models 
contain the parameters (weights) for millions of neurons, which can be trained for the 
recognition of problem-related patterns in the data being analyzed. DL has been shown 
to be efficient in other fields, such as face recognition [19] and autonomous cars [20].

Since the introduction of the field, many studies have reported on the potential of such 
techniques for predicting patient outcomes [5,21,22]. The successful translation of QIA 
techniques into cDSS will have a significant impact on the clinical workflow and current 
patient management protocols. Clinicians will be able to non-invasively obtain a more 
detailed and accurate tumor characterization, in a shorter amount of time. Patients will 
have to go through less invasive procedures, while having treatment optimized based 
on their individual characteristics. Furthermore, patient-specific informed decisions 
can be made with more confidence. However, QIA is still developing in the field of 
medical imaging and several challenges, including the stability and reproducibility of 
imaging biomarkers, as well as the interpretability of the developed algorithms, need to 
be addressed before QIA can be translated to clinical applications. 

In this narrative review, we focus on the current status of the potential of radiomics 
and deep learning to be incorporated in clinical decision support systems (cDSS), their 
challenges, as well as future prospects for these methods. We further propose a workflow 
to guide robust radiomics analysis.

Figure 1: Graphical depiction of DL architectures.
* FCN: fully connected network.
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Quantitative image analysis for precision medicine

The need for personalizing the management of patients has been widely reported [23,24]. 
QIA represents a suitable candidate to be incorporated into the body of personalized 
medicine due to the non-invasive three-dimensional characterization of the ROIs, the 
availability of vast amounts of medical images, the longitudinal capabilities, and the 
cost-effectiveness of the method.

The currently implemented imaging biomarker development workflow is generalizable 
across different imaging modalities. The workflow can be described as consecutive 
steps divided into the main categories of data collection, image segmentation, features 
extraction, development of the signature, and evaluation of the performance (Figure 2), 
with the segmentation step being optional in the case of deep learning. The workflow 
has been previously extensively described [22,25].

Many studies have investigated and reported on the added clinical value of radiomics 
features for predicting various clinical outcomes, such as overall survival, tumor histology, 
response to therapy, and genetic profiling, among other endpoints. Furthermore, these 
studies were performed on various imaging modalities, including CT, MR, and PET. 

While the hand-crafted radiomics pipeline necessitates the use of machine learning 
or statistical algorithms after feature extraction for modeling, DL techniques perform 
feature extraction and modelling internally without the need for further user interaction. 
DL has its own advantages and drawbacks compared to traditional radiomics. One of 
the key benefits of using DL is avoiding the contouring problem, the bottleneck of 
a traditional radiomics pipeline. However, due to the complexity of DL models, it is 
easier to overfit the model to the training data. As a result, a larger data set is needed 
for DL compared to hand-crafted radiomics. Furthermore, DL is considered a ‘black 
box’, i.e the models and features generated are not (or barely) interpretable. This is 
currently one of the major challenges of the application of artificial intelligence (AI) 
in medical image analysis. Efforts are being made towards providing explainable AI 
algorithms, by investigating the correlation of the chosen features with biologic or 
semantic characteristics. Such correlations would provide an understanding about how 
the algorithm makes the decision, and ease its incorporation into cDSS. 

QIA techniques have a great potential for involvement in developing classification, 
prognostic and predictive clinical tools. In comparison, classification tasks (for e.g 
classifying tissue histology) seem to yield a better performance than predictive tasks (for 
e.g survival prediction). This is in part due to the unaccounted for variables when trying 
to predict future events. In 2.1 and 2.2, we report on some examples that highlighted 
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the potential of radiomics and deep learning to predict various clinical endpoints, 
acknowledged or addressed the challenges of QIA techniques used, and/or applied the 
techniques on a relatively large sample size compared to other studies addressing the 
same clinical endpoint. 

Hand-crafted radiomics
Overall survival
Wang et al. [26] investigated the potential of radiomics signatures to predict overall 
survival in patients with locally advanced rectal cancer. The authors tried to address the 
current clinical need for a risk stratification tool for such patients to safely forgo surgical 
resection, due to the high comorbidities associated. The study included 411 treatment 
planning CT-scans of patients treated with neoadjuvant chemotherapy followed by 
surgery. The authors developed a radiomics signature that could stratify patients into 
low- and high-risk survival groups. The radiomic features included in the signature were 
found to be independent of the clinical features. Adding radiomic features to the clinical 
model resulted in an improvement of the predictive power (c-index) of the clinical 
only model from 0.67 (0.62 - 0.73) to 0.73 (0.66 - 0.80) [26]. The authors used two 
investigations to ensure the selection of stable radiomics features, namely test-retest and 
contour-recontour robustness analysis. The results signifies the added value of properly 
using radiomics analysis on CT scans in improving patients’ risk stratification. Yet, the 

Figure 2: Development of imaging biomarkers using quantitative image analysis.
* Segmentation is not a necessity in the automated radiomics pipeline.
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authors did not externally validate their signature, casting doubt on the generalizability 
of their signature. It is expected to be of value in cases where the scanning parameters 
are identical to those used in the study.

Another study by Bae et al. [27] investigated the potential of MR-based radiomics to 
improve the survival prediction of patients diagnosed with glioblastoma multiforme. 
The study is an effort to address the unmet clinical need for assessing the survival of 
the target group following therapy. The authors extracted radiomics features from 
217 multiparametric MR scans of patients with glioblastoma. The authors identified 
18 radiomics features to build a radiomic signature, and reported that the addition of 
radiomics features to clinical and genetic profiles of the patients significantly improves 
the stratification of patients [27]. The authors in this study applied a unique approach for 
the analysis by simultaneously analyzing radiomics features extracted from different co-
registered MR sequences. The identified features were independent of the clinical and 
genetic factors, and the improvement in the survival prediction following their addition, 
supports the hypothesis of radiomics. Pitfalls in the study include the lack of assessment 
of radiomic feature stability before modeling, and as often seen in these studies, a lack 
of an external validation of the signature. However, their results support the hypothesis 
that radiomics are of great use when applied on scans acquired using identical settings.

Oikonomou et al. [28] reported on the potential of PET/CT-based radiomics to 
improve the survival stratification of patients with lung cancer treated with stereotactic 
body radiotherapy. The aim was to identify radiomic features that can improve the 
prognostication of patients following treatment. The authors extracted radiomics 
features from 150 PET/CT scans, and built radiomics signatures using 10 radiomics 
features. The authors reported that the radiomics signature was the sole predictor in the 
case of overall survival, and provided complementary information for the prediction of 
regional control [28]. The uniqueness in this study is the joint use of radiomics features 
extracted from the CT-component and PET-component of the PET/CT scans. The 
authors show how other currently used clinical parameters fail to predict overall survival, 
while only radiomics could. While the study highlights the potential of radiomics to 
improve risk stratification, no external validation of the signature was performed.

Progression free survival
Kirienko et al. [29] investigated the role of PET/CT-based radiomics to predict disease 
free survival in patients with non-small cell lung cancer undergoing surgery. The 
authors extracted radiomics features from PET, CT, and combined PET/CT images. 
The authors developed Cox regression models using only CT, only PET, and combined 
PET/CT radiomics features. They reported that the radiomic signatures they developed 
improve the current clinical stratification of the targeted patients [29]. The authors in this 
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study investigated the reproducibility of radiomics features across the different imaging 
parameters in their dataset. This ensured selecting the comparable features before 
proceeding with signature building. The authors also provide evidence of the added 
value of combining radiomics features extracted from different imaging modalities. 
Furthermore, the ability to predict disease free survival from the time of diagnosis 
-which radiomics offer- improves physicians and patients decision making. However, 
the authors in this study did also not perform an external validation of their signature. 
Further validation of the signature can prompt a prospective validation trial, before 
incorporation into cDSS. 

Another study by Kickingereder et al. [30] investigated the role of MR-based radiomics 
in predicting survival in patients with glioblastoma multiforme. The authors extracted 
radiomics features from 119 MR scans, and developed a radiomic signature using 11 
features. The developed signature performed significantly better than the radiologic 
and clinical risk models, and its addition to those resulted in an overall improvement 
of progression-free survival stratification [30]. The finding that the radiomics signature 
performed better than the clinical and radiologic models supports the findings reported 
by Bae at al. [27], and adds more evidence that radiomic features decode complementary 
biologic information. However, the study did not address the issues of the reproducibility 
and generalizability sufficiently, leaving a room for improving the performance of 
radiomics.

Tumor histology
Wu et al [31] explored the role of radiomics in differentiating between the histologic 
subtypes of non-small cell lung cancer: adenocarcinoma and squamous cell carcinoma. 
The study was an effort to address the clinical need for less invasive and easily repeatable 
methods to determine tumor histology. The authors extracted radiomic features from 
350 CT scans of NSCLC patients for whom the tumor histology has been determined 
from surgical specimens. The developed signature included 5 radiomics features, and they 
reported an area under the receiver characteristics curve (AUC) of 0.72 [31]. This study 
reflected on the potential of non-invasive radiomic signatures to differentiate between 
adenocarcinoma and squamous cell carcinoma. They also investigated different machine 
learning methodologies for building the radiomics signature. While this study generates 
evidence for the potential of radiomics, the performance of the developed signature 
is significantly lower than the current gold standard -tissue biopsy. However, there is 
a great room for improving the development and performance of the signature. The 
authors did not address the acknowledged challenges in radiomics, nor did they validate 
their signature on an external dataset. Preselection of reproducible features, external 
and prospective validation of the signature are necessary steps in the development of 
radiomics biomarkers.
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In another study, Wu et al. [32] investigated the added value of MR-based radiomic 
features for the prediction of hepatocellular carcinoma (HCC) grade. The authors 
extracted radiomic features from 170 MRI scans of HCC patients, whose tumor grade 
was identified through pathological samples. The radiomics-only signature (AUC of 
0.74) outperformed the clinical model (AUC of 0.60), and the combination of both 
significantly improved the prediction (AUC of 0.80) [32]. The authors in this study also 
combined radiomic features extracted from two different MR sequences and analyzed 
them simultaneously. The significant improvement of the predictions following the 
combination of clinical and radiomic features supports the independence of radiomics 
features from other clinical information. However, external validation of the developed 
signature is still a necessity before confidently performing prospective validation. 

Valleries et al. [33] explored the potential of the combination of FDG-PET- and MR- 
based radiomics features to classify lung nodules. The authors extracted radiomics 
features from 51 PET and MR scans of histologically confirmed lung lesions in patients 
with soft-tissue sarcoma. The authors achieved a sensitivity of 0.96 and specificity of 
0.93 in diagnosing metastatic nodules using a model with combined radiomic features 
from both PET and MR modalities. The authors used a novel interesting approach 
by simultaneously analyzing the features extracted from FDG-PET and MR scans, 
and were the first to show the potential of this method. The performance of the 
developed signature makes it a suitable alternative for patients for whom tissue biopsy 
is contraindicated. Its possible translation to cDSS might significantly improve patient 
outcomes, as treatment is based on the histologic diagnosis. Yet, further external and 
prospective validation of the signature is needed. 

Response to therapy
Trebeschi et al. [34] explored the role of radiomics in predicting response to anti-PD1 
immunotherapy in patients diagnosed with advanced melanoma and NSCLC patients. 
Immunotherapy has shown promising results. Yet, there is still a need for a tool to 
determine which patients will benefit from receiving anti-PD-1 antibodies. The authors 
extracted radiomic features from 1055 ROIs segmented on 203 CT scans. The authors 
developed a radiomic signature that could predict the response to therapy with an AUC 
of 0.76; showing the potential of radiomics to predict response to therapy in such patients 
[34]. Interestingly, the authors found correlations between the radiomic biomarker and 
the genes associated with cell cycle progression and mitosis. Radiomics can become 
a tool for assisting decision making in immunotherapy, a great unmet clinical need. 
The study however did not externally validate the signature, and did not sufficiently 
address the issues of feature stability and reproducibility. Therefore, the application of 
the developed signature is also limited to the patients who are scanned with the same 
scanning parameters as used in the training.
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In a study by Horvat et al. [35], the authors investigated the role of radiomics in assessing 
complete clinical response (cCR) after neoadjuvant chemoradiotherapy (CRT) in 
patients with locally advanced rectal cancer. The guidelines of treating these patients 
include surgery, but evidence showed recently that a select group of patients can be 
safely treated with only CRT.  The authors extracted radiomic features from 114 MR 
scans, and developed a radiomics signature with a sensitivity of 1.00, and a specificity 
of 0.91, which outperformed qualitative assessment of the response performed by two 
radiologists. The current clinical standard evaluation of cCR includes digital rectal 
examination and endoscopy, with an accuracy ranging between 0.71 and 0.88 [35]. 
The developed radiomic signature showed the highest accuracy among the available 
compared-with tools.  Nonetheless, several steps to improve the methodology and 
performance of the radiomics signature could be made.  The sound cCR evaluation 
following RCT can improve the patient management by eliminating surgical risks, time 
and money. 

Deep learning
The application of deep learning on medical imaging could potentially fulfil more 
complicated tasks than hand-crafted radiomics, especially when large amounts of data are 
available. Furthermore, as definition of the ROIs is not a necessity in the automated deep 
learning workflows, the algorithm will learn patterns from the whole image and possibly 
make connections with the habitat of the ROIs. The applications of neural networks 
on medical imaging are also not limited to classification and prediction of clinical end 
points, but can extend to include other tasks, such as the detection and segmentation of 
abnormalities or target volumes, which have been investigated for decades [36]. Especially 
the detection and segmentation of lesions can be easily incorporated into the radiomics 
workflow, further automating the process. In the following paragraphs, we give examples 
of different applications of DL on medical imaging to perform various tasks on datasets 
acquired with one of the three main medical images modalities: CT, MRI, and PET. 

Automatic segmentation of target structures    
Jiang et al. [37] tried to develop a DL model that is able to accurately perform volumetric 
lung tumor segmentation on CT images. The authors used two versions of multiple 
resolution residual network models for the delineation of the ROIs. The authors used 
377 tumors from the open source dataset available on The Cancer Imaging Archive 
(TCIA) (https://www.cancerimagingarchive.net) to train the model, and two independent 
datasets of 304 and 529 lung tumors to validate it. The dice similarity coefficient (DSC), 
which measures the spatial overlap of the segmentations, was computed to evaluate the 
performance of the model. The DSCs of the model on the two validation datasets were 
0.75 and 0.68, respectively. The authors reported that there was no significant difference 
between the DL-generated mask and experts’ segmentations [37]. The new approach for 
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segmenting medical images used in this study shows to be superior to the traditional use 
of UNet. The approach generalizes well on external data and overcomes the multiple sizes 
problem. The major pitfalls is that the authors did not use the 3D geometry of the CTs 
to compute the results, which would probably increase the performance significantly. 
The translation of such a tool to clinical practice will significantly reduce the time spent 
by the clinicians to plan the treatment, or evaluate the response to therapy. Moreover, 
from a research perspective, it can significantly reduce the time needed for radiomics 
research, and it will address the issue of inter-observer sensitivity of radiomics features.

In the study by Yi et al. [38], the authors developed a DL model for the segmentation 
of brain tumors based on 274 brain MRIs extracted from the Brain Tumor Image 
Segmentation Benchmark (BRATS) dataset [39]. Segmentation of brain Glioblastoma on 
MRI is a time-exhaustive process, and an automated, accurate and reproducible tool for 
this purpose is considered a clinical need. The model was trained using four different 
MRIs sequences.  The particularity of their convolutional neural network (CNN) model 
is a fixed difference of Gaussian filters as a first convolution layer, as it was proven to 
be the most efficient for 3D segmentation. The DSC for the model was 0.89 on the 
BRATS dataset when compared to ground truth segmentations [38]. This article shows the 
superiority of 3D CNN compared to 2D CNN. The algorithm generated segmentations 
with a volumetric overlap of 0.89 with the experts’ segmentations, which shows the 
potential of these tools for clinical use. However, the lack of external validation in the 
study limits the applicability of the algorithm to scanning parameters in the training set. 
The clinical practice can benefit from such tools, as it significantly reduces the time the 
clinicians spend, and can provide more accurate evaluation of tumor response than the 
current clinical routine.

Chen et al. [40] explored the possibility of developing a DL model that is able to detect 
and segment cervical tumors on PET imaging. The authors proposed prior information 
constraint CNN (PIC-CNN), which integrates a CNN with prior information of 
cervical tumor. The authors reported a DSC of 0.84, which was superior to the other 
methods tin the comparison, including transfer learning based on fully convolutional 
neural networks (FCN) (DSC of 0.77), automatic thresholding (DSC of 0.59), and 
region growing method (DSC of 0.52) [40]. The study highlights the potential of 
deep learning to perform well-defined and robust segmentations on PET imaging. The 
novelty of the approach is the use of prior information as input of the model, with 
delineation of the bladder. This extra information seems to give the traditional model 
an advantage compared to models that solely segment the tumors. However, the results 
were not validated on an external dataset. The application of the developed algorithm 
-after validating it- would decrease the need for tissue biopsy, as well as the time spent 
on segmenting the tumors manually or semi-automatically.
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Oncologic Classification tasks 
Ardila et al. [41] tried to predict the risk of lung cancer using screening low-dose CTs. The 
algorithm is trained on screening low-dose CT scans of patients who were known to be 
at risk. The authors trained their DL model on approximately 7000 scans, and validated 
its performance on 1139 cases. The authors reported that the model achieved the 
“state-of-the-art” performance (AUC of 0.944). Furthermore, the model outperformed 
all the radiologists (n=6) who were asked to give predictions. The model resulted in 
a significant reduction in the false positive (11%), and false negative rates (5%) [41]. 
While the current low-dose CT screening protocol has substantially improved in terms 
of consistency, it still faces major limitations represented in the inter-observer variability 
and incomplete characterization of image findings. The authors in [41] developed an 
algorithm that achieved significantly better performance than the current protocol, 
highlighting the potential of DL algorithms to revolutionize the field of lung cancer 
screening. Other advantages of the algorithm are that it eliminates the current clinical 
practice limitations. 

Ismael et al. [42] investigated the ability of DL algorithms to classify different brain tumors. 
The algorithm predicts if the lesion is one of: Meningiomas, Gliomas, and Pituitary 
tumors. The authors developed the algorithm on 3064 T1 MRI images from 233 cancer 
patients.  As input to the algorithm, the 2D images were considered independent from 
each other, and were split into 80% training and 20% testing, with strictly different 
patient data. The classifier used is ResNet50, a classic deep learning network, and the 
resultant balanced accuracy was 0.99 on a slice level and 0.97 at a patient level. This 
study shows that deep learning can very accurately classify brain tumors based solely on 
MRI data. However, the data to be used should be acquired using the same scanning 
parameters, as no external validation was performed in this study. There is a great clinical 
significance from the development of such a cDSS, as it eliminates the need for risky 
brain biopsies, while maintaining high accuracy.

In another study by Sibille et al. [43], the authors used the combination of CT, fluorine 
18-fluorodeoxyglucose PET, atlas and PET maximum intensity projection (MIP) 
imaging to classify lung nodules. The study included a set of 629 patients who were 
diagnosed with either lung cancer or lymphoma. The authors developed models using 
each of imaging modalities separately, as well as in combination. The recommended 
algorithm achieved an AUC of 0.98 when both CT and PET were combined [43]. 
This study shows that the combination of CT and PET can achieve an outstanding 
performance in terms of predictions. The current clinical practice requires the clinician 
to review and classify all of the increased-uptake foci in a PET/CT scan. The algorithm 
could help the clinicians to quickly read those images, after highlighting the suspicious 
areas and their most likely classification using DL. 
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Non-oncologic Classification tasks 
Walsh et al. [44] explored the potential of DL to classify fibrotic lung diseases using high 
resolution CT scans. The current clinical guidelines for classifying fibrotic lung diseases 
are based on high resolution scans, and diagnoses are made based on the semantic features 
identified by the radiologists. While these guidelines are the current gold-standard, it 
suffers greatly from inter-observer variability. The authors tried to address this unmet 
clinical need using DL approaches. The authors trained their DL model on 929 CT 
scans, and tested it on 139 scans. The authors reported a performance with human-level 
accuracy (0.76) [44]. Of interest, the algorithm developed had a better agreement with 
expert radiologists than among them. The ease of application of such methods in clinical 
settings could benefit clinical practice, especially in centers where such clinical expertise 
is scarce.

In the study by Ding et al. [45], the authors tried to develop a DL model that is able to 
diagnose Alzheimer’s disease (AD), using 18F-FDG PET scans of the brain. The current 
clinical guidelines to diagnose AD necessitate the interpretation of scans by an expert, 
and there is no definitive biomarker. To investigate the potential of DL, the authors 
collected two datasets: one used for training and testing the model (n=2109 scans), 
which was split into 90% training and 10% testing; and an independent dataset (n=40) 
for the validation of the model. The authors reported an AUC of 0.98, sensitivity of 1.00 
and specificity of 0.82, using scans acquired 75.8 months on average before establishing 
the diagnosis. The model further outperformed the readers’ performance (sensitivity of 
0.57 and specificity of 0.91) [45]. The significance in this study lies within the novelty 
of developing a biomarker for AD that is currently an unmet clinical need. In addition 
to the significantly better performance compared to human experts, the model can 
predict that the patient has AD in progression significantly earlier (~6 years). Such an 
application will revolutionize the clinical management of AD. However, prospective 
validation of this signature is needed before its translation to clinical practice.

Oh et al. [46] applied a DL based approach in order to classify the neuroimaging data 
related to AD. Authors used 694 MRI scans (T1-weighted MP-RAGE sequence) for 
solving several binary classification problems: AD vs. normal control (NC), progressive 
mild cognitive impairment (pMCI) vs. NC, stable mild cognitive impairment (sMCI) 
vs. NC and pMCI vs. sMCI. The authors utilized convolutional autoencoder-based 
unsupervised learning algorithms in order to classify the AD vs. NC. Following that, the 
authors applied a supervised transfer learning approach to classify the pMCI vs. sMCI. 
The developed algorithms achieved accuracies of 0.87, 0.77, 0.63, and 0.73 for the 
AD, pMCI, sMCI and pMCI vs. sMCI classifications, respectively. In comparison to 
Ding et al. [45], the authors in this study used different DL approaches, and less numbers 
of patients were available for training and testing the algorithm. Furthermore, the 
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difference in the imaging modality analysed in each study could justify the variation in 
performance, as AD begins with functional impairment rather than structural changes. 
Although the model developed by oh et al. [46] was outperformed by human experts, 
the authors demonstrated the possibility of end-to-end DL algorithms, which could be 
translated to clinical use after further optimization and prospective validation. 

Response to therapy
Lou et al.  [47] reported on the potential of DL models to predict response to radiotherapy 
in patients with lung cancer (primary or metastatic) using CT scans. Currently, all 
patients are treated similarly, while personalizing radiotherapy remains a desired, but 
unmet clinical need. The authors in this study collected a total of 849 scans for training 
the DL algorithm, and 95 scans to validate it. The authors developed a deep learning 
model (deep profiler) that computes and includes radiomic features in the deep-
profiling process. A model combining the deep profiler and clinical variables is then 
used to calculate a risk score that is used to predict the response to treatment. The 
algorithm classifies patients into high and low risk groups, with a high performance 
(c-index of 0.72), which is significantly better compared to the results obtained with 
solely handcrafted radiomic models (c-index between 0.65 and 0.68) [47]. The algorithm 
developed in this study opens new potentials for individualizing radiotherapy based on 
patients’ sensitivity. Thereby, avoiding over- or under-treatment, and the side-effects 
of unnecessary treatment. Nevertheless, proper prospective validation of the developed 
algorithm remains a necessity.

Ypsilantis et al. [48] used convolutional neural networks to develop a model that is capable 
of predicting response to neo-adjuvant chemotherapy (NAC) in patients with esophageal 
cancer using PET scans. NAC is considered a standard of care in some cancers. While 
NAC has favourable outcomes in patients who respond, patients who do not end up 
with worse outcomes. To investigate the potential of QIA techniques, the authors 
collected 107 PET scans of patients diagnosed with esophageal cancer, treated with 
NAC, and followed-up to determine response. The authors compared the performance 
of hand-crafted radiomics with deep learning approaches. The authors reported that the 
developed deep learning algorithm outperformed the hand-crafted radiomics model, 
and achieved a sensitivity of 0.81 and specificity of 0.82 [48]. The algorithm developed in 
this study highlights the potential of using DL to predict patients’ response to therapy 
at baseline, which is considered a substantial clinical added value.

Challenges and future directions

Biomarkers are defined as “objective indications of medical state observed from outside 
the patient – which can be measured accurately and reproducibly” [49]. The core 
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of choosing a biomarker is the ability to measure it objectively. The reproducibility 
of imaging quantitative features across different imaging parameters is currently the 
steepest hurdle in QIA. As more research is being performed, other challenges, such as 
the sensitivity of QIA features to variations in the segmentation of the ROIs; and the 
lack of feature reproducibility across different implementations of radiomics toolboxes, 
are becoming increasingly clear. 

The stability and reproducibility of quantitative features
Since the first landmark study in radiomics by Aerts et. al [50], the sensitivity of radiomic 
features to repeated acquisitions has been acknowledged. The authors performed a test-
retest stability investigation, and used 100 out of 440 calculated radiomic features based 
on the stability rank of the features. The authors also acknowledged the sensitivity of 
features to differences in segmentations, and performed a primary feature selection 
based on the features’ robustness with regards to differences in both test-retest and 
segmentations. More recently, several studies reported on the sensitivity of radiomic 
features to temporal changes in test-retest studies across different modalities, including 
CT, MRI, and PET.  

Anatomical imaging
Anatomical imaging (CT and MRI) is used to explore the underlying anatomical 
structures. CT imaging is standardized using the hounsfield units (HU) [51]. On the other 
hand, MR imaging has no such standardized intensity measurements [52]. Even though 
CT imaging uses standardized measurements, CT-based radiomics are not necessarily 
reproducible. Several studies reported that a significant number of CT-based radiomic 
features are not reproducible in test-retest settings, where the scans are acquired using 
the same scanning parameters [53–55]. Other studies that investigated the reproducibility 
of CT-based radiomics features across different imaging acquisition and reconstruction 
parameters reported that the majority of radiomic features are significantly affected by 
such differences [53,56,57]. Unreproducible radiomic features should be removed before 
starting the modeling of radiomics signatures. Therefore, it is always necessary to 
perform preselection of stable radiomics features based on the data under study, before 
starting the modeling.

MR-based radiomics is even more complex and challenging to standardize compared 
to CT based radiomics, as more factors -in addition to lack of standardized intensity 
measurements-affect MR imaging [58]. Some studies reported on the stability of various 
MR-based features. Fiset et al. [59] investigated the reproducibility of T2-weighted MRI 
of cervical cancer in three different settings:  (i) test–retest; (ii) diagnostic MRI versus 
simulation MRI; (iii) interobserver variability. The authors reported that 22.6%, 6.2% 
and 74.4% of 1761 extracted radiomics features were reproducible across test-retest, 
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diagnostic versus simulation MRI, and different observers, respectively. Semi-parametric 
maps derived from specialized MRI sequences suffer less from the lack of stability: 
Peerlings et al. [60] reported on the stability of radiomics features extracted from apparent 
diffusion coefficient (ADC) map in test-retest and across different cancer types, centers, 
and vendors. The authors reported that out of 1322 extracted radiomics features, 122 
features were stable across all cancers, centers, and vendors. 

On top of these challenges, using contrast agents for imaging adds another level of 
complexity to the reproducibility of features, due to the differences in the cardiac 
function of patients being scanned. Changes in cardiac function can affect the time the 
distribution of the contrast in the body takes [61]. Another factor in contrast-enhanced 
images is the difference in time between the injection of the contrast and scan acquisition, 
which might be slightly different across centers and protocols. 

Functional imaging
Functional imaging is used to assess the metabolic activity of a region of interest, and 
includes the injection of radiopharmaceuticals. Some standardized measurements in 
PET are already being extracted and used in clinical practice, such as the standardized 
uptake value (SUV), and the metabolically active tumor volume (MTV) [7]. 

The challenges of radiomics for functional imaging are similar to the challenges of 
contrast-enhanced anatomical imaging radiomics, where the variability in the injected 
radiopharmaceutical activity, the time between injection and image acquisition, and 
acquisition time per bed position have profound implications on the reproducibility 
of radiomics features [62]. In addition, functional imaging lacks anatomical specificity 
and suffers from low resolution, which could be addressed by the use of hybrid imaging 
[22]. Tixier et al. [63] investigated the reproducibility of SUV measurements, intensity 
histogram features, intensity-size zone features, and co-occurrence matrices features. The 
authors acquired two 18F-FDG PET scans of 16 patients, with a 4-days’ time interval. 
In contrast to further studies, the authors reported that these features were insensitive 
to the discretization range. Hatt et al. [64] investigated the robustness of PET based 
heterogeneity textural features with respect to the delineation of functional volumes 
and partial volume effects correction. The authors reported that these features were 
significantly affected by the differences in the delineation. The authors further reported 
that local features, e.g entropy and heterogeneity, were more robust when compared 
to regional features, e.g intensity variability and size-zone variability. Leijenaar et al. 
[65] investigated the role of SUV discretization on radiomics features. The authors used 
two different methods for SUV discretization, and reported that differences in SUV 
discretization significantly affect the reproducibility of 18F-FDG PET based radiomic 
features. The authors recommended the standardization of methodology for radiomics 



Radiomics for precision medicine

37

2

analysis. Altazi et al. [66] investigated the reproducibility of PET based radiomic features 
in cervical cancer patients. The authors investigated the reproducibility in three different 
scenarios: (i) manual versus computer‐aided segmentations, (ii) gray‐level discretization, 
and (iii) reconstruction algorithms. The authors extracted 79 PET radiomics features, 
and reported that the percentage of stable features in the three scenarios were 13%, 5%, 
and 1% respectively. Shiri et al. [67] explored the effects of different reconstruction on 
18F-FDG PET radiomics. The authors studied the effects of several factors including 
number of sub-iterations, number of subsets, full width at half maximum (FWHM) of 
Gaussian filter, and scan time per bed position and matrix size. The authors reported 
that 47% of the features were found to be robust, and these include shape, 44% of the 
intensity based features, and 41% of the texture based features. However, with changes 
in matrix size, the authors reported that only 6% of the features were robust.

The discrepancies in the reported percentages of stable/reproducible features across the 
reported studies are most likely linked to the variations between the datasets used in 
each of the studies in the scanners, and scans acquisition and reconstruction parameters 
combinations. However, these discrepancies are expected because of the different complexity 
of radiomics features, as well as the interaction between the different scanning parameters. 
All of the above mentioned studies reported that a variable percentage of radiomics features 
are affected, which highlights the necessity of performing feature stability/reproducibility 
studies based on the data under analysis before performing radiomics analysis.

Sensitivity of quantitative imaging features to variations in the 
segmentation of the ROIs
In QIA, the medical images are converted to numerical arrays before feature calculation. 
Consequently, it is intuitive that differences in segmentations affect the quantitative 
imaging feature values variably, depending on the feature definition. Many studies 
have identified lists of radiomics features that are robust to variability in segmentations 
[50,68,69]. Furthermore, with the inclusion of deep learning methods in image analysis, 
efforts are being made to develop reliable and reproducible automatic segmentations of 
various regions of interest as described in 3.2.1. Deep learning suffers less in this aspect, 
as the provision of ROIs is not obligatory.

The different implementations of radiomics feature extraction toolboxes
It is common knowledge in the radiomics community that different radiomics toolboxes 
use different pre-processing techniques and/or feature definitions, which lead(s) to 
variations in estimation of radiomics feature values when different software solutions 
are used. To address this issue, the radiomics community started an initiative – Imaging 
Biomarkers Standardization Initiative (IBSI) - that aims at standardizing radiomics 
feature extraction using different toolboxes [70]. To date, the IBSI standardized the 



Chapter 2

38

extraction of 169 radiomics features [71]. Limiting the radiomics analysis to the IBSI 
standardized features can facilitate radiomic features interchangeability across platforms.

Future directions
To address the issue of radiomic features reproducibility, some harmonization methods 
have been investigated in the literature. Of the trending methods is Combine Batches 
(ComBat). ComBat is a statistical method that was developed to remove the batch effects 
in microarray expressions [72]. While several studies have reported on the application of 
ComBat harmonization in radiomics analysis as a means to remove batch effects [73,74], 
its direct application on radiomics data is not in concordance with the mathematical 
definition of ComBat [72], or with the hypothesis that radiomics correlate with biology. 
This is because ComBat assumes that the differences between batches are attributed to 
two groups of factors, the first group refers to the biological covariates, which radiomics 
features are investigated for correlations with. Moreover, adding biologic covariates for 
ComBat in the training of radiomics signatures will hinder its prospective use, because 
it will be the outcome the radiomic signature tries to predict. The second group refers 
to the “non-biologic” factors, such as image acquisition and reconstruction parameters. 
ComBat was defined to handle one batch effect at a time. In contrast to gene expression 
arrays for which ComBat was designed, radiomic features have different complexity levels, 
which are expected to be non-uniformly affected by the variations in imaging parameters. 
In addition, the differences in image acquisition and reconstruction settings in a given 
retrospective imaging dataset are usually in more than one imaging parameter. The proper 
use of ComBat would require the assessment of the reproducibility of radiomics features 
after applying ComBat on representative objects with no biologic variations, such as 
phantoms. Then, radiomics features extracted from patients’ scans acquired with the same 
imaging parameters can be transformed based on the location/scale parameters estimated 
by the application of ComBat on the phantom data. We here propose a framework 
for performing robust radiomics analysis (Figure 3). Nonetheless, a radiomics-specific 
harmonization method is still needed to eliminate the need for phantom studies, as 
the performance of ComBat is expected to be dependent on the variations in scanning 
parameters in the data. 

The workflow consists of consecutive steps, and can be used to preselect reproducible 
and harmonizable radiomics features. The first step in the workflow is the collection of 
retrospective patient imaging data to be analyzed. In the second step, scan acquisition and 
reconstruction parameters must be extracted from the collected patient data. The next step 
includes scanning a phantom with the parameters extracted from the patient imaging data. 
This allows the assessment of the reproducibility of radiomics features across the different 
scan acquisition and reconstruction parameters, and the selection of those features for 
performing robust radiomics analysis. 
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Based on our review of existing 
literature and our own experience, in 
order to use ComBat in the context 
of radiomics analysis (steps 5-7), two 
extra steps are needed. After selecting 
the features that are insensitive to the 
variations in the scanning parameters 
extracted from the patient data, 
features that are reproducible in test-
retest in each of the combinations of 
those scanning parameters must be 
identified. ComBat is then applied 
on the features that are reproducible 
in test-retest but not across 
different scanning parameters. The 
concordance of Radiomic features 
is assessed following the application 
of ComBat. The location/scale shift 
parameters estimated by performing 
ComBat on the phantom data are 
then applied to the radiomics features 
extracted from patient data to 
harmonize them. The combination of 
the identified stable and harmonizable 
features can be further used to build 
the radiomics signature.

The challenges discussed above raise 
questions about the future applications of radiomics, and the development of radiomic 
signatures as clinical biomarkers. To begin with, how to approach the concept of 
external validation in radiomics studies. Do radiomic signatures need to be externally 
validated as is the case with other biomarkers, given all the challenges of reproducibility 
across different imaging settings? Or would the observatory prospective validation of a 
given signature in a specific image setting suffice? Does the development of radiomic 
signatures need to be specific for a scanner model and imaging settings? The ultimate 
solution will be the development of specific quantitative imaging parameters, as there is 
currently a clinical direction to personalize imaging settings per patient, which will have 
its toll on radiomics analysis.

Figure 3: Proposed workflow for robust 
radiomics analysis.
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Conclusion

Quantitative imaging techniques (radiomics and deep learning) present a perfect 
candidate for personalizing patients’ management. Applying these techniques in a sound 
manner can provide highly accurate and reproducible tools that minimize costs and 
time loss. However, to incorporate QIA in cDSS, the quantitative features should fulfil 
the definition of a biomarker, namely the stability and reproducibility. The future of 
quantitative image analysis in general lies within harmonizing the imaging protocols 
across centers and scanners, or within the development of a unique global protocol 
for quantitative analysis scans. Hence, the development of radiomics-specific tools to 
harmonize medical images and facilitate meaningful quantitative image analysis of the 
currently available retrospective data remains a necessity. Our proposed framework is 
expected to improve the robustness of radiomics analysis. Nevertheless, the benefits 
of the proper application and translation of QIA on medical imaging are undoubted. 
QIA techniques will be a valuable asset for both: the clinicians and patients. QIA can 
become an efficient means for aiding clinicians in risk stratification, early diagnosis, and 
improved management of patients.
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Abstract

This retrospective study investigated the value of pretreatment contrast-enhanced 
Magnetic Resonance Imaging (MRI)-based radiomics for the prediction of pathologic 
complete tumor response to neoadjuvant systemic therapy in breast cancer patients. A 
total of 292 breast cancer patients, with 320 tumors, who were treated with neo-adjuvant 
systemic therapy and underwent a pretreatment MRI exam were enrolled. As the data 
were collected in two different hospitals with five different MRI scanners and varying 
acquisition protocols, three different strategies to split training and validation datasets 
were used. Radiomics, clinical, and combined models were developed using random 
forest classifiers in each strategy. The analysis of radiomics features had no added value 
in predicting pathologic complete tumor response to neoadjuvant systemic therapy 
in breast cancer patients compared with the clinical models, nor did the combined 
models perform significantly better than the clinical models. Further, the radiomics 
features selected for the models and their performance differed with and within the 
different strategies. Due to previous and current work, we tentatively attribute the lack 
of improvement in clinical models following the addition of radiomics to the effects of 
variations in acquisition and reconstruction parameters. The lack of reproducibility data 
(i.e., test-retest or similar) meant that this effect could not be analyzed. These results 
indicate the need for reproducibility studies to preselect reproducible features in order 
to properly assess the potential of radiomics.

Keywords
breast cancer; MRI; neoadjuvant systemic therapy; response prediction; radiomics



MRI-Based Radiomics Analysis for the Pretreatment Prediction 

55

3

Introduction

Neoadjuvant systemic therapy (NST) is increasingly administered in the treatment 
of breast cancer. The number of breast cancer patients receiving NST varies between 
17% and 70% and depends mainly on breast cancer subtype and tumor size [1,2]. NST 
allows monitoring of in vivo tumor response, potentially decreasing tumor size and 
thus enabling breast-conserving surgery [1,3,4]. Unfortunately, not all patients respond 
well to NST, with tumor response ranging from pathologic complete tumor response 
(pCR) to non-response and sometimes even progression of disease. Predicting which 
patients will respond well to NST and achieve tumor pCR could lead to modifications 
of treatment plans. In current clinical practice, magnetic resonance imaging (MRI) 
assessment combined with clinical (tumor) characteristics is used to determine tumor 
response to NST [5–7]. However, the diagnostic accuracy of the MRI with regard to 
tumor response evaluation is insufficiently accurate (76.1%) to adapt clinical treatment 
plans [8]. Furthermore, two studies investigated the use of ultrasound-guided biopsies to 
identify pCR after NST [9,10]. Unfortunately, the results showed that these biopsies are 
not accurate enough to identify pCR that surgery can be omitted [11].

Radiomics, a quantitative image analysis technique, could play a role predicting pCR 
from pretreatment dynamic contrast-enhanced (DCE)-MRI exams. Radiomics extracts 
large amounts of quantitative features from medical imaging, including MRI. These 
features capture information on the underlying heterogeneous structure of the region 
of interest (ROI), describing volume and shape, intensities and textures [12]. Radiomics’ 
non-invasive ability to characterize the three-dimensional ROI, combined with the 
availability of ever-growing amounts of (longitudinal) imaging data and its cost-
effectiveness, all contribute to the potential use of radiomics in personalized medicine 
[13–16]. The emergence of radiomics has so far mainly been applied in the field of clinical 
oncology and has also permeated breast cancer research.

Several MRI-based radiomics studies have reported promising results regarding the 
prediction of pCR to NST in breast cancer patients based on pretreatment scans [17–21]. 
However, the evidence from these studies is limited due to the relatively small sample 
sizes ranging from 29 to 100 patients and the lack of external validation datasets. 
Despite the promising potential of radiomics, several hurdles that impede the clinical 
implementation of radiomics models have been identified. One of these is the sensitivity 
of radiomics features to the variations in acquisition and reconstruction parameters across 
different imaging modalities [22–26], and some features were found not to be reproducible 
even in test-retest scenarios [27–29].

This study aimed to investigate the potential of pretreatment contrast-enhanced MRI-
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based radiomics for the prediction of pCR to NST in breast cancer patients. We 
hypothesized that radiomics models trained and validated on data from two independent 
cohorts could add information to the prediction of tumor response to NST and that 
combined with clinical models can improve prediction accuracy. During our analysis, 
the sensitivity of radiomics features to the variations in acquisition and reconstruction 
parameters was established.

Materials and Methods

Study Population
In this multicenter study, imaging, and clinical data from consecutive women with 
histopathologically confirmed invasive breast cancer were retrospectively collected from 
two hospitals in the Netherlands (MUMC+—Maastricht University Medical Center and 
ZMC—Zuyderland Medical Center) between January 2011 and December 2018. The 
inclusion criteria were as follows: (i) treated with NST, (ii) have undergone pretreatment 
DCE-MRI in one of the two participating hospitals, and (iii) breast surgery after NST 
with histopathological outcome. Exclusion criteria were as follows: (i) histopathologically 
confirmed inflammatory breast cancer without the possibility of unequivocal tumor 
segmentation, (ii) MRI exam artefacts, if also rejected for visual assessment by the breast 
radiologist, (iii) non-standard chemotherapy regimens, deviating from the Dutch breast 
cancer guidelines, (iv) unfinished NST, and (v) no access to the patient’s medical record. 
In the case of multifocal breast cancer, all histopathologically confirmed invasive tumors 
were included in the study. The institutional research board of both hospitals approved 
the study and waived the requirement for informed consent.

Study Strategy
As different MRI scanners with varying acquisition and reconstruction parameters 
were used in the two hospitals, it was decided to develop separate prediction models 
(radiomics, clinical, and a combination of the two) for both cohorts and to validate 
them on each other (strategies 1 and 2). Therefore, all feature reduction, selection, and 
modeling procedures were performed on both data cohorts. A third modelling strategy 
was based on a mixture of both datasets divided into 70% training and 30% validation 
cohort. Feature selection and model building was performed on 70% of the training 
data and tested on the remaining 30% of the training data. The process of splitting the 
data into training and testing was iterated 100 times, maintaining class imbalance and 
ensuring that tumors from one patient were selected either in the training data or in the 
testing data. Figure 1A shows an overview of the selected data per strategy.

Clinical and Pathological Data
Clinical and pathological data were retrieved from patients’ medical records and included 



MRI-Based Radiomics Analysis for the Pretreatment Prediction 

57

3

age, clinical and pathological tumor, nodes, and metastases (TNM) stage, tumor grade, 
tumor histology, breast cancer subtype, and NST regimen. The majority of patients were 
treated with an anthracycline- and taxane-based NST regimen; the remaining received 
a taxane-based only NST regimen. Human epidermal growth factor receptor 2 (HER2) 
positive tumors received additional treatment with trastuzumab and/or pertuzumab. 
After completion of NST, all patients underwent breast surgery. The surgical specimens 
of all patients were evaluated via standard histopathological analysis by breast pathologists 
in the two participating hospitals. The breast tumor response was assessed by the Miller–
Payne or Pinder grading systems [30,31]. In this study, tumors were defined as pCR when 
classified as grade 5 using the Miller–Payne classification or classified as 1i and 1ii using 
the Pinder classification (pCR; ductal carcinoma in situ may be present).

Figure 1: 
An overview of training, test, and validation data cohorts for the three strategies (A) and a flowchart from 
patient se-lection for the two different hospitals (B). Abbreviations, MUMC+ = Maastricht University 
Medical Center+, ZMC = Zuyderland Medical Center, NST = Neoadjuvant Systemic Therapy, MRI = 
Magnetic Resonance Imaging.
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Imaging Data
For all patients, pretreatment MRI exams were collected containing fat-suppressed 3D 
THRIVE DCE T1-weigthed (T1W), T2-weighted in the MUMC and fat-suppressed 
T2-weighted in the ZMC, and diffusion weighted imaging sequences. It was decided to 
only use the peak-enhanced phase of the DCE-T1W images for the radiomics analysis 
as tumors are best visible on this sequence [32,33]. The DCE-T1W images were obtained 
before and after intravenous injection of gadolinium-based contrast Gadobutrol 
(GadovistTM (EU)) with a volume of 15 mL and a flow rate of 2 mL/sec. A 105 s 
temporal resolution protocol was used in the MUMC+ and a 20 s temporal resolution 
protocol in the ZMC, resulting in five and nineteen post-contrast images for each patient 
in the MUMC+ and ZMC, respectively. Images were acquired using 1.5T (Ingenia, 
Intera, and Achieva by Philips Medical system and Avanto Fit by Siemens) and 3.0T 
(Skyra by Siemens) MRI scanners. All patients were scanned in prone-position using a 
dedicated breast-coil. DCE-T1W MRI acquisition protocols from both hospitals can be 
found in Table 1. Sequence parameters varied per MRI scanner and hospital, reflecting 
the heterogeneity in medical images used in daily clinical practice.

Tumor Segmentation
The images acquired at tumor peak enhancement, at approximately two minutes’ post-
contrast administration, were used for the 3D ROI segmentation and further radiomics 
analysis, as tumors are best assessed on these images. All histologically confirmed 
invasive tumors were segmented manually using Mirada Medical’s DBx 1.2.0.59 (64-
bit, Oxford, UK) software by a medical researcher with three years of experience (RG), 
supervised by a dedicated breast radiologist with 14 years of experience (ML). During 
segmentation, the radiology reports were accessible, and adjustment of image grayscale 
was allowed to optimize the visualization of the tumor. To gauge any bias introduced 
by inter-observer segmentation variability, 129 tumors from 102 patients acquired at 
MUMC+ were segmented by four observers independently with different degrees of 
experience in breast MR imaging (RG, ML, resident with three years of MRI experience 
(TvN), and a medical student with no experience (NV)) [34].

Image Pre-Processing and Feature Selection
Image pre-processing of the two-minute postcontrast-T1W images was performed 
after tumor segmentation using an in-house developed pipeline and using a widely 
used proposed pre-processing method by Pyradiomics [35,36]. The in-house developed 
pipeline started first by applying bias field correction to every image using MIM 
software (version 6.9.4, Cleveland, Ohio, Unites States) to correct for nonuniform 
grayscale intensities in the MRI caused by field inhomogeneities. Second, in order to 
minimize acquisition-related radiomics variability, voxel dimensions were standardized 
across the cohorts to arrive at an isotropic voxel resolution of 1 mm3 by means of cubic 
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interpolation [37]. Third, to homogenize arbitrary MRI units and clip image intensities 
to a certain range, a histogram matching technique was applied, adjusting the pixel 
values of the MR image such that its histogram matched that of the target MR image 
from the training data cohort [38–40]. Further gray value filtering was applied to generate 
MRIs with comparable gray value range and to enhance the contrast of the image using 
the following filtering parameters: window level (WL: 3050) and window width (WW: 
2950). Filtering parameters were found when exploring the images after the histogram 
matching step. Fourth, to reduce high frequency noise and optimize handling of the 
image, grayscale values were resampled using a fixed bin width of 24, which reduced 
both image noise and computation times when extracting radiomics features from the 
ROI [41]. The pre-processing method proposed by Pyradiomics was applied after images’ 
bias field correction and consisted of z-score normalization, resampling to isotropic 
voxel resolution of 1 mm3, and image discretization using a bin width of 100 to reach 
an ideal number of bins between 16 and 128 [12].

For each ROI, 833 features were extracted using the Pyradiomics software (version 3.0). 
The extracted radiomics features included first-order statistics features (18), shape-based 
features (14), gray-level co-occurrence matrix features (GLCM) (22), gray-level run 
length matrix features (GLRLM) (16), gray-level size zone matrix features (GLSZM) 
(16), neighboring gray tone difference matrix features (NGTDM) (5), and gray-level 
dependence matrix features (GLDM) (14) from both unfiltered and filtered (eight 
wavelet decompositions) images.

Feature Selection and Radiomics Model Development
All feature selection steps followed by model development were performed on the 70% 
training data for each iteration. First, features sensitive to interobserver segmentation 
variabilities were removed using an intraclass correlation coefficient (ICC) cut-off value 
>0.75 (29). Consecutively, features with zero or small variance (with the frequency 
ratio between the most common value and the second most common value larger than 
95/5) were removed. This was followed by the removal of highly correlated features 
using pairwise Spearman correlation (|r| > 0.90), where from any two highly correlated 
features, the feature with the highest mean correlation with the rest of the features was 
removed. Finally, the Boruta algorithm, a random forest feature selection method, was 
used to select important predictive features [42,43]. The Boruta algorithm duplicated 
all features and shuffled the values in the so-called shadow features. Random forest 
classifiers were trained on the real and shadow features, and the algorithm subsequently 
compared the importance score of each feature and selected only those features where 
the importance of the real feature was higher compared with the shadow’s feature 
importance [44]. Random forest classification models were trained on the 70% of the 
training data and tested on the remaining 30% of the training data. The best performing 
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radiomics models according to the summation of AUC and sensitivity value based on 
the test data in all strategies were selected and validated on the external validation data. 
All random forest parameters were set at default (Table S1) values. Figure 2 shows the 
radiomics workflow used in this study. Additionally, the range of the AUC values in the 
training data set is presented.

Clinical and Combined Model Development
Clinical and combined (based on radiomics features and clinical variables) random 
forest models were trained, tested, and validated using the same strategy used to develop 
the radiomics models as described above. Clinical models were based on the available 
clinical characteristics, including age, clinical tumor stage (cT), clinical nodal stage (cN), 
clinical tumor grade, tumor histology, and breast cancer subtype. The best performing 
clinical and combined models according to the summation of AUC and sensitivity 
value based on the test data in all strategies were selected and validated on the external 
validation data. All random forest parameters were set as default. Additionally, the range 
of the AUC values in the training data set was presented.

Statistical Analysis
Image pre-processing steps were performed in Python (version 3.7) using an in-house 
developed pipeline based on the computer vision packages opencv (version 4.1.0), 
SimpleITK (version 1.2.0), and numpy (version 1.16.2) procedure. The remaining 
statistical analysis, feature selection, model development, and model evaluation were 
performed in R (version 3.6.3) using R studio (version 1.2.1335, Vienna, Austria) [45] 

Figure 2: 
Radiomics workflow used in this study. Abbreviations, MRI = Magnetic Resonance Imaging,  
DCE = Dynamic Con-trast-Enhanced, BFC = Bias Field Correction.
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and the R packages Boruta (version 7.0.0), Caret (version 6.0–85), Smotefamily (version 
1.3.1), RandomForest (version 4.6–14), and pROC, (version 1.3.1) [46]. The difference 
between cohorts was assessed using independent samples t-test for continuous normally 
distributed variables, and Pearson chi-squared test for categorical variables. Statistical 
significance was based on p-values < 0.05 for both tests. The models developed were 
evaluated using the AUC and the 95% confidence interval (CI). DeLong’s test was used 
to compare AUC values. In addition, the sensitivity and specificity and the negative 
predicted value (NPV) and positive predictive value (PPV) were derived from the 
confusion matrix. The radiomics quality score (RQS) was used to assess the radiomics 
workflow [14]. This study checked the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnoses (TRIPOD) guidelines [47,48].

Table 2: Clinical patient and tumor characteristics of patients in both complete data from 
the Maastricht University Medical Center+ (MUMC+) and Zuyderland Medical Center (ZMC) 
hospital.

Characteristics MUMC+ ZMC p-Value

Number of patients
Patient Age (years) (mean; range)

Number of tumors

129
51 (28–73)

152

161
52 (28–79)

168

-
0.378

-

Clinical tumor stage (%)
T1
T2
T3
T4

 
29 (19.1)
99 (65.1)
20 (13.2)
4 (2.6)

 
16 (9.5)

103 (61.3)
37 (22.0)
12 (7.2)

0.007

Clinical nodal stage (%)
N0
N1
N2
N3

Unknown

 
88 (57.9)
44 (29.0)
9 (5.9)
11 (7.2)
0 (0.0)

 
59 (35.1)
87 (51.8)
12 (7.1)
7 (4.2)
3 (1.8)

<0.001

Clinical tumor grade (%)
1
2
3

Unknown

 
8 (5.3)

70 (46.1)
68 (44.7)
6 (3.9)

 
22 (13.1)
84 (50.0)
62 (36.9)
0 (0.0)

0.003

Tumor histology (%)
Invasive ductal carcinoma
Invasive lobular carcinoma

Invasive mixed ductal/lobular carcinoma
Other invasive carcinoma

 
136 (89.5)
10 (6.6)
0 (0.0)
6 (3.9)

 
134 (79.8)
14 (8.3)
9 (5.4)
11 (6.5)

0.009

Cancer Subtype (%)
HR+ and HER2−
HR+ and HER2+
HR− and HER2+

Triple-negative

80 (52.6)
22 (14.5)
19 (12.5)
31 (20.4)

82 (48.8)
26 (15.5)
22 (13.1)
38 (22.6)

0.921

Response to NAC (%)
pCR

Non-pCR
53 (34.9)
99 (65.1)

49 (29.2)
119 (70.8)

0.331

Abbreviations, HR = Hormone Receptor, HER2 = Human Epidermal growth factor Receptor 2.
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Results

Patients Demographics
A total of 322 women with invasive breast cancer and treated with NST were considered 
for inclusion, of whom 32 were excluded (Figure 1B). A total of 290 women with 320 
breast tumors met the inclusion criteria, of whom 129 women with 152 breast tumors 
were collected at the MUMC+ and 161 women with 168 breast tumors at the ZMC. 
Table 2 summarizes the patient and tumor characteristics of both datasets. The pCR 
rate of the included tumors was 34.9% (53/152) and 29.2% (49/168) in the MUMC+ 
and ZMC cohorts, respectively, showing no significant difference. There were significant 
cohort differences in clinical tumor stage, clinical nodal stage, clinical tumor grade, and 
tumor histology (Table 3). Clinical tumor stage, clinical tumor grade, and breast cancer 
subtype showed significant differences between pCR and non-pCR tumors within the 
individual cohorts (Table 3).

The results reported in the manuscript are based on the in-house developed image 
preprocessing pipeline, whereas the results based on the image pre-processing proposed 
by Pyradiomics are reported in the Supplementary Materials (Tables S2 and S3 and 
Figure S1). In both the radiomics and combined models, no significant differences were 
found (Table S4).

Table 3: Clinical patient and tumor characteristics of patients in both complete data cohorts 
on pCR and non-pCR tumors from the Maastricht University Medical Center (MUMC+) and 
Zuyderland Medical Center (ZMC) hospitals.

Characteristics MUMC+ ZMC

Non-pCR pCR p-Value Non-pCR pCR p-Value

Number of tumors
Patient Age (years) (mean; range)

99
52 (32–72)

53
51 (28–73)

-
0.600

119
53 (31–79)

49
52 (28–73)

-
0.538

Clinical tumor stage (%)
T1
T2
T3
T4

12 (12.1)
68 (68.7)
16 (16.2)
3 (3.0)

17 (32.1)
31 (58.5)
4 (7.5)
1 (1.9)

0.019*
6 (5.0)

76 (63.9)
28 (23.5)
9 (7.6)

10 (20.4)
27 (55.1)
9 (18.4)
3 (6.1)

0.023

Clinical nodal stage (%)
N0
N1
N2
N3

Unknown

56 (56.6)
29 (29.3)
6 (6.1)
8 (8.1)
0 (0.0)

32 (60.3)
15 (28.3)
3 (5.7)
3 (5.7)
0 (0.0)

0.943
39 (32.8)
62 (52.1)
11 (9.2)
5 (4.2)
2 (1.7)

20 (40.8)
25 (51.0)
1 (2.0)
2 (4.1)
1 (2.0)

0.526

Clinical tumor grade (%)
1
2
3

Unknown

8 (8.1)
58 (58.6)
32 (32.3)
1 (1.0)

0 (0.0)
12 (22.7)
36 (67.9)
5 (9.4)

<0.001*
19 (15.9)
66 (55.5)
34 (28.6)
0 (0.0)

3 (6.1)
18 (36.7)
28 (57.2)
0 (0.0)

0.002
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Radiomics Models—Feature Selection and Model Performance
Of the 833 features extracted per ROI, 87 features were removed, as they were reported 
to be significantly affected by inter-observer segmentation variability (Table S5). In the 
best performing radiomics models in all strategies, one feature (firstorder_maximum) 
was removed, as it showed near zero variance. This was followed by the removal of: 574, 
568, and 568 highly correlated features in strategy 1, 2, and 3, respectively, leaving 172, 
178, and 178 features in the respective cohorts. The Boruta algorithm selected 5, 1, and 
6 features in the best performing radiomics models for strategy 1, 2, and 3, respectively 
(Table 4A).

The results of the best performing radiomics models developed in the three strategies 
are shown in Table 5A. The AUC values in the validation cohorts were 0.55 (95% CI: 
0.46–0.65), 0.52 (95%CI: 0.42–0.62), and 0.50 (95%CI: 0.37–0.64) for the respective 
strategies 1, 2, and 3. The sensitivity values ranged between 24% and 73% in the 
validation cohorts. The 100 radiomics models developed in the three strategies resulted 
in a range of AUC values in the training cohorts between 0.46 and 0.86 (Table S6).

Tumor histology (%)
Invasive ductal carcinoma
Invasive lobular carcinoma

Invasive mixed ductal/lobular carcinoma
Other invasive carcinoma

89 (89.9)
6 (6.1)
0 (0.0)
4 (4.0)

47 (88.7)
4 (7.5)
0 (0.0)
2 (3.8)

0.913
91 (76.5)
13 (10.9)
9 (7.6)
6 (5.0)

43 (87.8)
1 (2.0)
0 (0.0)
5 (10.2)

0.030

Cancer Subtype (%)
HR+ and HER2−
HR+ and HER2+
HR− and HER2+

Triple-negative

64 (64.6)
15 (15.2)
6 (6.1)

14 (14.1)

16 (30.2)
7 (13.2)
13 (24.5)
17 (32.1)

<0.001*
75 (63.0)
14 (11.8)
5 (4.2)

25 (21.0)

7 (14.3)
12 (24.5)
17 (34.7)
13 (26.5)

<0.001

Abbreviations, pCR = pathologic Complete Response, HR = Hormone Receptor, HER2 = Human 
Epidermal growth factor Receptor 2.

Table 3: continued.

Characteristics MUMC+ ZMC

Non-pCR pCR p-Value Non-pCR pCR p-Value
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Clinical Models—Feature Selection and Model Performance
The clinical variables available were patient age, cT, cN, clinical tumor grade, tumor 
histology, and breast cancer subtype. None of the clinical variables were highly correlated. 
The Boruta algorithm selected four features in the best performing clinical models for all 
strategies (Table 4B). The results of the clinical models performed in the three settings 
are shown in Table 5B. The AUC values in the validation cohorts were 0.71 (95% CI: 
0.62–0.79), 0.77 (95% CI: 0.70–0.85), and 0.72 (95% CI: 0.61–0.83) for strategy 1, 2, 
and 3, respectively. The clinical models performed significantly better compared with the 
radiomics models (Figure 3). The sensitivity values ranged between 41% and 47% in the 
validation cohorts. The 100 radiomics models developed in the three strategies resulted in 
a range of AUC values in the training cohorts between 0.68 and 0.88 (Table S6).

Table 4: Selected features in best performing radiomics, clinical, and combined models for 
the three strategies.

Strategy 1 Strategy 2 Strategy 3

A (Radiomics) O_glszm_GrayLevelVariance W.LHH_firstorder_Kurtosis O_shape_Sphericity

W.HLL_firstorder_Mean W.LLH_glszm_GrayLevel-
Non-Uniformity

W.HLL_glcm_Imc1 W.LLH_glszm_ZoneEntropy

W.HLH_glcm_InverseVa-
riance

W.HHL_glcm_Imc1

W.LLL_ngtdm_Complexity W.HHH_glrlm_RunEntropy

W.LLL_glcm_Difference
Variance

B (Clinical) Age cT Age

cT cN cT

Tumor grade Tumor grade Tumor grade

Breast cancer subtype Breast cancer subtype Breast cancer subtype

C (Combined) Tumor grade Tumor grade cT

Breast cancer subtype Breast cancer subtype Tumor grade

O_shape_Sphericity W.LHL_firstorder_kurtosis Breast cancer subtype

O_firstorder_Mean W.HHL_gldm_Dependence-
Variance

O_shape_Sphericity

W.HLL_glcm_Imc2 W.LLH_glszm_Small
AreaLowGrayLevelEmphasis

W.HLL_glszm_ZoneEntropy

W.HLH_glcm_Inverse
Variance

Abbreviations: O = original, W = wavelet, cT = clinical tumor stage, and cN = clinical nodal stage.
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Combined Models—Feature Selection and Model Performance
Of the 833 features extracted per ROI, 87 features were removed, as they were reported 
to be significantly affected by inter-observer segmentation variability. In the best 
performing combined models in all strategies, one feature (firstorder_maximum) was 
removed, as it showed near zero variance. This was followed by the removal of 580, 563, 
and 577 highly correlated features in strategy 1, 2 and 3, respectively, leaving 172, 189, 
and 175 features in the respective cohorts. The Boruta algorithm selected 7, 4, and 6 
features in the best performing radiomics models for strategy 1, 2, and 3, respectively 
(Table 4C). The three models all contained the same clinical features, clinical tumor 
grade, and clinical breast cancer subtype. The results of the best performing combined 
models developed in the three strategies are shown in Table 5C. The AUC values in the 
validation cohorts were 0.73 (95% CI: 0.65–0.81), 0.69 (95%CI: 0.61–0.78), and 0.71 
(95%CI: 0.60–0.81) for the respective strategies 1, 2, and 3. The sensitivity values ranged 
between 38% and 51% in the validation cohorts. The 100 radiomics models developed 
in the three strategies resulted in a range of AUC values in the training cohorts between 
0.59 and 0.91 (Table S6).

RQS and TRIPOD Results
This study scored a RQS score of 41.7% (15 out of 36 points) (Table S7). The score of 
the TRIPOD checklist was 73% (24 out of 33 applicable items) (Table S8).

Figure 3: 
AUC values from the selected radiomics, clinical, and combined validation models in all strategies.  
* Significant dif-ference between AUC values with p-value < 0.05 (p-values were calculated using the ROC 
test by Delong method).
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Discussion

In this multicenter study, we investigated the value of pretreatment contrast-enhanced 
MRI-based radiomics for the prediction of pCR to NST in breast cancer patients using 
radiomics, clinical, and combined models in three different data-mixing strategies. The 
AUC values of the radiomics, clinical, and combined models in the validation datasets 
of the three strategies had ranges of 0.50–0.55, 0.71–0.77, and 0.69–0.73, respectively. 
Different radiomics features were selected for the radiomics and combined models 
in the three strategies, while the selected clinical features were mostly the same in all 
scenarios, with comparable performances. These results indicate poor performance of 
the radiomics features and that the radiomic features had no added value to the clinical 
models developed for the prediction of pCR to NST in breast cancer patients.

The clinical models significantly outperformed the radiomics models for the prediction 
of pCR to NST in all strategies. This indicates that radiomics features in these scenarios 
did not have an added value to the clinical model we developed. Furthermore, the 
variation in the features selected and model performance was greater in the radiomics 
models compared with the clinical models. However, based on current knowledge in the 
radiomics field, we cannot say that radiomics features do not have an added value unless 
the variations in acquisition and reconstruction parameters are properly addressed. Due 
to the lack of reproducibility data, this study could not analyze the effects of different 
acquisition and reconstruction parameters on radiomics feature values. Furthermore, 
the significant differences in population characteristics between the two cohorts could 
have led to the low performance of the radiomics models. While there was overlap in 
breast cancer phenotypes, the proportions at which these phenotypes occur may have 
differed so that the differences in prevalence resulted in differences in overall classification 
performances.

The results of this study indicate that even extensive MRI pre-processing and 
homogenization of the MR images do not sufficiently address the variations in acquisition 
and reconstruction parameters. This is in line with studies published in recent years that 
investigated the reproducibility of MRI radiomics features in test-retest phantom data 
as well as in patient data of varying disease sites, and showed that, among others, the 
variations in acquisition and reconstruction parameters strongly influence the values 
(concordance) of radiomics features [24,27–29,49–52]. Shur et al. [29] performed a test-retest 
1.5T MRI phantom study using the same imaging protocol and showed that 20% of 
the examined features were not repeatable. A study on repeatability and reproducibility 
using a T2W pelvic phantom showed that radiomics features values are not only affected 
by varying acquisition parameters but also by the use of different MRI vendors and 
magnetic field strengths, wherein the reproducibility of the radiomic features is more 



MRI-Based Radiomics Analysis for the Pretreatment Prediction 

69

3

affected by difference in MRI vendor than by difference in magnetic field strength [49].  
Overall, they reported that only 3.3% (31/944) of the examined features showed 
excellent robustness (ICC and CCC > 0.9). The radiomics community is currently 
trying to address these major hurdles.

Investigating comparable published work, we found a number of studies using only 
univariate predictive features without an external validation data cohort [18–21,53,54] and 
more recent published papers that were focusing on multivariate prediction models 
[32,33,55,56]. Hope Cain et al. [55] achieved an AUC value of 0.71 (95% CI: 0.58–0.83) for 
predicting pCR to NST in TN/HER2+ breast cancer patients; however, the model was 
not externally validated. Therefore, we anticipate that the results could not be generalized 
to scans acquired with different vendors/parameters than those used in the study. The 
study by Liu et al. [57] was the only study performing external radiomics model validation 
for the prediction of pCR to NST in breast cancer patients. The study differed from our 
research by the use of multiparametric (T2-weighted, diffusion-weighted images, and 
contrast-enhanced T1-weighted) MRI. However, the use of multiple MRI sequences for 
pCR prediction achieved better outcome with validation AUC values between 0.71 and 
0.80. However, it is remarkable that their external validation results were obtained with 
MRI images that were much less extensively pre-processed compared to our images.

Our study also has its limitations. First, selection bias in retrospective studies is 
inevitable and so are the biases introduced by clinical protocols, such as HER2+ tumors 
receiving additional treatment compared to other tumors. Second, since the effect of 
different MRI scanners and acquisition and reconstruction parameters on radiomics 
features in breast imaging is not determined, we could not adjust our model for the 
potential variance induced by these factors in the radiomics feature values. Therefore, 
since data were collected from two hospitals using five MRI scanners with different 
acquisition and reconstruction parameters, noise may have been introduced into the 
models by incorporating radiomics features not robust to these variations. Third, while 
we believe that MRI preprocessing is a necessary step toward comparable images with 
intensity values having similar tissue meaning, it is possible that with our choice of 
preprocessing steps, consistent with current literature, we may have inadvertently 
removed quantitative information. However, the results obtained with the widely used 
pre-processing method proposed by Pyradiomics showed no significant differences from 
the result reported here. Fourth, the number of patients included in this study did not 
allow us to perform a subanalysis for the different breast cancer subtypes. Fifth, the data 
were collected over a relatively long period of time during which optimization of MRI 
acquisitions protocols occurred, which may have introduced variations as well. Last, for 
these analyses it was specifically chosen to use the peak-enhanced (2 min) post-contrast 
T1W images, as breast tumors are most visible on them and because some of the tumors 
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included cannot be seen on other sequences; for example, mucinous tumors and some 
of the invasive lobular tumors are not or only weakly visible on the subtraction images. 
In our opinion, performing the analysis using the subtraction images instead of the 
peak-enhanced images would have resulted in a significant decrement in the number of 
patients that could be analyzed. Furthermore, as the effects of the different breast MRI 
sequences on the radiomics features is not yet understood, future radiomics research in 
the field of breast cancer could focus on the use of the different MRI sequences, as well 
as on multiparametric and delta radiomics approaches.

Conclusions

In conclusion, this study showed no contribution of pretreatment contrast-enhanced 
MRI-based radiomics for the prediction of tumor pCR on NST in breast cancer patients, 
as neither the radiomics nor the combined models performed significantly better than 
the clinical models. However, without analysis of the effects of variations in acquisition 
and reconstruction parameters, it is currently not possible to conclude that pretreatment 
contrast-enhanced MRI-based radiomic features have no value in the prediction of pCR 
to NST. The effects of different acquisition and reconstruction parameters on radiomics 
feature values in breast imaging should be explored in future MRI-breast reproducibility 
studies to investigate whether further research into pretreatment MRI-based radiomics 
for the prediction of pCR to NST in breast cancer patients is useful.
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Abstract

Radiomics features may contribute to increased diagnostic performance of MRI in the 
prediction of axillary lymph node metastasis. The objective of the study was to predict 
preoperative axillary lymph node metastasis in breast cancer using clinical models 
and radiomics models based on T2-weighted (T2W) dedicated axillary MRI features 
with node-by-node analysis. From August 2012 until October 2014, all women who 
had undergone dedicated axillary 3.0T T2W MRI, followed by axillary surgery, were 
retrospectively identified, and available clinical data were collected. All axillary lymph 
nodes were manually delineated on the T2W MR images, and quantitative radiomics 
features were extracted from the delineated regions. Data were partitioned patient-wise 
to train 100 models using different splits for the training and validation cohorts to 
account for multiple lymph nodes per patient and class imbalance. Features were selected 
in the training cohorts using recursive feature elimination with repeated 5-fold cross-
validation, followed by the development of random forest models. The performance of 
the models was assessed using the area under the curve (AUC). A total of 75 women 
(median age, 61 years; interquartile range, 51–68 years) with 511 axillary lymph nodes 
were included. On final pathology, 36 (7%) of the lymph nodes had metastasis. A total 
of 105 original radiomics features were extracted from the T2W MR images. Each 
cohort split resulted in a different number of lymph nodes in the training cohorts and a 
different set of selected features. Performance of the 100 clinical and radiomics models 
showed a wide range of AUC values between 0.41–0.74 and 0.48–0.89 in the training 
cohorts, respectively, and between 0.30–0.98 and 0.37–0.99 in the validation cohorts, 
respectively. With these results, it was not possible to obtain a final prediction model. 
Clinical characteristics and dedicated axillary MRI-based radiomics with node-by-node 
analysis did not contribute to the prediction of axillary lymph node metastasis in breast 
cancer based on data where variations in acquisition and reconstruction parameters were 
not addressed.

Keywords
dedicated axillary MRI; axillary lymph node metastasis; node-by-node matching; 
radiomics; predictive modeling
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Introduction

In breast cancer patients, the axillary lymph node status provides essential prognostic 
information about the locoregional recurrence and overall survival rate [1–4]. The five-year 
survival rate decreases from 99% to 85% with the presence of lymph node metastasis 
in the axilla [5]. The presence of axillary lymph node metastasis determines the extent of 
the surgical treatment plan, the potential need for (neo)adjuvant systemic therapy, and 
the possible indication for postmastectomy radiation therapy with regard to immediate 
breast reconstruction [6,7].

In the preoperative setting, imaging for axillary lymph node assessment is recommended 
in the clinical workup of invasive breast cancer patients [6]. For the evaluation of tumor 
extent in the breast or following neoadjuvant treatment, breast magnetic resonance 
imaging (MRI) is often performed, which includes the axilla in the field of view [8]. 
However, when using dedicated breast coils, the field of view of the axillary region can 
be limited [9]. Therefore, dedicated MR coils for visualization and assessment of the 
axillary region have been investigated [10–12]. Dedicated unenhanced T2-weighted (T2W) 
axillary MRI showed good diagnostic performance based on node-by-node analysis but 
remained insufficient to accurately exclude axillary lymph node metastasis [12].

Although preoperative imaging may be performed to guide the axillary management 
of patients, no current imaging modality with optimal diagnostic performance can 
replace the surgical axillary staging procedure. In the era of artificial intelligence, 
current developments in radiology focus on the improvement of decision support 
systems to maximize the potential role of noninvasive imaging modalities. Radiomics, 
the application of machine learning to medical imaging, is a rapidly evolving field that 
enables high-throughput quantitative data extraction from standard medical images in 
an automated fashion and subsequent data analysis, possibly combined with patient and 
tumor characteristics, improving the accuracy of diagnostic, predictive, and prognostic 
models [13,14]. The evaluation of the usefulness of radiomics based on mammography, 
ultrasound, and breast MRI has been explored, showing potential in axillary lymph 
node metastasis prediction [15–19]. However, this research focused on the prediction of 
axillary lymph node metastasis from the delineated breast tumor as the region of interest 
(ROI), and not from the lymph nodes themselves.

Accurate preoperative prediction of axillary lymph node metastasis in breast cancer 
patients can assist in clinical decision-making regarding the type of treatment. Radiomics 
features extracted from axillary lymph nodes may contribute to increased diagnostic 
performance of MRI in the prediction of metastasis. To our knowledge, no previous 
study has reported on node-by-node matching of axillary lymph nodes with pathological 
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findings in breast cancer patients in the field of radiomics. The purpose of this study was to 
predict preoperative axillary lymph node metastasis in breast cancer patients using clinical 
models and radiomics models based on unenhanced T2W dedicated axillary MRI features 
with node-by-node analysis.

Results

Patients Characteristics
A total of ninety women were considered for inclusion, of whom twelve were excluded 
due to treatment with neoadjuvant systemic therapy before axillary surgery and 
three with ductal carcinoma in situ only. Seventy-five patients (median age, 61 years; 
interquartile range, 51–68 years) with 511 axillary lymph nodes were included. Patient, 
tumor, and treatment characteristics are summarized in Table 1. The median number of 
axillary lymph nodes per patient was six, with a range of 1–18. Fourteen of the included 
patients were node-positive at final pathology, with a total of 36 axillary lymph nodes 
with macrometastases and 58 axillary lymph nodes without metastasis. The remaining 
61 patients had 417 axillary lymph nodes without metastasis. The median number of 
voxels per ROI for all delineated axillary lymph nodes was 100 (interquartile range, 44–
236) and 310 (interquartile range, 130–1676) for all delineated axillary lymph nodes 
with metastasis. The Spearman correlation between the number of voxels per ROI and 
the corresponding pathological outcome was 0.22.

Table 1: Patient, tumor, and treatment characteristics.

Characteristic Value

No. of patients
Age (years) (median; IQR)

Clinical tumor size (mm) (median, IQR)

75
61 (51–68)
19 (13–28)

Clinical tumor stage (%)
T1
T2
T3

41 (54.7)
32 (42.7)
2 (2.6)

Clinical nodal stage (%)
N0
N1

68 (90.7)
7 (9.3)

Tumor histology (%)
Invasive ductal
Invasive lobular

Mixed invasive ductal & lobular
Other

55 (73.3)
11 (14.7)
3 (4.0)
6 (8.0)

Tumor grade (%)
1
2
3

17 (22.7)
42 (56.0)
16 (21.3)
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Radiomics Feature Extraction and Model Development
A total of 105 original radiomics features were extracted from the dedicated axillary 
T2W MR images. No near-zero variance features were detected. Pearson pairwise 
correlation removed 53 highly correlated features. The optimal subset of features was 
selected in the training cohort using recursive feature elimination with repeated 5-fold 
cross-validation with a maximum of 20 features. Figure 1 shows the distribution of 
the number of selected features from the 100 iterations for the two different strategies 
(lymph nodes from all patients versus only lymph nodes from node-positive patients as 
data points) for each model. Supplementary Material A includes a list of how often each 
feature was chosen in the 100 iterations for each model.

As each iteration resulted in a different set of selected features for each model in both 
strategies, it was not possible to obtain a final prediction model. The minimum and 
maximum area under the curve (AUC) values in the training cohorts were 0.59–0.80, 
0.60–0.85, 0.48–0.84, and 0.55–0.89 for models 1a, 1b, 2a, and 2b, respectively. The 
median AUC values for all models in the training cohorts were between 0.72–0.73. 
All models showed a wider range of AUC values in the validation cohorts. The AUC 
value distribution for all models in the training and validation cohorts are presented 
in the violin plots in Figure 2. The minimum and maximum sensitivity in the training 
cohorts were 30–66%, 53–83%, 7–74%, and 48–82% for models 1a, 1b, 2a, and 2b, 
respectively. The median sensitivity for all models in the training cohorts was between 
47–66%. All models showed lower median sensitivity in the validation cohorts. The 
minimum and maximum PPV in the training cohorts were 46–78%, 55–83%, 25–
80%, and 52–90% for models 1a, 1b, 2a, and 2b, respectively. The median PPV for 
all models in the training cohorts were between 61–67%. All models showed a lower 
median PPV in the validation cohorts. The diagnostic performance parameters of the 
radiomics models (100 iterations) are shown in Table 2.

Table 1: Patient, tumor, and treatment characteristics.

Characteristic Value

Breast cancer subtype (%)
ER + HER2−
ER + HER2+
ER − HER2+
Triple-negative
Not determined

55 (73.3)
6 (9.0)
2 (2.7)

11 (14.7)
1 (1.3)

Axillary surgery (%)
SLNB
ALND

8 (10.7)
67 (89.3)

Abbreviations: ER, Estrogen receptor; HER2, Human epidermal growth factor receptor 2; IQR, interquartile 
range; SLNB, Sentinel lymph node biopsy; ALND, Axillary lymph node dissection.
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Figure 1: First (A) and second (B) strategy: distribution of the number of features in each developed model. 
The two different models in both strategies were all developed 100 times.
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Figure 2: Violin plots for the radiomics models developed using the first (A) and second (B) strategy: 
AUC value distribuTable 100. iterations) for the four models (1a, 1b, 2a, and 2b) in both the training and 
validation cohort.
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The additional feature selection step with the cut-off values >0.75, >0.80, and >0.90 
resulted in 44, 35, and 8 original features, respectively, available for recursive feature 
elimination with repeated 5-fold cross-validation. These results showed no differences 
compared to the results found without this additional feature selection step. The violin 
plots of the models developed after adding the additional feature selection step can be 
found in Figures S1–S3.

Radiomics Subanalysis
After the exclusion of ROIs with less than 50 voxels, a total of 71 patients were included 
for analyses, with 371 axillary lymph nodes. Thirteen of these patients were node-
positive, with a total of 31 axillary lymph nodes with metastasis and 34 axillary lymph 
nodes without metastases. The remaining 58 patients had 340 axillary lymph nodes 
without metastasis. Excluding small lymph nodes resulted in balanced training cohorts 
in models 1a and 2a, eliminating the need to perform random undersampling (models 
1b and 2b). The minimum and maximum AUC values of the balanced models 1a and 2a 
in the training and validation cohorts of this subanalysis were 0.53–0.82 and 0.41–0.83, 
respectively. Violin plots with the distribution of the AUC values and the diagnostic 
performance parameters of the subanalysis are provided in Table S1 and Figure S4.

Clinical Model Development
The following clinical characteristics were available and selected for the development of 
the clinical models: patient age, clinical tumor size, clinical tumor stage, tumor histology, 
tumor grade, and receptor subtype (ER, PR, and HER2+). No highly correlated clinical 
characteristics were present. The minimum and maximum AUC values in the training 
cohorts were 0.52–0.66, 0.43–0.71, 0.41–0.67, and 0.43–0.74 for models 1a, 1b, 2a, 
and 2b, respectively. The median AUC values for all models in the training cohorts were 
between 0.59–0.60. All models showed a wider range of AUC values in the validation 
cohorts. The AUC value distribution for all models in the training and validation 
cohorts are presented in the violin plots in Figure 3. The minimum and maximum 
sensitivity in the training cohorts were 18–64%, 31–71%, 0–65%, and 33–73% for 
models 1a, 1b, 2a, and 2b, respectively. The median sensitivity for all models in the 
training cohorts was between 42–58%. All models showed lower median sensitivity 
in the validation cohorts, except for model 2b. The minimum and maximum positive 
predictive value (PPV) in the training cohorts were 42–71%, 41–85%, 48–73%, and 
43–86% for models 1a, 1b, 2a, and 2b, respectively. The median PPV for all models in 
the training cohorts was between 68–70%. All models showed a lower median PPV in 
the validation cohorts, except for model 2a. In all four models, the clinical tumor size 
was ranked as the most important clinical characteristic followed by age. The diagnostic 
performance parameters of the clinical models (100 iterations) are shown in Table 3.
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Figure 3: Violin plots for the clinical models developed using the first (A) and second (B) strategy: AUC 
value distributions (100 iterations) for the four models (1a, 1b, 2a, and 2b) in both the training and 
validation cohort.
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RQS and TRIPOD
This study scored a radiomics quality score (RQS) of 58% (21 out of 36 points)  
(Table S2). The score of the transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis (TRIPOD) checklist was 67% (18 out of 27 
applicable items) (Table S3).

Discussion

Accurate preoperative prediction of axillary lymph node metastasis can assist in clinical 
decision-making regarding the extent of axillary surgery and radiation therapy, and 
provide essential prognostic information. In this study, clinical models and radiomics 
models based on T2-weighted dedicated axillary MRI features with node-by-node 
analysis were investigated for the preoperative prediction of axillary lymph node 
metastasis. The different sets of features selected at each split resulted in a wide range of 
AUC values and did not allow for the development of a final radiomics prediction model. 
The performance of the clinical models (AUC values between 0.41–0.74) was lower 
compared to the radiomics models (AUC values between 0.48–0.89) in the training 
cohorts. The validation results of both models showed a wider range of diagnostic 
performance parameters compared to the training results possibly explained by the 
small dataset, the methodology used for selection and model building, and potential 
overfitting. The wide AUC range in the clinical models leads us to the hypothesis that 
the small dataset contains unseen biological covariates, and that therefore the wide AUC 
range in the radiomics models cannot be explained by variations in imaging alone.

To the best of our knowledge, this is the first study investigating the role of MRI-based 
radiomics for the prediction of axillary lymph node metastasis in breast cancer patients 
by extracting features from delineated axillary lymph nodes. Previously published articles 
investigated the same topic by extracting the features from the delineated breast tumor 
[15,20,21]. These articles showed promising validation results with AUC values between 
0.77–0.82. In this recent study, initially, the small ROI volumes were seen as a reason 
for the inconclusive results. If an ROI contains a low number of voxels, it may not be 
possible to calculate meaningful radiomics features [22]. However, after the subanalysis 
excluding ROI volumes less than 50 voxels, the AUC values were between 0.53–0.82 
and 0.41–0.83 for the training cohorts for models 1a and 2a, respectively, which 
highlights the effects of differences in scan acquisition and reconstruction parameters. 
Furthermore, the skewed data in this recent study may have caused inconsistent results 
compared to the previous studies as models tend to favor the more common outcome.

To date, only two previously published articles extracted features from delineated lymph 
nodes for radiomics and deep learning analyses. The first article used a neural network 
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to develop prediction models in head and neck cancer [23]. The second article developed 
a radiomics model based on CT images of colorectal cancer patients [24]. Both studies 
showed that there is potential by delineating lymph nodes for radiomics and deep learning 
analysis for the classification of positive and negative lymph nodes. The differences in 
results compared to this recent study may be due to the variety of implementation of the 
different steps in the radiomics workflow and the chosen imaging modality (CT vs. MRI).

The diagnostic performance of dedicated axillary T2W MRI for axillary lymph node 
staging has previously been investigated using node-by-node analysis [12]. Schipper et al. 
showed AUC values between 0.78–0.88, with a good interobserver agreement (kappa 
= 0.70). The current analysis with MRI-based radiomics using dedicated axillary T2W 
MR images suggested that the quantitative analysis did not exceed the qualitative analysis 
by the radiologists. It was decided to only perform radiomics analyses using the T2W 
MR images, as previous research indicated that diffusion-weighted images and apparent 
diffusion coefficient measurements have no added value for the axillary lymph node 
staging [12,25]. Furthermore, a recently published article has shown that the evaluation 
of axillary lymph nodes with dedicated axillary MRI is comparable to standard breast 
MRI with a complete field of view of the axillary region [25]. However, the majority of 
the breast MRI examinations are still performed with an incomplete field of view of the 
axillary region [9]. In addition, the coronal view of the dedicated axillary MRI possibly 
provides more accurate delineations compared to the transversal view of the standard 
breast MRI, which could be of added value to the radiomics analysis.

Most radiomics studies suffer from small and heterogeneous datasets collected from 
different imaging systems. In this current study, a great advantage for the radiomics 
analyses was the prospectively collected set of MR images on the same MRI scanner using 
an equal acquisition protocol with the patients in corresponding positions. Despite the 
prospectively collected dataset, a number of acquisition and reconstruction parameters 
varied depending on the patient. Furthermore, the different sets of features selected in every 
training cohort resulted in a wide range of AUC values and did not allow the development 
of a final radiomics prediction model. This could be justified by two theories: (i) The 
variations in acquisition and reconstruction parameters significantly affected the value of 
radiomics features, resulting in non-comparable data points; or (ii) Radiomics features do 
not have an added value in the prediction of axillary lymph nodes metastasis. However, 
theory (ii) is less likely, as radiomics models performed well in some splits. Future MRI 
phantom and reproducibility studies should investigate the effect of MR image acquisition 
and reconstruction parameters on feature values to determine repeatable and reproducible 
features. We nevertheless believe that it is also important to publish inconclusive radiomics 
results since publication bias seems to play a role in this research field, with only 6% of the 
radiomics articles presenting negative results [26].
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This study also has certain limitations. The large skewness of the data with only 7% 
positive axillary lymph nodes was a drawback for the analyses. The skewness of the 
data was addressed by splitting the dataset using two different strategies and by using 
repeated cross-validation in the training cohort. However, it is important to note that 
the ratio of node-positive (19%) and node-negative (81%) breast cancer patients in this 
study is comparable to the clinics. Besides the skewness of the data, the included number 
of patients was relatively low for radiomics analysis and selecting only node-positive 
patients in strategy 2 decreased the number even further. However, since the dedicated 
axillary MRI is not included in the breast MRI protocol and no similar public dataset 
is available, it is not possible to expand this current dataset. Lastly, manual delineation 
of the axillary lymph nodes was performed by one researcher, which potentially could 
be a major limitation of the findings because of the susceptibility of inter- and intra-
observer variabilities [27]. Although this issue has been addressed in this current study by 
developing models based on only robust features for varying breast tumor delineations 
[28]. Based on the assumption that breast and lymph node delineations on MRI are 
comparable, varying delineations did not affect the radiomics results. However, this 
topic needs to be thoroughly investigated in future studies.

Materials and Methods

Patient Population
Consecutive women with histopathologically proven breast cancer, who had undergone 
dedicated axillary MRI between August 2012 and October 2014, followed by sentinel 
lymph node biopsy (SNLB) or axillary lymph node dissection (ALND), were considered 
for inclusion. Patients were excluded if they had undergone neoadjuvant systemic 
therapy before axillary surgery and in the case of ductal carcinoma in situ only. This 
study was approved by the local medical ethics committee, and the requirement of 
written informed consent was waived due to the retrospective study design. Fifty of the 
dedicated axillary T2W and diffusion-weighted MR images were earlier described by 
Schipper et al. for axillary lymph node staging, and 90 of the dedicated axillary T2W 
and gadofosveset-enhanced MR images were earlier described by Van Nijnatten et al. for 
axillary lymph node staging [12,29].

Clinical and Pathological Characteristics
Clinical and pathological data were derived from the patients’ medical records: age, 
clinical TNM stage, pathological TNM stage, tumor histology, tumor grade, breast 
cancer subtype, and type of axillary surgery. Lymph nodes with isolated tumor cells 
(≤0.2 mm) and micrometastases (>0.2–≤2.0 mm) were considered negative, while those 
with macrometastases (>2.0 mm) were considered positive.
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MRI Acquisition
The dedicated axillary MR images were performed using a 32-channel cardiac coil on a 
3.0 Tesla scanner (Achieva, Philips Healthcare, Best, the Netherlands). During the MRI 
examination, the patient was positioned in a supine position with the ipsilateral arm 
elevated. The anatomical confines of the dedicated axillary MR images were between 
the humeral head and the inferior border of the scapula. The MRI protocol included an 
unenhanced three-dimensional T2W turbo spin-echo sequence without fat suppression 
(pixel size, 1.25 × 1.25 mm; repetition time, 2000 ms; echo time between 150–202 
ms; echo train length, 52 or 66; flip angle, 90°; acquisition slice thickness, 2.5 mm; 
reconstruction slice thickness, 1.25 mm), a contrast-enhanced T1-weighted sequence, 
and a diffusion-weighted imaging sequence with fat suppression.

MRI Lymph Node Delineation
All axillary lymph nodes of each dedicated axillary T2W MR image were manually 
delineated in three dimensions using MIM software (version 6.9.4, MIM Software Inc., 
Cleveland, OH, USA) by a medical researcher (S.S.) with three years of experience in 
axillary lymph node imaging validated by a dedicated breast radiologist (M.L.) with 
eleven years of experience (Figure 4). No clinical information and pathology results 
were available during delineation and validation. The delineated lymph nodes were 
subsequently matched with their histopathological findings (node-by-node matching). 
Reliable node-by-node matching was obtained using single-photon emission computed 
tomography-X-ray computed tomography (SPECT-CT) in patients undergoing SLNB, 
and an anatomical map was used for patients undergoing ALND. The exact procedure 
of the node-by-node matching was previously described by Schipper et al. [30].

Figure 4: Coronal T2-weighted dedicated axillary MR image of a 55-year old woman with invasive breast 
cancer, who was treated with mastectomy and axillary lymph node dissection (pT1N2). The MR image 
demonstrates an example of delineations of lymph nodes in the right axilla on the MIM software.
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MRI Preprocessing and Feature Extraction
Image preprocessing of the T2W images was performed after delineation. Bias field 
correction was applied to every T2W MR image using MIM software to correct for 
non-uniform grayscale intensities caused by field inhomogeneities. To ensure better 
comparability of voxel intensities, additional image normalization and discretization 
was performed by the open-source Pyradiomics software (version 2.2.0) prior to feature 
extraction [31]. For discretization, grayscale values were aggregated with a fixed bin 
width of 10, which ensured the recommended amount of bins between 30–130 [31]. 
Resampling was not required, as all images consisted of isotropic voxels of equal size 1.25 
mm3. Quantitative radiomics features were extracted from the delineated regions using 
the Pyradiomics software. The extracted features can be subdivided into the following 
classes: first-order statistics, three-dimensional shape-based, gray level co-occurrence 
matrix, gray level run length matrix, gray level size zone matrix, neighboring gray-tone 
difference matrix, and gray level dependence matrix.

Radiomics Feature Selection and Model Development
Taking into account the small skewed dataset and the unavailability of an external 
validation dataset, the data were randomly divided into training and validation cohort 
100 times using two different strategies to create a more balanced training cohort. In 
the first strategy, 85% (12 out of 14) of the node-positive (i.e., patients with axillary 
lymph node metastasis at final pathology) breast cancer patients were selected in the 
training cohort, and all remaining node-positive and node-negative (i.e., patients 
without axillary lymph node metastasis at final pathology) patients in the validation 
cohort, considering each axillary lymph node as an individual data point when training 
the model. In the second strategy, only the lymph nodes of patients with node-positive 
breast cancer were considered as individual data points when training and validating 
the model. To maintain the original class imbalance of the node-positive patients, 10 
patients were selected in the training cohort. For both strategies, additional models were 
developed using a random undersampled balanced training cohort. All lymph nodes of 
one patient were always included in either the training cohort or the validation cohort, 
and therefore each split caused a varying number of positive lymph nodes in each cohort. 
Feature selection started with the removal of near-zero variance features followed by 
the removal of highly correlated features using the Pearson pairwise correlation greater 
than 0.95. Subsequently, recursive feature elimination with bagged trees was applied 
with repeated 5-fold cross-validation to select a maximum number of features in the 
training cohort. The number of features was chosen at the point when the addition of 
more features did not increase the diagnostic performance of the models. Random forest 
binary classification models were trained, using optimized random forest parameters 
(number of trees and features per node) for the training cohort, selecting the optimal 
number of features for each generated model. In addition, a separate set of models was 
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generated using the same pipeline but by adding an additional feature selection step at 
the very beginning. In this step, features robust to the variability of manual delineations 
of breast tumors on MRI by four observers were selected according to three different 
cut-off values (intraclass correlation coefficient of >0.75, >0.80, and >0.90) [28]. Figure 
5 provides an overview of strategies 1 and 2 with the different developed models.

Radiomics Subanalysis
A separate set of models was generated using the first and second strategies as described 
earlier on a dataset where ROIs with less than 50 voxels were excluded [31]. On these 
models, only the additional feature selection step with different intraclass correlation 
coefficient cut-off values was not performed.

Clinical Model Development
Clinical models were trained based on clinical characteristics available before the 
axillary surgery. Random forest models with bagged tree function for the prediction 
of axillary lymph node metastasis were trained and validated using the same strategies 
as described above, except for the feature selection step, which was only the removal 
of highly correlated clinical characteristics. These clinical models were used to indicate 
the effect of known and unknown patient’s biological covariates compared to a pure 
imaging-based model as well as to rank the importance of the clinical characteristics in 
this dataset using the Gini impurity method.

Statistical Analyses and Study Evaluation
The statistical analyses, including dataset splitting and balancing, feature selection, 
model development, and performance evaluation, were performed in R (version 3.6.3; 
http//www.r-project.org) using R studio (version 1.2.1335, Vienna, Austria) [32]. The 
performance of all models was assessed using the area under the receiver operating 

Figure 5: Model strategies.
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characteristics curve (AUC), sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). The Spearman correlation was used to calculate the 
correlation between the number of voxels per ROI and the corresponding pathological 
outcome. The radiomics workflow was evaluated using the radiomics quality score (RQS) 
[33]. This study followed the Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis (TRIPOD) guidelines [34].

Conclusions

In conclusion, based on our results dedicated axillary MRI-based radiomics with node-
by-node analysis did not contribute to the prediction of axillary lymph node metastasis 
based on data where variations in acquisition and reconstruction parameters were not 
addressed. Larger datasets combined with MRI phantom data and reproducibility 
studies are necessary to determine if further radiomics research using dedicated axillary 
MR images for the prediction of axillary lymph node metastasis is of added value.

Supplementary Materials
The following are available online at www.mdpi.com/xxx/s1, Supplementary Material 
A includes a list of how often each feature was chosen in the 100 iterations for each 
model (excel file). Supplementary Material B includes Figure S1: Violin plots for the 
radiomics models developed using the first (A) and second (B) strategy with additional 
feature selection step (ICC > 0.75): AUC value distributions (100 iterations) for the 
four models (1a, 1b, 2a, and 2b) in both the training and validation cohort, Figure 
S2: Violin plots for the radiomics models developed using the first (A) and second (B) 
strategy with additional feature selection step (ICC > 0.80): AUC value distributions 
(100 iterations) for the four models (1a, 1b, 2a, and 2b) in both the training and 
validation cohort, Figure S3: Violin plots for the radiomics models developed using the 
first (A) and second (B) strategy with additional feature selection step (ICC > 0.90): 
AUC value distributions (100 iterations) for the four models (1a, 1b, 2a, and 2b) in both 
the training and validation cohort, Figure S4: Violin plots for the radiomics models with 
the exclusion of ROIs < 50 voxels developed using the first strategy and second strategy: 
AUC value distribution (100 iterations) for the two models (1a and 2a) in both the 
training and validation cohort, Table S1: he diagnostic performance of the radiomics 
models (100 iterations) with the exclusion of ROIs < 50 voxels for the first and second 
strategy, Table S2: Radiomics Quality Score, Table S3: TRIPOD Checklist.
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Abstract

Radiomics converts medical images into mineable data via a high-throughput 
extraction of quantitative features used for clinical decision support. However, these 
radiomic features are susceptible to variation across scanners, acquisition protocols, and 
reconstruction settings. Various investigations have assessed the reproducibility and 
validation of radiomic features across these discrepancies. In this narrative review, we 
combine systematic keyword searches with prior domain knowledge to discuss various 
harmonization solutions to make the radiomic features more reproducible across 
various scanners and protocol settings. Different harmonization solutions are discussed 
and divided into two main categories: image domain and feature domain. The image 
domain category comprises methods such as the standardization of image acquisition, 
post-processing of raw sensor-level image data, data augmentation techniques, and style 
transfer. The feature domain category consists of methods such as the identification of 
reproducible features and normalization techniques such as statistical normalization, 
intensity harmonization, ComBat and its derivatives, and normalization using deep 
learning. We also reflect upon the importance of deep learning solutions for addressing 
variability across multi-centric radiomic studies especially using generative adversarial 
networks (GANs), neural style transfer (NST) techniques, or a combination of both. 
We cover a broader range of methods especially GANs and NST methods in more detail 
than previous reviews.

Keywords
radiomics; harmonization; feature reproducibility; deep learning; medical imaging
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Introduction

Medical imaging is routinely used in clinical practice to assist the decision-making process 
for diagnostic and treatment purposes [1,2]. Radiomics is an emerging field within 
medical image analysis that goes beyond qualitative assessment by extracting a large 
number of quantitative image features [3,4]. The radiomic hypothesis postulates that 
the quantitative study of medical image data can provide complementary knowledge in 
a quick and reproducible manner to support clinicians in their decision-making process, 
assisted by automated or semi-automated software [5,6]. The information acquired can 
help advance the clinical decision support systems to connect the link between radiomic 
features and clinical endpoints by building diagnostic, prognostic, and predictive analysis 
models. Radiomics is the consequence of many decades of computerized diagnosis, 
prognosis, and treatment research [7,8]. A powerful radiomics approach involves the 
extraction of various quantitative features from medical images, storing this data in a 
federated form of a database [9] where several individual databases function as an entity, 
and the successive mining of data to acquire relevant clinical outcomes [10]. Large 
quantities of data are required to develop robust predictive models and this amount of 
data is usually obtained from multiple hospitals and/or institutions. Furthermore, due 
to the continuous improvement in scanner and protocol settings, this type of data is a 
moving target. To compensate for the effects scanner/protocol variability might have on 
the predictive models, large quantities of data are needed to make systems generalize. 
In these cases, federated (or distributed) learning could be adapted to allow sharing 
of data between hospitals/institutes to develop robust predictive models [10]. Major 
management problems still exist even though there are databases that are collecting and 
cross-referencing massive amounts of radiomics information in addition to other related 
patient data from millions of case studies [11–14].

Radiomic feature extraction can be categorized into two main approaches: hand-crafted 
(derived from traditional statistical and computer vision methods) and deep learning 
(DL). Hand-crafted radiomics characteristics (such as texture, shape, intensity) provide 
information on the particular area of the medical imaging scan, often referred to as the 
region or volume of interest (ROI or VOI), which could be a tumor, a tissue, or an 
organ as a whole [15]. DL is also a data-driven method that is inspired by the biological 
neural networks in the human brain. The difference between hand-crafted and DL ap-
proaches mostly lies in the way visual representations are learned. For example, some 
DL algorithms learn complex visual features and perform ROI segmentation using 
cascading layers with non-linearities by using ‘sliding’ kernels in convolutional neural 
networks (CNN), while hand-crafted features represent the spatial appearances (texture 
and shape) by mathematically extracting spatial distribution on inter-pixel relationships, 
signal in-tensities, gray-scale patterns, and spectral properties [16]. DL has the benefit 
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of not necessarily requiring prior segmentation masks of the medical imaging scan. 
However, DL is a ’black box’ approach, i.e., the lack of interpretability of the models 
and the deep features generated are seen as a key limitation in clinical applications 
[17]. DL also re-quires a larger amount of data and/or pre-trained models often trained 
on diverse do-mains (e.g., photographic images), in order to perform efficiently and 
effectively. The vast majority of published radiomic models lack consistent evaluation 
of performance, suffi-cient large-scale annotated datasets for radiomic studies, 
reproducibility, clinical efficacy, and large-scale validation on sufficiently large cohorts, 
despite these being prerequisites for clinical translation [18,19]. Furthermore, there is a 
lack of reproducibility of radiomic features while translating results into clinical practice 
[20]. Ideally, the features extracted using radiomics represent imaging biomarkers and 
should be independent of image acquisition parameters or protocols [21]. For example, 
if a patient is scanned in different hospitals, the quantitative features extracted from all 
these scans should either have similar values or the correct transformation should be 
known. Scanner protocols and hardware are constantly changing over time and differ 
across hospitals. The same scanner can also be configured differently. Frequent software 
updates might have an influence on images produced. A major consequence of these 
scanner and protocol variations is a domain shift [22], i.e., a shift in data distribution 
across various cen-ters/time/machines/software. Please see Figure 1 showing inter-center 
variation in data distribution obtained from PET/CT scans from HEad and neCK 
TumOR (HECKTOR) challenge [23].

Studies have shown the effects of image acquisition parameters on the reproducibility of 
radiomic features [21,24–27]. Many studies [1,28–31] have also explored the discrim-
inative power of radiomic features. However, the reproducibility of a radiomic feature 

Figure 1: PET and CT slices obtained from two different centers (Center 1 = Centre Hospitalier Universitaire 
de Sherbrooke, Sherbrooke, Canada and Center 2 = Hôpital Maisonneuve-Rosemont, Montréal, Canada). 
The top row shows CT images while the bottom row shows PET images. The four columns indicate four 
different patients. Adapted from [23].
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does not guarantee its discriminative power [32,33], and thus the two aspects of repro-
ducibility and discriminative power cannot be treated in isolation. For instance, a feature 
may have excellent reproducibility across scanner and protocol variations but have no 
discriminative power for the problem of interest. The scanner and/or protocol variability 
could hamper the stability as well as the discriminative power of the features. Feature 
variability is also caused due to varying contours or ROIs. For example, Yang et al. [34] 
observed that gray-level neighborhood difference matrices (GLNDM) based radiomic 
features were most robust against the manual contouring variability in PET scans of 
lung cancer. Variation in inter-observer delineation has an impact on radiomic analysis 
and is examined in [34–38]. These variations can have repercussions on image texture 
and consequently on the radiomic features. Different feature extraction algorithms and 
image processing techniques also influence the feature variation and have been addressed 
by the image biomarker standardization initiative [39]. However, in this work, we only 
focus on studies that investigate radiomic feature reproducibility across scanner and 
protocol variations. Various methods have been proposed in the literature to improve 
the re-producibility of radiomic features across scanner and protocol variations and a 
few of these harmonization methods have been reviewed in [40,41]. In addition to 
feature robustness, investigations should be carried out to ascertain model accuracy/
performance as well. For instance, the model should have sufficient data to achieve 
predictive performance at least equal to the current clinical standard; the model should 
be externally and/or internally validated across different centers; several performance 
metrics such as the area under curve (AUC) of the receiver operating characteristic (ROC) 
curve and precision recall (PR) curves can be used to evaluate the model performance.

The organization of the paper is as follows. We primarily categorize the methods under 
the image domain or the feature domain. The harmonization methods discussed under 
the image domain (Section 3) are performed on the whole image (raw or recon-structed) 
before feature extraction and thus aim to harmonize images acquired across different 
centers/scanners/protocols. In this section, we briefly review methods in such a way that 
they can be applied at every stage of medical image processing from image acquisition 
to image analysis (Figure 2). This section starts with a discussion on various standards 
for image acquisition/reconstruction parameters. Moving forward, post-processing 
methods for raw sensor-level image data followed by brief reviews of existing image 
analysis techniques (e.g., data augmentation techniques using generative adversarial 
networks (GANs) and style transfer) are discussed. The methods categorized under 
the feature domain (Section 4) are performed after (or within) feature extraction and 
aim to harmonize extracted radiomic features. In this section, the methods are listed in 
order of their complexity. Under the feature domain, we briefly review two approaches: 
identification of reproducible features (a convenient approach) and normalization tech-
niques (statistical approaches). The normalization techniques are further divided into 
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basic statistical normalization (rescaling/standardization); intensity harmonization tech-
niques; ComBat method and its derivatives; normalization using DL. The overall ob-
jective of this review is to address the advantages, disadvantages, and challenges posed by 
these harmonization methods. Figure 2 shows an overview of different harmonization 
methods that are applicable at different stages of medical imaging.

Search strategy: Our search strategy for this review was based on a set of research 
questions:
1. Have scanner and protocol variations affected the reproducibility of radiomic fea-

tures/images? If yes, the how significant was the change?
2. Various harmonization methods were identified in previous work. Can they be 

categorized into domains (image and feature)? Furthermore, can the methods be 
applied at different stages of medical imaging (Figure 2)?

3. What are the latest developments in the field of radiomics to make radiomics more 
reproducible?

4. Are there non-medical studies performed to harmonize images/features? What are 
the different types of methods?

5. What are the advantages, disadvantages and challenges of various harmonization 
methods?

Keeping in mind the above research questions, we searched for literature using PubMed 
and Google Scholar by typing in the following keywords: “radiomics”, “har-monization 
methods”, “feature reproducibility”, “robustness”, “scanner variation”, “protocol 

Figure 2: Overview of harmonization methods at different stages of medical imaging.
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variation”, “deep learning”, “multicentric studies”, “medical imaging”. Arti-cles were 
selected based on their novelty, relevance, and being in English. 

Image Domain Harmonization

Standardization of Image Acquisition and Reconstruction Parameters 
across Various Centers Related to Clinical Trials
For multicentric prospective studies, the ideal way to standardize radiomic features is 
to define and follow imaging protocols that define scanner types in conjunction with 
acquisition and reconstruction parameters (see Table 1 for summary). For example, the 
European Society for Therapeutic Radiology and Oncology (ESTRO) panel provides 
guidelines for procedures and methods for image-guided radiation therapy (IGRT) in 
prostate cancer [42,43]. This panel consulted a large base of the radiation oncology 
community from the European Union and developed guidelines for delineating localized 
prostate cancer in CT and magnetic resonance images (MRI). ESTRO also has a working 
group focusing on cervical carcinoma for developing and validating methods and im-
aging parameters from various institutions [44]. For standardization of PET imaging, 
the European Association of Nuclear Medicine (EANM) [45] launched the EARL 
(EANM Research Ltd.) program covering areas such as scan acquisition, processing of 
images, and image interpretation. Pfaehler et al. [46] conducted a study to investigate the 
effects of harmonizing image reconstructions on feature reproducibility and concluded 
that EARL compliant image reconstruction harmonized a wide selection of radiomic 
features. A similar initiative by the American Society for Radiation Oncology (ASTRO) 
[47] was created to develop a ‘practice parameter’, for IGRT and to provide quality 
assurance standards, personnel qualifications, indications, and guided documentation 
[48] for imaging. In MRI, however, such guidelines do not exist [49] and most of the 
MRI mo-dalities are not even quantitative [50]. Efforts have been taken in the past, 
concerning MRI imaging, for example by UCHealth [51] to reduce the number of MRI 
protocols from 168 to 66 across scanners and centers by selecting an appropriate clinics-
driven protocol and standardization process. Another set of guidelines is provided by 
the FDA (Food and Drug Administration) [52] to focus on image acquisition in clinical 
trials conducted to support the authorization of drugs and biological products. Ever 
since this draft by FDA was released in 2015, it has become a reference standard for 
most promoters and industries of clinical trials.

Such efforts need to be extended to the radiomics field to help control the variability 
present across different scanner machines, acquisition and reconstruction parameters. 
However, these radiomics guidelines might not be able to account for the plethora of 
existing scanners, protocols, and reconstruction parameters by different vendors across 
multiple centers. 
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Post-Processing of Raw Sensor-Level Image Data
It would be worthwhile to work with raw sensor-level data, right before recon-structing 
the image and apply harmonization methods on it to remove scanner and protocol 
variability. Image reconstruction, necessary for human viewing and interpre-tation, 
combined with the manual contouring variability, could lead to a loss of latent raw 
sensor-level image data and lower precision in measurements. Most machine learning 
(ML) and DL algorithms have been used on reconstructed images in the existing medical 
imaging workflow. Instead, the abilities of ML and DL could be leveraged to process the 
underlying raw sensor-level data to access its hidden nuances [53–55]. A study conducted 
by Lee et al. [56] investigated the performance of a CNN for classifying raw CT data in 
the sinogram-space to identify the body region and detect intracranial hemorrhage. The 
sinogram-specific CNN performed slightly better than the conventional neural network 
(Inception-V3 [57]) in the image-space by approximately 3% in terms of accuracy. In 
another study, Gallardo-Estrella et al. [58] proposed a method to reduce variability due 
to different reconstruction kernels in CT images by decomposing each CT scan into a 
set of frequency bands and the energy in each frequency band is scaled to a reference 
value iteratively. This method was validated for emphysema reconstruction. Although 
this method was applied to normalize fully reconstructed images, the applicability of 
this method could be extended to harmonize raw image data. Radiomics signature 
analysis can also be performed directly on the raw image data without the need for 
reconstruction which adds bias and variability [56,59]. Furthermore, the reconstruction 

Table 1: Summary table of standardization guidelines/regulations set for image acquisition 
and reconstruction parameters across various centers.

Standardization of Image Acquisition and Reconstruction Parameters across Various Centers Related to Clinical Trials

Reference Data Variation across Summary

Mottet et al. [42]

Cornford et al. [43]

(ESTRO)

CT and 
MRI images 
(prostate 
cancer)

NA Provided guidelines procedures and 
methods for im-age-guided radiation 
therapy (IGRT) in prostate cancer

Boellaard et al. [45]

(EARL)
PET imaging Scan acquisition, image 

processing, image inter-pretation
Provides guideline/regulations for 
oncology 

Luh et al. [48]

(ASTRO)
NA NA Developed a ‘practice parameter’ for 

IGRT, and provided quality assurance 
standards, personnel qualifications, 
indications and guided documentation for 
imaging

Sachs et al. [51] CT and MRI 
images

CT and MRI protocols Reduced the number of MRI protocols 
from 168 to 66 and CT protocols from 
248 to 97 across scanners and centers by 
selecting an appropriate clinical-driven 
protocol and standardization process 

Center for Drug 
Evaluation and 
Research (FDA) 
[52] 

NA Image acquisition param-eters Provided guidelines to focus on image 
acquisition in clini-cal trials conducted 
to support authorization of drugs and 
biological products 
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process itself can also be considered as a prediction problem utilizing raw CT data 
(sinograms) or k-space values of MRI inputs [60]. These studies widen the scope to 
apply harmonization methods on raw image data and take advantage of the hidden 
information in the raw image data rather than applying it in the reconstructed image-
space. Refer to Table 2 for a summary of this section.

Data Augmentation Using GANs
ML-based techniques have emerged to provide effective solutions to translate images 
across various domains by harmonizing images as opposed to radiomic features alone. 
Examples include ML-based adaptive dictionary learning [61] and DL methods like 
using GANs [62–70]. Methods using coefficients of spherical harmonics to harmonize 
diffusion MRI have been explored [61,71–73]. The applicability of this method was 
limited to diffusion MRI since the analysis of diffusion MRI requires various processing 
steps to correct for scanner acquisitions and protocol variation effects and was addressed 
by the 2018 CDMRI (computational diffusion MRI) Harmonization challenge [74].

Another widely used DL technique in medical image analysis are GANs [75] because of 
their ability to model target data distributions to generate realistic images (summary in 
Table 3 at the end of this section). GANs consist of two adversarial networks, a generator 
that generates realistic data and a discriminator that distinguishes whether the data is real 
or fake. The objective of a GAN is to keep the generator and discriminator in opposition 
to each other. Despite the difficulty in handling multi-centric medical data, GANs have 
shown promising results to overcome the multi-center variation. Zhong et al. [76] used a 
dual GAN, with U-Net [77] as the backbone, to harmonize the diffusion tensor imaging 
(DTI) derived metrics on neonatal brains and compared it with three other methods: 
voxel-wise scaling, global-wise scaling, and ComBat. The results from this study showed 
that the GAN based method performed better at harmonizing neonatal datasets in 
multi-centric studies. Another study by Modanwal et al. [78] used a cycleGAN [64] 
to perform intensity harmonization on MRI breast images obtained from two scanners 

Table 2: Summary table of post-processing methods of raw sensor-level image data.

Post-Processing of Raw Image Data

Reference Data Variation across Summary

Lee et al. [56] Raw sinogram CT 
data (head and whole-
body)

Acquisition parameters in 
terms of projections and 
detector like sinograms 

Investigated the performance of a CNN 
for classifying raw CT data in sinogram-
space to identify body region and detect 
intracranial hemorrhage 

Gallardo-
Estrella  
et al. [58]

Reconstructed CT 
images (emphysema 
in lungs)

Reconstruction kernels Proposed a method to reduce variability 
due to different reconstruction kernels 
in CT images by decomposing each CT 
scan into a set of frequency bands and the 
energy in each frequency band is scaled to 
a reference value itera-tively.
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(GE and Siemens). A cycleGAN utilizes a cycle consistency loss to translate an image 
from one domain to another without the requirement for paired data. Cycle consistency 
loss is an optimization problem in the sense that if a zebra image is converted to a horse 
image and back to being a zebra image, we should obtain the same input in return. This 
method was adapted by modifying the discriminator that further helped in preserving 
the tissue characteristics and shape. This method could operate on unpaired images; 
however, a downside is that this algorithm worked only for 2D slices and could not 
retain volume information due to limited computational resources. A comparative study 
was conducted by Cackowski et al. [79] between ComBat and cycleGAN to harmonize 
multi-centric MRI images. The authors found that both methods were complementary 
to each other and had similar effects on the radiomic features. The grey-level run length 
matrix (GLRLM) features benefited more from ComBat while the cycleGAN performed 
better on Gray Level Size Zone (GLSZM) features. It would be of great interest to see 
the effects the combination of ComBat and GAN would have on radiomic features.

Guha et al. [63] conducted a study that transforms low-resolution (LR) CT scans of 
trabecular (Tb) bone microstructures into high-resolution (HR) CT scans, obtained 
from two scanners (LR from Siemens FLASH and HR from Siemens FORCE; paired 
images), using GAN-CIRCLE, of which the architecture is shown in Figure 3. This 
DL-based method was inspired by You et al. [80] and is monitored by three losses: 
the identical, residual, and cycle consistency loss. The cycle consistency establishes an 
end-to-end nonlinear mapping from LR CT to HR CT scans with reference to the 
Wasserstein distance [81]. This type of loss was first used in cycleGANs [64] and it helps 
a GAN to perform image-to-image translation between unpaired images by enforcing 
a strong consistency across domains. The residual network is built to preserve the high 
frequency anatomical details in the image. The identity loss aids to regularize training 
by learning sufficient latent structural information to enhance the image resolution. 
The results were compared to and evaluated against the reference value obtained from 
the true HR CT scans. The predicted results showed improvement in the structural 
similarity index with respect to true HR CT scans in terms of Tb network area density, 
Tb thickness and Tb spacing. Other authors [82–86] have also addressed image up-
sampling using DL techniques.
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Style Transfer
The advances in the field of style transfer may prove useful to overcome scanner 
acquisition and reconstruction parameter variability at the image level. Style transfer is 
a computer vision technique that requires two images, a content image and a reference 
style image, and combines them so that the resulting output image preserves the key 
elements of the content image but appears to be “painted” in the style of the reference 
style image. When there is no radiomics model available for a new scanner or protocol, 
style transfer could be applied such that the images coming from a new machine can be 
transformed so that they look like they were acquired from an existing machine [90]. 
This section dis-cusses various style transfer methods (Table 4 at the end of this section), 
starting with the non-CNN methods followed by neural style transfer (NST) methods. 

Figure 3: Basic GAN-CIRCLE network. Here, X is a set of LR CT scans and Y is the corresponding 
HR CT scans. The network has two GAN modules, a low-to-high image reconstructor (Generator G, 
Dis-criminator DY) and a high-to-low image reconstructor (Generator F, Discriminator DX). Different 
loss functions are harmoniously coupled for training the network and monitored with regular-ized cycle-
consistency and identity loss to prevent overfitting. Figure is adapted from [63].

Figure 4: Normalization results reused from [87] with original copy obtained from authors. The row 
represents a sagittal view of the scans containing the ROI nodule. Column (a) represents the target image; 
Column (b,e,h) shows the input images with different slice thicknesses and dosage; Col-umns (c,f,i) show 
the CNN results and Columns (d,g,j) show the GAN-based results.
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We categorize and briefly explain the existing neural style transfer methods and discuss 
their strengths and weaknesses.

Before the onset of neural style transfer, image stylization came under the category of 
non-photorealistic rendering (NPR). Image-based artistic rendering (IB-AR) [91–94] 
is the artistic stylization of two-dimensional images and can be further categorized into 
four categories; stroke-based, region-based, example-based, and image processing and 
fil-tering. [94]. Stroke-based rendering tries to render strokes (e.g., tiles, stipples or brush 
strokes) on a content image to adapt to a particular style [95]. However, this method 
is built to adapt to only one particular style and not arbitrary styles [94]. Region-based 
rendering [96,97] renders stroke patterns in semantic regions of an image and even 
though it permits local control over the degree of details, this method also cannot be 
adapted for arbitrary styles [94]. Hertzmann et al. [98] proposed ‘image analogies’ to 
learn the mapping be-tween paired source and target images in a supervised fashion 
but paired images are often not available in practical settings. Even though filtering 
and image pre-processing [99,100] are efficient and straightforward techniques, they 
might not be entirely appli-cable to a wide variety of styles [94]. The above-mentioned 
techniques do provide de-pendable stylized results, but their limitations eventually gave 
rise to novel methods in the field of NST.

The groundbreaking work of Gatys et al. [101] paved the way for a new field of NST. 
Gatys et al. [101] first conducted a study that separates content from one image and style 
from another image and combines it into a new image using a neural network (Figure 

Table 3: Summary table of data augmentation methods using GANs.

Data Augmentation Using GANs

Reference Data Variation across Summary

Zhong 
et al. [76]

MRI images 
(neonatal brains)

Scanners, 
acquisition 
protocols

Utilized a dual GAN, with U-Net as the backbone to 
harmonize the diffusion tensor imaging (DTI) derived 
metrics on neonatal brains

Modanwal 
et al. [78]

MRI images (breast) Scanners Utilized a cycleGAN to perform intensity 
harmonization on MRI breast images obtained from 
two different scanners

Cackowski 
et al. [79]

MRI images (brain) Scanners, 
acquisition 
protocols

Conducted a comparative study was conducted by 
Cackowski et al. [79] between ComBat and cycleGAN 
to harmonize multi-centric MRI images

Guha 
et al. [63]

CT images 
(trabecular bone (Tb) 
microstruc-tures)

Scanners Conducted a study that transforms low-
resolution (LR) CT scans of trabecular (Tb) bone 
microstructures into high-resolution (HR) CT scans, 
obtained from two scanners (LR from Siemens 
FLASH and HR from Siemens FORCE; paired 
images), using GAN-CIRCLE[80]

Wei 
et al. [87]

CT images (chest) Dosage, slices 
thickness

Utilized a 3D GAN to normalize CT images to 
classify and detect pul-monary nodules
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5). The paper demonstrated that transferring style from one image to the other can be 
modelled as an optimization problem that can further be solved by training a neural 
network, VGG-19 [102] in this case. The style was extracted by looking at the spatial 
correlation between filter responses and this was calculated as the Gram matrix [103] 
of a feature map. The total loss was calculated as the weighted sum of both content loss 
(Lc) and style loss (Ls) by weights α and β respectively. Thus, the style transfer task was 
reduced to creating a new image through an optimization process by minimizing the 
total loss. However, the high resolution of images affected the speed of the style transfer 
process and the algorithm failed to preserve the consistency of details and fine structures 
during style transfer because the low-level information was not retained by the CNN. 
The Gram matrix is not the only choice for representing style in images. There are also 
other in-terpretations of Gram matrix, such as MMD mathematically proven by Li et 
al. [104]. Additionally, the definitions of style and content remain unclear since no 
representation exists to factorize either style or content of an image. 

Li et al. [104] questioned the usage of the Gram matrix from Gatys et al. [101] and were 
not satisfied with the motivation behind its use. They treated neural style transfer as a 
domain adaptation problem where the difference between the source distribution and 
the target distribution would be measured and minimized. They provided mathematical 
proof that matching Gram matrices of filter responses is equivalent to minimizing 
MMD [105] with the second-order polynomial kernel. The VGG19 network was used 
here as well, and they proved that the top layers had larger receptive fields and could 
reproduce more global textures.

Figure 5: Illustration of concept of neural style transfer using original work [101].
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Xu et al. [106] proposed a method for arbitrary style transfer, which allows the stylization 
of images from an unseen content image and style image. They utilized the Behance 
dataset [107] containing several artistic images and course category labels for style and 
content. They combined the concepts of original neural style transfer with the concept 
of adversarial training for arbitrary style transfer from multi-domain images. Xu et al. 
[106] built a conditional generator to fool the discriminator and to assure that the 
style and content representations are similar to the input images by combining content 
and style using adaptive instance normalization (AdaIN) [108]. The method utilized 
Gram loss for the style representation, perceptual loss [109] for content representation 
and adver-sarial loss to capture beyond texture the style information from a distinct 
style la-bel/category. Their methods outperform previous work using AdaIN [108] and 
whitening and color transform [110] quantitatively. However, qualitative results in 
this study show that stylization does not occur beyond a point even after tuning the 
parameters due to the difficulty of the optimization.

A medically relevant study led by Yang et al. [111] investigated the effects of dif-ferent 
kernels on CT images and proposed an unsupervised kernel conversion method by 
utilizing a cycleGAN with AdaIN [108] that works on unpaired images. They modified 
the base model of UNet [77] to use polyphase decomposition [112] which resulted in 
better performance. They assumed that the unsupervised kernel conversion problem can 
be posed as an unsupervised image style transfer problem that can be solved using optimal 
transport [113,114]. The qualitative results showed that their methods performed 
better however, in the quantitative evaluation (peak signal to noise ratio and structure 
similarity index), supervised learning performed better than unsupervised learning. 
A similar study by Liu et al. [115] was carried out to harmonize MRI images from 
multiple arbitrary sites using a style transferable GAN. They treated harmonization as a 
style transfer problem and proved that their model applied to unseen images provided 
there was enough data available from multiple sites for training purposes. However, 
the model only worked on two-dimensional images and not three-dimensional images. 
They also men-tion that selecting an appropriate reference image would be challenging 
if the data pool was vast.

Studies by Armanious et al. [116] and Clancy and Milanko [117] have also utilized the 
concept of style transfer to perform image-to-image translation between PET-CT images 
(see Figure 6) and healthy-unhealthy chest X-Rays respectively. The difference between 
both the studies is that Armanious et al. [116] utilized style transfer losses [101] to match 
the texture between the stylized image and the target image, while Clancy and Milanko 
[117] just used the cycleGAN and adversarial losses to perform style transfer. Moreover, 
the MedGAN created by Armanious et al. [116]) incorporates a novel generator CasNet, 
which is a cascade of UNet blocks to obtain sharper translated images. MedGAN seemed 
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to outperform other existing image-to-image translation methods (e.g., pix2pix [118] 
and perceptual adversarial network [119]) by providing quantitative and perceptual as-
sessments. Another study by Fetty et al. [120] investigated how the latent space can be 
manipulated to obtain high-resolution scans by utilizing their StyleGAN architecture. 
Their StyleGAN architecture incorporated AdaIN [108] method for transferring style. 
StyleGAN was trained on MRI to CT images (with pelvic malignancies) and achieved 
a root mean squared error of 0.34 for CT-MRI translation and a mean absolute error of 
59 HU for MRI-CT translation.

Figure 6: ET to CT translation using MedGAN. Figure reused with under a CC by license from [116].
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Many more such studies [121–126] were conducted by applying style transfer methods 
on medical images, and this approach has the potential to harmonize images, either by 
image-to-image translations or domain transformations. Depending on the architectures 
used to perform style transfer, paired or unpaired images might be needed, e.g., if 
harmonization is to be performed using cycleGAN or StyleGAN as a baseline then 
paired images are not a requirement. Losses can be modified in such a way that they 
may or may not include style and content losses from Gatys et al.’s [101] method. In 
case GANs were to be used for NST, the developer should be mindful of limitations that 
GANs pose, as discussed in the previous section.

Table 4: Summary table of style transfer methods.

Style Transfer

Reference Data Variation across Summary

Gatys et al. 
[101] 

Non-medical images 
(mostly artistic images)

NA Utilized a CNN to perform neural style transfer using 
Gram matrix

Li et al. [104] Non-medical images 
(mostly artistic images)

NA Treated neural style transfer as a domain adaptation 
problem and proved that matching Gram matrices of 
filter responses is equivalent to minimizing MMD [105] 

Xu et al. [106] Non-medical images 
(mostly artistic images)

NA Combined the concepts of original neural style 
transfer with the concept of adversarial training for 
arbitrary style transfer from multi-domain images

Yang et al. 
[111]

CT images (head, facial 
bone)

Reconstruction 
kernels

Investigated the effects of different kernels on CT 
images and pro-posed an unsupervised image style 
transfer method by utilizing a cycleGAN with AdaIN 
[108] that works on unpaired images

Liu et al. 
[115]

MRI images (chest) Multi-center 
datasets, image 
acquisition 
parameters

Harmonized MRI images from multiple arbitrary 
sites using a style transferable GAN entailing cycle 
consistency, style and adversarial losses.

Armanious 
et al. [116]

Armanious et al. [116] Multi-modal 
dataset

Developed MedGAN architecture which consists of 
a cascade of UNet blocks to obtain sharper translated 
images (CasNet) along with Gatys et al.’s [101] style 
transfer losses.

Clancy and 
Milanko 
[117]

X-Rays (chest) Healthy and 
unhealthy patients

Utilized the cycleGAN with adversarial losses to 
perform style transfer.

Fetty et al. 
[120]

MRI, CT images 
(pelvic malignancies)

Multi-model 
dataset

Used StyleGAN with baseline GAN architecture and 
AdaIN method for transferring style across images.

Feature Domain Harmonization

Focusing on Reproducible Features (Identification of Reproducible 
Features)
These studies test the reproducibility, variability, and repeatability of features ex-tracted 
from various phantom and patient studies over different reconstruction and ac-quisition 
parameters in the case of multi-centric datasets and examine the reproducibility of 
radiomic features. Refer to Table 5 for a summary.
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In the context of PET images, a study by Shiri et al. [127] investigated the impact of 
various image reconstruction settings on several PET/CT radiomic features obtained from 
a phantom dataset (developed in-house National Electrical Manufacturers Association 
[NEMA]) and a patient dataset from two different scanners. Radiomic features were 
grouped into intensity-based, geometry-based and texture-based features and their re-
producibility and variability were evaluated using the coefficient of variation (COV). 
The results from both phantom and patient studies showed that 47% of all radiomic 
features were reproducible. Almost half of intensity-based and texture-based and all 
the geom-etry-based features were found to be reproducible respectively. The intensity 
and ge-ometry-based features were also found to be reproducible in another study by 
Vuong et al. [128], where the authors investigate if the PET/CT radiomics models can 
be transferred to PET/MRI models by checking the reproducibility of radiomic features 
against different test-retest and attenuation correction variability. However, Shiri et al. 
[127] used a phantom body filled with homogeneous activity rather than heterogeneous 
activity, which does not properly imitate the human tissue. The respiratory motion 
[127,128], quantization [127,128] and segmentation parameters [127] were also absent 
in the studies, which may have had a considerable effect on the radiomic features. A 
similar study by Bailly et al. [129] analyzed the reproducibility of texture features in PET 
scans across different acquisition and reconstruction parameters in the context of multi-
center trials. They found out that only a few features were strongly reproducible and 
acceptable for multi-center trials. Nevertheless, this study checked the reproducibility 
of texture features evaluated against reconstruction parameters coming from just one 
manufacturer. Many such studies have been carried out to check the reproducibility of 
radiomic features in PET scans [130–144] but most of them only check the impact of 
variability in scanner and imaging parameters and do not provide concrete image and/
or feature harmonization methods to obtain reproducible features.

In the case of CT scans, Prayer et al. [145] conducted a trial to investigate the inter-
and intra-scanner repeatability and reproducibility of computed tomography (CT) 
radiomic features (radiomic feature) of fibrosing interstitial lung disease (fILD). The 
dataset was obtained from IRB-approved test-retest study with sixty fILD patients. The 
results showed that intra and inter-scanner reproducibility were highly affected by the 
variation in slice thicknesses than the variation in reconstruction kernels under study 
and were recon-struction parameter-specific respectively. The CT radiomic features 
showed excellent reconstruction parameter-specific repeatability for the test-retest study. 
However, the sample size of the data used was small, and to check the variability of 
features only two scanners were used. Careful selection of radiomic features is critical 
to ensure plausible outcomes in heterogeneous CT datasets. Similar studies have been 
conducted in the past where the reproducibility of CT radiomic features was investigated 
using phantom data [25–27,146] as well as patient data [20,147,148]. The phantom 



Chapter 5

120

studies were carried forward to reduce the exposure to patients however, they are not real 
substitutes of heterogeneous human tissues.

Considering MRI, a recent study using radiomics to investigate the reproducibility of 
features across several MRI scanners and scanning protocol parameters was carried out 
using both phantom data and patient (volunteer) data by Lee et al. [149]. This study 
also investigated the repeatability by measuring the variability of radiomic features using 
a test-retest strategy. The variability of radiomic features across different MRI scanners 
and protocols was evaluated using the intra-class correlation coefficient (ICC) and the 
re-peatability was evaluated using the coefficient of variation (COV). The COV measure-
ments showed that there was very little difference in the variability between filtering and 
normalizing effects which were used for pre-processing. The ICC measurements showed 
higher repeatability for the phantom data than for the patient data. However, this study 
was not able to prevent the effects of the volunteer’s movements on the radiomic values 
despite simulating movements while scanning. A similar study, conducted by Peerlings 
et al. [150], extracted stable parametric MRI radiomic features with a minimum con-
cordance correlation coefficient of 0.85 between data derived from 61 patients’ test 
and retest apparent diffusion coefficient (ADC) maps across various MRI-systems, 
tissues and vendors. A review by Traverso et al. [151] mentions that there are not many 
phantom studies conducted to investigate the reproducibility of MRI radiomic features. 
Most of them cover various sites such as the brain [152,153], the gastro-intestinal tract 
[154–156] and the prostate [157,158], although this limitation was addressed by Rai et 
al. [159] by developing a novel 3D MRI radiomic phantom to assess the robustness and 
reproduci-bility of MRI radiomic features across multiple centers.

Table 5: Summary table of literature which focused on identification of reproducible 
features.

Focusing on Reproducible Features (Identification of Reproducible Features)

Reference Data Variation across Summary

Shiri 
et al. [127]

PET/CT phantom Image 
reconstruction 
settings, scanners

Reproducibility and variability of radiomic features 
were evaluated using the coefficient of variation 
(COV)

Bailly 
et al. [129]

PET scans (gas-
troentero-pancreatic 
neuroendocrine tumors)

Multi-centric trials 
(acquisition and 
reconstruction 
parameters)

Analyzed the reproducibility of textural features 
in PET scans across different acquisition and 
reconstruction param-eters in the context of multi-
center trials

Prayer 
et al. [145]

CT scans (fibrosing 
inter-stitial lung disease 
(fILD))

Scanners, 
testretest study

Investigated the inter-and intra-scanner repeatability 
and reproducibility of computed tomography (CT) 
radiomic features (radiomic feature) of fILD

Lee 
et al. [149]

MRI scans 
(phantom, brain lesions)

Scanners, 
scanning protocol

Investigated the reproducibility of MRI radiomic 
features across different MRI scanners and scanning 
protocol param-eters 

Peerlings 
et al. [150]

MRI scans (ovarian 
can-cer, colorectal liver 
me-tastasis)

Vendors, field 
strengths

Extracted stable parametric MRI radiomic features 
with a minimum concordance correlation coefficient 
of 0.85 between data derived from 61 patients’ test 
and retest apparent diffu-sion coefficient maps 
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Normalization Techniques
Many statistical normalization methods have been proposed in the past and have 
calculated the benefits of applying normalization techniques for harmonizing radiomic 
features affected by variability in scanner acquisition protocols and reconstruction 
settings.

Statistical Normalization
Chatterjee et al. [160] investigated the effect of applying rescaling and standardization 
(zero mean, unit standard deviation) as normalization transformations in MRI images 
obtained from two different institutes with outcome as lymphovascular space invasion 
and cancer staging. These transformations were applied separately on balanced training 
and testing sets rather than applying normalization for the entire dataset. This method 
enhanced the predictive power of the radiomic models through external validation from 
an external institute. The average prediction accuracy of radiomic features increased 
from 0.64 to 0.72, average Matthews correlation coefficient (MCC) increased from 
0.34 to 0.44 and average F-score increased from 0.48 to 0.71. A similar study by Haga 
et al. [161] used z-score normalization to standardize the radiomic features extracted 
from CT images of NSCLC (non-small cell lung cancer) patients from The University 
of Tokyo Hospital and TCIA (the Cancer Imaging Archive). Z-score normalization uses 
the formula:

 (1)

where x is the feature, x is the mean and s is the standard deviation and this method gave 
the best prediction radiomic model with 0.789 AUC (area under the receiver observed 
characteristics curve) when compared to min-max normalization (0.725 AUC) and 
whitening from the principle component analysis (0.785 AUC). Refer to Table 6 for a 
summary.

Table 6: Summary table of basic statistical approaches.

Statistical Normalization

Reference Data Variation across Summary

Chatterjee 
et al. [160]

MRI images (endo-
metrial cancer)

Multi-center 
datasets

Investigated the effect of applying rescaling and 
standardization as normalization transformations in 
MRI images obtained from two different institutes. 
These transformations were applied separately on 
balanced training and testing sets rather than applying 
normaliza-tion for the entire dataset

Haga 
et al. [161] 

CT images (non-
small cell lung cancer 
(NSCLC))

Multi-centric 
datasets

Used z-score normalization to standardize the 
radiomic features extracted from CT images of 
NSCLC patients from The University of Tokyo 
Hospital and TCIA (the Cancer Imaging Archive)
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Intensity Harmonization Techniques
Crombé et al. [162] performed intensity harmonization techniques (IHT) as a post-
processing method on T2-weighted MRI images of sarcoma patients to enhance the 
MFS (metastatic-relapse-free survival) predictive models. They compared standard 
normalization, z-score normalization, standardization per signal intensities of healthy 
tissue, histogram matching and ComBat harmonization methods. A histogram is a sta-
tistical representation of an image, which shows the distribution of intensity values. 
It does not contain information about the location of the image pixels. Histogram 
matching is where intensity histograms are aligned to a reference intensity histogram. 
In this study, intensity histogram matching performed better with an AUC of 0.823 in 
an unsupervised analysis. Related studies [163–165] have used histogram matching to 
normalize MRI intensity scales. A few studies [166,167] have also applied histogram 
equalization (en-hancing the contrast by flattening the histogram) on images to normalize 
intensity scales to pre-process images before applying a ComBat harmonization method 
on top of it. Refer to Table 7 for summary.

ComBat Method and Its Derivatives
ComBat harmonization is a statistical method that was developed originally to harmonize 
gene expression arrays [168]. ComBat was designed to provide estimates of the effects 
of assigned batches -which have a single technical difference between each other, while 
taking into account the effect of biological covariates on the variables or features being 
harmonized. The estimations are calculated using Bayesian models, and a loca-tion/scale 
shift is performed accordingly to adjust the values of different features. The application 
of ComBat on radiomics features was first introduced by Fortin et al. [169]. The authors 
used ComBat to harmonize cortical thickness measurements calculated on diffu-sion 
imaging tensor data to remove variations in feature values attributed to differences in 
acquisition and reconstruction parameters. The authors reported that ComBat removes 
interscanner variability for these measurements and can also preserve biological corre-
lations. The authors further developed an open software for ComBat that can be used 
for radiomics analysis.

Table 7: Summary table of intensity harmonization methods.

Intensity Harmonization Techniques

Reference Data Variation across Summary

Crombé 
et al. [162]

MRI images 
(sarcoma)

Multi-centric 
datasets

Performed IHT (standard normalization, z-score 
normalization, stand-ardization per signal intensities 
of healthy tissue, histogram matching and ComBat 
harmonization) as a post-processing method on T2-weighted 
MRI images of sarcoma patients to enhance the MFS 
(metastatic-relapse-free survival) predictive models

Masson 
et al. [166]

Contrast enhanced 
CT images

Multicenteric 
dataset

Applied histogram equalization (enhancing the contrast by 
flattening the histogram) on images to normalize intensity 
scales to pre-process images prior to applying ComBat 
harmonization method on top of it.
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Following that, several studies further investigated the potential of ComBat har-
monization in radiomics analyses. Orlhac et al. [170] investigated the potential of 
ComBat to correct for the variations of CT radiomic features extracted from scans 
collected from different centers. The authors reported that all radiomic features were 
significantly af-fected by differences in acquisition and reconstruction parameters, and 
that almost all radiomic features can be used following ComBat harmonization. The 
authors further reported an improvement in the performance metrics of the developed 
radiomic sig-natures after ComBat harmonization. Figure 7 shows the result for this 
study [170] with three instances of feature distributions realigned between different CT 
reconstruction algorithms, reconstruction kernels and slice thicknesses. Another study 
by Orlhac et al. [171] investigated the potential of ComBat to harmonize radiomic 
features extracted from PET scans acquired differently. The authors reported similar 
results to that of the ap-plication of ComBat on CT scans. A similar study investigated 
the performance of ComBat harmonization, in addition to modified ComBat methods: 
M-ComBat, B-ComBat, and BM-ComBat [172]. The study reported a significant 
improvement in the performance of radiomic signatures following the application of all 
the investigated ComBat methods.
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Figure 7: Probability density function of homogeneity before and after applying ComBat for realignment 
between different CT reconstruction algorithms, reconstruction kernels and slice thicknesses. FBP: filtered 
back-projection. Figure reproduced from [170]. Figure reproduced with copyright per-mission obtained from 
The Radiological Society of North America.
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Of note, none of the above studies investigated the concordance (reproducibility) of 
features after ComBat harmonization. Data with similar distributions could still have 
different individual data points within. Furthermore, the aim of radiomics is to improve 
personalized medicine. Therefore, for clinical applications, the radiomic signature is 
expected to be applied on a single patient each time, and not a group of patients sim-
ultaneously. Henceforth, the focus of harmonization techniques must be the standardi-
zation of radiomic feature values across different imaging settings and patient popula-
tions. This is statistically translated into the assessment of concordance in features values 
following harmonization, and not the performance of developed signatures following 
harmonization [173].
With regards to the application of ComBat on radiomic features, several points must 
be taken into consideration: (i) In contrast to gene expression, radiomic features have 
different complexity levels. Therefore, ComBat is not expected to perform uniformly on 
all features; (ii) Biological covariates are embedded in the harmonization equation, and 
as the aim of radiomic studies is to investigate such relationships, biological covariates 
cannot be provided for the ComBat formula. Furthermore, as the reproducibility of a 
feature is a cornerstone for it to be further analyzed, solely harmonizing the distribution 
without paying attention to individual value and rank, is not expected to be beneficial 
for the generalizability of radiomics signatures. Therefore, the concordance in feature 
values following ComBat harmonization must be used as an initial feature selection 
step, to select features that become concordant for further analysis. A framework that 
guides the use of ComBat in radiomics analyses was published [174]. This framework 
consists of several steps. The first step is to collect the imaging dataset(s), and to 
extract the imaging ac-quisition and reconstruction parameters. Following this, an 
anthropomorphic phantom is scanned with the different acquisition and reconstruction 
parameters used for acquiring the scans in the patients’ imaging dataset. Radiomic 
features are then extracted from the phantom scans, and the reproducibility of radiomic 
features is assessed on those scans using the concordance correlation coefficient (CCC) 
[175], and the reproducible features (CCC > 0.9) could be further used for further 
modeling. To assess the performance of ComBat, it is applied on the phantom scans, 
followed by the calculation of the CCC. Radiomic features that obtain a CCC > 0.9 
following ComBat application are to be con-sidered “ComBatable”.



Chapter 5

126

One study applied the framework on thirteen scans of a phantom [176] acquired using 
different imaging protocols and vendors. The study investigated the reproduci-bility of 
radiomic features in a pairwise manner, resulting in a total of seventy-eight pairs. The 
study reported that different numbers of reproducible radiomic features were identified 
in each scenario. The results confirmed that radiomic features are affected differently 
by the differences in imaging protocols and vendors used, with a wide range between 
nine and seventy-eight reproducible features, substantiating the need for the application 
of the framework for all radiomic studies [177]. The study also reported that ComBat 
harmonization did not perform uniformly on radiomic features, and the number of 
features that could be used following ComBat harmonization ranged between fourteen 
and eighty radiomic features. Henceforth, the study recommended that the application 
of ComBat harmonization should follow a similar impact analysis depending on the 
data under analysis.

Another study utilized a similar framework to assess the performance of ComBat on 
CT phantom scans that were acquired with the same acquisition and reconstruction pa-
rameters except for the in-plane resolution [178,179], on two different scanner models. 
The authors performed pairwise comparisons between the scans and reported that radiomic 
features are affected differently by the degree of variation within a single reconstruction 
parameter (in-plane resolution). A given radiomic feature can be reproducible up to a 
certain degree of variation in pixel spacing but becomes unreproducible when the var-
iation is relatively large. Other features were found to be reproducible regardless of the 
variation in pixel spacing, while a few features were found to vary significantly with the 
slightest change in pixel spacing. These groups of features differed based on the scanner 
model used to obtain the scans. The application of ComBat on those scans resulted in 
a different number of reproducible features depending on the variation in the scan in-
plane resolution, which also varied according to the scanner model. As such, the study 
rec-ommended the assessment of the reproducibility and the harmonizability (using any 
harmonization method) of radiomic features in the data under study before performing 
radiomics analyses. Refer to Table 8 for summary of ComBat method and its derivatives.
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Table 8: Summary table of ComBat methods and its derivatives.

ComBat Method and Its Derivatives

Reference Data Variation across Summary

Fortin 
et al. [169]

DTI data Acquisition and 
recon-struction 
parameters

Used ComBat to harmonize cortical thickness measurements 
calculated on DTI data to remove variations in feature 
values attributed to differences in acquisition and 
reconstruction parameters. 

Orlhac 
et al. [170]

CT scans 
(phantom [180], 
lung cancer)

Multi-centric 
dataset

Investigated the potential of ComBat to correct for the 
variations of CT radiomic features extracted from scans 
collected from different centers.

Orlhac 
et al. [171]

PET scans Acquisition 
parameters

Investigated the potential of ComBat to harmonize radiomic 
features extracted from PET scans acquired differently

Ibrahim et 
al. [174]

Phantom CT [176] Acquisition and 
recon-struction 
parameters

Proposed a framework that guides the use of ComBat in 
radiomics analyses to assess the performance of ComBat 

Ibrahim et 
al. [177]

Phantom CT [176] Imaging 
protocols, 
vendors

Investigated the reproducibility of radiomic features in a 
pairwise manner and performed ComBat harmonization 
on it. 

Ibrahim et 
al. [178,179]

Phantom CT In-plane 
resolution

Performed pairwise comparisons between the scans and 
reported that radiomic features are affected differently by the 
degree of variation within a single reconstruction pa-rameter 
(in-plane resolution). 

Normalization Using Deep Learning
Andrearczyk et al. [21] proposed a DL-based technique trained on phantom data to 
normalize various types of features including hand-crafted and deep features. The main 
idea is to use a simple neural network (two layers in [21]) to learn a non-linear normal-
ization transformation. This work is based on the assumption that training a deep model 
on top of features to classify texture types while being adversarial to the scanner of 
origin creates features that are stable to scanner variations. It therefore aims at reducing 
in-tra-scan clustering that does not underline true physio-pathological tissue changes, 
while maintaining highly informative and discriminative features. The generalization 
of the proposed approach to unseen textures and unseen scanners is demonstrated by 
a set of experiments using a publicly available CT texture phantom dataset scanned 
with various imaging devices and parameters. It is assessed by training the model on a 
subset of classes and scanners and evaluating the stability on the remaining ones. The 
stability of the normalized features is demonstrated by the increased ICC, clustering 
based measures showing the class separability, as well as reduced correlation with pixel 
spacings. The phantom used for this method was developed in [27]. It contains 10 
cartridges of different textures and was scanned by 17 different scanners and acquisition 
settings. Refer to Figure 8 for an overview of their proposed method. Using a phantom 
allows a controlled analysis that isolates the variation due to scanner variation from 
other variations related with patient acquisition. Phantoms can also be scanned by 
specific scanners with special clinical settings to specifically improve the normalization 
of the features for clinical use. The normalization could therefore be updated to follow 
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the latest imaging advances and standards. However, while this phantom was designed 
to mimic actual biomedical tissue types (particularly non-small cell lung cancer), the 
method has yet to be validated on real patient data.

Studies by Rozantsev et al. [181] and Sun and Saenko [182] have adapted diver-gence-
based approaches for domain adaptation by using a two-stream CNN architecture (one 
in the source domain with synthetic images and the other in the target domain with real 
images) with unshared weights and the DeepCORAL [183] architecture, respectively. 
Their methodologies provided a domain-invariant representation by trying to reduce the 
divergence (reduce the gap/distance) between feature distributions of source and target 
data distributions (both use non-medical images). Rozantsev et al. [181] used maximum 
mean discrepancy (MMD) to determine if two samples have the same distribution and 
Sun and Saenko [182] used correlation alignment that attempts to align the second-
order statistics of two distributions by applying a linear transformation. [181] obtains 
an average accuracy of 0.908 while [182] got an average accuracy of 0.72, both using the 
Office dataset [184]. However, if these methods were to be applied to medical images, the 
assumption that scanner information can be eliminated by a simple definable constraint 
could probably work for linear systems like CT rather than for complex nonlinear 
systems such as MRI. To make domain adaptation techniques widely applicable, domain 
adversarial neural networks (DANNs) [185,186] have been explored to increase the 
invariance of the transformed features to the scanner of origin. DANNs use a label 
predictor and a domain classifier to optimize the features to make the learned features 
discriminative for the main task but non-discriminative between the domains. Adapting 
the same framework as proposed in [186], Dinsdale et al. [187] utilized an iterative 
update approach that aimed to generate scanner-invariant (i.e., harmonized features) 
representations of MRI neu-roimages while evaluating the main task (segmentation), 
thus decreasing the influence of scanner variation on the predictions. Refer to Table 9 
for a summary of normalization methods using DL techniques.

Figure 8: An overview of the proposed normalization method by [21] using a CT phantom. Figure 
reproduced from [21]. Reproduced from the original copy obtained from authors.
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Table 9: Summary table of normalization methods using deep learning techniques.

Normalization Using Deep Learning

Reference Data Variation across Summary

Andrearczyk 
et al. [21]

Phantom CT [27] Acquisition and 
recon-struction 
parameters

 Proposed a DL-based technique trained on phantom data 
to normalize various types of features including hand-
crafted and deep features using a simple neural network to 
learn a non-linear normalization transformation

Rozantsev 
et al. [181]

Non-medical 
images

Synthetic, real 
image domains

Adapted divergence-based approaches for domain 
adaptation by using a two-stream CNN architecture (one in 
the source domain with synthetic images and the other in 
the target domain with real images) with unshared weights

Sun and 
Saenko [182]

Non-medical 
images

Different image 
domain in Office 
dataset [184]

Adapted divergence-based approaches for domain 
adaptation by using DeepCORAL [183] architecture

Dinsdale 
et al. [187]

MRI images 
(neuro)

Multi-centric 
dataset

Adapted the framework as in [186] and utilized an iterative 
update approach that aimed to generate scanner-invariant 
(i.e., harmonized features) representations of MRI 
neuroimages while evaluating the main task (segmentation).

Discussion

With the emergence of Radiomics within medical image analysis comes the chal-lenges 
associated with it which could hamper the growth of the field. Both methodologies, 
traditional hand-crafted features and DL, are faced with standardization issues. The 
hand-crafted features are most of the time not standardized when the data under analysis 
is acquired with different scanner acquisition protocols and/or reconstruction settings 
and there is also a lack of biological correlation of these features. To overcome these 
limitations, various standardization/harmonization techniques have been introduced 
and utilized.

In the image domain, the methods mentioned above are applicable on images (raw or 
reconstructed image). Certain regulations and guidelines can be implemented in imaging 
protocols by providing quality assurance, indications and guided documentation such as 
the one laid down by ESTRO and FDA. Such guidelines are not available ex-tensively 
for MRI [49] but efforts have been taken to reduce the number of MRI protocols [51]. 
However, these guidelines might not be able to compensate for the number of ex-isting 
scanners and protocol combinations. Apart from setting guidelines, models can be 
developed using ML and DL on raw image data or on human interpretable reconstructed 
images. These methods (data augmentation using GANs/style transfer) have emerged 
to provide efficient solutions to translate images across various domains to harmonize 
images rather than the radiomic features. It would be worthwhile to harmonize raw 
image data with underlying hidden information from the scanners rather than using 
human interpretable reconstructed images. Studies have been conducted to show that 
perfor-mance of models on raw image data is at par with that of reconstructed images 
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[56]. Furthermore, GANs have shown promising results to overcome the multi-centric 
varia-tion. However, GANs are arduous to train due to vanishing gradient challenges 
that can completely stop the learning process. They are data hungry and suffer from 
mode collapse causing them to generate similar looking images. On the other extreme, 
they can also add unrealistic artefacts in the images. Moving forward, advances in the 
field of style transfer may prove useful to harmonize images without the need of scanner-
specific radiomic models. Neural style transfer and its derivatives could extract texture 
information [101] which could be very useful to obtain reproducible radiomic features 
in multi-centric trials. Although these techniques have not been specifically analyzed to 
improve radiomic feature reproducibility, it can be worthwhile to extend their potential 
to radiomic features.

In the feature domain, various methods have been implemented directly on radiomic 
features to evaluate its reproducibility and its generalizability across scanner protocol 
settings. The most convenient and comparatively easy way is to identify reproducible 
features and focus explicitly on them to evaluate the model’s performance. The selection 
of reproducible features helps build robust models, yet one drawback is that several 
informative and useful features might be excluded for analyses while extracting ‘re-
producible features’. Furthermore, there is no generalized threshold for all features above 
which the latter can be labelled as ‘reproducible enough’, the condition to be met is 
that the signal is stronger than the noise. These studies report that variation in scanner 
ac-quisition and reconstruction parameters have an impact on the radiomic features 
and their reproducibility hence highlighting the importance of utilizing harmonization 
methods for stabilizing radiomic features under analysis. Normalization techniques such 
as min-max normalization, z-score normalization, histogram matching for intensities, 
and ComBat harmonization have been explored for radiomic studies. Basic statistical 
approaches (rescaling/standardization) might be too simplistic to apply considering the 
fact that some image modalities are complex and non-linear (MRI). Histogram matching 
or equalization is an efficient method to normalize the intensity scales of images, but it 
is often used as a pre-processing step to ‘clean’ the data before feeding it to the radiomics 
models. On the other hand, ComBat tries to get rid of the ‘batch effects’ (or scanner/
protocol variability) by shifting data distributions while also preserving the biological 
variation in the data under analysis. However, ComBat relies heavily on labelled data 
to perform efficient batch correction and estimation [40]. Another disadvantage is that 
if new data is to be harmo-nized then it must be added in the existing pool of data for 
ComBat to perform correctly. Alternatively, normalizing ‘deep’ features [21] can also be 
an efficient way to improve the reproducibility of features since DL has a wide scope 
with various architectures and techniques. Domain adaptation techniques using DL and 
GANs have the ability to translate images from one domain to another and can thus 
increase the overlap of feature distribution between two unharmonized images. Data 
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augmentation, adversarial training, and normalization techniques in combination with 
neural networks could complement the benefits of neural network training.

Furthermore, to assess the effects that image acquisition parameters have on radiomic 
features studies have been conducted on phantom images or on images acquired from 
several different patients to reduce the dosage exposure given to individual patients. One 
issue with images acquired from different patients is that it introduces high variability 
due to differences in patient positioning and anatomy [146,188]. On the other hand, 
objects used for phantom studies are easy to scan for multiple test-retest studies and can 
be conveniently transported between various imaging sites. Additionally, instruc-tions/
guidelines could be set for standardizing the image acquisition parameters to control its 
variability, tailored to fit the clinical practice. Pre-processing raw sensor-level data is an 
interesting approach to harmonize images if one wants to make use of the latent infor-
mation within these raw images. Since a lot of research has already been done using 
ComBat methods, it would be worthwhile to apply deep learning solutions such as 
GANs, style transfer, or even normalization using deep learning techniques. These deep 
learning solutions need further research to show their true potential by applying them 
to more real medical datasets.

Radiographic phantoms are not the true representatives for realistic patient tissues and 
this is proved by Mackin et al. [27] who conducted a study showing that the radiomic 
features extracted from NSCLC (non-small cell lung cancer) and the same features ex-
tracted from a phantom (made up of 10 different materials) did not yield the same 
values for any of the features [27]. Besides, acquisition and reconstruction parameters 
have also proved to have effects on the radiomic features [20,127,135,189]. Different 
vendors may have different reconstruction methods and reconstruction parameters that 
are tailored accordingly at each site/institution.

Conclusions

Radiomics is an emerging field and standardization of radiomic features and/or images 
is crucial for its survival and impact in this domain when it comes to multicentric 
studies. Various harmonization methods have been investigated to assess the repro-
ducibility and validation of radiomics across different scanners and protocol settings. 
This review has covered various topics ranging from methods in the image domain 
(GANs, style transfer, and regulations guidelines) to methods in the feature domain 
(statistical normalization, identification of reproducible features, ‘deep’ feature 
normalization). The use of harmonization methods has the potential to be beneficial in 
multi-center studies and the reproducible radiomic features can be practically useful in 
the decision- making process. Style transfer techniques, with style/content loss or cycle-
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consistency loss (e.g., cycleGAN) or in combination, have the potential to harmonize 
data in the image domain, despite the limitations of GANs. Style transfer needs just two 
images to work without any prior details about scanners/protocols and hence could be 
applied on old images in ret-rospective studies and on unpaired images. However, in 
context of harmonizing images, a limited number of experiments have been conducted 
and even less for radiomic studies. For harmonization of radiomic features, ComBat 
methods seem to be extensively used, although normalizing features using deep learning 
techniques (e.g., domain adaptation methods) can be the way to go ahead too. [21] 
Showed that normalization using DL can be extended to images coming from unknown 
scanners and it would be worthwhile to apply this method in combination with GANs 
in future directions. More work is still needed on identifying limits of features extracted 
and normalization methods based on just how different the produced images are. 
Differences linked to scanner model, slice thickness, or reconstruction kernel will likely 
be in clusters where close clusters can be more easily compared than clusters that are 
far away from each other. Large datasets of phantom and test-retest data need to be 
collected for this purpose.
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Abstract

Radiomics – the high throughput extraction of quantitative features from medical 
images and their correlation with clinical and biological endpoints- is the subject of 
active and extensive research. Although the field shows promise, the generalizability 
of radiomic signatures is affected significantly by differences in scan acquisition and 
reconstruction settings. Previous studies reported on the sensitivity of radiomic features 
(RFs) to test-retest variability, inter-observer segmentation variability, and intra-scanner 
variability. A framework involving robust radiomics analysis and the application of 
a post-reconstruction feature harmonization method using ComBat was recently 
proposed to address these challenges. In this study, we investigated the reproducibility 
of RFs across different scanners and scanning parameters using this framework. We 
analysed thirteen scans of a ten-layer phantom that were acquired differently. Each layer 
was subdivided into sixteen regions of interest (ROIs), and the scans were compared in 
a pairwise manner, resulting in seventy-eight different scenarios. Ninety-one RFs were 
extracted from each ROI. As hypothesized, we demonstrate that the reproducibility 
of a given RF is not a constant but is dependent on the heterogeneity found in the 
data under analysis. The number (%) of reproducible RFs varied across the pairwise 
scenarios investigated, having a wide range between 8 (8.8%) and 78 (85.7%) RFs. 
Furthermore, in contrast to what has been previously reported, and as hypothesized 
in the robust radiomics analysis framework, our results demonstrate that ComBat 
cannot be applied to all RFs but rather on a percentage of those – the “ComBatable” 
RFs – which differed depending on the data being harmonized. . The number (%) of 
reproducible RFs following ComBat harmonization varied across the pairwise scenarios 
investigated, ranging from 14 (15.4%) to 80 (87.9%) RFs, and was found to depend on 
the heterogeneity in the data. We conclude that the standardization of image acquisition 
protocols remains the cornerstone for improving the reproducibility of RFs, and the 
generalizability of the signatures developed. Our proposed approach helps identify the 
reproducible RFs across different datasets.

Keywords
Radiomics, Harmonization, Feature stability, Feature reproducibility
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Introduction

With the advancement and involvement of artificial intelligence in performing high-
level tasks, its application has been extensively researched in the field of medical imaging 
analysis [1]. Radiomics – the high throughput extraction of quantitative features from 
medical imaging to find correlations with biological or clinical outcomes [2-4] – is 
currently one of the most commonly used quantitative imaging analysis methods in 
medical imaging.

A major area of research in the field of radiomics is the selection of robust and informative 
image features to be used as input for machine learning models [5]. Evidence suggests 
that radiomic features (RFs) are sensitive to differences in several factors, including make 
and type of imaging scanner, reconstruction settings, and protocols used to acquire the 
images [6, 7]. Studies on the reproducibility of RFs across test-retest [8, 9]; or across 
scans of a phantom made on the same scanner using different exposure levels, while 
fixing other parameters [10]; or across scans of a phantom using different acquisition 
and reconstruction parameters [11] highlighted the high sensitivity of RFs to variations 
within datasets. 

The above-mentioned studies focused on the reproducibility of RFs in limited settings, 
such as test-retest, inter-observer variability, and intra-scanner variability. As these 
studies reported significant differences in groups of RFs, it is only intuitive that adding 
more variation to image acquisition and reconstruction will further dampen the 
reproducibility of RFs. These findings indicate that ignoring data heterogeneity will 
influence the performance and generalizability of the models developed, especially in 
studies where training and validation sets are independent. Therefore, a global initiative 
– the Image Biomarkers Standardization Initiative (IBSI) – has been initiated in an 
effort to standardize the extraction of image biomarkers (RFs) from medical images [12]. 
The IBSI aims to standardize both the computation of RFs and the image processing 
steps required before RF extraction. However, little attention has been paid in the 
bulk of literature to date to the heterogeneity in image acquisition and reconstruction 
when performing radiomics analysis. As the goal of radiomics research is to employ 
quantitative imaging features as clinical biomarker, the issue of accurate measurement 
and reproducibility must be addressed [13]. Biomarkers are defined as “the objective 
indications of medical state observed from outside the patient – which can be measured 
reproducibly”. Therefore, reproducible measurement is a corner stone in choosing a 
biomarker. In essence, RFs that cannot be reproduced cannot be compared or selected 
as biomarkers.

Combining Batches (ComBat) harmonization is a method that was introduced for 
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removing the effects of machinery 
and protocols used to extract gene 
expression data, in order to make 
gene expression data acquired at 
different centres comparable [14]. 
ComBat is a method that performs 
location and scale adjustments of 
the values presented to remove 
the discrepancies in RF values 
introduced by technical differences in 
the images. These sources of variation 
are further referred to as batch 
effects. ComBat was subsequently 
adopted in radiomics analysis, and 
some studies reported that ComBat 
outperforms other harmonization 
methods (e.g, histogram-matching, 
voxel size normalization, and 
singular value decomposition) in 
radiomics analyses [15, 16]. Several 
radiomics studies have reported 
on the successful application of 
ComBat in removing the differences 
in RFs introduced by different 
vendors and acquisition protocols 
[17-21]. These studies investigated 
the differences in radiomic RF 
distributions across different batches 
following the application of ComBat 
harmonization. In contrast to gene expression arrays, RFs have different definitions, 
and the batch effect might vary for each RF. Using phantom data allows one to study 
the variations in a given RF extracted from scans acquired with different scanners/
reconstruction settings and to attribute these variations to the changes in acquisition 
and reconstruction, which in theory ComBat harmonization is designed to mitigate. 
However, we are not aware of any study that has performed a systematic evaluation of the 
performance of ComBat harmonization across variations between imaging parameters, 
which is the one of the objectives of this study.

Ibrahim et al. (2020) have proposed a new radiomics workflow (Fig 1) that tries to 
address the challenges current radiomics analyses face. The framework was proposed 

Figure 1: The proposed framework (reprinted 
with permission from [22] ).
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based on mathematical considerations of the complexity of medical imaging, and 
RFs’ mathematical definitions. Our framework is based on the hypothesis that the 
reproducibility of a given RF is a not constant, but depends on the variations of image 
acquisition and reconstruction in the data under study. Furthermore, for ComBat to 
be applicable in radiomics, radiomic RF values for a given region of interest obtained 
after ComBat must be (nearly) identical, regardless of differences in acquisition and 
reconstruction. 

Our general objective is to set-up the requirements for selecting biomarkers from RFs, 
to ease their incorporation into clinical decision support systems. We hypothesize that 
variations in image acquisition and reconstruction will variably affect RFs reproducibility. 
Furthermore, the performance of ComBat on a given RF is dependent on those 
variations, i.e, a given RF can be successfully harmonized with ComBat with specific 
variations in the imaging parameters but not others. We investigate these hypotheses 
on CT scans using a ten-layer radiomics phantom, which was scanned with different 
acquisition and reconstruction parameters on various scanner models.

Methods

Phantom Data
The publicly available Credence Cartridge Radiomics (CCR) phantom data, found in 
The Cancer Imaging Archive (TCIA.org) [23, 24], was used. The CCR phantom is 
composed of 10 different layers that correspond to further subdivided into 16 distinct

Table 1: CT acquisition parameters*.

Scan Vendor Model Scan Options Effective mAs** kVp

CCR1-001 GE Discovery CT750 HD HELICAL 81 120

CCR1-002 GE Discovery CT750 HD AXIAL 300 120

CCR1-003 GE Discovery CT750 HD HELICAL 122 120

CCR1-004 GE Discovery ST HELICAL 143 120

CCR1-005 GE LightSpeed RT HELICAL 1102 120

CCR1-006 GE LightSpeed RT16 HELICAL 367 120

CCR1-007 GE LightSpeed VCT HELICAL 82 120

CCR1-008 Philips Brilliance Big Bore HELICAL 320 120

CCR1-009 Philips Brilliance Big Bore HELICAL 369 120

CCR1-010 Philips Brilliance Big Bore HELICAL 320 120

CCR1-011 Philips Brilliance Big Bore HELICAL 369 120

CCR1-012 Philips Brilliance 64 HELICAL 372 120

CCR1-013 SIEMENS Sensation Open AXIAL 26-70 120

* Values are directly extracted from the publicly available imaging tags.
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Table 2: CT acquisition parameters*.

Scan Convolution 
Kernel

Filter Type Slice thickness 
(mm)

Pixel spacing 
(mm)

kVp

CCR1-001 STANDARD BODY FILTER 2.5 0.49 120

CCR1-002 STANDARD BODY FILTER 2.5 0.70 120

CCR1-003 STANDARD BODY FILTER 2.5 0.78 120

CCR1-004 STANDARD BODY FILTER 2.5 0.98 120

CCR1-005 STANDARD BODY FILTER 2.5 0.98 120

CCR1-006 STANDARD BODY FILTER 2.5 0.98 120

CCR1-007 STANDARD BODY FILTER 2.5 0.74 120

CCR1-008 B B 3 0.98 120

CCR1-009 C C 3 0.98 120

CCR1-010 B B 3 1.04 120

CCR1-011 B B 3 1.04 120

CCR1-012 B B 3 0.98 120

CCR1-013 B31s 0 3 0.54 120

* Values are directly extracted from the publicly available imaging tags.

regions of interest (ROI) with cubic volume of 8 cm3, resulting in a total of 2080 ROIs 
available for further analysis. The phantom was originally scanned using 17 different 
imaging protocols from four medical institutes using equipment from different vendors 
and a variety of acquisition and reconstruction parameters. Four of the scans lacked ROI 
definitions, thus to maintain consistency, these were not included. The remaining 13 
scans are as follows: seven different scans acquired on GE scanners, five different scans 
acquired on Philips scanners, and one scan acquired on a Siemens scanner (Tables 1 and 2). 

Radiomic features extraction
For each ROI, quantitative imaging features were calculated using the open source 
Pyradiomics (V 2.0.2). The software contains IBSI-compliant RFs, with deviations 
highlighted in the feature definitions. For the extraction step, no changes to the 
original slice thickness or pixel spacing of the scans were applied. To reduce noise and 
computational requirements, images were pre-processed by binning voxel greyscale 
values into bins with a fixed width of 25 HUs prior to extracting RFs. The extracted 
features included HU intensity features, shape features, and texture features describing 
the spatial distribution of voxel intensities using 5 texture matrices (i.e., grey-level co-
occurrence (GLCM), grey-level run-length (GLRLM), grey-level size-zone (GLSZM), 
grey-level dependence (GLDM), and neighbourhood grey-tone difference matrix 
(NGTDM)). Detailed description of the features can be found online at https://
pyradiomics.readthedocs.io/en/latest/features.html.
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ComBat Harmonization

ComBat employs empirical Bayes methods to estimate the differences in feature values 
attributed to a batch effect. Empirical Bayes methods are able to estimate the prior 
distribution from a given dataset via statistical inference. In the context of radiomics, 
ComBat assumes that feature values can be approximated by the equation:

(1)

where α is the average value for feature Yij for ROI j on scanner i; X is a design matrix 
of the covariates of interest; β is the vector of regression coefficients corresponding to 
each covariate; γi is the additive effect of scanner i on features, which is presupposed to 
follow a normal distribution; δi is the multiplicative scanner effect, which is presupposed 
to follow an inverse gamma-distribution; and εij is an error term, presupposed to be 
normally distributed with zero mean [17]. ComBat performs feature transformation 
based on the empirical Bayes prior estimates for γ and δ for each batch:

(2)

where α and β̂ are estimators of parameters α and β, respectively. γi and δi are the 
empirical Bayes estimates of γi and δi, respectively [17].

Statistical analysis
To assess the agreement of a given RF for the same ROI scanned using different settings 
and scanners, the concordance correlation coefficient (CCC) was calculated using 
epiR (version 0.9-99) [25] on R [26] (version 3.5.1), using R studio (version 1.1.456) 
[27]. The CCC is used to evaluate the agreement between paired readings [28], and 
provides the measure of concordance as a value between 1 and -1, where 0 represents 
no concordance, 1 represents a perfect direct positive concordance, and -1 indicates a 
perfect inverse concordance. It further takes into account the rank and value of the RFs.
The analysis of the reproducibility before and after ComBat harmonization was 
performed in a pairwise manner, resulting in 78 different investigated scenarios. To assess 
differences in RF stability for differing data, the reproducibility of radiomics RFs across 
scans within a wide spectrum of scenarios was calculated. Data ranging from differences 
in a single acquisition or reconstruction parameter, to scans acquired using entirely 
different settings (See S1 table) were included. To identify reproducible radiomics, the 
CCC was calculated for all RFs for all ROIs across the 78 investigated scenarios. A 
cut-off of CCC>0.9, as found in the literature, suggests that a value < 0.9 indicates 
poor concordance [29].To identify the RFs that could be harmonized using ComBat, 
the pair-wise CCC was calculated following ComBat in each of the investigated 78 
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scenarios. We applied ComBat using R package “SVA” (version 3.30.1) [30]. As the 
RFs are calculated for the same ROI but for different scans, the agreement in RF value is 
expected to be high following ComBat harmonization. Thus, RFs that had a CCC<0.9 
were considered to be not harmonizable with ComBat. The code used in this work 
is publicly available on https://github.com/AbdallaIbrahim/The-reproducibility-and-
ComBatability-of-Radiomic-features.

Results

Reproducible Radiomic features
For each ROI, a total of 91 RFs were extracted. The number (percentage) of reproducible 
RFs in each pair-wise comparison ranged from 9 (8.8%) to 78 (85.7%) RFs, depending 
on the variations in acquisition and reconstruction of the scans (table 3). The highest 
concordance in feature values (85.7%) was observed between the two Philips scans 
(CCR1-010 and CCR1-011) that were acquired using the same scanner model, and 
the same acquisition and reconstruction parameters except for the effective mAs, which 
differed by just 15% (tables 1 and 2).

The more profound the variations in scan acquisition parameters, the smaller the 
concordance of the extracted RFs (tables 1-3, S1).

As stated, in the best scenario (CCR1-010 and CCR1-011), 78 (85.7%) RFs were found 
to be reproducible, while 13 (14.3%) RFs were found not to be reproducible. Some RFs 
(n=8) were found to be concordant across all pairs. These RFs were histogram-based RFs 
that take into account the value of a single pixel/voxel, without looking at the relationship 
between neighbouring pixels/voxels. These RFs are (i) original first order 10Percentile; 
(ii) original first order 90Percentile; (iii) original first order Maximum; (iv) original 
first order Mean (v) original first order Median; (vi) original first order Minimum; 
(vii) original first order Root Mean Squared; and (viii) original first order Total Energy. 
Nevertheless, the remainder (majority) of the RFs (including 10 histogram-based RFs) 
were not found to be reproducible across all pairs. 

Looking at tables (1-3, S1), we can consider subgroups of scans. Scans CCR1-001-007 
were all acquired using the same imaging vendor (GE), but different scanner models and 
scanning parameters. The highest number of concordant RFs in this group was found 
between CCR1-004 and CCR1-006 (71 RFs), which were acquired on two different 
scanner models, but were scanned with identical scanning parameters except for the 
mAs. The lowest number of concordant RFs in this group was found between scans 
CCR1-001 and CCR1-005 (13 RFs), which were acquired on two different scanner 
models, with the same scanning parameters except for the pixel spacing and mAs. Scans 
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CCR1-007 to CCR1-012 were all acquired using one of two Philips imaging vendors. 
The highest number of concordant RFs is documented above. The lowest number of 
concordant RFs was found between CCR1-009 and CCR-010 (34 RFs), which differed 
in terms of the mAs, convolution kernel, filter type and pixel spacing. Looking at the 
group of scans that were reconstructed to the same pixel spacing (CCR1-004 to CCR1-
006, CCR1-008, CCR1-009, and CCR-012), the highest number of concordant RFs 
was observed between CCR1-006 and CCR1-009 (74 RFs), which were acquired 
using two different imaging vendors, but using similar acquisition and reconstruction 
parameters except for the slice thickness, and kernel. The lowest number of concordant 
RFs was found between CCR1-005 and CCR1-012 (16 RFs), which were acquired 
using different imaging vendors, and different acquisition and reconstruction parameters 
except for the kVp. Finally, comparing scans acquired with different vendors resulted in 
a lower number of concordant RFs compared to scans acquired with the scanners from 
the same imaging vendor, except for the scenario when the majority of acquisition and 
reconstruction parameters were mostly identical (CCR1-006 vs CCR1-009). 

ComBat harmonization
As previously shown in the literature, we used each scan as a different batch in the 
ComBat equation. ComBat was applied pairwise (78 different pairs) and the concordance 
between RFs was measured for each pair (table 4). The percentage of RFs that became 
concordant following ComBat application ranged from 1.4% (71 concordant RFs 
increased to 72) to 344% (9 concordant RFs increased to 40).

The highest number of concordant RFs following ComBat application was 80 (87.9%) 
RFs. In this scenario, a single acquisition parameter differed between the two scans 
(Philips, CCR1-010 and CCR1-011). ComBat application improved the concordance 
of only two RFs (80 RFs after ComBat compared to 78 RFs before), and failed to 
improve the concordance of the remaining 11 RFs. On the other hand, in cases where the 
differences in acquisition and reconstruction parameters differed more (e.g., CCR1-001 
(GE) vs CCR1-007 (Philips)), the application of ComBat improved the concordance of 
31 RFs, resulting in a total of 40 concordant RFs (~44% of the total number of RFs), 
more than 3 times the number of concordant RFs before harmonization. Furthermore, 
the successful application of ComBat on RFs depended on the variations in the batches 
defined. Only two RFs were found to be concordant in all pairwise scenarios following 
ComBat harmonization: (i) original first order Energy; and (ii) original gldm Small 
Dependence High Gray Level Emphasis; in addition to the 8 RFs mentioned above.
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Discussion

In this work, for our first objective to investigate RFs reproducibility, we show that the 
majority of RFs are affected to different amounts depending upon the variations in 
acquisition and reconstruction parameters. We also show that the reproducibility of a 
given RF is not constant, but rather it is dependent on the variations in the data under 
study, as seen in table 3. We identified a number of RFs that were robust to the variations 
in scan acquisition in the dataset we analysed. These RFs could be used without any 
post–processing harmonization. While the same dataset has been analysed for similar 
purposes previously [11, 21], we analysed the data differently, and report different 
results than those studies. Our results show a substantial intra-scanner variability, and 
even greater inter-scanner variability, which is in line with other previous findings 
[10, 31, 32]. Only eight RFs (~9%) of the extracted RFs showed insensitivity to the 
differences in acquisition shown in tables 1 and 2, and could be directly used to build 
radiomic signatures. The rest of the RFs (91%) could not be used without addressing the 
acquisition differences. Our sub-groups analysis showed that changes in pixel spacing 
and convolution kernel have more profound effects on the reproducibility of RFs, 
compared to variations limited solely to the effective mAs, scanner model or imaging 
vendor used. While the percentages reported are representative of the reproducibility 
of RFs in the data analysed, it highlights the sensitive nature of RFs, and helps set 
guidelines to preselect meaningful and reproducible RFs. We deduce that the use of 
RFs extracted from scans acquired with different hardware and parameters, without 
addressing the issue of reproducibility and harmonization, can lead to spurious results as 
the vast majority of RFs are sensitive to even minor variations in image acquisition and 
reconstruction. Therefore, models developed using RFs with large unexplained variances 
will most likely not be generalizable. 

As our second aim, we investigated the applicability of ComBat harmonization to 
removing differences in RF values attributed to batch effects. Studies [11, 21] have 
reported on the reproducibility of RFs on the same or a similar dataset to the one 
we analysed. However, our findings and conclusions vary significantly from theirs. In 
contrast to previous studies, we are the first to report that the reproducibility of RFs is 
dependent on the variations in the data under analysis. Previous studies referred to RFs 
as generally reproducible or non-reproducible. Our analysis shows that a given RF can 
be reproducible in some scenarios and not in the others, depending on the variations 
in acquisition and reconstruction parameters. Moreover, ComBat was mathematically 
defined to remove one (technical) batch effect at a time while considering all the 
biologic covariates at the same time. However, as our results show (tables 3 and 4), the 
variations in acquisition and reconstruction parameters within one scanner, at least in 
some instances, have a stronger impact on the reproducibility of RFs than the variations 
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between two scanners. As such, grouping the scans by the scanner type is not generally 
the way to define “batches” in the ComBat equation [14]. In contrast to what is reported 
in the literature, our analysis shows ComBat did not perform uniformly on most of 
the RFs when there were variations in the batches being harmonized. In contrast to 
those studies, we employed the concordance correlation coefficient (CCC) to assess the 
reproducibility of RFs, since the aim of harmonization is to improve the reproducibility 
of data. We did not use the increment of model performance as a measure for the success 
of harmonization for several reasons. First, the aim of harmonization is to improve the 
reproducibility of RFs, and ultimately the generalizability of the developed signatures, 
and not their model performance [33]. Second, by assuming that an increment in the 
model performance following harmonization is an indication that the harmonization is 
successful carries with it the assumption that radiomic models decode the information 
under analysis; this is against the essence of the study, which is to investigate whether 
radiomics has that potential or not. However, by using the CCC, we ensure that 
the results generated are based on reproducible RFs, and are therefore generalizable, 
regardless of the change in model performance. Furthermore, the aim of ComBat 
harmonization is only to remove the variance in RF values attributed to the batch 
effects, while maintaining the biologic information. As such, using ComBat to correct 
batch effects directly on patient data without providing the correct biological covariates 
that actually do have an effect on RF values will lead to loss of biological signals. This is 
because ComBat tries to harmonize the distribution of the RF across different batches, 
and without providing the correct biological covariates that have effects on RF values, 
ComBat assumes that the variations in RF value are only attributed to the defined batch, 
and thus would not perform uniformly as shown in table 3. In clinical settings, this is by 
default spurious, as the differences in RF values are attributed to both the machine and 
the biology/physiology. As the aim of radiomics studies is to investigate the biological 
correlations of RFs, we are unable to actually provide a list of biologic covariates that 
influence the values. In addition, each time an observation is added to the data being 
harmonized, ComBat has to be re-performed, and models have to be refitted, as the 
estimated batch effects will change each time. Therefore, the harmonization of patient 
RFs should follow the process of estimating fixed batch effects on phantom data, then 
applying the location/scale shift estimated from the phantom data on patient data, as 
previously described by Ibrahim et al [22]. 

The pairwise approach we used shows how the variations in scan acquisition and 
reconstruction parameters affect the reproducibility of RFs. Therefore, aside from 
probably a few RFs, the reproducibility of the majority of the RFs cannot be guessed 
in untested scenarios. The workflow (figure 1) addresses this problem by introducing 
the assessment of RF reproducibility on representative phantom data. This workflow 
differs from existing radiomics workflows by the addition of an intermediary RF pre-
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selection step between RF extraction and RF selection by one of two approaches: (i) 
only extracting the reproducible RFs for analysis; (ii) extracting and harmonizing the 
‘ComBatable’ RFs before RF selection and model building. The application of ComBat 
and the definition of what constitutes a ‘batch’ should be performed based on the data 
being analysed, as could be deduced from tables 3 and 4. For example, RFs extracted 
from scans acquired with different scanner models, but similar settings were found to be 
more concordant than RFs extracted with the same scanner model but with profound 
differences in acquisition and reconstruction parameters.  Our proposed radiomics 
analysis workflow would ensure that the RFs being analysed are not affected by scan 
acquisition differences, and henceforth, signatures built would be more robust and 
generalizable. The first part of the model (steps 1-4), where only reproducible RFs are 
extracted and further analysed, might significantly limit the number of RFs used for 
further modelling. However, using the whole framework may significantly increase the 
number of RFs that can be used, depending on the data under study.

While the data used for this analysis are not representative of diagnostic clinical protocols 
and do not provide all technical details needed for proper analysis, our aim was to 
show that changes in scan acquisition and reconstruction parameters differently affect 
the majority of RFs. The variations in the reproducibility of RFs – as well as ComBat 
applicability – due to the heterogeneity in acquisition and reconstruction highlight 
the necessity of the standardization of image acquisition and reconstruction across 
centres. RFs have already been reported to be sensitive to test-retest [8, 34], which is the 
acquisition of two separate scans using the same parameters, as well as to the variations 
in the parameters within the same scanner [10]. Adding the variable sensitivity of RFs 
to different acquisition and reconstruction parameters significantly lowers the number 
of RFs that could be used for the analysis of heterogeneous data. As there is currently 
a pressing desire to analyse big data, a sound methodology is needed to address the 
heterogeneity introduced by machinery in retrospective data. Nevertheless, we strongly 
recommend the start of imaging protocol standardization across centres to facilitate 
future quantitative imaging analysis.

Recently, there has been an attempt to modify ComBat methodology in radiomics 
analysis [35]. The authors added a modification to ComBat (B-ComBat), which adds 
Bootstrapping and Monte Carlo to the original ComBat. The other functionality 
of ComBat the authors investigated was to use one of the batches as a reference 
(M-ComBat). The authors compared the performance of the four versions of ComBat 
by comparing the performance of radiomic models developed after the use of each 
method. The authors reported that all the methods are equally effective [35]. Therefore, 
we anticipate that the modified ComBat functions will have the same limitations of the 
original ComBat we discussed above.
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Another method to harmonize RFs that is currently gaining momentum is deep 
learning based harmonization. A recent study developed deep learning algorithms, 
which were reported to improve the reproducibility of RFs across variations in scanner 
type, acquisition protocols and reconstruction algorithms [36]. A more recent study 
[37] applied a similar approach to reduce the sensitivity of RFs to scanner types. The 
authors reported a significant improvement in the performance of radiomic models 
following harmonization. These studies highlight the potential efficacy of deep learning 
based harmonization methods.

One limitation of our study is in considering each scan as a separate batch effect (due to 
lack of data) while differences between pair batches are not similar (different numbers of 
varying parameters), which may have affected the performance of ComBat. Acquisition 
and reconstruction settings include a set of different parameters, which can singularly 
or collectively result in differences in RFs values. Another limitation is the lack of 
scans generated by other commonly used scanners and protocols in the clinics; and 
the lack of scans with the same settings acquired using different scanners, as the data 
currently available is limited to the changes introduced in the imaging parameters on 
the available scanners. While we did not investigate the added value of this approach 
on a clinical dataset, our focus in this study was in designing a framework to assess the 
reproducibility and ‘ComBatability’ of RFs. However, it is fair to assume that if RFs 
are not reproducible on phantom data, they would be equally, or possibly even more, 
unstable on patient datasets. For example, clinical data will be acquired at a variety of 
mAs values across a population of patients. Lastly, while Combat has been reported to 
outperform other harmonization methods in terms of apparent model performance, 
the systemic evaluation of the effects of these methods on the reproducibility of RFs, 
and the comparison with the effects of ComBat harmonization will be the aim of future 
studies, in addition to addressing the above mentioned limitations.

Conclusion 

In conclusion, we demonstrate that the reproducibility of RFs is not a constant, but 
changes with variations in the data acquisition and reconstruction parameters. Moreover, 
ComBat cannot be successfully applied on all RFs, and its successful application on a 
given RF is dependent on the heterogeneity of the dataset. We conclude that ComBat 
harmonization should not be blindly performed on patient data, but following 
the estimation of adjustment parameters on a phantom dataset. We anticipate that 
radiomics studies will benefit from our proposed harmonization workflow, as it allows 
comparison of a greater number of RFs, and enhances the generalizability of radiomic 
models. Yet, standardization of imaging protocols remains the cornerstone for improving 
the generalizability of prospective quantitative image studies. We recommend the 
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standardization of scan acquisition across centres, especially in prospective clinical trials 
that include medical imaging; and/or the development of a specific imaging protocols 
for scans acquired to be used for quantitative imaging analysis. 
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Abstract

While handcrafted radiomic features (HRFs) have shown promise in the field of 
personalized medicine, many hurdles hinders its incorporation into clinical practice, 
including but not limited to their sensitivity to differences in acquisition and 
reconstruction parameters. In this study, we evaluated the effects of differences in in-
plane spatial resolution (IPR) on HRFs, using a phantom dataset (n=14) acquired on 
two scanner models. Further, we assessed the effects of interpolation methods (IMs), 
the choice of a new unified in-plane resolution (NUIR), and ComBat harmonization 
on the reproducibility of HRFs. The reproducibility of HRFs was significantly affected 
by variations in IPR, with pairwise concordant HRFs, as measured by the concordance 
correlation coefficient (CCC), ranging from 42% to 95%. The number of concordant 
HRFs (CCC > 0.9) after resampling varied depending on (i) the scanner model, (ii) the 
IM, and (iii) the NUIR. The number of concordant HRFs after ComBat harmonization 
depended on the variations between the batches harmonized. The majority of IMs resulted 
in a higher number of concordant HRFs compared to ComBat harmonization, and the 
combination of IMs and ComBat harmonization did not yield a significant benefit. Our 
developed framework can be used to assess reproducibility and harmonizability of RFs.

Keywords
Image Processing, Harmonization, Reproducibility, Radiomics biomarkers
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Introduction

In recent years, quantitative medical imaging research using handcrafted radiomic features 
(HRFs) has been growing exponentially [1,2]. Radiomics refers to the high throughput 
extraction of quantitative imaging features that are expected to correlate with clinical 
and biological characteristics of patients [3,4]. For decades, it has been hypothe-sized 
that image texture analysis could potentially extract more information from an ROI 
than that solely perceived by the human eye [5,6]. Yet, the term radiomics has only been 
introduced recently [7,8]. HRFs are generally grouped into shape, intensity, and textural 
features. To date, many studies have reported on the potential of radiomics to predict 
various clinical endpoints [9,10]. However, major challenges, including the reproduci-
bility of the HRFs across different acquisition and reconstruction parameters, have hin-
dered the incorporation of radiomics in clinical decision support systems [11,12]. 

The essence of radiomics is that certain HRFs help decode biologic information [8], 
allowing these features to be treated as biomarkers. The mainstay of a biomarker is the 
ability to quantify it in a reproducible manner [13]. HRFs are mathematical equations 
applied to numeric arrays of intensity values which form the medical image. Therefore, it 
is intuitive that changes in the values in the array (due to differences in scan acquisition 
and reconstruction parameters), by the transitive property, lead to (potentially significant) 
quantitative changes in the HRFs. It is well established that changes in scan acquisition 
and reconstruction parameters affect the values in the array representing the medical 
image [14]. Therefore, it is a common clinical practice to scan a phantom to calibrate 
the CT scanner on a routine basis. Hence, similar practices are needed before radiomics 
studies are conducted, when the scans under analysis were acquired using heterogeneous 
ac-quisition and reconstruction parameters [15]. Many studies have already reported 
on the sensitivity of HRFs to different factors including: (i) temporal variability, or 
test-retest [16,17], in which two scans of a patient (or a phantom) are taken after a 
time interval using the exact scanning parameters; (ii) scanning parameters variability 
[11,18,19], in which an object (usually a phantom) is scanned multiple times using 
different scanning parameters. Variations in the majority of scanner/scanning parameter 
combinations were reported to impact the reproducibility of HRFs significantly [18-
20].

One scan reconstruction parameter expected to have an effect on the reproducibility 
of HRFs is the in-plane spatial resolution (IPR), which is dictated in part by the pixel 
dimensions, while the through-plane spatial resolution is determined by the slice 
thickness and slice spacing. Resampling all the scans in a data set to a new unified 
in-plane spatial resolution (NUIR) before feature extraction has been employed as a 
method to reduce the variation in radiomic feature values [21,22]. The NUIR is usually 
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decided based on the most frequent IPR in the dataset and different interpolation 
methods (IMs) can be used for this purpose. Interpolation is a model-based method to 
recover continuous data from discrete data within a known range of data spacings (i.e., 
pixel size in images) [23]. The degree to which data recovery is possible is highly sensitive 
to the interpolation method and the underlying data structure. In the case of medical 
imaging analysis, interpolation is employed either to convert the spatial sampling rate 
(measured in pixel or voxel count per unit of length per dimension) to another, or to 
distort the image in the case of image registration [24]. Since the vast majority of HRFs 
are derived from pixel/voxel values and their distributions, interpolation to a common 
pixel spacing could potentially reduce variance introduced to these HRFs arising from 
differences in IPR.

As a rule, one must distinguish between interpolation methods that increase or reduce 
the image resolution. Interpolation from smaller pixels to larger pixels (i.e. re-ducing 
spatial resolution) usually involves some form of averaging, with the possible exception 
of modern deep learning-based methods.

 Generally, while data acquired with small pixels will contain more noise, the process of 
averaging to large pixels will ameliorate the noise properties. As such, the process is less 
sensitive to the interpolation method/model. Interpolation from larger pixels to smaller 
pixels (i.e. increasing spatial resolution) on the other hand is fraught with challenges as 
the interpolated data can be highly sensitive to the interpolation model due to the need 
to create de novo pixel values. Larger pixels average the signal over a larger area than 
smaller ones, leading to the loss of variations in the original scene that occur over spatial 
frequencies smaller than the Nyquist limit and cannot be recovered exactly. 

Certain methods, such as nearest neighbour interpolation (also called pixel replica-
tion), while fast, are less accurate than other methods such as sinc interpolation or 
deep-learning methods (which are trained with representative data). However, all such 
interpolation methods are sensitive to biases arising from the image [25]. The application 
of these methods to medical imaging has been evaluated qualitatively [26]. Yet, the 
effects of these methods on the reproducibility of HRFs is not well understood. Unlike 
humans, whose exposure to a vast assortment of scanners, patients, and acquisition 
conditions (including IPR) leads to a tolerance for such changes, IPR is likely to have 
more profound effects on HRFs.

A harmonization method that has become increasingly common in the field of ra-
diomics is ComBat. ComBat was originally developed for the harmonization of gene 
expression arrays [27]. Several studies have investigated the potential of ComBat in ra-
diomics analysis and recommended its use [28,29]. We hypothesize that ComBat, the 
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chosen IM, and the selected NUIR will affect the reproducibility of HRFs differently. In 
this study, the reproducibility of HRFs was assessed across different IPRs, while keeping 
all other parameters fixed, using a public dataset of CT scans of a phantom. A thorough 
investigation of the applicability of 10 different IMs was performed in an effort to 
identify suitable IMs for the purpose of increasing the number of reproducible HRFs in a 
het-erogeneous dataset. In particular, we investigated whether data with discordant pixel 
sizes need to be interpolated to a common pixel size to perform radiomics analysis, and 
how the choice of IM and NUIR, as well as ComBat harmonization, affect the reproduc-
ibility of HRFs. Furthermore, we developed a generalizable workflow that assesses the 
impact of different harmonization techniques (Figure 1) on the reproducibility of RFs. 
Ultimately, the goal of our work is to guide robust radiomics analysis to ease its incor-
poration in clinical decision-making.

Figure 1: Proposed reproducible radiomic analysis workflow.
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Materials and Methods

Phantom data
The publicly available Credence Cartridge Radiomics (CCR) phantom data [30] found 
in The Cancer Imaging Archive (TCIA.org) [31] was used. The CCR phantom is 
composed of 10 different layers that correspond to different texture patterns spanning a 
range of almost −900 to +700 HU (Figure S1). The publicly available dataset includes 251 
scans of the phantom acquired using six scanner models manufactured by three different 
manufacturers. The scans were acquired using various acquisition and reconstruction 
parameters to assess the reproducibility of HRFs. For the purpose of this study, 14 scans 
acquired using 2 different scanner models (Discovery STE & LightSpeed Pro 32) of the 
same manufacturer (GE), which were all acquired at a single slice thickness (1.25 mm), 
tube voltage (120 kV), tube current (250 mA), and convolution kernel (standard), but 
varying IPR (Table 1) were used. The reasoning behind this selection is multifold: (i) the 
effects of the variations are expected to be dependent on the heterogeneity in acquisition; 
(ii) the number and complexity of the different combinations available are too huge to 
be described, analyzed and presented in a single experiment; (iii) the data under analysis 
were acquired using the same scanner models, and the same acquisition and recon-
struction parameters except for the in-plane resolution, which allows the assessment of 
the effect of variations in this single parameter.

Table 1: Scanning parameters of the phantom data.

Scanner Pixel spacing (mm2)

Discovery STE LightSpeed Pro 32

CCR-2-001 CCR-2-022 0.39*0.39

CCR-2-002 CCR-2-023 0.49*0.49

CCR-2-003 CCR-2-024 0.59*0.59

CCR-2-004 CCR-2-025 0.68*0.68

CCR-2-005 CCR-2-026 0.78*0.78

CCR-2-006 CCR-2-027 0.88*0.88

CCR-2-007 CCR-2-028 0.98*0.98
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Interpolation and image resampling
The effects of the IMs included in the popular open-source radiomics toolbox 
PyRadiomics [33] were assessed in this study. The methods are based on the python 
library Simple-ITK [33], and include (i) nearest neighbour (NN), (ii) linear, (iii) 
basis spline (B-spline), (iv) Gaussian, (v) Gaussian using labelling (mask) information 
(LabelGaussian), and windowed sinc interpolations using the following window types: 
(vi) Hamming (HammingWindowedSinc or HWS), (vii) Cosine (CosineWindowedSinc 
or CWS), (viii) Welch (WelchWindowedSinc or WWS), (ix) Lanczos  window 
(LanczosWindowedSinc or LWS), and (x) Blackman (BlackmanWindowedSinc or 
BWS).

The simplest of these IMs, and the ones with the lowest computational costs, are (i) the 
NN interpolation, which functions by assigning any new voxel the same value as its 
closest neighbor in the original image; and (ii) linear interpolation, in which the values 
of new pixels are interpolated linearly between the two original values [26]. B-spline 
interpolation is more complex than NN or linear; the calculations span four pixels [34]. 
While the method performs well in terms of radiologic evaluation in which the aim is 
to convince human observers, it is known to unnecessarily over-smooth the image [26]. 
The windowed sinc functions are complex convolution based interpolations that are 
based on multiplying the sinc function by a limited spatial support window to reduce 
unwanted effects on the resampled image [35], followed by filtering of the frequencies 
to avoid the injection of spurious frequency components. Windowed sinc functions are 
generally considered superior to other interpolation methods as little superfluous noise 
is injected into the interpolated images.

HRFs extraction
Each scan contained 10 independent regions of interest (ROIs) (one for each layer of the 
phantom) that occupy the same physical area of the phantom on each scan. For each ROI, 
HRFs were calculated using the open source software Pyradiomics V 2.1.2. HRFs were 
extracted multiple times to perform different experiments. First, to assess the effect of 
differences in in-plane resolution and ComBat harmonization on HRFs, no changes to the 
original in-plane resolution were made. Second, to assess the effect of different IMs and 
NUIRs and the combination of interpolation and ComBat, HRFs were extracted from the 
scans using all IMs and all available NUIRs in the dataset (Table 1).

For each set of scans (7 scans, with 10 ROIs per scan) from each scanner model (n=2), 
HRFs were extracted 71 times. The HRFs were extracted one time from the original 
scans, and 70 times with unique combinations of IM and NUIR. In each run, a total 
of 91 original RFs were extracted. In Pyradiomics, shape features are calculated on the 
original input image, and are not affected by the in-application resampling. Therefore, 



Chapter 7

176

those HRFs were excluded. 

To reduce noise and computational requirements, images were pre-processed by binning 
voxel grayscale values into bins with a fixed width of 25 HUs for extracting HRFs 
from unfiltered images. No other image pre-processing steps were performed. The 
extracted HRFs included HU intensity features, and texture features describing the 
spatial distribution of voxel intensities using 5 texture matrices (grey-level co-occurrence 
(GLCM), grey-level run-length (GLRLM), grey-level size-zone (GLSZM), grey-level 
dependence (GLDM), and neighborhood grey-tone difference (NGTDM) matrices). 
A more detailed description of the Pyradiomics HRFs can be found online (https://
pyradiomics.readthedocs.io/en/latest/features.html).

ComBat harmonization
ComBat is an empirical Bayes based method used to estimate the effects of different 
batches on HRFs; in this scenario, variations in scan acquisition and reconstruction 
parameters were considered [27]. ComBat method assumes that a feature value can be 
approximated by the equation:

(1)

where α is the average value for feature Yij  for ROI j on scanner i; X is a design matrix of 
the biologic covariates known to affect the HRFs; β is the vector of regression coefficients 
corresponding to each biologic covariate; γi is the additive effect of scanner i on HRFs, δi 
is the multiplicative scanner effect, and εij is an error term, presupposed to be normally 
distributed with zero mean. Based on the values estimated, ComBat performs feature 
transformation in the form of:

(2)

where α and β are estimators of parameters α and β, respectively. γi and δi are the 
empirical Bayes estimates of γi and δi, respectively [28].

Statistical analysis
To assess the agreement of a given HRF for the same ROI scanned using different 
settings and scanners, the concordance correlation coefficient (CCC) was calculated 
using the epiR package (Version 0.9-99) [36] and R language (Version 3.5.1) [37] with 
R studio (Version 1.1.456) [38]. The CCC is used to evaluate the agreement between 
paired readings [38], and provides the measure of concordance as a value between 1 and 
-1, where 0 represents no concordance and 1 or -1 represent a perfect direct positive 
or inverse concordance, respectively. The CCC metric further has the advantages of (i) 
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robustness in small sample sizes, and (ii) taking the rank and value of the feature into 
consideration [39]. The cut-off of (CCC>0.9) was used to select reproducible HRFs, as 
the literature suggests that values < 0.9 indicate poor concordance [40].

Four different approaches for assessing concordances of HRFs were used (Figure 2): 
(i) HRFs extracted from the original scans; (ii) HRFs extracted from the original scans 
and harmonized using ComBat; (iii) HRFs extracted from resampled scans; and (iv) 
HRFs extracted from resampled scans harmonized using ComBat. For (i), the CCC 
was calculated for all HRFs of all ROIs across 7 different scans from each scanner. In 
each run, the CCC was calculated between a different pair of scans. For (ii), HRFs 
with nearly zero variance (i.e HRFs which have the same value in 95% or more of the 
data points) had to be removed before applying ComBat. Parametric prior estimations 
were used, and no reference batch was assigned for ComBat application. The CCC 
was calculated after harmonizing the remaining HRFs using ComBat. In each run, 
ComBat was applied on two batches (scans). For (iii), the CCC was calculated for the 
HRFs following feature extraction with each of the IMs. The effects of the NUIR were 
assessed by calculating the CCC for the HRFs after resampling all the scans to one of the 
available in-plane resolutions. For (iv), ComBat was applied after the same process in 
(iii), and the CCC was then calculated. To gauge an overall image of the reproducibility 
of HRFs across all pairs as well as the impact of IMs, NUIRs, and ComBat, the number 
(percentage) of HRFs that were reproducible by taking the intersection of HRFs that 
were reproducible in each pairwise comparison of a certain scenario were compared (21 
pairs in each scenario as shown in tables 2-5).
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Further, we assessed the correlation between the HRFs that were concordant across all 
pairwise comparisons on each scanner model, using Spearman correlation [42]. HRFs 
were considered highly correlated if the Spearman’s correlation coefficient had a value 
> 0.90.

Results

Approach (i): Effects of IPR on the reproducibility of HRFs
The number of HRFs insensitive to the variations in IPR depended on the scanner 
model (Tables 2 and S1). In pairwise comparisons, the number of concordant HRFs 
was lower when the difference in IPR between the scan pairs was greater. The lowest 
con-cordance was observed between the scan with the highest resolution and the scan 
with the lowest resolution. 

Figure 2: Reproducibility analysis approaches.
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Out of the 91 extracted HRFs, between 39 (42.9%) and 86 (94.5%) HRFs were con-
cordant, varying pairwise and scanner wise. Some HRFs were robust to variations in 
IPR in one scanner model, and not in the other.

On the Discovery STE model (GE), the number of concordant HRFs ranged between 
39 (42.9%) and 86 (94.5%), with a median of 70 (39.6%) HRFs (Table 2). 36 
(39.6%) HRFs were reproducible regardless of the IPR selected when all other scanning 
parameters were fixed (List S1). Of these 36 HRFs, nine remained after removing highly 
correlated HRFs (List S3), and none was highly correlated with volume. Overall, the 
Lightspeed Pro 32 model showed lower concordance than the Discovery STE model. The 
number of pairwise concordant HRFs on the Lightspeed Pro 32 model ranged between 
39 (42.8%) and 82 (90.1%), with a median of 60 (65.9%) (Table S1). 27 (29.7%) 
HRFs were reproducible across all pairs (List S2). Of these 27 HRFs, nine remained 
after removing highly correlated HRFs (List S4), and none was highly correlated with 
volume. 26 (28.6%) HRFs were reproducible on both scanner models regardless of the 
IPR.

Approach (ii): ComBat harmonization of HRFs extracted from original 
scans
ComBat harmonization increased the number of concordant HRFs compared to before 
harmonization. On the Discovery model, the increment in the number (per-centage) of 
HRFs ranged between 0 (0%) and 13 (14.3%), with a median of 6 (6.6%) of the total 
depending on the batches being harmonized (Table 3). 46 (50.5%) HRFs were found 
to be reproducible across all pairwise comparisons following ComBat harmonization, 
35 of which were found to be highly correlated. The number of concordant HRFs 
decreased with the increment in IPR variation. Hence, the increment in the number of 
concordant HRFs was larger when the batches being harmonized had a larger difference 
in IPR.

Table 2: Number of pair-wise concordant HRFs with a CCC > 0.9 before resampling, 
Discovery STE model.

Scan CCR-2-001 CCR-2-002 CCR-2-003 CCR-2-004 CCR-2-005 CCR-2-006

CCR-2-002 75 (82.4%)

CCR-2-003 57 (62.6%) 78 (85.7%)

CCR-2-004 53 (58.2%) 64 (70.3%) 83 (91.2%)

CCR-2-005 50 (54.9%) 61 (67.0%) 72 (79.1%) 86 (94.5%)

CCR-2-006 51 (56.0%) 58 (63.7%) 68 (74.7%) 76 (83.5%) 85 (93.4%)

CCR-2-007 39 (42.9%) 42 (46.2%) 44 (48.4%) 52 (57.1%) 60 (64.9%) 83 (91.2%)
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The performance of ComBat had a similar pattern on both the Discovery STE and the 
Lightspeed Pro 32 models. The increment in the number (percentage) of concordant 
HRFs extracted from the scans acquired with the Lightspeed Pro 32 model following 
ComBat harmonization ranged between 1 (1.1%) and 14 (15.4%) HRFs with a median 
increment of 7 (7.7%) HRFs compared to before harmonization, depending on the 
batches being harmonized (Table S2). 41 (45.1%) HRFs were reproducible across all 
pairs following ComBat harmonization, 29 of which were found to be highly correlated.

Approach (iii): The effects of different IMs and NUIR on HRFs
Different interpolation methods showed different effects on the reproducibility of HRFs. 
These effects further depended on the selected NUIR and the scanner model (Figures 
3 and S2). For the majority of combinations of scanner models, IMs and NUIRs, 
some HRFs were only concordant when extracted from the original scans, some HRFs 
became concordant only after resampling, while some lost their concordance following 
resampling (tables S5 and S6). CSW resampling to the highest and lowest resolutions 
are used below as detailed examples on both scanner models.

Table 3: Number of pair-wise concordant HRFs with a CCC > 0.9 after ComBat 
harmonization, Discovery STE model.

Scan CCR-2-001 CCR-2-002 CCR-2-003 CCR-2-004 CCR-2-005 CCR-2-006

CCR-2-002 79 (86.8%)

CCR-2-003 65 (71.4%) 79 (86.8%)

CCR-2-004 59 (64.8%) 70 (76.9%) 83 (91.2%)

CCR-2-005 58 (63.7%) 66 (72.5%) 75 (82.4%) 87 (95.6%)

CCR-2-006 57 (62.6%) 65 (71.4%) 70 (76.9%) 84 (92.3%) 86 (94.5%)

CCR-2-007 48 (52.7%) 55 (60.4%) 57 (62.6%) 60 (65.9%) 73 (80.2%) 84 (92.3%)
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Figure 3: The percentage of concordant HRFs following resampling compared to no resampling with 
linear trendlines, Discovery STE model.

The performance of ComBat had a similar pattern on both the Discovery STE and the 
Lightspeed Pro 32 models. The increment in the number (percentage) of concordant 
HRFs extracted from the scans acquired with the Lightspeed Pro 32 model following 
ComBat harmonization ranged between 1 (1.1%) and 14 (15.4%) HRFs with a median 
increment of 7 (7.7%) HRFs compared to before harmonization, depending on the 
batches being harmonized (Table S2). 41 (45.1%) HRFs were reproducible across all 
pairs following ComBat harmonization, 29 of which were found to be highly correlated.

Approach (iii): The effects of different IMs and NUIR on HRFs
Different interpolation methods showed different effects on the reproducibility of HRFs. 
These effects further depended on the selected NUIR and the scanner model (Figures 
3 and S2). For the majority of combinations of scanner models, IMs and NUIRs, 
some HRFs were only concordant when extracted from the original scans, some HRFs 
became concordant only after resampling, while some lost their concordance following 
resampling (tables S5 and S6). CSW resampling to the highest and lowest resolutions 
are used below as detailed examples on both scanner models.



Chapter 7

182

HWS performed the best when the images were resampled to a NUIR equal to or lower 
than the median (0.49*0.49 mm2), while CWS, WWS and LWS methods performed 
better on NUIR values higher than the median. BSpline IM resulted in a minor to 
sig-nificant increment in the number of reproducible HRFs, with higher number of 
con-cordant features when higher NUIRs where chosen. Gaussian and Label-Gaussian 
IMs consistently resulted in lower numbers of concordant HRFs. The number of HRFs 
losing concordance across all pairs when using a Gaussian IM ranged between -29 
(-31.9%) and -30 (-33%) HRFs, while the range for LabelGaussian was between -11 
(-12.1%) and -19 (-20.9%) HRFs, depending on the NUIR. The rest of IMs (NN and 
Linear) resulted in an overall decrease in the number of concordant HRFs when a NUIR 
below the median resolution was selected, and a minor-significant improvement with 
NUIRs higher than the median resolution (Table S5).

On the Lightspeed Pro 32 model, windowed sinc IMs (except for BWS) showed a 
consistent increment in the number of reproducible HRFs, and varying depending on the 
NUIR. When scans were resampled to the highest resolution using CWS, the increment 
in the number of concordant HRFs ranged between -9 (-9.9%) and 36 (39.6%), with 
a median of 8 (8.8%) HRFs. 30 (33%) HRFs were concordant across all pairs. When 
scans were resampled to the lowest resolution using CWS, the increment in the number 
of concordant HRFs ranged between -3 (-3.3%) and 31 (34.1%), with a median of 16 
(17.6%) HRFs. 38 (41.8 %) HRFs were concordant across all pairs. Table S3 shows the 
pairwise number (percentage) of concordant HRFs following resampling to the median 
IPR value with CWS IM on the LightSpeed Pro 32 model, for comparison with table S4. 
The application of other IMs (BWS, NN, Linear, Gaussian and Label-Gaussian) with a 
NUIR other than the two lowest resolutions available resulted in an overall decrease in 
the number of concordant HRFs. However, when the lowest resolution was selected as 
NUIR, BSpline IM outper-formed all other methods when the number of concordant 
HRFs across all pairs was considered (Table S6).

Table 4: Number of pair-wise concordant HRFs with a CCC > 0.9 after resampling* using 
CWS, Discovery model.

Scan CCR-2-001 CCR-2-002 CCR-2-003 CCR-2-004 CCR-2-005 CCR-2-006

CCR-2-002 89 (97.8%)

CCR-2-003 86 (94.5%) 88 (96.7%)

CCR-2-004 86 (94.5%) 85 (93.4%) 88 (96.7%)

CCR-2-005 86 (94.5%) 88 (96.7%) 91 (100%) 89 (97.8%)

CCR-2-006 78 (85.7%) 77 (84.6%) 83 (91.2%) 79 (86.8%) 88 (96.7%)

CCR-2-007 53 (58.2%) 53 (58.2%) 55 (60.4%) 54 (59.3%) 60 (65.9%) 85 (93.4%)

* All scans were resampled to the median pixel spacing value (0.49*0.49 mm2).
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Approach (iv): The combination of IMs and ComBat harmonization
Approach (iii) resulted in a higher number of concordant HRFs in the majority of 
pairwise scenarios compared to approach (ii) for the majority of IMs that performed 
solely well (for example, table 3 vs table 4). The application of ComBat harmonization 
on HRFs extracted from resampled scans varied per scanner model, IMs, NUIRs, and 
batches. However, when the number of concordant HRFs across all pairs is considered, 
ComBat increased the number of concordant HRFs in almost all of the investigated 
scenarios (Figures 4 and S3; tables S7 and S8).

On the Discovery model, the increment in the number (percentage) of concordant 
HRFs extracted from scans resampled to the highest resolution after ComBat harmoni-
zation ranged between 0 (0%) and 10 (11%), with a median increment of 0 (0%) of 
the total number of HRFs compared to before harmonization. 54 (59.3%) HRFs were 
concordant across all pairs. When ComBat was applied on HRFs extracted from scans 
resampled to the lowest resolution, the increment in the number (percentage) of HRFs 
ranged between -1 (-1.1%) and 10 (11%) HRFs, with a median of 0 (0%), depending 

Figure 4: The percentage of concordant HRFs following resampling and ComBat harmonization 
compared to no resampling with linear trendlines, Discovery STE model.
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on the batches being harmonized. 61 (67%) were found to be stable across all pairs. 
Table 5 shows the Number of pair-wise concordant HRFs following the application of 
ComBat on scans acquired on the Discovery STE model, and resampled to the median 
IPR value using CWS IM.

On the LightSpeed Pro 32 model, the increment in the number (percentage) of concordant 
HRFs after ComBat harmonization on HRFs extracted from scans resampled to the 
highest resolution (lowest concordance) ranged between -1 (-1.1%) and 13 (14.3%) 
HRFs, with a median of 3 (3.3%) of the total number of HRFs compared to before 
har-monization. 42 (46.2%) HRFs were concordant across all pairs. When ComBat 
was applied on HRFs extracted from scans resampled to the lowest resolution (highest 
concordance), the increment in the number (percentage) of HRFs ranged between 0 
(0%) and 10 (11%) HRFs, with a median increment of 1 (1.1%) feature. 51 (56%) 
HRFs were concordant across all pairs. Table S4 shows the pairwise CCC following 
the application of ComBat on scans acquired with the LightSpeed Pro 32 model, and 
resampled to the median IPR value using CWS IM.

Discussion

In this study, the effects of variations in scans’ IPR on the reproducibility of HRFs, the 
proper methodology of identifying HRFs that are reproducible across different IPRs, 
and how to properly adjust for these differences before performing radiomics analysis 
using image interpolation and/or ComBat harmonization were thoroughly investigated. 
Uniquely, this study evaluates the effects of all the different IMs and the choice of 
NUIRs on the reproducibility of HRFs. Previous studies usually investigated a single 
IM with a single NUIR [21,22].

While two batches of scans acquired with the same imaging parameters on two scanner 
models of the same vendor were used for analysis, the effects of IPR, ComBat, IMs, and 

Table 5: Number of pair-wise concordant HRFs with a CCC > 0.9 after ComBat following 
resampling* us-ing CWS, Discovery STE model.

Scan CCR-2-001 CCR-2-002 CCR-2-003 CCR-2-004 CCR-2-005 CCR-2-006

CCR-2-023 89 (97.8%)

CCR-2-024 86 (94.5%) 88 (96.7%)

CCR-2-025 86 (94.5%) 85 (93.4%) 88 (96.7%)

CCR-2-026 86 (94.5%) 88 (96.7%) 91 (100%) 89 (97.8%)

CCR-2-027 79 (86.8%) 78 (85.7%) 84 (92.3%) 84 (92.3%) 89 (97.8%)

CCR-2-028 57 (62.6%) 61 (67.0%) 60 (65.9%) 59 (64.8%) 72 (79.1%) 85 (93.4%)

* All scans were resampled to the median pixel spacing value (0.49*0.49 mm2).
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NUIR on the reproducibility of HRFs varied on each of the scanner models. The CCC 
was calculated pairwise to assess the reproducibility of HRFs when different sets of data 
were used as batches. Calculating the pairwise CCC between HRF values extracted 
before resampling the images revealed that the reproducibility of HRFs in our data 
depended on several factors including, but not limited to, the definition of the HRF, 
the degree of variation in IPR, and the scanner (hardware) make/model. Addressing the 
effects of these factors is crucial for performing robust radiomics analysis.

Without performing image preprocessing, the number of reproducible HRFs varied 
according to the batches being assessed. The aim of this study was to show that different 
investigated scenarios showed different numbers of reproducible HRFs. Therefore, alt-
hough 36 HRFs for the Discovery STE scanner (27 HRFs for LightSpeed Pro 32 scanner) 
were always included in the set of concordant HRFs, it is difficult to conclude that these 
HRFs are insensitive to spatial resolution on all other scanner models based on our 
ex-periments. Yet, our framework guides the methodology of identifying reproducible 
HRFs according to the data under analysis. As we have shown, the number and type 
of HRFs is at least sensitive to the scanner model by the same manufacturer. Moreover, 
we an-ticipate based on their definition, that certain HRFs (such as histogram-based 
features) are less sensitive, while others (eg. texture features) are more sensitive to 
variations in scanning parameters and/or imaging vendors. Generally, scans with more 
similar original IPRs, and those of integer multiples of IPR showed higher numbers of 
concordant HRFs before and after resampling. This can be explained by the mechanisms 
by which a scan is acquired. When all other scanning parameters are fixed, the variations 
in IPR will result in variations in the number of pixels in 2D, while the other dimensions 
are pre-served. Therefore, when all other parameters are fixed, the closer the IPR values 
are, the closer the values of the extracted HRFs.

For the IMs, the number of HRFs that had better/worse concordance after resampling 
was dependent on the NUIR chosen and scanner model. The window sinc interpolation 
family performed consistently better on both scanners and NUIRs investigated. In the 
field of radiology, both NN and linear are known to result in imprecisions [26,35]. A 
study into the reproducibility of HRFs investigated the performance of B-spline, linear 
and NN using a single image slice thickness, and concluded that NN is not a favorable 
method for the reproducibility of HRFs [42]. Our results support these previous reports 
by showing that NN and linear IMs are not the best candidates for improving the 
reproducibility of HRFs among scans acquired with different IPRs, and their use led to 
lower numbers of concordant HRFs in many of the investigated scenarios.

With regard to the selection of NUIR, a common trend of an inverse relationship 
between the NUIR and the number of concordant HRFs following resampling was 
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ob-served. This trend was observed in both scanner models investigated. However, the 
percentage difference between the concordant HRFs is not significant at the lower end 
of the NUIR spectrum (Figures 3, 4, S2 and S3; tables S5 and S6). As the best NUIR is 
ex-pected to be task dependent (for e.g classification of a lesion, predicting response to 
therapy or overall survival, etc), outcome-based analysis is needed to determine the best 
NUIR. Yet, as a general rule, the smaller the NUIR, the better the concordance. In ad-
dition, while the number of non-highly correlated HRFs was found to be low on both 
scanner models (9 and 11 HRFs before and after ComBat harmonization, respectively), 
the exclusion of highly correlated HRFs should be performed based on the effects of the 
removal of these HRFs on the model performance.

A previous study investigated the effects on HRFs of voxel size resampling using linear 
interpolation. The authors resampled the scans of a phantom to a single voxel size, 
which was larger than the largest voxel size in the original scans, and reported that 
around 20% of the HRFs (N=213) became concordant after resampling [22]. Another 
study also investigated the effects of voxel size on HRFs of lung cancer patients [21]. The 
authors resampled all the scans to a single common voxel size using linear interpolation, 
and reported that resampling does not eliminate all the variations in feature values even 
when the only variation in scan acquisition and reconstruction parameters was the 
voxel size, but is favorable to no resampling. Another group investigated the effects of 
variation in several acquisition and reconstruction parameters on a 13-layer phantom 
using a different approach, and reported that resampling the scans to isotropic voxels 
increased the per-centage of concordant HRFs from 59.5% to 89.3% [43]. In this study, 
we found a similar conclusion: the number of previously non-concordant HRFs that 
became concordant following resampling to the lowest resolution ranged between 1.1% 
and 22% depending on the IM, and not all HRFs benefit from image resampling. 

In contrast to previous studies, we investigated more IMs and harmonization tech-
niques, and propose a guideline on how to carefully approach HRFs reproducibility 
studies. Furthermore, we found that linear interpolation is not a good candidate for the 
purpose of improving the reproducibility of HRFs, when compared to other available 
IMs; and that the performance of an IM is dependent on the original IPR values and the 
chosen NUIR, as well as the imaging vendor. 

When pairwise comparisons were considered, the performance of ComBat harmo-
nization was found to be inferior to that of well-performing IMs, regardless of the 
NUIR. Moreover, the combination of ComBat and the well-performing IMs did not 
yield sig-nificantly better results compared to solely using the IM. Furthermore, the 
performance of ComBat varied depending on the batches used. Nevertheless, when the 
number of concordant HRFs across all pairs was considered, ComBat harmonization 
was of added value in almost all scenarios. Therefore, ComBat application on HRFs 
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should follow a reproducibility study (phantom or tissue studies) to assess the impact of 
ComBat on the reproducibility of HRFs in those settings, and use only the harmonizable 
HRFs for further radiomics analyses [15], as described in the workflow (Figure 1). The 
application of ComBat without assessing HRFs’ reproducibility as described may result 
in the inclusion of a high percentage of unreproducible HRFs, or even the loss of some 
of the HRFs that were originally reproducible, rendering the analysis of these HRFs 
meaningless. This finding regarding ComBat harmonization is not in line with previous 
reports, which reported that ComBat successfully removes the batch effects for all HRFs 
[28,44]. This could be attributed to the differences in the radiomics software and/or the 
evaluation metrics used. In contrast to previous studies, and as the aim of harmonization 
is to improve reproducibility but necessarily the performance of generated radiomic 
models, we opted for the CCC. The CCC provides an accurate description of the 
reproducibility of HRFs, which is not reflected in neither the distribution of HRFs nor 
the performance of radiomics models [45]. If radiomic models are to be used clinically, 
it is expected to be applied to one patient per time. Therefore, the importance has been 
given in this study to the individual feature values, and not their distributions. HRFs 
with different values and order rank can share similar distributions, in which case the 
feature cannot be considered reproducible. In addition, different modeling techniques 
may yield significantly different results on the same dataset. Hence, the difference in the 
performance of a radiomic signature before and after harmonization does not necessarily 
inform about the performance of the harmo-nization method. Our proposed framework 
addresses this issue, and guides the selection of reproducible and harmonizable HRFs 
before developing a radiomic signature, which helps the translation and generalization 
of results, and ultimately the inclusion of ra-diomic signatures in clinical practice.

Of note, not all HRFs benefit from resampling all scans to a NUIR, or using ComBat 
harmonization. Some HRFs lost their concordance following resampling, depending on 
the IM employed and the chosen NUIR. The combination of IMs and NUIRs affected 
the HRFs differently on different scanner models. Some HRFs were not found to be con-
cordant on one of the scanner models before or after resampling to any of the available 
NUIRs using any of the IMs, but were found to be concordant on the other scanner 
model. Other HRFs were found to be concordant across different scanner models and 
IPRs. These findings indicate the need for performing reproducibility studies depending 
on the data under study, and the fact that at this level, we are unable to provide a list of 
HRFs that can be used regardless of the acquisition and reconstruction parameters and 
scanner models used. However, it lays down the bases for identifying reproducible HRFs 
before per-forming data analysis. In real life scenarios, the variations between the imaging 
pa-rameters in retrospective cohorts (especially multicentric) are usually not only limited 
to the IPR. Aside from the scanner/scanning parameters combination variations, some 
of the effects will be attributed to patient populations. Furthermore, while phantom 
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studies reflect on the reproducibility of HRFs extracted from anthropomorphic 
phantoms, HRFs extracted from human tissue are expected to have a wider range of 
variations, due to the inclusion of biologic factors. This knowledge, combined with our 
findings, necessitate the critical investigation of the reproducibility of HRFs across the 
different scanning pa-rameters/scanners before performing any statistical analysis, and 
future investigations into the effects of differences in acquisition and reconstruction 
parameters on the re-producibility of HRFs extracted from human tissues, if feasible. 
Directly performing radiomics analysis on data acquired heterogeneously leads to 
spurious results, and lacks meaningful interpretation. Henceforth, we reiterate the need 
for using our proposed robust radiomics analysis framework for addressing differences 
in IPR. Furthermore, the workflow can be generalized to evaluate other harmonization 
methods.

Conclusions

The reproducibility of a given HRF, and its harmonizabilty with ComBat are not 
constants, but depended on the degree of variation in a single reconstruction parameter 
(the in-plane resolution) of the scans being analyzed. This implies that additional changes 
in the acquisition and reconstruction parameters could further reduce the number of 
reproducible and harmonizable HRFs. When scans acquired with different IPR values 
are to be analyzed, resampling the scans to a unified resolution can significantly improve 
the reproducibility of HRFs. Interpolation methods (CWS, HWS, BWS, WWS and 
B-spline) were found to be superior to ComBat harmonization alone in addressing the 
variations in HRFs attributed to differences in IPR, and the combination of an IM with 
ComBat fol-lowing NUIR could increase the number of reproducible HRFs in some 
scenarios. The application of our proposed framework aids the selection of data- and 
outcome-specific interpolation and harmonization methods, and is expected to improve 
the translation and generalizability of radiomics analyses.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, 
Figure S1: The scanned CCR Phantom, Figure S2: The percentage of concordant features 
following resampling compared to no resampling with linear trendlines, LightSpeed Pro 
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Pro 32 model, Table S1: Number of pair-wise concordant features with a CCC > 0.9 
before resampling, LightSpeed Pro 32 model, Table S2: Number of pair-wise concordant 
features with a CCC > 0.9 after ComBat, LightSpeed Pro 32 model, Table S3: Number 
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The effects of in-plane spatial resolution on CT-based radiomic features’ stability 

189

7a

Table S5: Summary of the number of concordant features before and after resampling, 
Discovery STE model, Table S6: Summary of the number of concordant features before 
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We would like to thank Orlhac and Buvat [1], for their commentary on our article [2]. 
Orlhac and Buvat present the opinion that we “misused” ComBat harmonization to 
assess radiomic features in a computed tomography (CT) phantom by evaluating the 
phantom as a whole. They stated that we must apply ComBat harmonization separately 
to each layer of the phantom, akin to restricting a radiomics study to either liver or 
tumour. However, the main aim of our work [2] was not to address a specific radiomics 
task, but to use CT phantom data to evaluate the robustness of 91 radiomics features to 
changes in voxel size either alone or with two harmonization methods – interpolation 
and ComBat.

The application of the ComBat method of Johnson [3] to radiomics, proposed by Fortin 
et al. [4], arose after its initial application to genomics. Johnson sought to harmonize 
data that were divided into “batches”, “samples”, and “genes”. ComBat “incorporates 
systematic batch biases common across genes in making adjustments, assuming that 
phenomena resulting in batch effects often affect many genes in similar ways (i.e. 
increased expression, higher variability, etc.)”[3]. In the application of ComBat to 
radiomics, we and Orlhac [5] are in agreement that the radiomic features are Johnson’s 
genes, and that the scans are Johnson’s batches. Thus, the difference comes down to 
the definition of the sample. Johnson proposed the definition of a sample as being, for 
example, a patient. By contrast, Orlhac and Buvat state “that all measurements grouped 
in the same batch are equally affected by the imaging protocol”[1] (emphasis added), and 
thus propose that the sample must be a specific texture, for example “liver or tumour” 
based on the assumption that various textures are affected differently. We believe that 
this is overly prescriptive. In our usage, the sample is the phantom, which is intended 
to represent a range of tissue types, because we sought to understand how acquisition 
differences affect each measure over a range of materials [2]. This is consistent with the 
use of Combat by Fortin et al. [4].

Consider a simple example – namely that of the first order mean. The phantom in 
question has 10 layers representing different tissues, including several layers that have 
a uniform single material. In Figure 1, we show a plot of the paired values of the mean 
for a single layer and for the whole phantom. By default, all CT scanners use, at a 
minimum, a two-point calibration of the Hounsfield units (HU), typically performed 
daily. Nevertheless, CT scans are subject to both stochastic noise arising from the 
x-radiation and electronic noise in the CT scan, and non-stochastic sources of error in 
the CT systems such as reconstruction artefacts. However, due to the calibration, the 
average HU values of a given material in the phantom will be nearly identical in any 
two scans regardless of pixel size, especially when averaged over large regions. Figure 1a 
shows the results for a single layer; they are not strongly correlated – nor should they be 
correlated if the layer represents a single material or a simple admixture of materials. By 
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contrast, in Figure 1b, we show the results for analysing all phantom layers. As expected, 
the results are highly correlated since the phantom spans a range of materials. In Figures 
2a and 2b, we show the Concordance Correlation Coefficient (CCC) [6] value for the 
grayscale mean pairwise across the seven scans CCR-2-001 to CCR-2-007 considered 
in our paper. Note that in analysing a single layer (Figure 2a), we see moderate to no 
correlation. This arises directly from the physics of imaging objects with limited material 
differences; the average HU should only vary by stochastic noise and non-stochastic 
errors. When we analyse all layers (Figure 2b), all scans show high correlation with each 
other, as expected. Of note, Orhlac and Buvat used ROIs that were smaller in volume 
than ours, which only serves to increase the stochastic noise, and leads to even more false 
correlations.

That said, the message of our paper was that ComBat harmonization is not a fix-all. Rather, 
we argued that one should first apply harmonization steps that directly address physical 
differences in the acquisition of the images. Fundamental imaging physics dictates that 

Figure 1: Pairwise plot of the first order mean values with the CCC for (a) a single layer of the phantom 
(ABS-040), (b) all layers of the phantom, for the scans CCR-2-001 and CCR-2-007.

Figure 2: The pairwise CCC values for the first order mean values across 7 scans for (a) a single layer of 
the phantom (ABS-040), (b) all the layers.
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differences such as voxel size, slice thickness, mAs (dose), and kV can profoundly impact 
the appearance of images. At least some of these factors, for example voxel size or slice 
thickness, can be readily harmonized through appropriate and direct image processing, 
such as resampling. In our paper, we demonstrate that sinc interpolation is superior to 
pixel replication (nearest neighbour) and other simple interpolation schemes, and that 
downsampling (harmonization to a coarser resolution) to a common spatial resolution is 
superior to upsampling. These have simple and obvious physical explanations. However, 
interpolation to a common pixel size is also not a fix-all. Most importantly, we showed 
that regardless of the method applied, a reproducibility analysis is required to select 
reproducible and harmonizable features. 

We have also repeated our analysis layer by layer as recommended by Orlhac and Buvat 
[1] using both parametric and non-parametric ComBat forms, and the results do not 
change the conclusions of our paper. As suggested, we re-analysed the same scans (CCR-
2-001 and CCR-2-007) using 16 cubic volumes of interest (2x2x2 cm3) per layer. In 
Table 1, we assess the reproducibility of radiomic features before and after ComBat 
harmonization for each layer separately using the cut-off (CCC>0.9). Indeed, the 
number of reproducible features before and after ComBat harmonization differ when 
analysed per layer (Table 1). These results reinforce our original message, that assessing 
the reproducibility of features with various harmonization methods for each radiomic 
task is essential. Orlhac and Buvat took the additional step of calculating the CCC for 
all of the layers after applying ComBat separately for each layer. This presumes a task 
for which tissue classification or segmentation is applied before ComBat harmonization. 
This is task dependent; for example, Verma et al. [7], considered analysis of grey matter 
and white matter both separately and jointly, but found no difference in performance.

Table 1. The number of reproducible radiomic features for the different phantom layers 
between scan CCR-2-001 and CCR-2-007.

Phantom layer Number (%) before 
ComBat harmonization

Number (%) after ComBat harmonization

Parametric Non-parametric

ABS-020
ABS-030
ABS-040
ABS-050

Wood
Rubber

Dense Cork
Acrylic
Cork
Resin

0 (0.0%)
0 (0.0%)
0 (0.0%)
3 (3.3%)

27 (29.7%)
2 (2.2%)
6 (6.6%)
6 (6.6%)
7 (7.7%)

22 (24.2%)

3 (3.3%)
1 (1.1%)
3 (3.3%)

14 (15.4%)
38 (41.2%)
36 (39.6%)
26 (28.6%)
32 (35.2%)
42 (46.2%)
44 (48.4%)

3 (3.3%)
0 (0.0%)
3 (3.3%)
9 (9.9%)

36 (39.6%)
31 (36.3%)
24 (26.4%)
32 (35.2%)
35 (38.5%)
41 (45.1%)
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Orlhac and Buvat also state that the definition of the design matrix of covariates affects 
the outcome of Combat [1]. We agree. The aim of the design matrix of the biologic 
covariates in ComBat is to preserve biologic information while harmonizing the features 
[3,8,9]. However, as we have stated [2], we performed this study to examine the impact 
of pixel interpolation on radiomic features in a phantom, and no biologic covariates 
were appropriate for our study. We clearly state in the discussion that anthropomorphic 
phantom scans provide some evidence into the reproducibility of features, but that they 
cannot completely represent features extracted from human images, and human or 
cadaveric reproducibility studies are encouraged when ethical.

In summary, we disagree with the statement of Orlhac and Buvat that we “misused” 
Combat [1]. First, their method of application to a specific material (or in the case of 
the phantom, a single layer) will not express the full impact of the underlying imaging 
physics, which we were trying to elicit in our study. Second, by choosing ROI sizes that 
are sensitive to stochastic noise, Orlhac and Buvat run the risk of overfitting image noise 
and producing false correlations. Third, Orlhac and Buvat suppose that all radiomic 
tasks require the same definition of the “sample” be used. For this, we fundamentally 
disagree; the choice of sample depends upon the task. We do agree with Orlhac and 
Buvat that the design matrix can affect the outcome of Combat. Finally, it is worth 
noting that as described in our paper, we used Pyradiomics version 2.1.2 which has 91 
features, and Orlhac used Pyradiomics version 3.0.0 which has 93 features; this accounts 
for the difference in features between our work and Orlhac [1]. 

Thus, the message of our study [2] remains unchanged: 1) image interpolation is a useful 
harmonization method to address variations in pixel spacing; 2) ComBat harmonization 
was of added value in almost all scenarios; 3) the effects of interpolation and ComBat 
on the reproducibility of radiomic features is dependent on the data being analysed; 4) 
neither interpolation nor Combat is a fix-all; and 5) regardless of the harmonization 
method applied, study data should be analysed to identify reproducible features and used 
to help interpret and generalize radiomic models developed with these features.
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Abstract

Handcrafted radiomic features (HRFs) are quantitative imaging features extracted from 
regions of interest on medical images, which can be correlated with clinical outcomes 
and biologic characteristics. While HRFs have been used to train predictive and 
prognostic models, their reproducibility has been reported to be affected by variations 
in scan acquisition and reconstruction parameters, even within the same imaging 
vendor. In this work, we evaluated the reproducibility of HRFs across the arterial and 
portal venous phases of contrast enhanced computed tomography images depicting 
hepatocellular carcinomas, as well as the potential of ComBat harmonization to correct 
for this difference. ComBat harmonization is a method based on Bayesian estimates 
that was developed for gene expression arrays, and has been investigated as a potential 
method for harmonizing HRFs. Our results show that the majority of HRFs are not 
reproducible between the arterial and portal venous imaging phases, yet a number of 
HRFs could be used interchangeably between those phases. Furthermore, ComBat 
harmonization increased the number of reproducible HRFs across both phases by 1%. 
Our results guide the pooling of arterial and venous phases from different patients in an 
effort to increase cohort size, as well as joint analysis of the phases.

Keywords
Hepatocellular carcinoma; CT radiomics; domain translation; reproducibility.
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Introduction

The recent decades witnessed vast advances in computational power, artificial in-
telligence, and medical imaging techniques [1], which provided a unique opportunity 
for transforming the abundant amounts of medical imaging into mineable quantitative 
data. The concept acquired much scientific attention recently, and a branch of medical 
imaging analysis -known as handcrafted radiomics- emerged as a result [2]. Handcrafted 
Radiomic features (HRFs) are quantitative features extracted with high throughput from 
medical imaging, with its varying modalities. The hypothesis is that medical images 
carry more data than can be seen by trained human eyes, and that these data can be 
decoded using the HRFs, i.e correlations between HRFs and underlying biology could 
potentially exist [3]. Since the introduction of the field, many studies reported on the 
potential of radiomic signatures to predict clinical endpoints, the majority of which 
were performed on com-puted tomography (CT) [4–7], magnetic resonance (MR) [8–
10], and positron emission tomography (PET) scans [11,12].

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, the fifth 
most common malignancy worldwide, and a leading cause of cancer-related mortality 
[13]. Different diagnostic approaches and treatment modalities are used clinically de-
pending on the characteristics of the patient and the progression of the disease [14,15]. 
Contrast-enhanced computed tomography (CE-CT) scans are considered one of the 
main diagnostic tools for HCC. CE-CT can be acquired at different times following the 
injection of the contrast agent to acquire arterial, venous or late phase scans. Each phase 
shows specific characteristics for HCC lesions. However, there is still a clinical need 
for reliable non-invasive tools that could aid diagnosing and devising individualized 
treatment plans for HCC patients. Several studies investigated and reported on the 
potential of HRFs to aid clinical decision making in HCC patients [16–19]. 

While numerous studies have reported on the potential of HRFs in aiding clinical 
decision making on HCC and other diseases, several hurdles hindering the clinical 
translation of radiomic signatures to clinical decision support systems have been identi-
fied. These hurdles include the reproducibility of HRFs in test-retest studies, their sen-
sitivity to variations in acquisition and reconstruction parameters of the scans, in-ter-
observer variability, and the need for big data [20–26]. However, the need for big data 
in radiomics analysis necessitates the exploration of methods for combining and com-
paring retrospective medical imaging databases.

A number of studies tried to address the issue of reproducibility of HRFs using ComBat 
harmonization [27–30]. ComBat harmonization is a method that was developed to 
remove the batch effects in gene expression arrays [31]. The studies that investigated the 
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application of ComBat in radiomics analyses reported on the improvement in performance 
metrics of developed radiomic signatures after the application of ComBat compared to 
before, and recommended the use of the method. Other studies that investigated the 
reproducibility of HRFs on phantom datasets acquired with different settings [32], or 
with a single parameter difference [33], and reported that the performance of ComBat is 
de-pendent on the data under study and recommended a framework to assess the repro-
ducibility of HRFs. Yet to date, no study reported on the agreement in HRFs across 
different phases or the potential of ComBat to remove the effects of different imaging 
phases from HRFs, which could allow the proper combination of phases in a single 
analysis, or the interchangeability of HRFs across phases to allow the use of different 
imaging scans per patient. Furthermore, no study performed a reproducibility analysis 
for HRFs following ComBat harmonization on patients’ scans acquired with a single 
parameter difference.

We hypothesize that the time of acquisition after the injection of the contrast agents 
adds another level of complexity to be accounted for in the radiomics analysis, as HRFs 
might be affected by the appearance of contrast, due to the variations in the distribution 
of the contrast within the lesions. As a proof of concept, we investigate the sensitivity 
of HRFs extracted from CE-CT scans depicting HCC acquired during the arterial 
and portal venous phases, when all other acquisition and reconstruction parameters 
were fixed. Furthermore, we investigate the potential of the ComBat harmonization for 
domain translation of the HRFs extracted from these scans. Ultimately, we aim to (i) 
guide the identification of HRFs that can be used interchangeably between arterial and 
venous phase scans, which could increase the number of scans that can be included in a 
CE-CT based radiomics study; and (ii) identify the features that can be used in studies 
analyzing both phases simultaneously to maximize the information extracted from ROIs

Materials and Methods

Patients and Imaging data
The imaging data were originally collected for the European multicenter clinical trial 
(SORAMIC) [34]. Imaging data for 424 patients diagnosed with HCC (using cy-to-
histological criteria, radiologic criteria, or a combination of both) were obtained for 
the SORAMIC trial, of which 338 scans were available for analysis in this study. Scans 
that contained artifacts were considered of poor quality (n=48). From the available 338 
patients with both arterial and portal venous scans available, patients with scans that had 
any difference in the acquisition or reconstruction parameters, or lacked segmentations 
re-viewed by an expert, were excluded. A total of 61 patients with 104 distinct lesions 
were finally included in this study (Figure 1). Scans included were acquired from 
different hospitals, 
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using different vendors and protocols. In total, 9 scanner models from 4 different 
imaging vendors, and a range of scanning parameters, were included, as shown in Table 
1. The imaging analysis was approved by the University of Magdeburg institutional 
review board (IRB00006099, EudraCT no 2009-012576-27), and informed consent 
was obtained from all included patients. All methods were carried out in accordance 
with the relevant guidelines and regulations [35].

Figure 1: A flowchart showing the patients selection process.
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Segmentation and HRFs extraction
The scans of a single patient were co-registered. The region of interest (ROI) was 
segmented on each scan while viewing both phases simultaneously and saved to both 
scans (Fig 2). The segmentations were performed using MIM software (MIM Software 
Inc., Cleveland, OH) by a medical doctor (Y.W) with 2 years of experience in image seg-
mentation, and revised by a radiologist (R.M.) with 15 years of experience in medical 
radiology.

HRFs were extracted from these ROIs using the software RadiomiX Discovery Toolbox 
(version, October 2019; https://www.radiomics.bio), which calculates HRFs compliant 
with the Imaging Biomarkers Standardization Initiative (IBSI) [36], in addition to others. 
Image intensities were binned with a binwidth of 25 Hounsfield Units (HUs) in order 
to reduce noise levels and to reduce texture matrix sizes, and therewith computation 
power, with no resampling or further preprocessing of the images. The description of the 
extracted HRFs was published previously [24].

Table 1: Acquisition and reconstruction parameters for the imaging dataset.

Manufacturer Scanner model X-Ray Tube 
Current (kV)

Exposure 
(mAs)

Convolution 
kernels

Slice 
thickness 
(mm)

Pixel spacing
(mm2)

TOSHIBA Aquilion 50 - 360 2-300 FC13 1-5 0.39x0.39 - 
0.98x0.98

Aquilion PRIME

Philips Brilliance 64 B

GE Discovery CT750 
HD 

STANDARD

Optima CT660

SIEMENS Sensation 16 B31f

SOMATOM 
Definition AS

SOMATOM 
Definition Flash

I30f , I40f

SOMATOM Force Br40d

Figure 2: An example of ROI segmented in (A) the arterial phase and (B) portal venous phase.



Reproducibility of CT-based Hepatocellular carcinoma radio-mic features 

211

8

ComBat Harmonization
ComBat method employs empirical Bayes to estimate the effects of assigned batches 
on the data being harmonized. For HRFs, ComBat assumes that a feature value can be 
approximated by the equation:

(1)

where α is the average value for HRF Yij for ROI j on scanner i; X is a design matrix 
of the biologic covariates that are known to affect the value of HRFs; β is the vector of 
regression coefficients corresponding to each biologic covariate; γi is the additive effect 
of scanner i on HRFs, δi is the multiplicative scanner effect, and εij is an error term, 
presupposed to be normally distributed with zero mean. Based on the values estimated, 
ComBat performs feature transformation as given by the formula:

(2)

where α and β are estimators of the parameters α and β, respectively; and γi and δi are 
the empirical Bayes estimates for the parameters γi and δi, respectively.

Statistical Analysis
All statistical analyses were performed using R language [37] on RStudio (V 3.6.3) 
[38]. To determine the reproducibility of HRFs, the concordance correlation coefficient 
(CCC) between the HRFs values across the two phases was calculated [39], using epiR 
package [40]. The CCC measures how concordant are the values of a given HRF and 
the rank of each data point relative to the rest in each batch. HRFs with CCC>0.9 were 
considered reproducible and could be interchangeably used between the arterial and 
venous phase CT scans. 

To assess the performance of ComBat, shape features and HRFs with (near) zero variance 
(HRFs that have the same value in 95% or more of the observations) were removed. 
The phase of the scan was assigned as the batch for ComBat harmonization. The CCC 
was calculated after ComBat application and the cutoff of CCC>0.9 was applied to 
select the concordant HRFs. The correlation of concordant features with volume was 
assessed using Pearson correlation. Features that had a correlation coefficient > 0.85 
were considered highly correlated. The analysis code used in this study can be found 
on: (https://github.com/AbdallaIbrahim/The-reproducibility-and-ComBatability-of-
Radiomic-features).
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Results

Patient characteristics
The patients included (n=61) had a median age of 66 years, mainly male (n=50, 81.9%), 
with cirrhotic livers (n=56, 91.8%), and a minority (n=11, 18.1%) had portal vein 
invasion. For more patient characteristics see Table 2.

Extracted HRFs
A total of 167 original HRFs were extracted from each of the available 104 ROIs. These 
HRFs are divided into 11 feature families: Fractal (n=3), Gray Level Co-occurence 
Matrix (GLCM; n= 26), Gray Level Distance Zone Matrix (GLDZM; n=16), Gray 
Level Run Length Matrix (GLRLM; n=15), Gray Level Size Zone Matrix (GLSZM, 
n=16), Intensity Histogram (IH; n=25), Local Intensity (LocInt, n=2), Neighbouring 
Gray Level De-pendence Matrix (NGLDM; n=17), Neighbouring Gray Tone Difference 
Matrix (NGTDM, n=5), Shape (n=23), and Statistics (Stats, n=19).

The effects of differences in imaging phase on the reproducibility of HRFs
Out of the 167 extracted HRFs, 42 (25%) were reproducible (had a CCC>0.9) across 
both phases (Figure 3a, shape features were not included to ease the comparison between 
figures). These HRFs were divided into shape (n=22), NGTDM (n=1), NGLDM (n=4), 

Table 2: Patient characteristics.

Characteristic N=61

Gender, male (%) 50 (81.9%)

Age, median (range) 66 (48-81)

Cirrhosis, yes (%) 56 (91.8%)

Child-Pugh grade

A
B

56 (91.8%)
5 (8.2%)

Diameter of largest lesion, in mm, median (range) 37 (10-220)

Portal vein invasion, yes (%) 11 (18.1%)

Extrahepatic disease yes (%) 7 (11.4%)

BCLC staging

A
B
C

22 (36.1%)
22 (36.1%)
17 (27.8%)

ECOG performance

0
1

58 (95.1%)
3 (4.9%)

* Barcelona Clinic Liver cancer (BCLC) staging
** European Cooperative Oncology Group (ECOG) performance
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IH (n=2), GLSZM (n=4), GLRLM (n=2) and GLDZM (n=7). The remaining HRFs 
had a CCC ranging from -0.07 and 0.85, with a median of 0.39.
Of the concordant 22 shape features, 8 features were highly correlated with volume 
(R>0.85), in addition to 1 feature from the NGLDM group (NGLDM_DN) and 2 
features from the GLRLM group (GLRLM_RLN and GLRLM_GLN). The remaining 
features (31, 73.8%) had a correlation coefficient <0.85.

Figure 3: (a) The CCC values for the different HRFs before ComBat harmonization; (b) The CCC 
values for the different HRFs after ComBat harmonization.
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The effects of ComBat on the reproducibility of HRFs
The application of ComBat harmonization to remove the batch effects attributed to the 
difference in time between contrast injection and scan acquisition resulted in a total 
of 44 (26.1%) reproducible HRFs, i.e 2 extra HRFs became concordant following the 
application of ComBat: Stats_energy and GLDZM_HILDE (Fig 3b). The remaining 
20 HRFs had a CCC>0.9 before and after ComBat harmonization, in addition to the 
shape features (n=22). The CCC of stats_energy increased from 0.8 to 0.95 following 
ComBat harmonization, and that of GLDZM_HILDE increased from 0.34 to 0.93.

The impact of ComBat on the CCC values had a wide range; 6 HRFs had an in-crement 
in CCC between 0.5 and 0.6; 42 HRFs had an increment in CCC between 0.1 and 
0.49; 87 HRFs had an increment between 0 and 0.09; and 33 HRFs had a decrement 
in CCC between -0.001 and -0.06. Following ComBat harmonization, the number 
of highly correlated features with volume increased by one feature (Stats_energy). The 
concordant features before domain translation maintained their correlation with the 
volume.

Discussion

In this study, we investigated the reproducibility of HCC CT-based HRFs across the 
arterial and portal venous imaging phases when all other scanning parameters were fixed, 
and whether ComBat harmonization improves the reproducibility of HRFs in such a 
scenario. Uniquely, this is the first manuscript to investigate the potential of ComBat to 
remove batch effects attributed to the differences in imaging phase, and on patient data 
with a single parameter difference between the compared/harmonized scans. Our results 
show that the majority of HRFs were significantly affected by the difference in imaging 
phases, and only a quarter of the total extracted number of HRFs were reproducible 
across both phases. Moreover, ComBat harmonization did not successfully harmonize 
the ma-jority of HRFs, even though the differences between the batches compared were 
limited to the variations in imaging phase.

HRFs are calculated using mathematical formulas applied on the array of values 
representing the medical image [41]. Changes in the value of units in this array are 
expected to have an impact on the value calculated by the same formula. Therefore, 
changes in the scanning parameters are expected to affect the reproducibility of different 
HRFs variably. Aside from HRFs that are not reproducible in test-retest studies, the 
sensitivity of the remaining HRFs to the imaging phase can be justified by the increased 
radio-opaqueness and the resulting perfusion patterns of contrast within the ROI, and 
thus, changes in the image array values based on which the HRFs are calculated. As 
expected, statistics and intensity histogram features, which are simple HRFs based on 
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a single voxel value (e.g. minimum or maximum intensity value) or the description of 
their distribution (e.g. mean or median intensity value), were found to be the most 
significantly affected families. On the other hand, also according to expectations, HRFs 
that do not depend on the intensity values, but the shape of the segmentation (shape 
features), were found to be reproducible across both phases, with the exception of the 
shape feature centroid distance, which is based on the distribution of intensity values 
around the geometric center of the ROI. The copying of segmentations and the inclusion 
of scans that were acquired identically in both phases allowed isolating the effects of 
differences imaging phases on HRFs. However, in scenarios where acquisition and/or 
reconstruction parameters, or the segmentation of the ROI changes, the reproducibility 
of HRFs is ex-pected to be further impacted. This is also in line with what reported 
in a study that investigated the reproducibility of liver parenchyma and tumors HRFs 
extracted from two contrast enhanced scans (one phase) taken within a 14 days interval 
[42]. Therefore, the reproducibility analysis based on the data under study should be an 
integral part of each radiomics study.

Our study sheds the light on the methodology of combining HRFs from different 
modalities, either for the purpose of combining different phases/modalities per patient, 
or the combination of different phases for different patients. For merging different 
modalities per patient, we show that a number of HRFs is reproducible across the 
phases. Therefore, models that try to combine different imaging phases per patient are 
recommended to define which reproducible (test-retest) HRFs vary across the available 
phases, and pre-select those for further analysis. Another implication of our findings is 
allowing the combination of different imaging phases per patient (e.g due to the lack 
of data), when only the reproducible HRFs across phases are extracted and compared 
between the different patients, regardless of the available imaging phase for each patient. 
This ap-proach can significantly increase the number of data points in retrospective 
radiomics studies.

The correlation of radiomic features with the volume of the ROI has been considered 
one of the major points to be assessed in radiomics analysis, since some of the features 
were reported previously to be surrogates of volume [43]. In our analysis, we observed 
that the majority of the features identified as concordant (or domain-translatable with 
ComBat) between the arterial and venous CT scans was considerable, most of which were 
shape features. However, the majority of features were not found to be highly correlated 
with volume, which means that these features can decode additional information about 
the ROIs being investigated.

The number of features that had a CCC value higher than 0.9 was slightly higher 
after the application of ComBat on the HRFs extracted from the arterial and portal 
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venous phases. ComBat successfully harmonized two additional HRFs compared to the 
number of concordant HRFs before domain translation. The majority of HRFs were not 
concordant across the phases even after the application of ComBat harmonization. The 
differences in ComBat performance per HRF (and feature families) are also expected, as 
in contrast to gene expression arrays, HRFs have different levels of complexity and are 
not expected to be uniformly affected by the batch defined for domain translation. The 
variant perfor-mance of ComBat on HRFs could be explained by the differences in the 
complexity of HRFs, compared to gene expression arrays [21].

The findings are in line with the reproducibility studies that assessed the performance of 
ComBat on phantom scans, which reported that ComBat harmonization does not suc-
cessfully harmonize all HRFs, and that its performance is dependent on the variations 
between the batches [32,33]. As a consequence, we recommend that the application 
of ComBat harmonization on HRFs follows a reproducibility analysis with reference 
values to assess its performance, as it is expected to vary with the variations in the dataset 
batches being harmonized [21]. Other deep learning based harmonization methods that 
have been recently investigated [44–47] might be more suitable for domain translation 
of images acquired in different phases. However, this is yet to be investigated.

While this study provides a proof of concept for the combination/replacement of 
different imaging phases, we speculate that the set of reproducible HRFs identified in this 
study is limited to HCC lesions extracted from scans acquired similarly to our dataset. 
Furthermore, the changes in reconstruction parameters (and sometimes acquisition pa-
rameters) between the two imaging phases in clinical routine significantly lowered the 
number of available scans to perform this analysis. Lastly, the reproducibility of the 
identified HRFs has to be investigated across different acquisition and reconstruction 
parameters. However, due to the lack of data, this was not performed. Nevertheless, 
this study serves as a guide for selecting and/or harmonizing the reproducible HRFs in 
future radiomic studies that utilize contrast enhanced imaging.

Conclusions

The majority of HRFs are significantly affected by changes in the imaging phase of the 
scan. Studies that investigate the potential of combining HRFs from different imaging 
phases or modalities must investigate the reproducibility and interoperability of the 
HRFs across the investigated phases for the lesions of interest. Furthermore, a number 
of HRFs can be interchangeably used between the arterial and portal venous phases, 
and these can be used to increase data points in retrospective imaging studies. ComBat 
harmonization increased the number of comparable CT based HRFs across the arterial 
and portal venous imaging phases for HCC lesions by 1% in our dataset.
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Abstract

Radiomics is an emerging field using the extraction of quantitative features from medical 
images for tissue characterization. While MRI-based radiomics is still at an early stage, it 
showed some promising results in studies focusing on breast cancer patients in improving 
diagnoses and therapy response assessment. Nevertheless, the use of radiomics raises a 
number of issues regarding feature quantification and robustness. Therefore, our study 
aim was to determine the robustness of radiomics features extracted by two commonly 
used radiomics software with respect to variability in manual breast tumor segmentation 
on MRI. A total of 129 histologically confirmed breast tumors were segmented manually 
in three dimensions on the first post-contrast T1-weighted MR exam by four observers: 
a dedicated breast radiologist, a resident, a Ph.D. candidate, and a medical student. 
Robust features were assessed using the intraclass correlation coefficient (ICC >0.9). The 
inter-observer variability was evaluated by the volumetric Dice Similarity Coefficient 
(DSC). The mean DSC for all tumors was 0.81 (range 0.19-0.96), indicating a good 
spatial overlap of the segmentations based on observers of varying expertise. In total, 
41.6% (552/1328) and 32.8% (273/833) of all RadiomiX and Pyradiomics features, 
respectively, were identified as robust and were independent of inter-observer manual 
segmentation variability. 
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Introduction

Radiomics is a technique that is used to extract large amounts of quantitative information 
from routine medical images that decode information about a region of interest (ROI). 
The majority of radiomics articles published concerns its application in the oncological 
field (1-4). Here, radiomics bears the advantage of non-invasively quantifying the underlying 
phenotype of the entire tumor for multiple lesions simultaneously, in contrast to tissue 
biopsy, which samples only a small part of a single (often heterogeneous) tumor (2, 5). 
The ability to characterize the tumor and to establish links to the underlying biology (6) 
and ultimately clinical outcomes, allows a more patient-tailored treatment (7), enabling 
‘precision medicine’ (8, 9). Recently, several articles have outlined the potential clinical 
applicability of radiomics in the field of breast cancer for different purposes, e.g. diagnosis 
(10, 11), tumor response prediction (12-14), prediction of molecular tumor subtype (15, 16), and 
prediction of axillary lymph node metastases (17, 18). 

Although these results are promising, issues regarding features robustness as well as 
the comparability of results, including inter-observer segmentation variability, need 
to be addressed (19-24).  In order to extract clinically useful information from medical 
images and to use features as clinical biomarkers, it is important that extracted features 
are reproducible, standardized and robust (25, 26). All consecutive steps in the radiomics 
workflow induce potential uncertainties regarding feature robustness (27, 28). Since there 
used to be no gold standard or guideline for extraction of image features for radiomics use, 
an initiative –Image Biomarker Standardization Initiative (IBSI)- was launched as an effort 
to standardize the entire radiomics extraction process and encourage feature robustness (29). 

Figure 1: Tumor segmentation variability for pairwise comparison of the different observers. 1) Dedicated 
breast radiologist, 2) Radiology resident, 3) Ph.D. candidate with a medical degree and 4) Medical student.
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ROI segmentation is an important step after image acquisition in the radiomics 
workflow, and one of the largest bottlenecks (30). Traditionally, the edges (2D) or surfaces 
(3D) of the ROI are segmented, thereby defining a region from which features will 
be extracted. Segmentation can be performed either manually, semi-automatically, or 
completely automatically. Both manual and semi-automatic segmentation are prone to 
inter- and intra-observer variabilities, with the degree of observer experience playing an 
important role (31-33). 

To the best of our knowledge, no articles have been published on the effect of manual 
inter-observer segmentation variability on MRI-based feature robustness in breast 
cancer patients. MRI is the most accurate modality for neoadjuvant systemic therapy 
response monitoring in breast cancer patients and as such much used in daily clinical 
practice (34-37). In this article, we investigate the robustness of MR radiomics features, 
extracted using two commonly used radiomics software, with respect to variations in 
manual tumor segmentation of breast cancer patients. 

Results

Study population 
After the application of inclusion and exclusion criteria, 102 patients were included in 
the final analysis. Twenty-one of these patients were diagnosed with multifocal breast 
cancer, bringing the total number of tumors analyzed in this study to 129. Of these, 94 
tumors (73%) were assigned ‘easy tumors’ and the remaining 35 tumors (27%) were 
assigned ‘challenging tumors’. The tumor volume between both groups was significant 
differently (5.3 vs 10.4 for ‘easy and challenging tumors’, respectively, p=0.03)

Segmentation variability
DSC distributions of all observer combinations are shown in Figure 1.  The mean DSC 
was 0.81 (range 0.19-0.96). The mean DSC was higher for the ‘easy tumors’ compared 
to the ‘challenging tumors’ (0.83 vs. 0.75, respectively, p<0.001). The mean DSC for 
each observer combination separately, for all tumors, ranged between 0.78 and 0.83, 
where the segmentations of the breast radiologist and the medical student showed the 
highest overlap. 

Pre-processing and feature extraction
The bin width for image discretization (calculated from the ROI greyscale range) was 
0.1. Discretization of the scans with bins 0.1 wide resulted in a mean of 61 grayscale 
values per image (range 27 -131). RadiomiX and Pyradiomics software extracted a total 
of 1328 and 833 features for each ROI, respectively. The extracted radiomics features 
included shape features, first-order statistical, intensity-histogram based, fractal, local 
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intensity, and texture matrix-based features from both unfiltered and filtered images 
(wavelet decompositions). The RadiomiX software extracts more feature groups 
compared to the Pyradiomics software, namely intensity histogram (IH), fractal, local 
intensity, and gray level dependency zone matrix (GLDZM) features. 

Radiomics feature robustness
The average ICC for all RadiomiX features was 0.86 (95% CI: 0.85-0.86) and for 
all Pyradiomics features 0.84 (95% CI: 0.83-0.84). Table 1 presents the average ICC 
value per feature group for both software. The local intensity features scored the highest 
average ICC value for the RadiomiX features, and the first-order statistical features score 
the highest average ICC for the Pyradiomics features.

The percentage of features that scored an ICC > 0.90, and thus were labeled by our 
pre-determined ICC cut-off as robust, was 41.6% (552/1328) for RadiomiX features 
and 32.8% (273/833) for Pyradiomics features. The unfiltered RadiomiX features (i.e., 
calculated on the unfiltered images) had an average ICC value of 0.79 (95% CI: 0.77 
– 0.81), of which 41.1% (69/168) were robust (Figure 2). The unfiltered Pyradiomics 
features had an average ICC value of 0.81 (95% CI: 0.79-0.83), of which 16.2% 
(17/105) were robust (Figure 3). The results of the wavelet feature groups for both 
software are presented in the supplementary material 1 and 2. 

The percentage of robust RadiomiX features for the ‘easy tumors’ and the ‘challenging 

Table 1: average ICC values per feature group of the unfiltered and wavelet RadiomiX and 
Pyradiomics features  .

 OncoRadiomiX Pyradiomics

Feature group (n) Mean ICC Range Mean ICC Range

Shape 0.79 0.57 – 0.93 0.80 0.69 – 0.92

Signal intensity
- First-order statistics
- IH

0.85
0.76

0.51 – 0.99
0.63 – 0.98

0.84
-

0.50 – 0.97
-

Fractal 0.81 0.79 – 0.83 - -

LocInt 0.95 0.93 – 0.96 - -

GLCM 0.76 0.49 – 0.88 0.80 0.71 – 0.88

GLRLM 0.79 0.56 – 0.96 0.81 0.63 – 0.95

GLSZM 0.80 0.55 – 0.98 0.84 0.58 – 0.97

GLDZM 0.76 0.50 – 0.92 - -

NGTDM 0.78 0.57 – 0.85 0.80 0.72 – 0.91

(N)GLDM 0.83 0.55 – 0.96 0.79 0.52 – 0.96

Wavelet 0.81 0.01  – 0.99 0.81 0.12 – 0.99
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tumors’ was 57.5% (763/1328) and 17.2% (228/1328), respectively. When only 
considering the 168 unfiltered features, 50.0% (84/168) of the ‘easy tumors’ were 
robust and 20.2% (34/168) of the ‘challenging tumors’ (supplementary material 3). 
The percentage of robust Pyradiomics features for the ‘easy tumors’ and the ‘challenging 
tumors’ was 35.7% (297/833) and 28.6% (238/833), respectively. When only 
considering the 105 unfiltered features, 23.8% (25/105) of the ‘easy tumors’ were robust 
and 14.3% (15/105) of the ‘challenging tumors’ (supplementary material 4). 

Discussion

In this study, our ultimate goal was to define a list of robust MRI radiomics features, 
independent of inter-observer segmentation variability, which could facilitate further 
breast MRI-based radiomics research. We successfully identified a subgroup of robust 
features for two commonly used radiomics software (41.6% of all RadiomiX features 
and 32.8% of all Pyradiomics features) in the presence of inter-observer segmentation 
variability (mean DSC of 0.81).  

Although MRI feature robustness has already been investigated for different tumor sites 
(e.g., cervical cancer (19) and glioblastoma (23)), the effect of inter-observer variability 
segmentation is most likely tumor-site specific (38). The feature groups enclosing the 
most robust features in previous investigations (shape (19) and, Intensity-histogram and 
GLCM (23)) are different from what we found to be the feature group enclosing the most 
robust features (local intensities and GLRLM). Most likely this could be explained that 
different tumor sites influence inter-observer variability. Although one must not forget 
that the differences in MRI sequences and, feature extraction software also influence 
this variability. Therefore, the MRI feature robustness cannot be generalized and must 
be examined for each specific tumor site, taking into account different MRI sequences 
and feature extraction software.

In addition, feature robustness for both radiomics software was identified for ‘easy tumors’ 
and ‘challenging tumors’. The number of robust features increased for ‘easy tumors’ and 
decreased for ‘challenging tumors’ in both software with significant differences between 
the mean DSC of the ‘easy’ and ‘challenging’ tumors (0.83 vs. 0.75, respectively, p < 
0.001). The fact that the ‘challenging tumors’ were more irregular, often with spiculae, 
causes more segmentation variability and therefore less robust features. Furthermore, 
the significant difference in the DSC between easy and challenging tumors could be 
attributed to the sensitivity of the metric to tumor volume. Easy tumors were on average 
significantly smaller than challenging ones; therefore, a minor difference in segmentation 
of a small tumor would have a more profound effect on the DSC, compared to those 
with larger volumes. 



MRI-based radiomics in breast cancer

231

9

Figure 2: ICC values of all unfiltered RadiomiX features with robust features (ICC > 0.90) shown in green.
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Figure 3: ICC values of all unfiltered Pyradiomics features with robust features (ICC > 0.90) shown in 
green.
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A detailed comparison to previous studies is limited to one similar study. Saha et al (39) 

investigated the impact of breast MRI segmentation variability on radiomics feature 
robustness, whereby features were extracted using in-house software. Their reported 
mean ICC of 0.85 for all features, using semi-automatic breast tumor segmentation, is 
comparable to the average ICC reported in this study. Although the segmentations were 
performed by four fellow breast radiology trainees, the DSC results they report (range: 
0.506-0.740) were much lower than the DSC results in our analysis (range: 0.783-
0.827). We consciously opted for people with different segmentation expertise to ensure 
observer-independence of the robust features, consequently widening the applicability. 
Approximately 10% of the tumor features in their article were found to be robust, 
compared to 41.1% in this study. Solely 20 textural features (GLCM) were comparable 
between the studies, whereby the ICC of these features showed a substantial difference 
(average 0.26, range 0.09 – 0.51). 

While we present the robust features for two different radiomics software, our aim is 
solely to facilitate future application of our findings. Both software have different pre-
processing steps, and different groups of features, and comparing the software is beyond 
the scope of this study. A global initiative to standardize radiomic features extraction 
using different radiomics software–Imaging Biomarkers Standardization Initiative 
(IBSI)- was started to address these issues in a more comprehensive fashion (40).

To overcome the problem of inter-observer variability with respect to ROI segmentation, 
promising steps towards (semi-)automatic segmentation have been taken in other tumor 
sites (41-45). However, little work has been published on fully automatic segmentation 
software for DCE-MRI of the breast (33, 46-48). Most software, including semi-automatic 
segmentation, still require manual input or adjustments (33, 46, 47), and would still be 
significantly slower than fully automated segmentation. Recent work on automatic MRI 
breast tissue segmentation reported encouraging results but was performed on only 
30 patients (48). The current lack of reliable, validated and widely available automatic 
segmentation software tools, and the need for manual input in semi-automated 
segmentation, demonstrate that manual segmentation remains important. The use of 
protocols or guidelines could encourage more reproducible manual segmentation results 
(49, 50). Furthermore, by providing precise instructions before the start of segmentation, 
inter-observer segmentation variability can be minimized. 

There are some limitations to this study. Although an ICC threshold value of 0.90 was 
chosen to determine feature robustness, the significance of this threshold for radiomics 
models for patients’ outcome prediction is yet to be investigated. The inclusion of more 
patients and observers will allow better generalization of the results and development 
of robust radiomics signatures. Furthermore, we identified feature robustness to 
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segmentation observer variability. However, due to the lack of data, we were not able 
to assess the robustness of radiomics features to differences in image acquisition, pre-
processing and feature extraction, which are other major challenges in radiomics analysis. 
These are the aim of our current studies. 

In conclusion, this study shows the intuitive notion that more complex, challenging 
tumors lead to less robust features. We identified radiomics features robust to inter-
observer variations across two different radiomics software, which could be used for 
preselection of radiomics features in future radiomics analysis concerning MRI-based 
breast radiomics. Ultimately, this study identified a list of robust radiomics features, 
which is independent of inter-observer segmentation variability in breast MRI for two 
commonly used software.

Material and Methods

Study population 
In this single-center retrospective study, we collected data on 138 patients with 
histologically confirmed invasive breast cancer, who were planned for receiving NST 
and underwent a pretreatment DCE-MRI between January 2011 and December 
2017 in Maastricht University Medical Center+. The institutional research board of 
the MUMC+ approved the study and waived the requirement for informed consent 
and the further need of guidelines. Exclusion criteria were: pathologically confirmed 
mastitis carcinomatosa, MR scan artifacts, or refusal of medical record usage by the 
patient. Furthermore, we excluded patients that underwent breast MRI exams with 
non-standard acquisition parameters, due to the use of a different MR scanner. All 
histologically confirmed breast tumors were included in the analysis. The complete 
process is summarized in the flowchart presented in Figure 4. 

Imaging data 
All images were acquired by two clinically interchangeable (i.e. provide qualitatively 
similar images) 1.5T MRI scanners (Philips Intera and Philips Ingenia), using a dynamic 
contrast-enhanced T1-weighted (DCE-T1W) sequence with similar acquisition 
protocols (Table 2). The patients were scanned in prone position using a 16-channel 
dedicated breast coil. The DCE-T1W images were obtained before and after intravenous 
injection of gadolinium-based contrast Gadobutrol (Gadovist (EU)) with a volume of 
15 cc and a flow rate of 2 ml/sec. One pre-contrast image and five post-contrast images 
were obtained for each patient. 
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Tumor segmentation
The T1W images acquired two minutes post-contrast administration were used for the 
3D tumor segmentation, as this is generally accepted to be the peak of enhancement 
of breast cancers (51). Tumors were independently segmented by four observers with 
different degrees of experience in breast MR imaging: a dedicated breast radiologist 
with 11 years of clinical breast MRI experience (ML), a radiology resident with one 
year of breast MRI clinical experience (TvN), a Ph.D. candidate with a medical degree 
but no breast MRI clinical experience (RG) and a medical student with no experience 
whatsoever (NV) (Figure 5). Segmentations were performed manually with Mirada 
RTx (v1.2.0.59, Mirada Medical, Oxford, UK). Agreements regarding segmentation 
procedures were made prior to tumor segmentation: (i) observers were allowed to 
adjust the image grayscale to optimize the visualization of the tumor; (ii) lymph nodes, 
pectoral muscle, and skin were excluded from segmentation; (iii) spiculae were only 
segmented if histologically confirmed. All observers had access to the radiology report 
during segmentation but were blinded to each other’s segmentations. 

Image pre-processing and feature extraction
Radiomics feature extraction is generally performed after image pre-processing. Pre-
processing is designed to increase data homogeneity, as well as to reduce image noise and 
computational requirements. Both radiomics software have the optionality to perform 
image normalization internally before feature extraction, which varies to an extent across 
the software. Pyradiomics centers the image around the mean and standard deviation 
based on all gray values of the image, while RadiomiX normalizes the images after removal 
of background data (non-breast voxels containing air). This transforms the voxel grayscale 
values to a more comparable range without changing image textures. Each image was discretized 
by resampling the grayscale values using a fixed bin width of 0.1 in order to reduce image noise 
and computational burden. The Pyradiomics community (52) recommends the number of 
bins to be in range of 16-128. We calculated the optimal bin width by extracting the 
greyscale ranges within all the ROIs and choosing a width that maximizes the number of 
ROIs that fall in the abovementioned range of bins. Finally, voxel size was standardized 
across the cohorts to isotropic 1.0 mm3 voxels by means of linear interpolation. For each 
manually segmented ROI, features were extracted using two commonly used radiomics 
software: RadiomiX Discovery Toolbox software (OncoRadiomics SA, Liège, Belgium) 
and the open-source Pyradiomics software, version 2.1.2 (52, 53). A mathematical description 
of all RadiomiX features can be found in supplementary material 5. The Pyradiomics 
feature description can be found online (54). Both software are IBSI compliant for most 
features, with a note being added in case of differences.  
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Table 2: Imaging parameters for the breast DCE T1W sequence for both scanners.

 Scanner 1
Philips Ingenia (n)

Scanner 2
Philips Intera (n)

Number of tumors 100 29

Field strength (T) 1.5 1.5

Slice thickness (mm) 1.0 1.0

Repetition time (msec) 7.5 (88), 7.6 (12) 7.4 (13), 7.5 (15), 7.6 (1)

Echo time (msec) 3.4 3.4

Flip angle (degrees) 10 10

Echo train length 89* (range 62-175) 80* (range 60 – 85)

Pixel spacing (mm) 0.792 (3), 0.852 (1), 0.922 (2),
0.952 (47), 0.952 (47)

0.852 (1), 0.942 (1), 0.972 (26),
0.992 (1)

Temporal resolution (sec) 95 98

*average.

Figure 4: Flowchart of the patient population in the study .
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Data analysis

Segmentation variability analysis
Features with (near) zero variance across all tumors, i.e. features that have the same 
value across ninety-five percent or more of the observations, were excluded from the 
analysis as they carry no discriminative value. To evaluate the variability of the remaining 
features introduced by manual segmentation, the volumetric Dice Similarity Coefficient 
(DSC) was calculated for all pairs of observers. The DSC is a metric that quantifies the 
agreement (or ‘overlap’) between two segmentations (55). A DSC of 1 indicates perfect 
spatial overlap of the segmentations, whereas 0 indicates no agreement, i.e. no spatial 
overlap of the segmentations, and a good overlap is considered with DSC > 0.7 as 
indicated by the literature (56). The DSC was calculated as:

where A is the set of voxels contained in the first contour, B is the set of voxels contained 
in the second contour, || indicates the cardinality of the sets, and ∩ is the intersection 
between the first and second sets (57). The DSC was calculated using Python (Version 
3.6.3150.1013).

Figure 5: Two invasive breast tumors in the left breast on the 2-minute post-contrast DCE-MRI with 
four single manual segmentations (colored margins: red, blue, green and yellow) fused. Upper: ‘challenging 
tumor’ with a mean DSC of 0.78 (range 0.71 - 0.82). Lower: ‘easy tumor’ with a mean DSC of 0.90 (range 
0.89 – 0.91).
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Radiomics feature robustness analysis
Feature robustness was assessed by evaluating the two-way random single measure intraclass 
correlation coefficient (ICC) (2,1). The two-way random model approach was chosen as 
it allows generalization of the results to any other rater with similar characteristics (57). 
The ICC ranges between 0 and 1, with values closer to 1 representing stronger feature 
robustness to differences in segmentations. We chose a pre-defined ICC cut-off of >0.9 
to select highly stable features that are insensitive to segmentation variability (57). Feature 
robustness was calculated for all RadiomiX and Pyradiomics features. The settings  
for image pre-processing (normalization, discretization, and resampling) in both radiomics 
software were checked for disparities. Calculations were performed in R studio (version 
1.1.456, Vienna, Austria) (58) using the IRR package version 0.84 (59). 

Easy- vs. challenging-to-segment tumors analysis
The differences in feature robustness and inter-observer tumor segmentation variability 
between ‘easy-to-segment’ and ‘challenging-to-segment’ tumors ones, hereinafter 
referred to as ‘easy tumors’ and ‘challenging tumors’, were assessed. This classification 
was unanimously determined by the dedicated breast radiologist (ML). ‘Easy tumors’ 
were defined as homogenous, round tumors with relatively sharp (albeit sometimes 
irregular) margins, without spiculae or areas of accompanying non-mass enhancement. 
Tumors not meeting these criteria were categorized as ‘challenging tumors’ (Figure 5). To 
compare DSC results between ‘easy’ and ‘challenging’ tumors we used the independent 
samples t-test, performed in R studio using the IRR package.
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Abstract

Background: Radiomic features extracted from breast MRI have potential for diagnostic, 
prognostic, and predictive purposes. However, before they can be used as biomarkers in 
clinical decision support systems, features need to be repeatable and reproducible.
Objective: Identify repeatable radiomics features within breast tissue on prospectively 
collected MRI exams through multiple test-retest measurements. 
Study type: Prospective
Population: 11 healthy female volunteers
Field strength/sequence: 1.5 T;MRI exams, comprising T2-weighted turbo spin-echo 
(T2W) sequence, native T1-weighted turbo gradient-echo (T1W) sequence, diffusion-
weighted imaging (DWI) sequence using b-values 0/150/800, and corresponding 
derived ADC maps.
Assessment: 18 MRI exams (three test-retest settings, repeated on two days) per healthy 
volunteer were examined on an identical scanner using a fixed clinical breast protocol. 
For each scan, 91 features were extracted from the 3D manually segmented right breast 
using Pyradiomics, before and after image pre-processing. Image pre-processing consisted 
of (i) bias field correction (BFC), (ii) z-score normalization with and without BFC, (iii) 
grayscale discretization using 32 and 64 bins with and without BFC, and (iv) z-score 
normalization + grayscale discretization using 32 and 64 bins with and without BFC.
Statistical tests: Features’ repeatability was assessed using concordance correlation 
coefficient(CCC) for each pair, i.e. each MRI was compared to each of the remaining 
17 MRI with a cut-off value of CCC>0.90.
Results: Images without pre-processing produced the highest number of repeatable 
features for both T1W sequence and ADC maps with 15/91 (16.5%) and 8/91 (8.8%) 
repeatable features, respectively. Pre-processed images produced between 4/91 (4.4%) 
and 14/91 (15.4%), and 6/91 (6.6%) and 7/91 (7.7%) repeatable features, respectively 
for T1W and ADC maps. Z-score normalization produced highest number of repeatable 
features, 26/91 (28.6%) in T2W sequences, in these images, no pre-processing produced 
11/91 (12.1%) repeatable features. 
Data conclusion: Radiomic features extracted from T1W, T2W sequences and ADC 
maps from breast MRI exams showed a varying number of repeatable features, depending 
on the sequence. Effects of different preprocessing procedures on repeatability of features 
were different for each sequence.

Keywords: Breast, MRI, Radiomics, Feature repeatability
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Introduction

The use of radiomics to answer diagnostic, predictive, and prognostic questions has 
increased in recent years, especially in the field of oncology (1). Radiomics refers to the 
extraction of large amounts of high-throughput quantitative data from medical images 
using mathematical algorithms that have the potential to noninvasively reveal more 
information about the region of interest than can be captured by visual inspection alone 
(2). The extracted quantitative data, termed radiomics features, capture information 
regarding the shape, intensity, and texture of the chosen region of interest (ROI), which 
is usually the lesion or the affected organ. Radiomics features are intended to serve 
as biomarkers for the development of clinical decision support systems to enhance 
personalized medicine (3). 

In breast cancer research, multiple radiomics studies have shown promising results for 
diagnostic, prognostic, and predictive purposes (4-6). Despite these seemingly promising 
results, translation to clinical practice is limited (7). A major translational bottleneck can 
be attributed to the often unknown effect that multiple steps in the radiomics workflow 
have on feature values, including image acquisition, reconstruction, and pre-processing 
(8-11). For a radiomics feature to serve as a biomarker, and to be used reliably in clinical 
decision support systems, it must fulfill the criteria repeatability and reproducibility 
(12). Repeatability can be defined as “the variability of the biomarker when repeated 
measurements are acquired on the same experimental unit under identical or nearly 
identical conditions” and reproducibility as to “variability in the biomarker measurements 
associated with using the imaging instrument in real-world clinical settings, which are 
subject to a variety of external factors that cannot all be tightly controlled” (12).  

Previous research has already identified several steps in the radiomics workflow that 
influence the reproducibility and repeatability of radiomics features. For example, image 
acquisition and reconstruction appear to cause variation in radiomic feature values in 
research performed on CT imaging (13, 14). Unlike the Hounsfield Units in CT, MRI does 
not have absolute signal intensities, potentially causing large differences between images, 
emphasizing the importance of inspecting and possibly adjusting image intensities 
before performing feature extraction (15). A test-retest MRI study of glioblastoma showed 
that both normalization and intensity quantization strategies affect radiomic feature 
repeatability and that the optimal strategy must be composed per feature group  (16). 
Further test-retest studies assessing feature repeatability have been performed in cervical 
(17), and prostate cancer (18, 19) and have shown consistent results, although all studies 
state that translation of results to other tumor sites has not been confirmed. In contrast, 
Peerlings et al. (20) showed that 9.2% (122/1322) of the features, extracted from apparent 
diffusion coefficient (ADC) maps in ovarian, liver, and colorectal cancer patients, were 
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repeatable among the different tumor sites. 

The assessment of radiomics feature repeatability by test-retest studies in breast MRI 
exams is currently lacking. A potential reason for this lack of data is the variance present 
in a standard clinical breast MRI protocol, which means that scanning parameters may 
differ between patients scanned with the same clinical protocol. Therefore, this study 
investigated the repeatability of radiomics feature values extracted from breast MRI 
exams using a fixed clinical breast protocol comprising of T2-weighted (T2W) images, 
T1-weighted (T1W) images, and diffusion-weighted images (DWI) and their derived 
ADC maps. 

Material and methods

Study population
The study was approved by the local medical ethical committee and written informed 
consent was given by all participants before participation. Eleven healthy female 
volunteers were recruited via college-wide advertisement. Participants were only included 
if they did not suffer from claustrophobia and met the requirements for admission to the 
MRI. Participants’ height, weight, and the phase of the menstrual cycle were noted. The 
menstrual cycle of the included healthy volunteers was not taken into account during 
the MRI exams

Imaging acquisition
All MRI exams were performed using a 16-channel breast coil on one single 1.5 Tesla 
scanner (Ingenia, Philips Healthcare, Best, The Netherlands) in the same research 
institution by the same technician. During imaging, the women lay in the prone 
position with both breasts in the openings of the breast coil and both arms above their 
head. The performed MRI protocol consisted of a T2-weighted turbo spin echo (T2W), 
native T1-weighted turbo gradient echo (T1W), and a single shot diffusion-weighted 
imaging (DWI) sequence using b-values of  0, 150, and 800. A single corresponding 
ADC-map was derived from all three DWI sequences. All volunteers underwent MRI 
exams using the identical breast protocol while maintaining as many parameters fixed 
as possible. The acquisition parameters for the different MRI sequences are shown in 
the supplementary material (Table S1). The shimbox, needed for the T1W and DWI 
sequences, was placed on the sternum by default. In case the technician judged the scan 
as clinically insufficient, the shimbox was placed on the breasts.

Study design
A test-retest study was designed to assess the repeatability of breast-MRI extracted 
radiomic features. Three separate test-retest strategies were performed twice at six to 
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ten day intervals. From here on, we will use ‘date 1’ to refer to the first scanning date 
of each healthy volunteer and ‘date 2’ to refer to the second scanning date. In each 
strategy, the complete breast MRI protocol was repeated three times with a two-minute 
pause between each protocol. In the first strategy (S1) the participant remained in 
the MRI scanner the entire time (including the pauses) without movement, for the 
acquisition of the three breast MRI protocols. The second strategy (S2) differed from 
S1 only by moving the table out of the scanner (with the participant still in the same 
position without movement) during the two-minute breaks. For the third strategy (S3) 
the participant got off the table during the two minutes breaks (Figure 1). In total, 18 
different MRI exams were acquired for each healthy volunteer with a total scanning time 
of approximately 198 minutes.

ROI segmentation
All images were visually checked for quality(including artifacts) by a dedicated breast 
radiologist with 14 years of experience (ML) before starting the analysis. The region of 
interest (ROI) was segmented by a medical researcher (RG) with four years of experience 
in breast MR imaging and validated by the same dedicated breast radiologist. It was 
chosen to 3D, manually segment the right breast. The segmentations were bounded 
by the sternum (medial side), the pectoral muscle (dorsal side), and the axilla (lateral 
side) in three dimensions using MIM software (version 7.1.3, Cleveland Ohio, Unites 
States). Segmentations were performed on all patients on the T2W sequences of all MRI 
exams as anatomical structures are best visible on this sequence. Subsequently, the T2W 
sequence was registered with the T1W sequence, and ADC map, using rigid alignments 
within MIM software, followed by segmentations transfer (Figure 2). 

Image pre-processing & feature extraction.
All MRI exams including ROI segmentations were converted to the nearly raw raster 
data (NRRD) file format using Python (version 3.7.3) for subsequent analysis. Before 
feature extraction, multiple pre-processing procedures were applied to the images to study 
their impact on feature repeatability. First, feature extraction was performed without 
any image pre-processing as a baseline measurement. Second, N4 bias field correction 
was applied to the images prior to feature extraction (21). Lastly, the bias field corrected 
images were further pre-processed using the built-in image z-score normalization by 
Pyradiomics software (version 2.2.0), with and without binning the voxel grayscale 
values using a fixed bin width of 32 and 64 (Pyradiomics suggested a bin width between 
16-128) (16, 22). Image pre-processing steps were performed in Python (version 3.7) 
using an in-house developed pipeline based on the computer vision packages, including 
OpenCV (version 4.1.0), SimpleITK (version 1.2.0), and NumPy (version 1.16.2). For 
each ROI, 91 original features were extracted using the Pyradiomics software (version 
3.0.1), which is mostly compliant with the Image Biomarker Standardization Initiative 
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(23). The extracted radiomics feature included first-order statistics features, gray-level co-
occurrence matrix features (GLCM), gray-level run length matrix features (GLRLM), 
gray-level size zone matrix features (GLSZM), neighboring gray tone difference matrix 
features (NGTDM), and gray-level dependence matrix features (GLDM). All texture 
features were extracted using default Pyradiomics settings. A detailed Pyradiomics 
feature description can be found online (24). 

Statistical analysis
To assess the repeatability of the extracted radiomic features for the various ROI’s in 
the multiple test-retest strategies, the concordance correlation coefficient (CCC) was 
calculated using the epiR package (Version 0.9-99) (REF) in R language (version 3.6.3) 
performed in R studio (version 1.2.1335, Vienna Austria) (25). Radiomics features 
extracted from a given MRI exam are compared to radiomic features extracted from 
the remaining MRI exams in a pairwise manner. The CCC was used to evaluate the 
agreement in radiomic feature values, taking into account both the rank and the value of 
the measurements (26). This metric has the advantage of robust results in small sample sizes 
(26). The CCC provides values between -1 and 1, with 0 representing no concordance, 1 
representing perfect concordance, and -1 perfect inverse concordance.  Features with a 
CCC of > 0.90 were defined as repeatable features, according to suggestions in literature 
(27). Feature concordance was assessed for each pre-processing procedure using the results 
of all test-retest strategies of both scanning dates as well as for the results collected on 
the separate scanning dates. To create an overview of repeatable features across all pairs 
for the different pre-processing procedures, the intersection of the repeatable features 
across pairs was noted. 

Results

Patients Demographics
The median age of the eleven healthy female volunteers was 28 years (interquartile 
range 25-30 years). Table 1 summarizes the healthy volunteers’ characteristics. Shimbox 
displacement occurred in 22.6% of the scanned sequences. 

Repeatable radiomic features
Due to a scanning error of all T1-weighted images and the ADC maps of one healthy 
volunteer during scanning date 1, all data of this participant was excluded from the 
analysis. In both the T1W and T2W sequences as in the ADC maps, in pairwise 
comparison, the number of concordant features varied per scanning date, per test-retest 
strategy and, per image pre-processing procedure (Figure 3, 4, and 5). Furthermore, for 
all pre-processing procedures, the lowest number of concordant features was observed 
between the MRI exams scanned on date 1 and the MRI exams scanned on date 2, seen 
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in the reddest field outside the black demarcations in Figures 3, 4 and 5.

T1W Sequence
Across all pairs, regardless of scanning date and test-retest strategy, the highest number 
of concordant features was seen in the images without pre-processing, resulting in 15/91 
(16.5%) concordant features. These 15 features consisted of 7 first-order, 1 GLCM, 2 
GLRLM, 2 GLSZM, and 2 GLDM and, 1 NGTDM feature(s) (Table 2). Applying 
grayscale discretization resulted in 13/91 (14.3%) and 14/91 (15.4%) concordant 
features for 32-bins and 64-bins, respectively. Compared to the images without pre-
processing, the texture features showed less concordant features. The z-score normalized 
images resulted in the lowest number of 4/91 (4.4%) concordant features. Applying 
gray-scale discretization after z-score normalization improved the number of concordant 
textural features to 7/91 (7.7%) and 8/91 (8.8%) for 32-bins and 64-bins, respectively. 
The loss in the number of concordant features for z-score normalized images (with and 
without grayscale discretization), when compared to the images without pre-processing, 
was mainly due to a loss in the number of concordant first-order features, which were 
6/91 (6.6%). 

For the majority of pre-processing strategies, the images collected during date 2 showed 
a higher number of concordant features (varying between 10/91 and 48/91 in images 
without BFC and between 11/91 and 35/91 in BFC images) compared to images 
collected during date 1 (varying between 4/91 and 32/91 in images without BFC and 
between 9/91 and 14/91 in BFC images) (Table 3, Figure 3), with these differences 
being greatest after applying grayscale discretization. Furthermore, for most image pre-
processing procedures, the addition of BFC resulted in less concordant features compared 
to the images without BFC (Table 3, Table S2). For the BFC images without further 
pre-processing and for the BFC images with grayscale discretization, it was mainly the 
first-order features that showed a loss of concordance compared to not performing BFC.

Figures S1-S6 present the pairwise CCC values in scatterplots for all features in the 
different pre-processing procedures, wherein the different colors represent the use of all 
pairwise comparisons or only the pairwise comparisons between MRI exams scanned 
on the same day.

T2W Sequence
Across all pairs, regardless of scanning date and test-retest strategy, the z-score normalized 
images showed the highest number of concordant features, 26/91 (28.6%), of which, 
3 first-order, 11 GLCM, 3 GLRLM, 0 GLSZM, 8 GLDM, and 1 NGTDM feature(s) 
(Table 4). Compared to the other pre-processing procedures, the difference in the 
number of concordant features was mainly in the concordant texture features, which 
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were almost non-concordant for the other pre-processing procedures. 

The images without pre-processing resulted in 11/91 (12.1%) concordant features 
across all pairs, of which more than half of these features were first-order features 
(Table 4). Applying grayscale discretization resulted in a further decrease of concordant 
features to 7/91 (7.7%) for both 32 and 64 bins. Applying grayscale discretization 
after z-score normalization resulted in a loss of almost all concordant textural features 
when compared to z-score normalized images alone. These images resulted in only 4/91 
(4.4%) concordant features for both 32 and 64 bins. Notably, the only concordant 
texture feature (gldm_SmallDependenceLowGrayLevelEmphasis) was not concordant 
after z-score normalization alone.

The addition of BFC resulted in different feature concordance when compared to the 
same image pre-processing procedures without BFC (Table 4, Table S3). The BFC 
images without further pre-processing, with 32-bin grayscale discretization and, with 
64-bin grayscale discretization resulted in 0/91 (0.0%), 2/91 (2.2%), and 1/91 (1.1%) 
concordant features, respectively. Despite the overall loss of concordant features, 2/91 
(2.2%) features were found to be concordant after the addition of BFC. The BFC 
z-score normalized images showed the same number of concordant features compared 
to the z-score normalized images without BFC, although some features improved in 
concordance, where others lost concordance. The application of grayscale discretization 
after z-score normalization on BFC images showed the same pattern in concordant features 
when compared to the images without BFC, namely, a loss of almost all concordant 
textural features (Table 4 and S3). These pre-processing procedures resulted in 6/91 
(6.6%) and 5/91 (5.5%) concordant features, for 32-bins and 64-bins, respectively. 
Furthermore, it is noteworthy that when looking at the pairwise concordance features 
for the different scan dates, BFC decreased the feature concordance for MRI exams 
scanned on date 1, while there was an increase in feature concordance for MRI exams 
scanned on date 2 (Figure 4, Table 3). 

Figures S7-S12 present the pairwise CCC values in scatterplots for all features in the 
different pre-processing procedures, wherein the different colors represented the use of 
all pairwise comparisons or only the pairwise comparisons between MRI exams scanned 
on the same day. 

ADC map
Across all pairs, regardless of scanning date and test-retest strategy, the number of 
concordant features for the images without pre-processing, with 32-bin grayscale 
discretization, and 64-bin grayscale discretization was 8/91 (8.8%), 7/91 (7.7%), and 
6 (6.6%), respectively (Table 5). In none of the pre-processing procedures, first-order 
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features appeared to be concordant. The number of concordant features was roughly the 
same for the BFC images with 8/91 (8.8%), 6/91 (6.6%), and 6/91 (6.6%) concordant 
features for images without further pre-processing, with 32-bin grayscale discretization, 
and 64-bin grayscale discretization, respectively (Table 5). Although compared to 
the images without BFC, some features improved in concordance, where others lost 
concordance (Table 5).

The number of concordant features differed between the images collected on the 
separated scanning dates, although these differences were minor compared to the T1W 
and T2W sequences (Figure 5, Table 3). The number of concordant features was 28/91 
(30.8%), 15/91 (16.5%) and 11/91 (12.1%) for date 1 and 22/91 (24.1%), 13/91 
(14.3%) and 11/91 (12.1%) for date 2, using the images without BFC. The number of 
concordant features was 9/91 (9.9%), 9/91 (9.9%) and 11/91 (12.1%) for date 1 and 
12/91 (13.2%), 12/91 (13.2%) and 11/91 (12.1%) for date 2, using the BFC images.

Figures S13-S15 present the pairwise CCC values in scatterplots for all features in the 
different pre-processing procedures, wherein the different colors represented the use of 
all pairwise comparisons or only the pairwise comparisons MRI exams scanned on the 
same day.

Discussion

In this test-retest study, repeatable radiomics features extracted from breast MRI exams 
from healthy volunteers were identified, using a fixed scanning protocol including T2-
weighted (T2W), unenhanced T1-weighted (T1W), and diffusion-weighted images 
with corresponding derived ADC maps. This study showed the effects of varying image 
pre-processing procedures on the radiomics feature repeatability. Across all pairs, the 
images without pre-processing produced the highest number of repeatable features for 
both the T1W sequence as well as the ADC maps. In the T2W images, applying z-score 
normalization produced the highest number of repeatable features.

The assessment of radiomics feature repeatability via test-retest studies in breast MRI 
exams is currently lacking. The three different MRI sequences examined in this study 
showed differences in feature repeatability. In addition, the effect of image pre-processing 
on feature repeatability was different for the two MRI sequences and ADC maps. Not 
applying image pre-processing produced the highest number of repeatable features 
in the T1W sequence and the ADC maps. Overall, applying grayscale discretization 
caused a loss of repeatable textural features in the T1W and T2W sequences, although 
some texture features became repeatable after grayscale discretization. It is notable 
that in general, the number of repeatable texture features was reduced after applying 
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grayscale discretization, although grayscale discretization is considered necessary for the 
extraction of texture features by both Pyradiomics and the IBSI guidelines (22). Given 
that MR images do not contain absolute signal values, MRI exams performed on the 
same scanner using an identical scan protocol could potentially eliminate the need for 
grayscale discretization. Furthermore, z-score normalized images showed the highest 
number of repeatable features in the T2W sequence, on the other hand, applying 
normalization decreased the number of repeatable features in the T1W sequence. Failure 
to improve the repeatability of features after z-score normalization was also found in the 
study by Schwier et al. (19), although, in contrast to our results, this was seen in the T2W 
sequence. They state that image normalization was used to homogenize images acquired 
from different scanners with different protocols. In our study, however, it was assumed 
that images scanned with the same protocol on the same scanner were already well 
comparable in terms of imaging parameters. In addition, the applied normalization uses 
the whole image for normalization and since the MRI quality decreases further from 
the coil (at the edges of the images), this reduction in quality can degrade the quality 
of the breast region (which is close to the coil) and with that the ROI comparability. 
The same principle could account for the use of BFC since for all sequences it either 
did not change the number of repeatable features or caused a loss of repeatable features 
compared to not using BFC. However, failure to improve the repeatability of functions 
after BFC may also be due to use of default settings for the N4 BFC; findings of Saint 
Martin et al. (28) showed that the default settings for the N4 BFC were not optimal for 
breast MRI exams.

By considering pairwise comparisons between scans taken on the same day, it was found 
that for all sequences, including all different preprocessing procedures, except for the T2W 
sequence and ADC maps without preprocessing, date 2 produced a higher number of 
repeatable features compared to date 1. One explanation for this may be that the healthy 
volunteers knew better what to expect on the 2nd scan date after going through the first 
scan date. In addition, in most cases, the number of repeatable features was higher for 
the scans taken on the same day compared to the number of repeatable features found 
from the data of both days, as expected. These differences may be explained by changing 
factors over time (e.g., system changes in the MRI scanner or biology of the healthy 
volunteer) that caused variation in the feature values. For example, the homogeneity 
of the MRI field, gradient systems, and coil affects the image quality(29). Furthermore, 
changes in the biology of the healthy volunteer, including the menstrual cycle and body 
temperature, are known to affect the MRI exams (30). These factors may impact clinical 
decision making and hence, radiomic features must be robust to these changes.

To date, MRI test-retest studies for the evaluation of repeatable and reproducible features, 
have been conducted through phantom research (15, 28, 31-33) and by the use of MRI exams 
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of healthy volunteers or cancer patients (17, 19, 20, 32, 34-36). None of these studies investigated 
feature repeatability and/or reproducibility in human breast MRI exams, and only one 
study investigated a breast phantom (28). The study of Saint Martin et al. (28) showed the 
necessity of image pre-processing dedicated to breast MRI exams before using features 
in further analysis. Phantom repeatability and reproducibility results seem to be overly 
optimistic as these overall appear to score higher than the test-retest studies performed 
within human data. For example, the study by Lee et al. (32) tested feature repeatability 
in T1W and T2W in both a phantom and MRI brain of healthy volunteers. The average 
ICC repeatability measures for the T1W and T2W images were higher for the phantom 
(0.963 and 0.959) compared to healthy volunteers (0.856 and 0.849). Furthermore, a 
recently published phantom study by Shur et al. (31) showed that 37/46 (80%) of the 
radiomic features were concordant (CCC > 0.9) in a test-retest study. By contrast, the 
test-retest study by Eck et al. (34) investigating feature repeatability in T2W brain MRI 
exams of fifteen healthy volunteers showed only 76/146 (52%) of good to excellent 
repeatable features (CCC ≥ 0.7). Considering only the excellent repeatable features (CCC 
> 0.85) in the above-mentioned article, the number of concordant features decreased to 
40/146 (27.4%), which is more comparable to the results found in this study. The same 
accounts for a test-retest study in brain MRI exams of glioblastoma patients, in which 
they identified 386/1043 (37.0%) repeatable features, although they used CCC > 0.8 as 
a cut-off value (36). A prostate MRI repeatability study by Schwier et al. (19) concluded 
that feature repeatability can vary greatly among the radiomic features and that the 
repeatability of the features is highly sensitive to image pre-processing procedures. 

In clinical (prospective) trials, variance in scanners and acquisition and reconstruction 
parameters between and even within patients is unsurmountable and will therefore 
affect the reproducibility of the features. Although exploring feature reproducibility 
was not the aim of this study, this data will be a starting point to investigate the 
reproducibility of breast MRI extracted radiomic features. Future studies can investigate 
feature reproducibility by changing the different acquisition parameters one by one 
while leaving the others fixed. Furthermore, the harmonization method called ComBat, 
which was originally developed to harmonize gene expression data (37), is increasingly 
being applied in radiomics studies to remove batch effects (8, 14, 38-40). However, caution 
should be exercised when applying this harmonization method, as it can only correct for 
one variable and, MRI data collected from multiple hospitals often contains a multitude 
of variables. In addition, future studies should focus on the discriminative power of a 
repeatable and reproducible feature, as a repeatable and reproducible feature does not 
necessarily imply that this feature is a predictive or prognostic radiomic feature.

Limitations
Firstly, the number of healthy volunteers included was quite limited, although the test-
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retest set-up allowed for 18 MRI exams per healthy volunteer, resulting in the analysis 
of a total of 198 MRI exams. Nevertheless, since this is an early study investigating this 
topic, we believe that these results are valuable and useful for the radiomics community. 
Secondly, the included T1W images were examined without adding a contrast agent, so 
these images cannot be fully compared to the dynamic T1W images normally examined 
in a clinical breast protocol. Future test-retest studies in breast cancer patients should 
show whether the repeatable features found in this study are also repeatable in dynamic 
T1W images. Thirdly, this study investigated only Pyradiomics features extracted from 
the original image. Future studies could focus more on other feature groups, among 
others, Gabor, gradient, or Laws. Fourthly, the region of interest contained only healthy 
tissue, further research in breast cancer patients will have to show whether the repeatable 
features found in healthy breast tissue can also be considered repeatable in breast tumor 
tissue. Lastly, it is important to keep in mind that there is a great variety of pre-processing 
procedures, which can influence feature values. In this study, we choose to use the open-
source software Pyradiomics to apply normalization and grayscale discretization to easily 
reproduce results. In the future, we aim to extend this study with other alternative 
normalization procedures and focus on feature repeatability. 

Conclusions

Varying numbers of repeatable breast MRI radiomic features extracted from healthy 
volunteers were found for each different test-retest strategy. Furthermore, the effects of 
image preprocessing procedures on the repeatability of radiomic features were found to 
be different depending on the MRI sequence. 
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Table 1: Patient characteristics.

healthy volunteers (n=11)

Age (years) (median; IQR) 28 (25 - 30)

Height (cm) (median; IQR) 167 (167 - 172)

Weight (kg) (median; IQR) 60 ( 58 - 63)

Week of the menstrual cycle* Date 1 / Date 2

Week 1 1 / 5

Week 2 1 / 1

Week 3 3 / 1

Week 4 4 / 2

Days between scan (mean; range) 7 (6 - 9)

* no measurement of the menstrual cycle possible for two healthy volunteers. 
Abbreviations: IQR, Interquartile range.

Table 2: Concordant features across all pairs for the T1-weighted MRI exams, with A: no 
pre-processing, B: 32-bin grayscale discretization, C: 64-bin grayscale discretization, D: 
Z-score normalization, E: Z-score normalization + 32-bin grayscale discretization, and F: 
Z-score normalization + 64-bin grayscale discretization.

A B C D E F

Number of  concordant features 15
(16.5%)

13
(14.3%)

14
(15.4%)

4
(4.4%)

7
(7.7%)

8
(8.8%)

firstorder_90Percentile x x x

firstorder_InterquartileRange x x x

firstorder_MeanAbsoluteDeviation x x x

firstorder_Mean x x x

firstorder_RobustMeanAbsoluteDeviation x x x

firstorder_RootMeanSquared x x x

firstorder_Skewness x x x x x x

glcm_JointAverage x

glrlm_GrayLevelNonUniformity x x x x x

glrlm_RunLengthNonUniformity x x x x x

glszm_GrayLevelNonUniformity x x x x

glszm_SizeZoneNonUniformity x

glszm_SmallAreaHighGrayLevelEmphasis x

gldm_DependenceNonUniformity x x x x x

gldm_GrayLevelNonUniformity x x x x x x

ngtdm_Busyness x x x x

ngtdm_Coarseness x x x x x



Test-retest data for the assessment of breast MRI radiomic feature repeatability

261

10

Table 3: Number of concordant features across all pairs for the entire dataset (All) and 
across all pairs from the separate scanning dates (Date 1 and Date 2) for all sequences with 
and without bias field correction, with A: no further pre-processing, B: 32-bin graysca-
le discretization, C: 64-bin grayscale discretization, D: Z-score normalization, E: Z-sco-
re normalization + 32-bin grayscale discretization, and F: Z-score normalization + 64-bin 
grayscale discretization.

Sequences Without BFC With BFC

All Date 1 Date 2 All Date 1 Date 2

T1W
A
B
C
D
E
F

15
13
14
4
7
8

32
19
18
4
10
9

40
45
48
10
35
38

8
10
8
4
10
8

13
11
12
9
13
14

11
30
31
12
34
35

T2W
A
B
C
D
E
F

11
7
7
26
4
4

31
9
9
35
7
7

16
12
11
44
7
6

0
2
1
26
6
5

1
3
3
39
11
11

60
22
23
37
17
18

ADC
A
B
C

8
7
6

28
15
11

22
13
11

8
6
6

9
9
11

12
12
11
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Table 4: Concordant features across all pairs for the T2-weighted MRI exams, with A: no 
pre-processing, B: 32-bin grayscale discretization, C: 64-bin grayscale discretization,  
D: Z-score normalization, E: Z-score normalization + 32-bin grayscale discretization, and 
F: Z-score normalization + 64-bin grayscale discretization.

A B C D E F

Number of  concordant features 11 
(12.1%)

7
(7.7%)

7
(7.7%)

26
(28.6%)

4 
(4.4%)

4 
(4.4%)

firstorder_10Percentile

firstorder_90Percentile

firstorder_InterquartileRange

firstorder_MeanAbsoluteDeviation

firstorder_Mean

firstorder_RobustMeanAbsoluteDeviation

firstorder_RootMeanSquared

glcm_JointAverage

glcm_Contrast

glcm_DifferenceAverage

glcm_DifferenceEntropy

glcm_DifferenceVariance

glcm_JointEntropy

glcm_Idm

glcm_Idmn

glcm_Id

glcm_Idn

glcm_InverseVariance

glcm_SumEntropy

glrlm_GrayLevelNonUniformity

glrlm_RunLengthNonUniformity

glrlm_RunPercentage

glrlm_RunVariance

gldm_DependenceEntropy

gldm_DependenceNonUniformity

gldm_DependenceNonUniformityNormalized

gldm_DependenceVariance

gldm_GrayLevelNonUniformity

gldm_LargeDependenceEmphasis

gldm_LargeDependenceHighGrayLevelEmphasis

gldm_SmallDependenceHighGrayLevelEmphasis

gldm_SmallDependenceLowGrayLevelEmphasis

ngtdm_Complexity

ngtdm_Contrast

  

x

x

x

x

x

x

x
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Table 5: Concordant features across all pairs for the ADC maps, with A: no pre-processing, 
B: 32-bin grayscale discretization, and C: 64-bin grayscale discretization, D: bias field cor-
rection, E: bias field correction + 32-bin grayscale discretization and, F: bias field correcti-
on + 64-bin grayscale discretization.

A B C D E F

Number of  concordant features 8
(8.8%)

7 
(7.7%

6 
(6.6%)

8 
(8.8%)

6 
(6.6%)

6 
(6.6%)

glcm_ClusterProminence

glcm_Correlation

glcm_Imc1

glcm_Imc2

glrlm_GrayLevelNonUniformity

glrlm_RunLengthNonUniformity

glszm_GrayLevelNonUniformity

glszm_SizeZoneNonUniformity

gldm_DependenceNonUniformity

ngtdm_Coarseness
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Figure 1: Visual representation of the three test-retest strategies.
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Figure 2: An axial slice of a 3D MRI exam of a healthy volunteer including right breast segmentation (red 
margin). A: ADC map, B: T2-weighted image, C: T1-weighted image.
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Abstract
The reproducibility of handcrafted radiomic features (HRFs) has been reported to be 
affected by variations in imaging parameters, which significantly affect the generalizability 
of developed signatures and translation to clinical practice. However, the collective 
effect of the variations in imaging parameters on the reproducibility of HRFs remains 
unclear, with no objective measure to assess it in the absence of reproducibility analysis. 
We assessed these effects of variations in a large number of scenarios, and developed 
the first quantitative score to assess the reproducibility of CT-based HRFs without the 
need for phantom or reproducibility studies. We further assessed the potential of image 
resampling and ComBat harmonization for removing these effects. Our findings suggest 
the need for radiomics-specific harmonization methods, and our developed score will 
serve as a guide to develop generalizable radiomic signatures and ease its incorpora-tion 
in clinical practice.

Keywords:
Radiomics reproducibility, Image interpolation, ComBat harmonization, CT radiomics
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Introduction

Recent decades witnessed a leap in the development of medical imaging and 
computational powers. Combined with the advancement in artificial intelligence and 
its inclusion in various activities, an opportunity for converting medical images into 
mineable quantitative data was created, and the field of radiomics emerged as a result 1.  
Handcrafted radiomics -‘the high throughput extraction of mineable quantitative 
features from medical imaging’ 2- gained exponential research momentum within the 
last decade. Radiomics offer an alternative for invasive procedures for clinical diagnosis, 
and could play a significant role in early detection and personalized management 3. Due 
to the heterogeneity of tumors 4,5, clinical approaches, such as tissue biopsies, might 
fail to characterize the entirety of the tumor, or require another trial 6. In contrast, 
the radiomics approach takes the regions of interest (ROIs) as input, which could 
allow better characterization of the lesion 7. Moreover, radiomic signatures could offer 
relatively fast, non-invasive, highly accurate, and cost-effective clinical biomarkers, 
which will ultimately improve personalized care. 

Handcrafted radiomic features (HRFs) can decode biological information from 
suspicious tissue under study 3 as potential clinical biomarkers. To date, many studies 
reported on the potential of HRFs to predict clinical endpoints, such as detection 
and diagnosis, response to treatment, overall survival and progression free survival. 
On the other hand, a number of limitations that hinder the clinical translation of the 
developed radiomic signatures have been identified. The mainstay of a biomarker is the 
ability to quantify it in a reproducible manner 8. As HRFs are calculated using data-
characterisation algorithms applied to the medical image, changes in scan acquisition 
and reconstruction parameters can significantly affect the reproducibility of HRFs. A 
fraction of HRFs has been reported to be sensitive to variations in the acquisition and 
reconstruction parameters of the scans, and the number of reproducible HRFs is usually 
dependent on the degree of variation in these parameters 9–13.

A number of studies investigated the potential of harmonization methods, such as 
ComBat, to remove variations attributed to differences in acquisition and reconstruction 
parameters 14–17. ComBat harmonization was originally developed to harmonize gene 
expression arrays 18, and has shown promising results in radiomics analyses in certain 
scenarios 14–17. However, there is no consensus on how or when to use ComBat 
harmonization in radiomics.

We previously published a framework to assess the reproducibility of radiomic features 7, 
with two follow up studies to validate it on a phantom dataset 9,11. A number of studies 
investigated the effects of different parameters individually on the reproducibility of 
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HRFs 19,20. However, the collective effect of variations in more than a single imaging 
parameter at a time is yet to be investigated. Furthermore, there is currently no 
quantitative measure to evaluate the reproducibility of HRFs in a given dataset. In 
this study, we investigated the effect of variations in imaging parameters on different 
imaging scenarios of phantom scans. We aimed to develop an objective metric to assess 
the reproducibility of HRFs across scans, which could be used as an indicator to assess 
the data under analysis, and further as a tool to ‘quality check’ radiomic studies. 

Methods

Imaging data
The publicly available Credence Cartridge Radiomics phantom dataset 21 was analysed 
in this study (available on: TCIA.org) 22. The dataset consists of 251 scans of a phantom 
that were acquired with different imaging vendors, models, and imaging parameters. 
The workflow applied in this study is shown in figure 1.

Figure 1. Explanatory diagram of the workflow applied.
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Volumes of interest and HRF extraction
Each layer of the phantom (in total 10 layers) was subdivided into 16 equal volumes 
of interest (VOI), sized 2x2x2 cm3. A total of 160 VOIs were segmented per scan, 
resulting in a total of 40160 analysed VOIs. HRFs were extracted using the open source 
PyRadiomics software 23. HRFs were extracted three different times: (i) directly from 
the original scans; (ii) from following resampling of all scans to the median resolution 
available in the dataset; (iii) from following resampling of all scans to the lowest resolution 
available in the dataset. Image intensities were binned in all of the three scenarios with a 
binwidth of 25 Hounsfield Units (HUs) to reduce noise levels and texture matrix sizes, 
and therewith the required computational power. No further image preprocessing was 
applied in (i)-(iii). Extracted HRFs included HU intensity features, and texture features 
that describe the spatial distribution of voxel intensities using five matrices: (i) grey-
level co-occurrence (GLCM); (ii) grey-level run-length (GLRLM); (iii) grey-level size-
zone (GLSZM); (iv) grey-level dependence (GLDM); and (v) neighborhood grey-tone 
difference (NGTDM) matrices. A more detailed description of PyRadiomics HRFs can 
be found online at https://pyradiomics.readthedocs.io/en/latest/features.html.

Exploratory analysis
All statistical analyses were performed using the R language 24 on RStudio (V 3.6.3) 25. 
We performed an initial exploratory analysis to assess the reproducibility of HRFs in 
the different scenarios mentioned above, as well as the use of ComBat harmonization 18 
and Cosine Windowed Sinc (CWS) image interpolation 26. The concordance correlation 
coefficient (CCC) was used to assess the reproducibility of HRFs across the different 
pairwise scenarios 27, using epiR package 28. The CCC measures the concordance in both 
value and rank in each of the pairwise scenarios. HRFs with CCC>0.9 were considered 
reproducible. Further details and results are presented in the supplementary materials. 
The reproducibility of HRFs was assessed in: (i) HRFs extracted from the original scans, 
before and after ComBat harmonization; (ii) HRFs extracted from scans resampled to 
the median voxel size (0.68x0.68x1.5 mm3), before and after ComBat harmonization; 
and (iii) HRFs extracted from scans resampled to the largest voxel size (0.98x0.98x3.75 
mm3), before and after ComBat harmonization.

Evaluation of the effects of variations in imaging parameters
To unravel the effects of variations in imaging parameters, we assessed the reproducibility 
of HRFs across each pair of the 251 scans, resulting in a total of  31375 pairs (scenarios) 
analysed. Each of the parameters: (i) Vendor; (ii) Model; (iii) Tube Current; (iv) Exposure; 
(v) Exposure time; (vi) Slice thickness; (vii) Pixel spacing; and (viii) Convolution kernel 
was given a numeric value between 0 and 1 depending on the scenario. For vendor and 
model, we assigned a binary value of 0 -in case the vendor/model is different across 
the pairs, and 1- in case the same vendor/model was used to acquire both scans in 
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the scenario. For the remaining parameters, a value between 0 and 1 was calculated 
by dividing the minimum value of a given parameter by the maximum value across 
the pairs being analysed. Convolution kernels were assigned a numeric value based on 
#### (Table 2). To assess the impact, as well as the predictive power, of the variations 
in imaging parameters on the percentage of reproducible HRFs in different scenarios, a 
random forest model 29 was applied.  

Quantitative score development
After training a random forest on the 31375 pairs, the parameters with the largest feature 
importance in the model were used to develop a quantitative score. The parameters 
for the random forest were….###.  The selected parameters were multiplied by their 
importance and divided by the total importance of the included parameters. The sum of 
weighted parameters was used as a quantitative score with values ranging between ~0.3 
and 1. The correlation of the developed score with the percentage of reproducible HRFs 
across the investigated scenarios was assessed using spearman correlation 30.

To develop a methodology for applying the developed score in radiomic studies, we used 
different thresholds (increments of 10% between 10% and 90%) of the percentage of 
reproducible features across the scenarios. The thresholds were used to create a binary 
label for the percentage of reproducible HRFs in a given scenario, where 0 indicated 
that the number of reproducible HRFs was below the threshold, and 1 indicated that 
the percentage was higher than the threshold. Another random forest model was then 
trained using the binary status of pairs as the outcome. The performance of the cut-off 
point score was assessed for each of the thresholds defined. 

To assess the robustness of the quantitative score, the analysis was repeated 100 times, 
and the scenarios (pairs) were split randomly into 70% training and 30% validation 
in each of the runs. Area under the receiver operator characteristics curve (AUC) 31, 
sensitivity and specificity 32 were used to assess the performance of the developed score in 
predicting whether the percentage of reproducible HRFs in a given scenario was above 
the selected threshold. 

To identify HRFs that were insensitive to variations in imaging parameters, the 
intersection of reproducible HRFs across all the scenarios was obtained. Similarly, HRFs 
that were harmonizable using ComBat harmonization 18 and/or CWS interpolation were 
identified by obtaining the intersection of HRFs that were found to be reproducible 
across all pairs following the application of a given harmonization method. 
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Results

The reproducibility of HRFs across pairs
The number (percentage) of reproducible HRFs extracted directly from the original 
images varied depending on the differences in imaging parameters across each of the 
analysed pairs, with a mean of 25.6 (28.1%) HRFs and a standard deviation of 14.4. 
The average numbers of reproducible HRFs following image resampling to the median 
and lowest resolutions were 29 (31.9%) +/- 16.6, and 26 (28.6%) +/- 15.5.  

Reproducible and Harmonizable HRFs
We identified four HRFs that were insensitive to all variations in the investigated 31375 
scenarios. These HRFs are: (i) original first order mean; (ii) original first order median; 
(iii) original first order root mean squared; and (iv) original first order total energy. 
One additional HRF (original first order energy) was found to be reproducible across 
all scenarios following image resampling both to the median and to the largest voxel 
size available using CWS interpolation. Similarly, one additional HRF was found to be 
reproducible across all scenarios following the application of ComBat harmonization 
on HRFs extracted from original scans (original first order 10 percentile), or from 
scans after resampling to the largest voxel size available (original first order energy). 
Two additional HRFs (original first order 10 percentile and original first order energy) 
were found to be reproducible across all pairs following the application of ComBat 
harmonization on HRFs extracted following resampling to the median voxel size 
available. The reproducibility and harmonizability (using ComBat or image resampling) 
of the remaining HRFs were dependent on the variations in imaging parameters across 
the pairs being analysed. On average, ComBat harmonization outperformed image 
resampling. The distributions of the percentages of reproducible features in all of the 
investigated scenarios are shown in Figure 2.
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Figure 2. Boxplot of the number of reproducible HRFs in different scenarios.

The effects of variations in imaging parameters
Differences in convolution kernels were found to be the most important factor 
affecting the reproducibility of HRFs across CT scans acquired differently. The second 
most important factor was found to be the differences in slice thickness, followed by 
differences in pixel spacing. The initial random forest was able to explain 82.5% of the 
variance in the percentage of reproducible HRFs in all of the scenarios investigated.

MPenn radiomics reproducibility score
Based on the random forest model, the difference in convolution kernel had the highest 
contribution to the score with 48% of the total score. The differences in slice thickness 
and pixel spacing corresponded to 33% and 19%, respectively. If the scans were acquired 
with the same (or similar) convolution kernel, the same slice thickness, and  pixel 
spacing (MPenn score >0.98), then the probability of having 90% or more of the HRFs 
reproducible is 0.97, with a 3% false alarm rate. In contrast, the probability of having 
10% or less reproducible HRFs across scans acquired with different convolution kernels 
and voxel sizes (MPenn score <0.75) is  0.74, and a 19% false alarm rate. The predictive 
power of our developed Maastricht-Pennsylvania Radiomics Reproducibility Score 
(MPenn radiomics reproducibility score) to determine the percentages (thresholds) of 
reproducible HRFs across scans acquired differently is reported in Table 1. 



MPenn radiomics reproducibility score

275

11

Table 1. Performance of the score threshold for the identification of different HRFs 
reproducibility thresholds.

Percentage RRFs Score AUC CI95% lower CI95% 
upper

Specificity Sensitivity False 
alarm 

Threshold 10 % 0.75 0.86 0.855 0.867 0.81 0.74 0.19

Threshold 20 % 0.77 0.85 0.842 0.851 0.76 0.77 0.24

Threshold 25 % 0.80 0.85 0.843 0.852 0.80 0.74 0.20

Threshold 30 % 0.83 0.86 0.851 0.86 0.84 0.73 0.16

Threshold 40 % 0.85 0.87 0.868 0.878 0.81 0.80 0.19

Threshold 50 % 0.88 0.90 0.892 0.904 0.83 0.85 0.17

Threshold 60 % 0.88 0.92 0.91 0.925 0.79 0.92 0.21

Threshold 70 % 0.94 0.96 0.952 0.966 0.94 0.89 0.06

Threshold 75 % 0.95 0.97 0.967 0.977 0.95 0.93 0.05

Threshold 80 % 0.96 0.98 0.971 0.983 0.95 0.95 0.05

Threshold 90 % 0.98 0.99 0.982 0.996 0.97 0.97 0.03

Robustness of MPenn radiomics reproducibility score
The confirmatory analysis of the robustness of the MPenn radiomics score was based 
on the experiment with 100 runs. The results showed a narrow distribution of values 
across the different metrics with similar performances in the training and validation sets. 
Figure 2 shows the distributions of AUC values on the training and validation datasets 
across the 100 runs. 
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Figure 3. (a) AUC distributions across 100-runs for MPenn radiomics reproducibility score in the 
training and validation datasets for each of the thresholds of percentage reproducible HRFs; (b) The 
sensitivity as a function of the score.
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Discussion

In this study, we aimed to investigate the effects of variations in CT imaging parameters 
on the reproducibility of HRFs on a phantom dataset. The scans (n=251) were acquired 
using a wide range of imaging parameters on different imaging vendors and models. 
The imaging parameters could be classified into three groups: (i) resolution parameters: 
convolution kernel, slice thickness and pixel spacing; (ii) noise parameters: mAs, 
exposure and exposure time; and (iii) hardware make: vendor and model. Our analysis 
showed that variations in resolution parameters had the most pronounced effects on 
the reproducibility of HRFs, with the differences in convolution kernel being the most 
significant contributor. Scans acquired with the same or similar convolution kernels 
showed the highest numbers of reproducible HRFs across scenarios. Slice thickness and 
pixel spacing were the other major contributors to the reproducibility of CT based 
HRFs. A previous study that investigated the reproducibility of HRFs on lung CT 
scans reconstructed using two different kernels reported that HRFs extracted from scans 
reconstructed with these two kernels should not be used interchangeably 13, which is in 
line with our findings. An important finding in this study is that differences in imaging 
vendor and model did not seem to affect the reproducibility of HRFs significantly, given 
that the remaining parameters were similar/homogenous. 

We further identified the HRFs that were reproducible regardless of the variations 
in imaging parameters in our dataset. These were strictly first order features that 
are descriptive of the HUs in the defined VOIs. This finding can be supported by 
the fact that HUs are standardized. Henceforth, HRFs such as mean or median 
HU value are expected to be reproducible across all imaging variations. Lu et al  
investigated the reproducibility of HRFs by reconstructing raw CT scans of 32 lung 
cancer patients using different imaging parameters, which ultimately resulted in 15 
different scenarios 12. The authors reported that 23/89 (25.8%) HRFs were found to 
be reproducible across their investigated scenarios, which is also in concordance 
with our finding that on average, ~26/91 (28.1%) of the HRFs were found to be 
reproducible across all investigated scenarios. In addition, we identified HRFs 
that can be harmonized with ComBat or CWS image resampling regardless of the 
variations in imaging parameters across the scans being analyzed. Both methods 
could harmonize 1% additional HRFs, and the combination of ComBat harmonization 
and resampling to median voxel size resulted in an additional 2% of the HRFs across 
all scenarios. The ability of both methods to harmonize the remaining HRFs was 
dependent on the variations in imaging parameters in the scenarios analysed. 
These findings are in line with our previous experiments, which also showed that 
the reproducibility and harmonizability of the majority of HRFs are dependent on 
the variations in imaging parameters 9–11,33.
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In addition, we have successfully developed a quantitative score (MPenn radiomics 
reproducibility score), which can estimate the percentages of reproducible HRFs 
across CT scans acquired differently. MPenn radiomics score is the first quantitative 
tool for assessing the reproducibility of CT based HRFs. It can serve as a screening 
tool for the inclusion of CT scans in a dataset/study. We performed an extra analysis 
to assess the robustness of our developed score. The results showed very narrow 
distributions of performance metric values that were consistent on the training and 
validation sets across the 100 random splits, which suggests that MPenn radiomics 
reproducibility score is robust. 

While the phantom dataset analysed included a large number of scans acquired 
with a wide variety of imaging vendors and parameters, a number of the CT imaging 
vendors used in some clinics were not available for this study. As such, and despite 
the large number of scenarios investigated, the generalizability of MPenn radiomics 
score to CT scans acquired with those imaging vendors/parameters has to be 
investigated. Furthermore, while the phantom used in this study was designed 
specifically for radiomics, it might not reflect the exact situation of real patients. 
Future studies that include cadaveric/3D-printed tissues scanned with a larger 
number of imaging vendors/parameters could better represent patient scans, and 
can further enhance the utility of the MPenn radiomics score.

In conclusion, convolution kernel and voxel size differences significantly affect the 
reproducibility of HRFs. Harmonization methods, such as image resampling and 
ComBat harmonization, can increase the number of reproducible HRFs with varying 
degrees, depending on the variations in the imaging parameter of the scans being 
analyzed. Most significantly, we developed the MPenn score, which can be used to 
predict the percentage of reproducible HRFs across CT scans acquired differently. 
Further research with a larger number of scans of cadaveric/3D-printed tissues 
can further improve the predictive power of the MPenn radiomics score. The 
development of HRFs that are insensitive to variations in imaging parameters is 
another potential solution for developing generalizable radiomic signatures.
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Abstract

Background and Objectives: Metastatic bone disease (MBD) is the most common form 
of metastases, most frequently deriving from prostate cancer. MBD is screened with bone 
scintigraphy(BS), which have high sensitivity but low specificity for the diagnosis of 
MBD, often requiring further investigations. Deep learning (DL) - a machine learning 
technique designed to mimic human neuronal interactions- has shown promise in the 
field of medical imaging analysis for different purposes, including segmentation and 
classification of lesions. In this study, we aim to develop a DL algorithm that can classify 
areas of increased uptake on bone scintigraphy scans, with automated reporting of the 
body region containing the lesion(s). 

Methods: We collected 2365 BS from three European medical centres. The model was 
trained and validated on 1203 and 164 BS scans respectively. Furthermore we evaluated 
its performance on an external testing set composed of 998 BS scans. We further aimed 
to enhance the explainability of our developed algorithm, using activation maps. We 
compared the performance of our algorithm to that of 6 nuclear medicine physicians.  

Results: The developed DL based algorithm is able to detect MBD on BSs, with high 
specificity and sensitivity (0.80 and 0.82 respectively on the external test set), in a shorter 
time compared to the nuclear medicine physicians (2.5 minutes for AI and 30 minutes 
for nuclear medicine physicians to classify 134 BSs), that could be applied to any BS 
regardless of the patient’s gender and history of cancer. Further prospective validation is 
required before the algorithm can be used in the clinic.

Keywords:
Deep learning, Metastatic Bone Disease, Bone scintigraphy, Activation maps
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Introduction

Metastatic bone disease (MBD) is the most common form of metastatic lesions (1,2). 
The incidence of bone metastasis varies depending on the cancer type (3), yet around 
80% of MBD arise from breast and prostate cancers (4). MBD, as the name implies, 
is due to the propensity of these tumours to metastasize to bones, and it results in 
eventually difficulty treating painful lesions. Henceforth, early diagnosis is necessary for 
individualized management that could significantly improve a patient’s quality of life (5). 

MBD is usually detected using radionuclide bone scintigraphy (or bone scans, BS). BS are 
nuclear medicine images, which are used frequently to evaluate the distribution of active 
bone formation, related to benign or malignant processes, in addition to physiological 
processes. BS scans are indicated in a spectrum of clinical scenarios including exploring 
unexplained symptoms, diagnosing a specific bone disease or trauma, and the metabolic 
assessment of patients prior to and during the treatment(6,7). BS combining whole-
body planar images and tomographic acquisition (SPECT – single photon emission 
computed tomography) on selected body parts are highly sensitive, as they detect 
metabolic changes earlier than conventional radiologic images, with lower sensitivity to 
lytic lesions. However, depending on the pattern it may lack the specificity to identify 
the underlying causes. Therefore, a SPECT/CT that correlates the findings of bone 
scintigraphy anatomically is often useful and leads to a more specific diagnosis of the 
changes noted (8), although MRI scans may also be additionally requested to clarify the 
diagnosis. Hence, a tool to improve the specificity of decisions based on BS, and reduce 
the need for further imaging is a relevant unmet clinical need.

Deep learning (DL) is a branch of machine learning (ML), and refers to data driven 
modelling techniques, which applies the principles of simplified neuron interactions 
(9). The application of imaging analysis techniques using artificial neurons on medical 
imaging started to draw attention decades ago (10), but it only became a major research 
focus recently due to the advancement in computational capacities and imaging 
techniques (11,12). The artificial neuron model is used as a foundation unit to create 
complex chains of interactions - DL layers. These layers are used to generate even more 
complex structures - DL architectures. The neural network (NN) training procedure is 
typically a cost-function minimization process. The cost function measures the error of 
predictions based on the ground truth labels (13), and the DL network learns how to 
solve a problem directly from existing data, and apply it to data it has never seen. These 
complex models contain the parameters (weights) for millions of neurons, which can 
be trained for the recognition of problem-related patterns in the data being analysed. 

Several studies investigated the potential of DL-based algorithms for analysing bone 
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scintigraphy scans (14–16). The majority of these studies applied DL-algorithms on BS 
scans of diagnosed (specific) cancer patients, which could limit the learning ability of 
the DL-algorithm to differentiate MBD from other bone diseases. To the best of our 
knowledge, no study combined both male and female patients, with no-cancer patients 
included.

In this study, we hypothesize that DL-based algorithms can learn the pattern of 
metastatic bone disease on bone scintigraphy scans, and differentiate it from other non-
metastatic bone diseases. We investigate the potential of a DL-based algorithm to detect 
MBD on BS not limited to those of cancer patients using weakly-supervised detection 
based on activation maps obtained using the gradient weighted class activation mapping 
(Grad-CAM) method (17,18). By doing so, we aim to develop a generalizable tool 
that can classify scans containing metastases and   detect MBD on BS, regardless of 
the gender and malignancy status of the patient. Moreover, extracting activation maps 
with the Grad-CAM method (19) and superimposing these maps to the original BD 
scans, we explored the explainability of the deep learning model’s predictions. This is 
very important to promote the application of these methods in the clinic and avoid 
the common misconception that sees DL models as “black boxes” without any real 
connection to clinical and imaging characteristics. As a complementary step, we 
explored the development of an automated label generator for the location of the 
detected metastatic foci.

Materials and Methods

Imaging data
The imaging data were retrospectively collected from different European centres: Aachen 
RWTH University Clinic (Aachen, Germany), Aalborg University Hospital (Aalborg, 
Denmark), and Namur University Hospital (Namur, Belgium). The electronic medical 
records of these hospitals were searched for patients who underwent BS between 2010 
and 2018. Patients for whom a definitive classification of the foci was available, mostly 
through further investigations, were further included. All images were acquired with 
anteroposterior (AP) and posteroanterior (PA) whole-body views. The imaging analysis 
was approved by the Aachen RWTH institutional review board (No. EK 260/19), 
and informed consent was obtained from all included patients. According to Danish 
National Legislation, the Danish Patient Safety Authority can waive informed consent 
for retrospective studies (approval   31-1521-110). All methods were carried out in 
accordance with the relevant guidelines and regulations (20). The study protocol was 
published on clinicaltrials.gov (NCT: NCT05110430)
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Image pre-processing
Every datapoint containing acquisition at two views (AP and PA) was resized to size 
(length = 256, height = 512) and the intensities were normalized to range [0-1] using 
the minimum and maximum intensity of each image. For all the data points, image 
acquisitions at both views are appended besides each other as shown in Figure 1. 

Figure 1. Example of pre-processed BS scans used as input for model training

Model architecture, training and testing
The training and validation datasets are composed of 1203 and 164 images respectively, 
coming from Centre A (Aachen) and B (Aalborg). The external test cohort is composed 
of 998 images collected at centre C (Namur). A full overview of the patients cohort 
division between the different datasets is reported in Table 1.
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Table 1. Division of the patients cohort between training, validation and external test

Training (n = 1203) Validation (n = 164) External test (n = 998)

Centre A (Achen) 235 with metastasis 
668 normal

58 with metastasis 
58 normal

-

Centre B (Albourg) 94 with metastasis 
206 normal

24 with metastasis 
24 normal

-

Centre C (Namur) - - 411 with metastasis 
587 normal

The model was trained on 329 images containing metastasis from Centre B (94) and 
A (235). At each epoch, the 874 images without any metastasis were shuffled and 
329 images were randomly selected to train the model with balanced labels. VGG16 
architecture with ImageNet pretrained weights (21) was trained with categorical cross 
entropy loss for 6 epochs with 200 steps per epoch. The model was trained with 3 
channel input. The pre-processed input was duplicated in all the channels. During the 
training, the images were augmented (22) by flipping along the vertical axis so that the 
views at AP and PA were randomly represented in the left or right in the images.  

The last Max Pooling layer in the VGG16 model was followed by a Global Average 
pooling layer, followed by a fully connected layer with 512 units and ReLu activation, 
which is followed by a classification layer containing 2 units with Softmax activation (23) 
as shown in Figure 2. The network weights are updated by using the Adam optimizer at 
an initial learning rate of 1e-4 (24). 

The trained model’s performance was evaluated on an external test dataset (n = 998).
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Figure 2. The architecture used in the study. Pre-processed BS  scans resized to 512 * 512 dimensions were 
provided as input to the network. The network outputs a probability score for presence and absence of 
metastasis on BS images.  X = block repetitions, Conv = Convolution kernel, ReLU = rectified linear unit, 
3x3 =the size of the 2D CNN kernels.

Automatic labeller for the location of metastasis in bone scintigraphy scans
A dataset of BS was provided by University of Aachen and contained the scans of 20 
patients, each containing both AP and PA views. All scans had annotations for six 
anatomical regions (head, thorax, pelvis, shoulders, upper limbs and lower limbs), as 
shown in Figure S1. The total of 40 scans was split into a training (32) and validation 
(8) set.

A ResNext50 architecture (25) with ImageNet pretrained weights (26) was trained 
with categorical cross-entropy loss. A 3 channel input was used where the first channel 
contained the scan while the two others contained a segmented region. The segmented 
region was artificially created from the region annotations that came with the dataset. An 
example of a scan with a segmented region is shown in Figure S2. The last convolutional 
layer in the ResNext50 model was followed by a Global Average pooling layer which 
reduces the image spatial resolution, followed by a fully connected layer with 512 units 
and ReLu activation, which is followed by a classification layer containing 6 units with 
Softmax activation. The network weights are updated by using the Adam optimizer 
at an initial learning rate of 1e-5. Due to the limited number of scans, the fact that 
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metastasis can occur in a lot of different locations and the fact that metastatic regions are 
much smaller than the region annotations, extensive augmentation was applied during 
training. Three different augmentations were applied during training:

1. Variation in the highlighted region of the scan (head, thorax, pelvis, shoulders, 
upper limbs and lower limbs)

2. Variation in the number of pixels highlighted
3. Variation in the shape of the highlighted region
4. Left/right flip of the scan

Quantitative metrics
The quantitative model performance in this study was assessed using ROC AUC, 
sensitivity and specificity of the classifier and confusion matrix (true positive rate (TPR), 
true negative rate (TNR), false negative rate (FNR) and false positive rate (FPR)). The 
model was evaluated according to the Checklist for AI in Medical Imaging (CLAIM) 
(27)and Standards for Reporting Diagnostic accuracy studies (STARD) (28).

In silico clinical trial
To better gauge the proposed DL model performance, we developed an application 
allowing the creation of a reference performance point by collecting nuclear medicine 
physician’s feedback based on the visual assessment of BS scans.   We have enrolled 6 
nuclear medicine physicians to measure their performance on the evaluation dataset 
of 134 BS images. This dataset was sampled from the Centre C images with an equal 
number of   negative and positive cases. In order to collect participant’s feedback, the 
application was displaying BS image, comment window and window filtering settings 
(Fig. 3).  In the end of the feedback assessment excel file was generated. For better visual 
comparison we have evaluated DL based AUC on the same dataset that has been used 
for visual assessment (134 BS images). We used bootstrapping with 100 iterations to 
generate DL based AUC distribution.
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Figure 3. Screenshot of the application feedback window.

Results

Model performance
The classification performances of the DL model were evaluated on the external test set 
coming from Centre C, in terms of Area under the Curve (AUC). The AUC gives the 
diagnostic ability of a binary classifier to discriminate between true and false values, in 
this case metastatic and non-metastatic bone disease. Fig. 4 (left) represents the ROC 
curve of the DL classification model, while Fig. 4 (right) is the confusion matrix, which 
reports the percentages of correct and incorrect classification for each class (metastatic 
and non-metastatic).

Figure 4.  ROC curve for the classification DL model (left) and Confusion matrix (right)
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The model achieved an AUC of 0.897, TPR of 82.2%, TNR of 80.45 %, FPR of 
19.55% and FNR of 17.79 % on the external test set.  The model achieved a CLAIM 
score of 64 % (27 out of 42 items) and STARD of 50 % (15 out of 30 items).

Explainability of trained model based on activation maps
During the testing phase of the trained model, for the scans that were predicted positive 
(i.e. metastatic disease), activation maps were extracted using the Grad-CAM method. 
The  method uses the gradients extracted corresponding to the class with highest predicted 
probability, flowing through the last convolutional layer, to produce the activation map.  
The map was then resized to the size of the input image and superimposed on the original 
BS scan, allowing visual inspection of activated zones on the image as shown in Figure 5 
and 6. The activated regions are compared with radiologist’s’ segmentation of metastatic 
spots for qualitative assessment of the explainability of the model’s predictions. 

Figure 5. BS images which are correctly classified along with their corresponding activation maps 
extracted using the GRAD-CAM method. Left) original BD scan, Right) Grad-CAM activation 
maps obtained from the DL model. Scan correctly classified with a probability of 0.78 (top) and 
0.99 (bottom)
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Figure. 6 BS images which are wrongly classified along with their corresponding activation maps extracted 
using the GRAD-CAM method. Letf ) original BD scan, Right) Grad-CAM activation maps obtained from 
the DL model. Scan incorrectly classified with a probability of 0.79 (top) and 0.63 (bottom)

Automatic labeller for the location of metastasis in bone scintigraphy 
scans
We developed an automatic labeller for the location of metastasis in BS, after the 
metastatic regions have been extracted. This objective is of great interest as it would 
allow automated completion of the clinical report with the location of metastasis. The 
approach proposed here automatically predicts the anatomic locations of metastasis in 
BS, given the scan and metastatic region as input. For this purpose, a model was built 
to distinguish between 6 different anatomic regions: head, thorax, pelvis, shoulders, 
upper limbs and lower limbs. At the end of training, a categorical accuracy of 0.92 was 
reached on the validation set. However, segmented spots for the scans in the validation 
set were also artificially created. The trained model was therefore tested on an external 
dataset (n = 462) of BS scans with indications of metastatic regions extracted from the 
activation maps of the MBD classifier. The resulting labels were qualitatively evaluated. 
A few examples are shown in Figures S3 and S4. 
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In silico clinical trial
The performance of nuclear medicine physicians based on the BS images was 
evaluated using AUC, where median performance of the nuclear medicine 
physician was 0.895 (IQR = 0.087) and median performance of DL based 
method was 0.95 (IQR = 0.024) (Fig. 7).

Figure. 7 Violin plots showing the distributions of AUC scores for DL based and manual (across 
physicians) metastases detection on BS (left); boxplots of the log of the time needed by DL 
algorithm and nuclear medicine physicians (right).

On average, nuclear medicine physicians spent 30 mins on average to classify all the 
134 scans. Given that the physicians had no access to clinical information about the 
patients, it takes on average 15 seconds to review one scan. In comparison, our developed 
algorithm takes 2 and half minutes to classify all the 134 scans, which is around 2 
seconds per patient scan.

Discussion

In this study, we investigated the potential of DL-based algorithms to detect MBD on 
BSs collected from different centres without limiting the study population to cancer 
patients. Our results show that DL-based algorithms have a great potential to be applied 
as clinical decision aid tools, which could minimize the time needed by a nuclear 
physician to assess BSs, and increase the diagnostic specificity of BSs. The application of 
the state-of-the-art classification techniques has yielded a performance similar to nuclear 
physicians with no background about the patients’ history, which was further endorsed 
by the results of the in silico clinical trial. 
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Besides classification and the extraction of activation maps, first exploratory steps were 
taken towards the development of a model to automatically label for the location of 
metastasis which can be extended further to automatic report generation in a clinical 
setting. This latter objective is of great interest as it would allow to automatically 
complete the clinical report file with the location of metastasis. For this purpose, a 
classification model, based on ResNet50 architecture, was built to distinguish between 6 
different anatomic regions: head, thorax, pelvis, shoulders, upper limbs and lower limbs. 
The ground truths to train the classifier consisted of images with indicated regions at 
aforementioned locations. In order to create a robust model from the available labels, 
augmentation techniques were applied during training. These include variation in 
the highlighted region of one scan, variation in the number of pixels highlighted and 
variation in the shape of the highlighted region (29). This preliminary work resulted 
in a DL model able to classify activated metastatic regions into 6 anatomical categories 
with performance of AUC 0.92. These preliminary results showed the potential of a 
DL-based classifier to automatically label the location of metastasis in bone scintigraphy 
scans which can be used to finalize clinical reports. However, further validation of this 
model is needed in the future.

Some studies previously investigated the potential of DL algorithms to classify lesions 
on BSs. A study investigated the potential of a DL algorithm trained on 139 patients 
to detect MBD on BSs of prostate cancer patients (16). The authors reported that the 
nuclear medicine physicians participating in the study achieved a higher sensitivity and 
specificity compared to the DL algorithm, though the differences were not statistically 
significant, and highlighted the possibility of involving DL in this clinical aspect. 
Another study also investigated the ability of DL algorithms to detect MBD in BS of 
prostate cancer patients (15). The authors trained the algorithm on 778 BS that could 
accurately (accuracy of 91.61% ± 2.46%) detect MBD for prostate cancer patients on 
BS. However, the authors did not report on the comparison with the performance of 
nuclear medicine physicians. Another study investigated the performance of two DL 
architectures for classifying BS of prostate cancer patients (30). The study included a 
large number of scans, and the authors reported that the best model achieved an overall 
accuracy of 0.9. Anand et al. reported on the performance of EXINI bone software, 
a classification tool for classifying BS of prostate cancer patients based on bone scan 
index, on simulated and patient scans (31). The authors reported that the software was 
more consistent in classifying BS compared to visual assessment. Uniquely, we trained 
our model on patients with and without a history of cancer. The use of our developed 
algorithm resulted in better classification results on the external test set compared to the 
median nuclear medicine physician performance, in a significantly shorter time. These 
results highlight the potential of such algorithms to become reliable clinical decision 
support tools that minimize the time a clinician needs to review bone scintigraphy 
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scans. Furthermore, our automatic labelling function and the Grad-CAM maps allow 
the nuclear physicians to rapidly check the spots based on which the classification was 
made.

While our study included a relatively large number of scans for training and externally 
testing the algorithm, several limitations of this study should be noted. Although 
explainability of model’s predictions were explored with qualitative assessment, this 
study lacks quantitative assessment of the activations due to the limited number of 
manual segmentations of metastasis (c.a. 25) on the external test dataset. Also, as shown 
in figure 7, the activated zones correspond to the injected spot in the hand, which 
shows model’s overfitting (32) on features that are not relevant to the metastatic spot to 
classify presence or absence of metastasis in images. Secondly, a prospective validation is 
required to properly assess the impact of using the algorithm on the current standard of 
care. Lastly, the physicians ‘performances in the in silico trial are only indicative, as they 
dealt with planar images only, without SPECT and CT, and without any clinical input. 
Obviously, this merely approximates the actual routine clinical setting, but it provides a 
fair indication of the potential added value of DL in this setting.

In conclusion, we developed a DL based algorithm that is able to detect MBD on BSs, 
with high specificity and sensitivity, that could be applied to any BS regardless of the 
patient’s gender and history of cancer. Further prospective validation is required before 
the algorithm can be used in the clinic. 

KEY POINTS 

QUESTION: The accurate and time sensitive classification of metastatic foci on bone 
scintigraphy scans
PERTINENT FINDINGS: The DL mode trained on retrospective data from three 
different centers is able to detect MBD on BSs, with high specificity and sensitivity 
(80 % and 82 % respectively), in a shorter time compared to the nuclear medicine 
physicians
IMPLICATIONS FOR PATIENT CARE: Our algorithm might become a reliable 
clinical decision support tool, shortening the time a clinician needs to review BS scans 
and, thanks to Grad-CAM maps, rapidly review the area of the scan on which the 
classification was made.
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Abstract

Detection and segmentation of abnormalities on medical images is highly important for 
patient management including diagnosis, radiotherapy, response evaluation, as well as 
for quantitative image research. 

We developed and validated a fully automated pipeline for the detection and volumetric 
segmentation of non-small cell lung cancer (NSCLC) using 1343 thoracic CT scans 
from 8 institutions. Along with quantitative performance detailed by image slice 
thickness, tumor size, and image interpretation difficulty, we have performed an “in 
silico” prospective clinical trial, which showed that the proposed method was faster 
and more reproducible compared to the experts. On average, radiologists & radiation 
oncologists preferred automatic segmentations in 56% of the cases.

Additionally, we evaluated the prognostic power of the automatic contours by applying 
RECIST criteria and measuring the tumor volumes. Segmentations by our method 
stratified patients into low and high survival groups with higher significance compared 
to those methods based on manual contours.
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Introduction

Lung cancer is the deadliest of all cancers afflicting both sexes, accounting for 18.4% 
of the total cancer deaths worldwide in 2018, almost equal to breast and colon cancers 
combined 1. Recent advances in treatment (immune checkpoint inhibitors, tyrosine 
kinase inhibitors) has significantly improved survival times for subgroups of patients. 
However, much work is still to be done in the field of lung cancer, especially in screening 
and early detection. Automated detection and segmentation would immediately impact 
the clinical workflow in radiotherapy, one of the most common treatment modalities 
for lung cancer 2. Radiotherapy uses medical imaging, especially computed tomography 
(CT), to obtain accurate tumor localization and electron densities for the purpose 
of treatment planning dose calculations 3. Accurate segmentations of the tumor and 
organs at risk are also essential as errors might lead to over- or under-irradiation of both 
the tumor and/or healthy tissue. It has been estimated that a 1mm shift of the tumor 
segmentation could affect the radiotherapeutic dose calculations by up to 15% 4,5. 

Equally important are the lesion and organ at risk segmentation process for radiation 
oncologists for radiotherapy planning, and the measurement of lesions within the 
Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 framework for radiologists, 
both laborious manual routines which impose an avoidable workload 6. Currently, such 
segmentations and appropriate RECIST measurements are performed manually or 
semi-automatically, consuming valuable time and resources, as well as being prone to 
inter- and intra-observer variability 7.

Another field to profit directly from automated detection and delineation of lesions is 
radiomics, the high-throughput mining of quantitative features from medical images 
and their subsequent correlation with clinical and/or biological endpoints 8,9. Radiomics 
has the potential to facilitate personalized medicine via diagnostic and predictive models 
based on phenotypic properties of the region of interest (ROI) being analyzed 10. ROI 
segmentation is currently considered to be one of the most time intensive and laborious 
steps within the entire radiomics workflow 11.

Taking into consideration these clinical and research needs for lung tumor segmentation, 
the implementation of automated detection software that is capable of fast and accurate 
delineation of NSCLC on thoracic CT scans is desirable, bordering on necessary. 
The applications and benefits include, but are not limited to: 1) CT-based automated 
screening of lung cancer; 2) Retrospective analysis of entire databases of patients who 
underwent thoracic CT in daily care for research purposes; 3) Consistent and reproducible 
segmentations, which are important in planning and monitoring (radio)therapy, and in 
research; 4) Follow-up of treated primary lung cancer; 5) Automation and acceleration 
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of certain aspects of the clinical radiotherapy workflow, making adaptive re-planning 
more feasible.

The recent advancement of machine learning techniques, combined with improvements 
in the quality and archiving of medical images, have fueled intensive research in the field 
of artificial intelligence (AI) for medical imaging analysis 12,13. Deep learning, a branch 
of AI based on artificial neural networks, has been successfully applied on images to 
solve problems such as classification or segmentation 14,15. Several attempts have been 
made to adapt these methods for medical imaging problems, including tumor detection 
and segmentation on CT images 16 - 19. A major hurdle in developing fully automated 
software that can be applied to any CT is the heterogeneity of the datasets, especially 
when acquired from multiple centers 20. CT scans with different acquisition- or 
reconstruction parameters present lung structures differently. The methods described in 
the current literature usually lack a CT pre-processing module in the pipeline, and the 
problem of data harmonization is left to be solved by a data driven approach, requiring 
large datasets representing all aspects of this inhomogeneity. 

The aim of this study was to develop a fully automated lung tumor detection and 3D 
volumetric segmentation pipeline that is capable of handling a large variety of CT 
acquisition and reconstruction parameters. Furthermore, our model was validated on 
3 external datasets and  a volumetric prognostic factor was compared to an existing 
clinical standard and to a similar published method. We have also performed an “in 
silico” prospective clinical trial to compare speed and reproducibility of our method to 
those of experts.

Results

Overall, 1328 thoracic volumetric CT scans with corresponding 3-dimensional tumor 
segmentations were used in order to train, test and validate a fully automated method for 
detection and segmentation of NSCLC in standard-of-care images. Datasets 1-7 were 
combined and randomly divided into training and testing datasets with 999 patients 
and 93 patients, respectively (see Table 1). Datasets 8-10, comprising 236 patients  were 
used for external validation of the method. A summary of the data is provided in Table 
1.

Tumor detection and segmentation
A 3-step workflow was developed and successfully implemented (Fig.1): (i) image 
pre-processing, a crucial step as datasets collected for this work were obtained from 
different scanners with various image acquisition and reconstruction protocols (Figure 
1 suppl.). The data inhomogeneity  necessitated the harmonization of CT data in order 
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to achieve comparable representations of the tumor region, reduce computational power 
requirements and image noise, and to optimize contrast; (ii) lung isolation, which allows 
the model to focus on the ROI and the input of the entire CT scans; (iii) automated 
tumor detection and segmentation, employing the convolutional neural network. 

The ability of the system to detect tumors was assessed slice-wise and yielded a median 
accuracy of 0.93 in the validation dataset, and a median area under the receiver 
operating characteristic curve (AUC) of 0.89. The median contouring performance in 
the validation dataset as assessed by the volumetric Dice similarity coefficient (DSC) was 
0.77, while the Jaccard index (JI) was 0.62. Further metrics, associated uncertainties, as 
well as test dataset results are reported in Table 2. 

Model performance was also separately assessed in regard to groupings of image slice-
thickness, tumor size, and expert-reported tumor complexity. The sub-cohorts were 
analyzed for significant differences in model performance, with the results reported in 
Table 3. As some of the tumors had two or more unconnected components (Satellite 
lesions, or edges of the tumor), the Hausdorff metric can yield unreliable distances 
when the distance between different volume fragments are calculated. Therefore, the 
IQR for H95th was not provided. Histograms showing the distributions of detection 
and segmentation results are provided in the supplementary materials (Fig.2 suppl. and 
Fig.3 suppl.).

Boxplots showing DSC distributions in the sub cohorts tumor size and tumor 
complexity for both test and validation datasets are shown in Figure 2. There is a clear 
trend toward better performance and less variability for larger and less complex tumors.  
More comparisons for differing slice-thickness groups, complexity classes, and tumor 
sizes performed on the validation dataset are provided in the supplementary materials 
(Fig. 4-6 suppl.).

Examples of the automatically generated segmentations (from the validation set) in 
comparison to contours segmented by experts are shown in Figure 3. 
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Table 2. Overview of quantitative model performance. IQR = Interquartile range, DSC = Dice similarity 
coefficient, Ji = Jaccard index, H95th = 95th percentile Hausdorff distance. 

Data, # of 
patients

Detection performance Segmentation performance

Accuracy 
(IQR)

Slicewise 
AUC (CI)

 Specificity Sensitivity DSC (IQR) Ji (IQR) H95th, 
mm

Test,  
93

0.94 (0.08) 0.89  
(0.89- 0.90)

0.89 0.90 0.77 
(0.24)

0.63 
(0.32)

6

Validation,  
236

0.93 (0.08) 0.89 
(0.89- 0.90)

0.92 0.86 0.77 
(0.23)

0.62 
(0.29)

10

Table 3. Overview of quantitative model performance with regard to various factors

Factors Test Validation

DSC (IQR) Significance DSC (IQR) Significance

Slice thickness, 
[mm] 

0-2.5 0.76 (0.24) - ns ns 0.75 (0.23) - ns ns

2.5-5 0.76 (0.28) ns - 0.76 (0.21) * -

>5 0.80 (0.19) - ns 0.82 (0.20) - ns

Complexity label  
(need PET)

0 0.83 (0.21) **** - - 0.81 (0.15) **** - -

1 0.76 (0.26) - - 0.76 (0.22) - -

Tumor size, [ml]

<20 0.73 (0.28) - ns ns 0.72 (0.23) - * ****

20-150 0.79 (0.20) ns - 0.76 (0.21) ** -

>150 0.88 (0.12) - ns 0.83 (0.15) - ****

ns (non significant): 5.00e-02 < p <= 1.00e+00 / *: 1.00e-02 < p <= 5.00e-02 / **: 1.00e-03 < 
p <= 1.00e-02 / ***: 1.00e-04 < p <= 1.00e-03 / ****: p <= 1.00e-04

Figure 1. Graphic representation of the major steps in the proposed workflow
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Figure 2. Distributions of DSC performance in sub cohorts grouped based on tumor size and complexity 
for a) the test dataset and b) the validation dataset. 

Figure 3. Automatically generated tumour segmentations are shown as red lines while manual segmentations 
are shown in blue.
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Comparison to a published method
A previously published external segmentation model 19 was evaluated on dataset 8 and 
compared to our model. The performance of the published model was evaluated using 
two different inputs: (i) as described in the original article (using patches of 256x256 
pixels centered on the tumor); (ii) using the whole slice. For that dataset our method 
achieved a DSC of 0.88 (IQR = 0.12), whereas the published method achieved a DSC 
of 0.83 (IQR=0.16) when the cropped tumor regions were used and a DSC of 0.09 
(IQR=0.19) in the fully automated configuration (no pre-cropping). Figures for DSC, 
Ji and H95th are provided in the supplementary materials (Fig. 7 suppl.).

Prognostic power of automatic segmentations
Datasets 1 and 6 were used to compare the prognostic power of measurements extracted 
from automatically generated and manual contours, as they had available survival data. 
We calculated the RECIST score and the tumor volume for both the expert and the 
automatic segmentations, and found that for both metrics the automatically generated 
segmentations have more prognostic power. Statistical differences in the probability 
of survival for two groups separated by the median values of these measurements for 
automated and manual segmentations are reported in Table 4. Kaplan-Meier curves for 
each method can be found in the supplementary materials (Figures 8, 9 suppl.).

Table 4. Statistical difference between survival groups separated by the median values of RECIST and 
tumor volume.

Data,  
(# of patients)

 RECIST manual 
segmentation 
(p-value)

RECIST automatic 
segmentation 
(p-value)

Tumor volume manual 
segmentation (p-value)

Tumor volume 
automatic segmentation 
(p-value)

1, 419 0.00048  < 0.0001 0.00089  < 0.0001

6, 137 0.0038 0.0031 0.031 0.013

In Silico clinical trial

A registered “in silico” clinical trial was performed to assess the following endpoints: 1) 
the time needed for the processes of manual and automated segmentation; 2) inter and 
intra-observer variability; 3) preference of experts for manual or automatically generated 
segmentations. 

For the first and second endpoints, seven medical imaging specialists experienced in 
NSCLC contouring were asked to contour the tumors of 25 patients from dataset 3 
while being timed. Our automated method was significantly faster than the fastest 
participant (p<0.0001). The mean time for the automated method was 2.77 sec/patient 
(SD = 0.44), whereas the mean time for manual segmentation was 172.19 sec/patient 
(SD = 158.98) (Fig. 4a). 
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The mean DSC for intra-observer variability among all experts was 0.86 (IQR=0.13) 
whereas automated segmentations were 100% reproducible. Individual intra-observer 
variability scores are reported in figure 4b and the JI and H95th are reported in the 
supplementary materials (Fig. 10 a, b suppl.). The mean DSC for inter-observer 
variability was 0.81 (IQR=0.24) (see Fig. 11 suppl.). 

The results for assessment of the variability between expert clinicians and the proposed 
automatic segmentation method achieved on the validation dataset 8 are presented in 
Figure 5. Our method achieved an average DSC of 0.82 (IQR = 0.14), whereas the 
average DSC of experts inter-variability was 0.83 (IQR = 0.12).

For the third endpoint, we had 40 participants from 4 different backgrounds: 4 
health/medicine master students, 17 computer scientists, 12 medical doctors working 
in the field of medical imaging, and 7 medical specialists (radiologists or radiation 
oncologists). In order to quantitatively evaluate the qualitative preferences of experts 
regarding automated vs manual contours, we developed a software tool which allowed 
experts to visually compare the segmentations and choose their preference (https://www.
predictcancer.ai/Main.php?page=nsclc-clinical-trial).

On average, the participants preferred the automatic segmentation above the expert’s 
contour in 55% (IQR=12%) of the cases (Fig. 6a). Among the groups the qualitative 
preference scores were as follows: students = 51% (IQR=4%) computer scientists = 
52% (IQR=14%), medical doctors = 56% (IQR =12%) and radiologists & radiation 
oncologists = 59 % (IQR =13%) (Fig. 6b).

Figure 4. a) Distribution of contouring time for participants and the automated method; b) Volumetric 
dice similarity coefficient across comparison pairs. Dr1, Dr2, Dr3, Dr4, Dr5, Dr6, Dr7 - represent contours 
made by the medical doctors, DL -represents automatically generated contours.
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Figure 5. Comparison of volumetric dice similarity coefficient across comparison pairs. DR1, DR2, DR3, 
DR4, DR5 - represent contours made by the doctors (expert clinicians), DL -represents automatically 
generated contours.

Figure 6. Qualitative preference score: a) distribution of the scores for all participants, b) grouped scores

Discussion

We presented a deep learning-based approach that is able to achieve state-of-the-art 
detection and 3D volumetric segmentation of NSCLC on CT scans. Although several 
attempts to develop lung cancer CT detection and segmentation methods have been 
previously made, our work is novel compared to published solutions, especially in its 
external validation and ability to work on full thoracic CT scans without further input 
needed by a human operator. To improve detection and segmentation performance, we 
introduced several novel steps to the automatic segmentation pipeline: 1) a harmonization 
routine for the pre-processing of CT scans in order to more comprehensively unify 
patterns on the images for the models to learn from; 2) a robust computer vision based 
method to isolate the lung area, allowing the subsequent deep learning step to focus 
on the region of interest; 3) a dynamically changing loss function for the training 
procedure, allowing us to control and modify the quality of produced segmentations; 
4) CTs of lung abnormalities other than NSCLC were included in the training dataset 
as negative examples, allowing our method to exclude them from the detection and 
segmentation process; 5) lung CT slices without contours were also used in the training 
process as negative samples, thereby increasing the number of unique training samples 
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and decreasing the false positive rate of the model; 6) although a 2D DL architecture was 
employed, a 3D post processing routine produced volumetric segmentations. A clinical 
trial showed that the performance of the automatic segmentation model is acceptable 
by modern clinical standards and that participants preferred automatic segmentations 
more often than the manual contours. Furthermore, RECIST and tumor volume based 
on the automatic contours were able to generate a more significant split of survival 
groups than manual contours.

To set our model in the context of similar published work, Kamal et al. (2018) 17 used 
a Recurrent 3D-DenseUNet architecture to segment lung cancers with which they 
allowed them to obtain a DSC of 0.74 on a validation dataset of 40 patients, compared 
to our DSC of 0.77 on a validation dataset of 236 patients. Jue et al. (2019) 19 evaluated 
several 2D convolutional neural network (CNN) architectures such as U-net, Segnet, 
full resolution residual neural network (FRRN) and incremental multiple resolution 
residual network (MRRN) to segment patches of 160x160 pixels centered around 
tumor, achieving DSC of 0.68 on the external validation dataset. Zhang et al. (2020) 
25 used a modified version of ResNet to automatically segment GTV and achieved 
an averaged dice similarity coefficient (DSC) of 0.73 on the test set, lacking however 
external validation of the model. Ardila et al. (2019) 16 developed a deep learning based 
software which can detect lung cancer on low dose CTs with an AUC of 94.4%. In our 
study we were not able to evaluate a patient based AUC for lung cancer detection, since 
all patients had cancer, instead we have demonstrated that our model was able to detect 
slices containing lung cancer on low dose CTs with a robust AUC of 0.90 both in the 
test and validation datasets. Additionally, we evaluated the performance of a published 
3D U-net based approach on our validation dataset, where our model outperformed the 
published method.

The state-of-the-art detection accuracy and the fact that it accepts any CT containing 
the lungs as input means the software can be used as a method for screening and 
detection of lung cancer. This is further corroborated by the fact that CT scans acquired 
using different parameters can be directly put in, making our method multi-vendor 
and multi-reconstruction compliant. The inclusion of cases that were hard to segment 
without a co-registered PET scan allows the deep learning networks to learn how to 
differentiate tumors from other lung abnormalities such as atelectasis and tumors with 
mediastinal involvement, which in conjunction with the accurate segmentation of 
the 3D tumor volume means it can be used clinically in radiotherapy settings or for 
big data radiomics (and potentially other) research. The robust automatic volumetric 
and RECIST measurements will subsequently have a positive impact on sample size 
calculations for clinical trials 26.
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Although we attempted to address the flaws and limitations of previous research 
while developing our software, there were limitations to our work. The ground truth 
segmentations were originally made on primary NSCLC. Therefore, although the 
software has a high detection accuracy, it is hypothetically limited to detection and 
segmentation of primary NSCLC tumors. Moreover, by considering medical expert 
contours as the ground truth and taking into account the high inter-observer variability 
of the contouring process 27, the deep learning network was also learning inaccuracies, 
such as contoured air (that certainly is not cancerous). However, this effect can be 
alleviated by increasing the training dataset size.

In future work we will utilize the evaluated image factors (slice thickness, complexity 
class, predicted tumor size) in order to give a confidence score to each segmentation 
produced, providing added information to the user about which segmentations might 
need more attention.
Further tuning of the model on NSCLC CT scans, and other independent NSCLC 
datasets can improve the performance of the software, and advance it towards clinical 
implementation.

The ability of the software developed in this study to handle full thoracic CT scans 
with different acquisition and reconstruction parameters and without further human 
intervention represents the pillar for its clinical transition. Clinical application of this 
software following prospective validation can have a positive impact on the management 
of lung cancer patients, as it will improve the detection accuracy, and provide a fast, 
consistent and reliable volumetric segmentation for treatment (evaluation) purposes. 
Furthermore, the use of the software in large radiomics studies will allow automation 
and will reduce the time needed to complete the studies in a robust manner, as it will 
significantly decrease the time needed for the rate-limiting part of the workflow - tumor 
segmentation.

Methods

Description of data
The CT scans of 1343 NSCLC patients were retrospectively collected and anonymized 
by each center and approved by the respective institutional review boards. In this study, 
which followed the Standards for Reporting of Diagnostic Accuracy Studies statement 28, 
the requirement for written informed consent was waived. The images in dataset 8 were 
segmented by five radiation oncologists, which allowed us to compare the performance 
of the deep learning segmentation model to multiple manual delineations. All other 
segmentations were performed by a radiologist or radiation oncologist at the center 
where diagnosis was made, and checked by at least one segmentation expert at our site. 
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The expert segmentations were considered as the ground truth for training and further 
evaluations. Fifteen patients from various datasets were excluded due to missing tumor 
contours and the lack of a PET scan to perform the segmentations according to clinical 
protocol. Survival data and CT scans for datasets 1 and 6 were collected from the open 
sources.

Image pre-processing
Data inhomogeneity necessitated the harmonization of CT data in order to achieve 
comparable representations of the tumor region. Furthermore, several steps were 
introduced to reduce computational power requirements and image noise, and to 
optimize the contrast. The first step is the extraction of a 3D array with voxel intensity 
values represented as Hounsfield Units (HU) from Digital Imaging and Communications 
in Medicine (DICOM) data. Next, the image contrast is enhanced using a lung window 
setting (window width (WW) of 1500HU and window level (WL) of -600 HU) to 
highlight lung structures. All voxel intensities outside of the upper and lower limits are 
assigned the value of the closest limit. Following this, nearest neighbor interpolation is 
applied to obtain isotropic spatial resolution in the axial plane so that each pixel has a size 
of 1x1 mm2. After spatial normalization, an image with standard bone window settings 
(WW: 1800, WL: 400) is saved, as it is used as an input in the lung isolation step of 
the workflow. In order to smooth the effect of different reconstruction methods on the 
image and to reduce computational burden, intensity values are aggregated into bins of 
equal width. This also allows optimization of storage and image processing by packing 
the images into a much shorter 8-bit integer range and by filtering high frequency 
noise. Hereafter, the image is cropped or padded with air intensity values to arrive at 
a resolution of 512x512 pixels, which is chosen as input for the selected deep learning 
architecture. All image processing and deep learning modelling steps were performed in 
Python 3.7 with the libraries and respective versions detailed in supplementary materials 
Table suppl. 1.

Lung region isolation
A robust algorithm for the isolation of the lung region was developed in order to focus 
on the ROI and allow for the use of whole body CT scans as input. First, the CT 
couch is detected and removed from the image volume. Air-filled connected volumes 
are detected and region growing and morphological operations are applied in order 
to remove small vessels and to connect adjacent regions, resulting in a 3D binary 
lung mask. The spine axis is identified and the lung mask is halved and symmetrically 
flipped about the sagittal plane, keeping the union of the flipped and the original lung 
masks. By doing so, the algorithm is optimized for handling lung abnormalities such 
as atelectasis, pulmonary infiltration, consolidation, and fibrosis. To accurately identify 
the spine axis, a further algorithm was developed which identifies the center of the spine 
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using the stored preprocessed image with bone window settings as described in the 
previous section (Fig. 12 a suppl.). A “bone image” slice containing the lung is projected 
onto the coronal plane and filtered with a seventh order moving average filter (Fig. 12 
b-c suppl.). This is repeated for the first five slices in which the lung mask is present in 
order to find a starting point for the center spine position S0. The axis of the spine is 
positioned normally to this point (Fig. 12 d suppl.).

(Equation 1)

Where P is a central spine point for the current axial slice, n is the number of slices (= 5).
Due to irregularities of patient positioning and anatomy, the central spine position St is 
recalculated slice-wise by using exponential smoothing:

(Equation 2) 

Where x is a central spine point based on the filtered signal for the current axial slice, 
and ⍺ is the weighting coefficient (= 0.3). 

This method of flipping the lung mask allows for the inclusion of regions that contain 
large-sized abnormalities, such as lung collapse, which obscure parts of the lung, whereas 
commonly used methods exclude those regions (Fig. 12 f-g suppl.). 

A morphological dilation with the circle kernel (r=5) is applied to the resulting lung 
mask in order to have a margin around the lung area. The final binary lung mask is used 
to isolate the lung region within the original image by setting all the voxel values outside 
the mask to the normalized air value.

Tumor detection and segmentation
The widely used 2D U-net convolutional neural network (CNN) was employed for slice-
wise tumor segmentation 30–33. The axial projection was used to train the network due 
to the higher resolution of image representation in this plane. To improve segmentation 
performance, several changes were made to the original CNN architecture. First, rectified 
linear unit (ReLU) activations were replaced with Exponential Linear Unit (ELU) in 
order to alleviate the gradient vanishing problem and kick-start the training process 34. 
Second, to capture deeper features from the CT scan, an additional convolutional block 
was added to the U-net encoder so that the smallest analyzed path resolution is 16x16 
pixels. In addition, dropout layers with the dropout rate (p = 0.5) were introduced prior 
to the 3 last layers of U-net encoder to prevent overfitting 35.

A 2D CNN architecture was chosen for several reasons: 1) by using a 2D input the 
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training dataset can be increased by more than a factor of 60, as overall more than 60000 
unique slices were available in the training set; 2) due to calculation costs, most present 
deep 3D architectures could analyze only a sub volume of the medical image 36,37, or 
they require a dimensionality reduction using interpolation or other image processing 
methods. 2D architectures do not have this problem and can process CT scans in the 
original resolution; 3) our main goal was to develop a pipeline that can be used in a 
clinical setting, and a 2D architecture allows for significantly lower requirements for 
executing PC. Our software does not require GPUs and can run on a regular laptop 
(Intel Core i5, 2.5GHz, 8GB RAM). 

In order to increase robustness of the system to a wide range of imaging parameters, 
the training dataset was expanded using augmentation techniques with the following 
parameters: random rotation around the image center pixel in a range of 0-25 degrees 
with a probability of 60%, random horizontal and vertical shifts of the image in the 
range of 12% of image shape with a probability of 25%, random zooming of the image 
with a maximum of 3% of the image shape with a probability of 10%. 

The loss function was calculated by combining the Dice similarity coefficient (DSC) 
loss and the binary cross-entropy, and privilege was given to the DSC loss during the 
first 50 epochs. The privilege was defined by the coefficients before the DSC and cross-
entropy terms in the loss function. By adding the binary cross-entropy component to 
the loss function, negative samples (slices without contour) could also contribute to the 
training. 

The model was trained for 300 epochs using eight NVIDIA GTX 1080 Ti GPUs. The 
Adam algorithm was used for the stochastic optimization of the loss function 38. The 
cosine annealing scheduler was used to adjust the learning rate during the training 
process. A checkpoint function tracking the DSC on the test dataset was used to keep 
the best weights.

Predicted 2D binary masks are stacked into a 3D volume and connected component 
extraction is applied as a post-processing step, whereby only spatially connected mask 
regions are extracted 39. The final mask is resampled to the original image shape using 
nearest neighbor interpolation.

Evaluation metrics
The ability of the system to detect tumors was assessed by calculating the slice-wise 
accuracy and generating a confusion matrix. Slices without segmentation were considered 
as not containing tumor tissue. Automatically generated binary masks were resampled 
to the original image resolution using nearest neighbor interpolation before comparing 
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with manual segmentations. The contouring performance of the proposed pipeline, as 
well as the doctors variability, were assessed by using the volumetric Dice similarity 
coefficient (DSC), Jaccard index (Ji) and 95th percentile Hausdorff distance (H95th). 
The DSC is a measure of overlap between two volumes and was computed as:

(Equation 3)

Jaccard index, used for gauging the similarity between two volumes, was computed as:

(Equation 4)

where F and G are the sets of voxels corresponding to the ground truth and the automatic 
segmentation, respectively. TP is the number of true positive voxels, FP is the number of 
false positive voxels and FN is the number of false negative voxels. 

To evaluate the maximum deviation between the automatic segmented surface boundary 
and the ground truth surface boundary, the 95th percentile of Hausdorff distance 
(H95th) was used. Hausdorff distance (H) is defined as:

(Equation 5)

where a and b are the points on the voxel sets A and B, which represent the ground truth 
and the automatic segmentation, respectively. Sa and Sb are the surfaces of A and B. 

In addition to the model performance evaluation on the test and validation datasets, the 
variability between expert clinicians was assessed and displayed against the performance 
of our method by comparing the volumetric DSC among all possible comparison pairs, 
i.e. experts were compared with each other as well as with the proposed method. 

To better gauge the performance of our model under varying circumstances it was 
evaluated with regard to slice-thickness, tumor complexity, and tumor size. Tumor size 
sub groups were chosen based on the overall tumor size distribution in the training set. 
Furthermore, expert subjective tumor complexity labels were defined. To describe the 
complexity of the tumor, two medical doctors were asked to label the test and validation 
dataset as follows: for tumors where segmentation cannot be performed without 
a corresponding PET scan the labels were set to “1”, and “0” otherwise. In case of 
disagreement, the label “1” was chosen.
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Statistical analysis
For all non-normally distributed scores the median and interquartile range (IQR) were 
reported, as well as the frequency histograms 29. Statistical significance was assessed 
using a two-sided Mann-Whitney-Wilcoxon test with Bonferroni correction. Survival 
evaluation was done in R (version 4.0.2) using survival (version 3.1-12) and survminer 
(version 0.4.7) packages. To estimate the difference between survival groups a log-
rank test was applied.  High and low survival groups were separated by the median 
tumor volume or median RECIST measurement respectively. A random sampling with 
replacement bootstrapping strategy was used to compute confidence intervals for AUC 
values.

An In Silico clinical trial

This trial was registered at clinicaltrials.gov (NIH: NCT04164186). For the first 
and second endpoints (the time needed for the processes of manual and automated 
segmentation, and inter and intra-observer variability), participants used a state of the 
art commercial software (MIM version 7.0.4) to produce the segmentations. In order 
to make the conditions of the trial close to the real clinical practice, experts had CT 
and PET scans available for each patient and they were able to use a semi-automated 
segmentation solution provided by MIM, while the proposed method generated the 
segmentation using only CT scans. 

For the third endpoint (preference of experts for manual or automatically generated 
segmentations), a software tool was developed in-house. The tool has two interactive 
screens with the first screen showing the description of the experiment and a small 
questionnaire. In order to analyse preferences at different levels of expertise, the 
participants were asked to specify their training (e.g. radiologist, radiation-oncologist, 
medical doctor). The second screen displays comparisons between pairs of segmented 
axial CT slices (automatic vs. expert) with randomized screen positions, blinded to the 
participant. For each comparison pair, the participants were asked to select the more 
accurate contour. Finally, a table was generated containing the choices made. Screenshots 
of this tool are provided in supplementary materials (Fig. 13-14 suppl.).

The software tool presents scans and contours from the external validation datasets 8. It 
randomly selects 100 pairs of contoured CT slices, where the DSC between the contours 
was higher than 0.7. During the assessment, participants were able to adjust the image 
contrast by changing window settings (WW and WL), and to leave comments. 

The preference of the experts was evaluated using the qualitative preference score, 
defined as:
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(Equation 6)

where nmethod is a number of times where preference was given to the proposed method,
noverall is a number of cases in total.

Data availability
Philippe Lambin and Henry Woodruff should be addressed for correspondence and 
material requests.

The open source data used in this article has the appropriate references. The private data 
sets used in this article are available from the corresponding author upon request subject 
to ethical review. 

Code availability
Code for the article will be available on the github upon publication.
Clinical trial app is available by the following link: https://www.predictcancer.ai/Main.
php?page=nsclc-clinical-trial.
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Medical image analysis (MIA) using artificial intelligence (AI) methods has become a 
widely researched topic. AI tools can become efficient, reliable and none-(minimally) 
invasive clinical decision support systems with the potential to improve personalized 
care [1,2]. To date, many studies investigated and reported on the potential of different 
AI applications for MIA. A significant number of studies applied handcrafted radiomics 
or deep learning methods to perform different tasks on different medical imaging 
modalities [3,4].

In this thesis, the focus was on two of the AI methods: (i) handcrafted radiomics; and 
(ii) deep learning (DL). For handcrafted radiomics, the overarching aim was to gain 
deeper insights into the reproducibility of handcrafted radiomics features (HRFs), in 
order to develop objective methods addressing the issue. For DL, the overarching aim 
was to investigate novel applications in MIA. In this chapter, an extended discussion of 
the work done in this thesis, as well as future perspectives, are provided.

Evaluation of the conventional handcrafted radiomics workflow
The conventional handcrafted radiomics workflow includes imaging data collection, 
lesions segmentation, HRFs extraction, signature development. Each of these steps 
are faced by some challenges that can affect the reproducibility of extracted HRFs 
significantly [5,6]. In Chapter 2, a literature search was performed. Based on the 
findings, and previous experiments, a radiomics workflow that takes into consideration 
the reproducibility of HRFs was proposed. The workflow consists of several steps, with 
the addition of a reproducibility analysis step. The added step introduces the need for the 
assessment of the repeatability, reproducibility and harmonizability of HRFs based on 
the data being analyzed. The aim is to guide the development of generalizable radiomic 
signatures that could be used across scans acquired with different imaging parameters.

In Chapter 3, the conventional radiomics workflow was applied on two independent MRI 
datasets to predict complete pathologic response to treatment in breast cancer patients. 
The scans were acquired using different imaging vendors and imaging parameters across 
the datasets. The robustness of the signatures developed was assessed by performing the 
radiomics analysis 100 times, with random splits of the training and testing datasets. 
The analysis showed that different HRFs were selected with a wide range of performance 
values, indicating the lack of robustness of the signatures.

In Chapter 4, a similar analysis to that in Chapter 3 was performed on axillary MRI 
scans to predict node status in breast cancer patients. The study included a smaller 
number of scans that were acquired using different imaging parameters. In concordance 
with the findings reported in Chapter 3, the results indicated the signatures lacked 
robustness. In addition to the literature, results of Chapters 3 and 4 indicated the need 
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for investigating the reproducibility of HRFs in different scenarios, and the need for 
methods to assess the reproducibility of and harmonize HRFs that are extracted from 
scans acquired with different imaging parameters. Chapters 3 and 4 confirmed the 
hypothesis that the assessment of the reproducibility of HRFs must be a corner stone in 
radiomics analyses.

Investigations of the reproducibility of HRFs, and validation of the 
proposed framework

Chapter 5 presented a thorough literature search into the currently used harmonization 
methods in radiomics analyses. Based on the findings, there is currently a need for 
harmonization methods that are specifically designed to incorporate the effects of various 
imaging parameters on HRFs, while also considering the different levels of complexities 
of different HRF groups.

In Chapter 6, the robust radiomics analysis workflow proposed in Chapter 2 was applied 
on a set of 13 phantom CT scans. The scans were acquired using different imaging 
vendors and parameters. HRFs were extracted from these scans and their reproducibility 
was assessed using the concordance correlation coefficient (CCC). The result showed 
that only a small number of HRFs were insensitive to the variations in the imaging 
parameters analyzed. The reproducibility of the majority of HRFs was dependent on 
the variations in imaging parameters. A given HRF could be reproducible in some 
scenarios, but not the others. Furthermore, the performance of ComBat harmonization 
was assessed on the phantom scans by calculating the CCC. The results indicated 
that the ability of ComBat to harmonize a given HRF is dependent on the variations 
in imaging parameters. These findings supported the use of the proposed radiomics 
workflow in radiomics studies analyzing scans that were acquired with different imaging 
parameters. The findings are also in concordance with previous studies that investigated 
the reproducibility of HRFs in different scenarios [6,7].

Chapter 7 included an experiment to assess the effects of variations in pixel spacing 
while all other imaging parameters were fixed. The workflow proposed in chapter 2 
was modified to accommodate harmonization techniques other than ComBat. The data 
analyzed included two sets of CT scans of a 10-layer phantom. Each set consisted of 7 CT 
scans that were acquired with the same imaging parameters except for the pixel spacing. 
Each layer was segmented as a volume of interest (VOI), resulting in 10 VOIs per scan. 
The reproducibility of HRFs across pairs of phantom CTs was assess using the CCC. 
Findings indicated that some HRFs are insensitive to differences in pixel spacing, while 
the reproducibility of the remaining HRFs was dependent on the degree of variation in 
pixel spacing. In addition, the effects of ten different image resampling methods, and 
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ComBat harmonization on HRFs extracted from the two sets were assessed. On average, 
scans resampled using cosine windowed sinc interpolation showed the highest numbers 
of concordant HRFs compared to other resampling methods. Nevertheless, the effects 
of image resampling and ComBat harmonization on the reproducibility of HRFs were 
found to be dependent on the variations in the scans being analyzed. In other words, a 
given HRF could be harmonizable with image resampling\ComBat in some scenarios 
but not the others. These results further consolidated the need for reproducibility studies 
in radiomics analyses including scans acquired with different imaging parameters.

A suggestion that ComBat harmonization must be applied to each layer of the phantom 
separately was made [8]. Accordingly, each layer of the phantom was subdivided into 
16 VOIs, and ComBat harmonization was applied on each of the layers separately. The 
results of this experiment augmented the findings in Chapter 7, specifically, the need 
for reproducibility analysis to evaluate both the reproducibility and harmonizability of 
HRFs across CT scans acquired with different imaging parameters. The slightly modified 
robust radiomics analysis workflow (figure 1) can be utilized to develop generalizable 
radiomic signatures. The modification was done during further experiments, to allow 
the generalization of the workflow to different radiomics harmonization methods.

Figure 1: The final proposed robust radiomics analysis workflow [12].
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In Chapter 8, the reproducibility of hepatocellular carcinoma (HCC) HRFs extracted 
from different phase contrast enhanced CT scans was assessed. Arterial and portal 
venous CT scans of HCC patients enrolled in a clinical trial were available for the 
analysis. The regions of interest (ROIs) were segmented on one of the phases, and 
copied to the other phase. A fraction of HRFs were found to be reproducible across both 
phases, when no imaging parameters varied. The potential of ComBat harmonization to 
remove differences in HRFs values attributed to differences in imaging phase. ComBat 
harmonization increased the number of reproducible HRFs across phases by 1%. The 
conclusions derived from this study were that a number of HRFs can be interchangeably 
used across arterial and venous phase CT scans, and that the combination of these scans 
per patient could maximize the information extracted from HCC lesions. Furthermore, 
Chapters 6, 7, 8 and 9 confirmed the hypothesis that HRFs are differently affected 
by the differences in variations in in imaging parameters, and that the performance 
of different harmonization methods is dependent on the variations in the data being 
harmonized.

Chapter 9 describes an experiment that was designed to investigate the effects of inter-
reader variability on the reproducibility of HRFs extracted from breast MR scans. Four 
readers with varying experience in medical image segmentation were asked to segment a 
number of breast MR scans. HRFs were extracted from each of the segmentations, and 
the reproducibility of HRFs across the multiple segmentations was assessed using the 
interclass correlation coefficient (ICC). The majority of HRFs (~67%) were found to be 
significantly affected (ICC<0.9). The findings suggest the need to address inter-reader 
variability, when the datasets are segmented by different observers. This chapter has 
also confirmed the hypothesis that HRFs are subject to inter-reader variability, and that 
attention must be paid to that in future radiomics studies.

Chapter 10 is an MRI test retest experiment to assess the repeatability of breast tissue 
HRFs. A number of healthy volunteers were scanned on two dates, with nine scans 
per session. Different MR sequences (T1W, T2W and ADC maps) were analyzed. 
Furthermore, different image preprocessing techniques were assessed on the different 
sequences. The repeatability of HRFs varied across the sequences and image preprocessing 
techniques. The majority of breast MR HRFs were not found to be repeatable. The 
findings add to the evidence necessitating reproducibility analyses in radiomics studies. 
This experiment confirmed the hypothesis that some HRFs are not reproducible in test-
retest scenarios.

In Chapter 11, the findings from previous chapters led to designing an experiment 
to assess the reproducibility of HRFs across a wide range of variations in imaging 
parameters. The analyzed CT phantom scans resulted in 31375 different scenarios. The 
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reproducibility of HRFs across pairs of scans was assessed using the CCC. The number 
of reproducible HRFs varied depending on the variations in the imaging parameters. 
Scans that were acquired with similar convolution kernels, slice thickness and pixel 
spacing values showed a higher number of reproducible HRFs, compared to scans 
acquired with big differences in those parameters. ComBat harmonization and image 
resampling were investigated as potential methods to harmonize HRF values across all 
the 31375 scenarios. ComBat harmonization resulted on average in a higher number 
of reproducible HRFs compared to image resampling. Nevertheless, only 1% of HRFs 
were harmonizable with either of the methods regardless of the variations in imaging 
parameters. Furthermore, a quantitative score was developed based on the variations in 
imaging parameters, confirming the hypothesis that a quantitative tool can be developed 
to assess the reproducibility of HRFs across scans acquired differently. The score can 
be used to assess the percentage of reproducible HRFs across CT scans acquired with 
different imaging parameters. Robustness analysis indicated the robustness of the 
develop score in assessing the reproducibility of HRFs. 

Some application of DL on medical images
Chapter 12 describes the development of a DL algorithm that could be used to classify 
bone scintigraphies whether they contain metastatic bone lesions. Data was collected 
from three independent medical centers. The model was trained and tested on bone 
scintigraphies collected at two different centers, and was externally validated on the data 
from the third center. In addition, the explainability of the developed algorithm was 
enhanced using gradient-CAM method, which produces activation maps to indicate the 
regions that resulted in a positive decision. Furthermore, the performance of the model 
was compared to that of a group of nuclear physicians in an in silico trial. The results 
highlight the potential of DL algorithms to be used as clinical decision support tools.

Chapter 13 describes the development of a CE marked software for the automated 
detection and segmentation of non-small cell lung cancer on CT scans. The software is 
DL algorithm that was trained and externally validated on a large number of multicenter 
datasets. The software includes several consecutive steps that include the harmonization 
of the CT scans, isolation of the lung region, and segmentation of lung lesion(s). The 
performance of the software was further assessed in an in silico trial, which showed that 
on average, radiologists and radiation oncologists preferred the automatically generated 
segmentations. Chapters 12 and 13 confirmed the hypothesis that DL algorithms could 
potentially perform some clinical tasks with high accuracy in significantly short times.

Future perspectives
During the last decades, there has been an exponential growth in the number of studies 
investigating the potential use of artificial intelligence techniques in medical image 
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analysis [10,11]. As with the majority of scientific fields (Figure 2), the development 
of handcrafted radiomics field has gone through several phases. There was a hype in 
the expectations for the field, evidenced by the large number of radiomic studies in the 
literature. Then, there has been a shift of focus from making predictions, to addressing 
the issues hindering utilization of the full potential of the field, as the field is currently 
in the “slope of enlightenment” phase. The issues include, but are not limited to, the 
reproducibility of the quantitative imaging features, the explainability of signatures, and 
the need for big data.

Figure 2. Phases of field development (Credit: Carole Goble).

In this thesis, the majority of the work was focused on understanding and mitigating 
the limitations of HRFs, potentially participating in the upward progression of the 
“slope of enlightenment” phase of the field, and hasten the transition to the “plateau of 
productivity”. Our proposed robust radiomics analysis workflow (Figure 1) would aid 
the development of generalizable radiomics signatures in future radiomics studies.  In 
addition, the novel MaasPenn radiomics reproducibility score can be utilized as a tool 
for deciding on scans inclusion, as well as assessing the generalizability of developed 
radiomics signatures.

Future research into the reproducibility of HRFs across different imaging parameters 
should include a wider range of imaging parameters than those investigated in Chapter 
11. A larger dataset with more variations could enhance our understanding of the 
combined effects of differences in imaging parameters on the reproducibility of HRFs, 
and thereby the ability to enhance the performance of the score. In addition, feature 
specific reproducibility scores could be investigated in future research to further improve 
the ability to develop robust radiomic signatures, ultimately leading to improved 
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personalized management and patient outcomes. Furthermore, since the majority of 
HRFs can be significantly affected by the variations in imaging parameters, there is a 
current need for a radiomics-specific harmonization method(s) that take(s) into account 
the effects of differences in imaging parameters, as well as the nature of different HRFs. 
Last but not least, attention must also be paid to the repeatability of HRFs in test-retest, 
as well as their sensitivity to inter-reader variability.

Further research into the applications of DL methods on medical images is recommended 
to assess the effects of differences in imaging parameters on the performance of DL 
algorithms, to better understand the factors affecting the generalizability of DL 
algorithms. External validation and prospective trials are necessities for the integration 
of AI based models into clinical practice.

Concluding remarks 
A number of studies, including Chapters 3,4,6-11 of this thesis, investigated the effects 
of variations in a number of parameters on the reproducibility of HRFs [5,12-14]. 
The robust radiomics analysis workflow proposed in Chapter 2 was based on rigorous 
literature search and previous experiments. The validation and slight modification of the 
workflow presented in Chapters 6 and 7 provided a solid argument for the application 
of the workflow in radiomic studies including scans acquired with different imaging 
parameters. 

While many studies have reported on the sensitivity of HRFs to variations in imaging 
parameters [14-18], there has been no quantitative method to assess the reproducibility 
of HRFs across different imaging parameters. MPenn radiomics reproducibility score 
can serve as an initial tool to include/exclude scans that show low percentages of 
reproducible HRFs. The score was found to be robust in confirmatory analyses. The 
score is subject to further improvement when more data is available for analysis. 

The DL based softwares presented in Chapters 12 and 13 add to the evidence showing 
the potential uses of DL to perform different tasks in medical image analysis. The 
experiments showcased the potential of DL applications for clinical decision support. 
Prospective validation of the developed softwares is essential to ease its translation 
into clinical applications. Both methods, handcrafted radiomics and DL, have great 
potential for prospective applications in clinical settings, given the standardization of 
the quantitative features and the extensive validation of the developed algorithms.
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Impact Paragraph

The successful application of artificial intelligence (AI) methods across different 
disciplines has given a boost for the research into the application of AI in medical image 
analysis. The vision is that AI applications could provide fast, reliable and cost-effective 
tools that would aid clinicians to make personalized decisions in a significantly shorter 
time. Several methodologies of AI have been developed and investigated as clinical 
decision support systems. The focus in this thesis was on two AI methods: handcrafted 
radiomics and deep learning. For handcrafted radiomics, the aims were to understand 
the impact of variations in imaging parameters on the reproducibility of handcrafted 
radiomic features (HRFs), and to devise a methodology to assess the reproducibility 
of HRFs across different imaging parameters. Several experiments were performed to 
understand these effects, and to develop a novel method for assessing the reproducibility 
of HRFs. For deep learning, a number of potential applications were investigated, with 
a special attention to the explainability of developed algorithms and their comparability 
to current gold standards.

Scientific impacts

1. The experiments in this thesis, and the analyses codes used, are published in well-
cited open access scientific journals (e.g Nature communications, Nature Scientific 
Reports, Cancers), which will ease the transmissibility in the academic societies.  

2. Chapter 2 is an introduction to the current applications of radiomics in medical 
image analysis, the challenges the field face, with a proposal of a new framework 
that guides the development of robust radiomics signature. 

3. Chapters 3 and 4 showed the difficulty of interpreting radiomics analyses results 
in studies analyzing scans acquired with different imaging parameters, and 
highlighted the need for reproducibility analyses in radiomics studies. 

4. Chapter 5 reported extensively on the different harmonization methods currently 
used in radiomics analyses. It also highlighted the need for radiomics specific 
harmonization methods. 

5. Chapters 6, 7 and 11 are phantom experiments that added to the understanding 
of how differences in imaging parameters affect the reproducibility of HRFs, and 
how harmonization methods like image resampling and ComBat harmonization 
perform in different scenarios. 
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6. Chapters 8, 9 and 10 are patient scans experiments that highlighted the effects 
of differences in a number of parameters (test-retest, inter-observer, and different 
imaging phases) on the reproducibility of HRFs. 

7. Chapter 11 presented a novel quantitative score that could be used in future 
radiomics studies to assess the reproducibility of HRFs across the scans available 
for analysis. 

8. Chapters 12 and 13 showcase the potential application of DL algorithms for 
different clinical endpoints, with one of the softwares being CE marked. 

Social impacts

1. The standardization of handcrafted radiomic features will ease the generalization 
of developed radiomic signatures across different institutions. 

2. Developing generalizable and robust radiomic signatures will ease the integration 
of these signatures in clinical decision support systems. 

3. Radiomics has the potential to improve patient care by guiding personalized 
management rather than the fit-for-all approach, which is also done in less 
invasive manners. 

4. Radiomics can provide a cost-effective means that would reduce health 
expenditure and improve public resources management.
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Summary

Recent decades witnessed an exponential growth in the number of studies investigating 
the potential applications of artificial intelligence (AI) in medical image analysis. 
Handcrafted radiomics is one of the methods that employ AI methods in medical image 
analysis. Handcrafted radiomic features (HRFs) are quantitative features extracted from 
medical images by applying handcrafted formulas on the array of values representing 
a given medical image. The general hypothesis is that HRFs can decode biologic 
characteristics, and could be used potentially to personalize patients care. In addition, 
handcrafted radiomics can become an alternative to current gold standard diagnostic 
methods, as with proper development, it can be a non-invasive and time-saving clinical 
tool. HRFs have been reported to correlate with different clinical endpoints, such as 
classification of lesions on medical images, predicting response to therapy, and survival.

Despite the reported high potential of handcrafted radiomics, a number of limitations 
that hinders the clinical integration of radiomics signatures have been identified. HRFs 
have been reported to be sensitive to inter-reader variability, test-retest, and to variations 
in imaging parameters, in addition to the need for large datasets. In this thesis, we 
performed experiments to validate these hypotheses. We confirmed that HRFs are 
sensitive to the above mentioned variations, using phantom and patients reproducibility 
studies. We further hypothesized that different harmonization methods will have different 
effects on different HRFs. We performed experiments to assess the impacts of different 
harmonization methods, mainly image resampling and ComBat harmonization. Lastly, 
we hypothesized that a quantitative tool can be developed based on the differences in 
imaging parameters. Our novel MPenn radiomics reproducibility score was developed 
using a large number of scenarios of variations in imaging parameters, and has shown 
robustness and high performances in assessing the percentage of reproducible HRFs 
across scans acquired differently. The score can be utilized in future radiomics studies to 
evaluate the agreement in HRFs, if the scans to be analyzed are acquired differently. The 
score would also help interpreting the results of radiomics analyses.

 Additionally, we performed a number of experiments to assess potential applications 
of deep learning (DL), the other AI method investigated in this thesis, in medical 
image analysis. Classification of bone scintigraphies and the automated detection and 
segmentation of non-small cell lung carcinoma on CT scans are the two tasks investigated 
in this thesis. For each of the tasks, multicenter data was collected, and a relatively large 
number of medical images were used to train the DL algorithms. A partition of the 
collected datasets was kept for external validation of developed algorithms. In addition, 
in silico trials to assess the performance of developed algorithms were designed for each 
of the tasks investigated. Our results showcased the potential of DL algorithms to be 
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used as clinical decision support tools, with one of the developed algorithms receiving 
CE mark. 

In conclusion, this thesis has confirmed a number hypothesis regarding the applications 
of handcrafted radiomics and deep learning in medical image analysis. For handcrafted 
radiomics, we proposed and assessed a workflow for robust handcrafted radiomics 
analyses that will help developing generalizable radiomics signatures; and developed a 
novel quantitative method to assess the reproducibility of HRFs across scans acquired 
differently. For DL, we assessed and showcased the potential of automated algorithms 
to aid clinical decision making. We developed a DL algorithm for three different tasks, 
which showed high performance and prospective for clinical applications. 
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