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To make valid inferences from recurrence plots for time-delay embedded signals, two underlying 
key questions are: (1) to what extent does an unthresholded recurrence (URP) plot carry the same 
information as the signal that generated it, and (2) how does the information change when the URP 
gets distorted. We studied the first question in our earlier work [1], where it was shown that the URP 
admits the reconstruction of the underlying signal (up to its mean and a choice of sign) if and only if an 
associated graph is connected. Here we refine this result and we give an explicit condition in terms of 
the embedding parameters and the discrete Fourier spectrum of the URP. We also develop a method for 
the reconstruction of the underlying signal which overcomes several drawbacks that earlier approaches 
had. To address the second question we investigate robustness of the proposed reconstruction method 
under disturbances. We carry out two simulation experiments which are characterized by a broad band 
and a narrow band spectrum respectively. For each experiment we choose a noise level and two different 
pairs of embedding parameters. The conventional binary recurrence plot (RP) is obtained from the URP 
by thresholding and zero-one conversion, which can be viewed as severe distortion acting on the URP. 
Typically the reconstruction of the underlying signal from an RP is expected to be rather inaccurate. 
However, by introducing the concept of a multi-level recurrence plot (MRP) we propose to bridge the 
information gap between the URP and the RP, while still achieving a high data compression rate. We 
demonstrate the working of the proposed reconstruction procedure on MRPs, indicating that MRPs with 
just a few discretization levels can usually capture signal properties and morphologies more accurately 
than conventional RPs.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

One of the well-established techniques for analyzing a complex 
dynamical system is the recurrence plot (RP), see [2]. For a dynam-
ical system a recurrence is said to occur whenever its trajectory 
in phase space is (nearly) self-intersecting. Examination of the re-
currence pattern that occurs over an observed time interval, often 
provides useful information – not just when trajectories are some-
how smooth and well predictable, but also in the case of complex 
dynamics and chaos. In these cases, recurrence quantification anal-
ysis (RQA), see [3], offers various tools to extract such information 
from RPs.

RPs can also be used to analyze an observed scalar signal x(t). 
To do so, it is common to first embed it into some M-dimensional 
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space by constructing a vector of time-delayed copies X(t) :=
(x(t), x(t + τ ), . . . , x(t + (M − 1)τ ))T . This is known as the time-
delay embedding method, first introduced in [4]. Note that the 
vector X(t) carries information on the recent history of the signal 
x(t) and captures its local morphology. In the literature there exist 
several other modeling and signal processing techniques, such as 
AR-modeling [5] and singular spectral analysis [6], which also in-
terpret X(t) as a state vector of the dynamical process generating 
x(t), but we will not go into them here.

The unthresholded recurrence plot (URP) is defined as the bivari-
ate distance function URPX (u, v) := ‖X(u) − X(v)‖, for some cho-
sen norm ‖ · ‖. From it, the (binary) RP is obtained by choosing a 
threshold value ε > 0 and defining RPε

X (u, v) := �(ε−URPX (u, v)). 
Here �(·) denotes the Heaviside step function, given by �(x) = 1
for x ≥ 0 and �(x) = 0 for x < 0. By construction, RPε

X (u, v) = 1
(and it is zero otherwise) if and only if the vectors X(u) and X(v)

differ by at most ε, as measured by the norm ‖ · ‖. This qualifies 
X(v) as a near recurrence of X(u) and motivates the terminology 
used.
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When inferences are made about a signal x(t) from its RP, it is 
important to understand to what extent an RP carries information 
that is unique for the underlying signal. This has been studied by 
several authors; see, e.g., [7], [8] and [9]. In [1], we have investi-
gated this question in detail for the URP of a time-delay embedded 
signal. There we used the Euclidean norm to define the URP and 
we restricted the discussion to zero mean periodic signals which 
admit a Fourier series representation and have finite power. We 
will do the same in the present paper. This is a fairly large class of 
signals which includes many signals encountered in practice, such 
as digitally sampled measurement signals. The zero mean require-
ment is natural, as the URP does not carry any information on the 
mean of x(t). It is easy to see that it does not carry information on 
the sign of x(t) either. Periodicity (with a known period, which we 
normalize to be 1) allows us to deal with finite interval effects in 
a convenient way.

In [1, Theorem 3.4] we characterized uniqueness of the under-
lying signal x(t) for a given URP (up to a sign ±1) by means of 
connectedness of a simple undirected graph G X = (K X , E). For this 
graph, the node set K X corresponds to the discrete Fourier fre-
quencies that occur in the signal x(t). The edge set E is determined 
by the choice of embedding dimension M and the time-delay τ . 
It was found that the (discrete Fourier) power spectrum of x(t)
can always be reconstructed from URPX , but it generally depends 
on the embedding parameters M and τ which other information 
can also be retrieved. Several special cases were analyzed, see [1, 
Corollary 3.5]. However, the approach has two main shortcomings: 
(1) The characterization of unique reconstructibility of x(t) from 
URPX (up to a sign) by connectedness of G X , is implicit. An explicit 
characterization in terms of K X , M and τ is lacking for the general 
case but would be useful to have: to be able to assess whether a 
given URP is maximally informative (i.e., the URP determines the 
underlying de-averaged signal up to a sign) about its underlying 
signal, and to help selecting embedding parameters M and τ to 
ensure such a property when generating URPs and RPs. (2) If G X is 
connected, then the actual reconstruction of x(t) from URPX in [1]
is not very practical – nor recommendable from a computational 
point of view. It involves several double integrals which may be 
hard to compute accurately, and in general it requires the search 
for suitable paths in the graph G X to connect selected nodes.

In Section 2 we address and resolve the first issue. We present 
a new and explicit characterization of connectedness of G X and, in 
the course of deriving it, we establish that the diameter of a con-
nected graph G X always equals 1 or 2. This new characterization 
shows for each choice of M precisely which values of τ will cause 
disconnectedness. For such values, the URP will not be maximally 
informative and in choosing the embedding parameters we typi-
cally want to avoid them. We illustrate this result with a couple of 
examples.

In Section 3 we address the second issue. The 2D-Fourier trans-
form of URP2

X is found to have coefficients with a special structure 
that can be exploited to compute x(t). The coefficients are used to 
calculate a square matrix Ĩ X which is the Hadamard (i.e., entry-
wise) product Ĩ X = W � T of a rank-one matrix W (determined 
by the non-zero Fourier coefficients of x(t) only) and a known ma-
trix T (depending entirely on M and τ ). The matrix T allows for 
the determination of connectedness of G X . If connectedness holds, 
then, using the property that the diameter is at most 2, T can be 
factored from Ĩ X to obtain W . With singular value decomposition 
(SVD), the Fourier coefficients of the signal x(t) can then be com-
puted from W in a robust way.

In Section 4 we present a couple of simulation experiments to 
demonstrate this procedure. We analyze robustness against noise 
of the reconstruction procedure, by adding noise of a few levels to 
a URP before reconstruction. We also investigate sensitivity of the 
reconstruction near values of τ for which disconnectedness of G X

occurs.
Third, in Section 5 we perform experiments to study the im-

pact of truncation on URPs, such as applied when computing RPs. 
This fosters the idea of using ‘multi-level recurrence plots’ (MRPs) 
instead of RPs, preserving more information while still achieving a 
high compression rate compared to URPs.

Section 6 concludes the paper, with a discussion of the results 
obtained. All the proofs are collected in Appendix A.

2. Connectedness of the graph G X

We consider the class of real zero mean periodic signals x(t)
with period 1, which are square integrable on [0, 1). Any such 
signal admits a Fourier series representation, see [10, Sect. 4.26], 
denoted by:

x(t) =
∑
k∈Z

cke2πkti . (1)

As the mean is zero c0 = 0, and as x(t) is real the complex-valued 
Fourier coefficients ck satisfy c−k = ck for all k ∈ Z. Square integra-
bility gives 

∑
k∈Z |ck|2 < ∞. Convergence of the Fourier series on 

the right hand side to the function x(t) happens in the L2-sense; 
it happens pointwise under additional smoothness conditions, see 
[10, Ch. 5]. Note that discrete-time (regularly sampled) signals with 
a finite number of observations can also be included in this set-up, 
as they admit finite Fourier series representations and can be asso-
ciated with continuous-time periodic signals through interpolation 
and periodic extension.

For a given choice of embedding dimension M and time-delay 
τ ∈ (0, 1), let X(t) be the corresponding time-delay embedded tra-
jectory in RM and URPX (u, v) = ‖X(u) − X(v)‖ the unthresholded 
recurrence plot, in which ‖ · ‖ denotes the Euclidean norm. Note 
that X(t) is also periodic with period 1 and given by:

X(t) =
∑
k∈Z

cke2πkti Tk, (2)

in which

Tk =

⎛⎜⎜⎜⎝
1
zk

...

z(M−1)k

⎞⎟⎟⎟⎠ , with z = e2πτ i . (3)

As in [1], the associated (simple, undirected) graph G X is defined 
to have the integer labeled nodes K X = {k ∈ Z | ck �= 0}. Two dis-
tinct nodes p, q ∈ K X are defined to be adjacent if and only if 
the L2-inner product 〈T p, Tq〉 is nonzero. The latter is equivalently 
characterized by [(p − q)τ ∈ Z] ∨ [(p − q)Mτ /∈ Z]; see [1, Lemma 
3.1].

From [1, Theorem 3.4], we have that the signal x(t) can be re-
constructed (up to a sign ±1) from URPX if and only if the graph 
G X is connected. In [1, Corollary 3.5] several special cases are ad-
dressed for which it is possible to quickly decide on connectedness 
of the graph G X . Below, we extend these results by providing a 
complete and explicit characterization of connectedness of G X . We 
also show that if G X is connected, then the diameter of G X is 
either 1 or 2. This means that a connected graph G X is either com-
plete (diam(G X ) = 1) or every two nodes are connected by a path 
of length at most 2.

Theorem 2.1. Let x(t) be a non-zero signal from the class introduced 
above, and G X = (K X , E) the associated graph for a given choice of 
embedding dimension M and time-delay τ ∈ (0, 1). For the associ-
ated set of node indices K X , define the set of ordered node pairs as 
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P = {(p, q) | p, q ∈ K X , p > q} and the set of absolute differences as 
D = {p − q | (p, q) ∈ P }. Define h = GCD(D) to be the greatest common 
divisor of the values in D. Then:

(1) G X is connected if and only if [hτ ∈ Z] ∨ [hMτ /∈ Z].
(2) If G X is connected, then diam(G X ) ∈ {1, 2}.

Remark 1. Note that the characterization of connectedness of G X
by statement (1) of Theorem 2.1, closely resembles the definition 
of adjacency of two nodes p and q. If G X has exactly two nodes, 
then the set P consists of a single node pair (p, q) and the set D
contains a single value, whence h = p −q. Then the two characteri-
zations coincide. When more node pairs are involved, the theorem 
shows that h plays the same role in describing connectedness of 
the graph as p − q does for adjacency of individual nodes.

Remark 2. If it is found that for some choice of the embedding 
parameters M and τ the URP of a time-delay embedded signal is 
not maximally informative, then hMτ ∈ Z and hτ �∈ Z. Then leav-
ing τ unchanged and altering the embedding dimension to M + 1
or M − 1 will produce URPs which are. The same holds when M is 
left unchanged but τ is replaced by τ (1 + 1

M ) or τ (1 − 1
M ).

Remark 3. The value h relates to periodicities in x(t) and in URPX . 
Denote m = min{k ∈ K X | k > 0}. Recall that also −m ∈ K X , so that 
2m ∈ D and h divides 2m. It is not hard to show that if h divides m
then h divides all k ∈ K X and x(t + 1

h ) = x(t). In this case URPX has 
a corresponding h × h 2D-periodic pattern. If h does not divide m
then instead it holds that x(t + 1

h ) = −x(t), whence x(t + 2
h ) = x(t). 

In this case URPX has a corresponding h × h checkerboard pattern 
as well as a h

2 × h
2 2D-periodic pattern.

In Fig. 1, three examples of periodic signals are given to illus-
trate Theorem 2.1. Each signal is analyzed for two different settings 
of the embedding parameters M and τ . In all cases the signal has 
a power spectrum with 2 different frequencies, so G X has 4 nodes. 
In none of these cases connectedness of G X can be analyzed with 
[1, Corollary 3.5].

In Fig. 1 (i)–(v) the signal is x(t) = 2 sin(6πt) + cos(6πt) −
cos(12πt) + sin(12πt), which has K X = {−6, −3, 3, 6}, with m = 3
and h = 3. As h divides m, it holds that x(t + 1

3 ) = x(t) and there-
fore URPX (u, v) displays a 3 × 3 periodic pattern, with URPX (u +
1
3 , v) = URPX (u, v) as well as URPX (u + 1

3 , v + 1
3 ) = URPX (u, v). 

For M = 4 and τ = 1
24 the graph G X is connected, because hMτ =

1
2 /∈ Z. For M = 4 and τ = 1

6 the graph G X is disconnected, since 
hτ = 1

2 /∈ Z and hMτ = 2 ∈ Z.
In Fig. 1 (vi)–(x) the signal is x(t) = 2 sin(6πt) + cos(6πt) −

cos(10πt) + sin(10πt), which has K X = {−5, −3, 3, 5}, with m = 3
and h = 2. Now h does not divide m, so it holds that x(t + 1

2 ) =
−x(t) and therefore URPX (u, v) displays a 2 × 2 checkerboard pat-
tern, with URPX (u + 1

2 , v + 1
2 ) = URPX (u, v). For M = 4 and τ = 1

16
the graph G X is connected, because hMτ = 1

2 /∈ Z. For M = 4
and τ = 1

8 the graph G X is disconnected, since hτ = 1
4 /∈ Z and 

hMτ = 1 ∈ Z.
In Fig. 1 (xi)–(xv) the signal is x(t) = 2 sin(6πt) − cos(6πt) +

cos(18πt) + sin(18πt), which has K X = {−9, −3, 3, 9} with m = 3
and h = 6. Again h does not divide m, and now it holds that x(t +
1
6 ) = −x(t) and therefore URPX (u, v) displays a 6 × 6 checkerboard 
pattern, with URPX (u + 1

6 , v + 1
6 ) = URPX (u, v). Because x(t + 1

3 ) =
x(t), it also displays a 3 × 3 periodic pattern. For M = 4 and τ = 1

6
the graph G X is connected, because hτ = 1 ∈ Z. For M = 4 and 
τ = 1

8 the graph G X is disconnected, since hτ = 3
4 /∈ Z and hMτ =

3 ∈ Z. In this case the URP has in fact a 6 × 6 periodic pattern.
From Theorem 2.1 it follows for a signal x(t) with a given fre-

quency content (i.e., with K X known) and for a given embedding 
dimension M , at which values of τ disconnectedness of G X occurs. 
At such τ the reconstruction of x(t) up to a sign ±1 from its URP 
is non-unique, implying that the URP is not maximally informa-
tive about its underlying signal x(t). In selecting a good value for 
τ , we want to stay away from such values. Sensitivity analysis at 
those values will indicate to which extent ill-conditioning occurs 
in close neighborhoods, allowing us to search for locations which 
are better behaved.

The value of h depends entirely on K X and not on the embed-
ding parameters M and τ . Note that ‘generically’ h = 1, for which 
the values of τ at which disconnectedness occurs are precisely the 
integer multiples of 1

M . If the power spectrum of x(t) has most of 
its energy concentrated at a subset of indices in K X for which the 
GCD of their differences is larger than one, then in view of robust-
ness it is important to be careful and to take the corresponding 
value ĥ of this GCD into account (in the role of h). This suggests to 
start computing the GCD from the values of k, −k ∈ K X which cor-
respond to the Fourier coefficients having the highest energy (and 
possibly using a threshold strategy for robustness). The GCD com-
puted from such a subset of K X will provide an upper bound ĥ on 
h, while h divides ĥ. Then one may decide to let τ stay away from 
all the integer multiples of 1

ĥM
, which will be an enveloping set 

for the true values at which disconnectedness occurs.
For a discrete-time sampled signal with N measured obser-

vations, a corresponding continuous-time signal x(t) can be con-
structed to have a finite Fourier series with k ∈ {−K , . . . , K } where 
K = ⌊ N

2

⌋
. Then it is natural to take τ to be an integer multiple of 

1
N , to facilitate the time-delay embedding by shifting the measure-
ments without interpolation. It now becomes important to select 
such a value for τ which stays well away from the integer multi-
ples of 1

hM , which is not a hard problem to analyze efficiently.

3. Reconstruction of x(t) from its URP

In [1, Section 5] a procedure was described to reconstruct a 
signal from its URP. Though valid for theoretical purposes, it is 
not recommendable for practical use as it has several drawbacks. 
For instance, it involves the computation of multiple double inte-
grals which is numerically cumbersome and unattractive. It also 
requires, for every pair of nodes (p, q) in the graph G X , the selec-
tion of a connecting path, for which it is unclear how to obtain 
one efficiently and how it will affect the numerical accuracy of 
the calculations. In this section we present a novel method for re-
constructing x(t) from URPX (u, v) which aims to overcome these 
drawbacks. It uses 2D-Fourier series representations and singular 
value decomposition and it employs part (2) of Theorem 2.1 to si-
multaneously involve all paths of length 2 to connect a node pair 
(p, q).

We start by recalling the result of [1, Lemma 3.1], which states 
that the L2-inner product of the vectors T p and Tq is explicitly 
given by:

〈T p, Tq〉 =
{

M for (p − q)τ ∈ Z,

sin(π(p−q)Mτ )
sin(π(p−q)τ )

eπ(p−q)(M−1)τ i for (p − q)τ /∈ Z.
(4)

Clearly its value depends only on the difference p − q, whence 
〈T p, Tq〉 = 〈T p−q, T0〉.

In [1] it was shown that URPX (u, v) carries the same informa-
tion as the inner product I X (u, v) := 〈X(u), X(v)〉, both regarded 
as periodic two-variable functions of u, v ∈ [0, 1). We can repre-
sent I X (u, v) by its 2D-Fourier series representation:

I X (u, v) =
∑∑

I X,p,qe2π(pu+qv)i, (5)

p∈Z q∈Z
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Fig. 1. Three periodic signals, (dis)connectedness of their graphs G X and periodicity of their URPs, each for two different choices of embedding parameters.
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in which the 2D-Fourier coefficients are denoted by I X,p,q . Substi-
tution of the Fourier series representations of X(u) and X(v) in 
〈X(u), X(v)〉 gives:

I X,p,q = cpc−q〈T p, T−q〉 = cpcq〈T p+q, T0〉, (6)

where it is used that c−q = cq for a real signal x(t).
The squared URP, ‖X(u) − X(v)‖2, obviously has the same infor-

mation content as the URP itself. Its 2D-Fourier series representa-
tion is now observed to be closely related to that of I X (u, v).

Proposition 3.1. Let x(t) = ∑
k∈Z cke2πkti be a signal from our class. 

Then, for any choice of embedding parameters M and τ , the squared URP 
can be expressed as a 2D-Fourier series

URP2
X (u, v) =

∑
p∈Z

∑
q∈Z

C X,p,qe2π(pu+qv)i, (7)

for which the 2D-Fourier coefficients C X,p,q are given by

C X,p,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2I X,p,q = −2cpc−q〈T p+q, T0〉
for p �= 0 and q �= 0∑
n∈Z I X,p−n,n = 〈T p, T0〉∑

n∈Z cncn−p

for p �= 0 and q = 0,∑
n∈Z I X,n,q−n = 〈Tq, T0〉∑

n∈Z cncn−q

for p = 0 and q �= 0,

2
∑

n∈Z I X,n,−n = 2M
∑

n∈Z |cn|2
for p = 0 and q = 0.

(8)

The procedure of [1, Section 5] relies on the computation of the 
inner product function I X (u, v) from URPX (u, v). Proposition 3.1
makes clear that a more convenient direct approach is possible, 
because the 2D-Fourier coefficients of URP2

X (u, v) give immedi-
ate access to the 2D-Fourier coefficients of I X (u, v): it holds that 
I X,p,q = −C X,p,q/2 for all p, q �= 0.1

To complete the reconstruction of x(t) from URP2
X (u, v), we 

proceed to compute the Fourier coefficients ck from the coefficients 
I X,p,q . From Eqn. (6) we have that

cpcq = I X,p,−q/〈T p−q, T0〉, (9)

provided that 〈T p−q, T0〉 �= 0, i.e.: if p and q are adjacent in G X . 
If a URP has a finite 2D spectrum, then the finite-sized matrix of 
coefficients W = (cpcq) is Hermitian and of rank one, as it can be 
factored as

W = w w∗, (10)

where w is a vector containing the Fourier coefficients ck of the 
signal x(t) as its elements. This holds if x(t) has a finite Fourier se-
ries representation, say x(t) = ∑K

k=−K cke2πkti , which for instance 
applies to sampled signals. Likewise, it holds in the common sit-
uation where the URP itself is available only in digital form as a 
finite-sized matrix; in that case a sampled signal can be consid-
ered to have generated it.

The vector w is determined by the matrix W = w w∗ up to a 
complex unimodular scalar. From the property c−k = ck , it follows 
that w has additional structure which allows one to recover w
from W up to a sign ±1. Spectral decomposition as achieved by 
singular value decomposition (SVD) offers a robust technique for 
this. The following two propositions make this explicit.

1 Because I X,p,0 = I X,0,q = 0, this also makes clear that URP2
X (u, v) fully deter-

mines I X (u, v), while the converse follows from the expressions of Proposition 3.1. 
This reconfirms the information equivalence of URPX (u, v) and I X (u, v) by different 
arguments than given in [1].
Proposition 3.2. Let x(t) be a zero-mean real signal x(t) from our class, 
assumed to have a nonempty finite spectrum. Let w be a vector contain-
ing the non-zero Fourier coefficients ck, k ∈ K X , in some specified order. 
Let J be the associated permutation matrix which acts on w by reversing 
the positions of each pair of entries ck and c−k for every k ∈ K X . Define 
W = w w∗ . Then:

(1) J = J−1 = J T .
(2) w = J w.
(3) x is an eigenvector of W if and only if J x is an eigenvector of W

with the same eigenvalue.

Proposition 3.3. Let W = w w∗ be a nonzero Hermitian matrix as in 
Proposition 3.2, with w containing the nonzero Fourier coefficients ck
of the real signal x(t) in some specified order, and J the associated per-
mutation matrix reversing each pair of coefficients ck and c−k. Let the 
spectral decomposition of the matrix W be given by W = λuu∗ , where 
λ > 0 is the positive real eigenvalue of W and u a corresponding eigen-
vector of unit norm. Then

w = ± (
λu∗ J u

)1/2
u, (11)

which specifies w up to a sign ±1.

Proposition 3.3 makes clear that the Fourier coefficients ck of 
x(t) can all be computed, up to a joint sign ±1, directly from the 
SVD of the matrix W . The matrix W has rank one and is Her-
mitian, so its singular vectors coincide with its eigenvectors, and 
what is needed to find w is a normalized singular vector u cor-
responding to the only non-zero singular value. The SVD achieves 
this in a numerically robust way. The rank-one property of W can 
be exploited by numerical methods to help to improve accuracy, 
and it implies that the non-zero eigenvalue (singular value) λ of W
equals trace(w w∗) = ∑

k∈Z |ck|2 = ∫ 1
t=0 x(t)2dt which is the energy 

of the signal x(t). Using the 2D-Fourier transform of URP2
X (u, v)

we have λ = C X,0,0/(2M).
In this way, the problem of reconstructing x(t) from URPX (u, v)

is reduced to the equivalent problem of computing W from 
URP2

X (u, v) or from I X (u, v). Eqn. (6) implies that the non-zero 
2D-Fourier coefficients I X,p,−q can be collected in a matrix Ĩ X

which can be factored as:

Ĩ X = W � T . (12)

Here T has the entries T p,q = 〈T p−q, T0〉 = 〈T p, Tq〉 given by 
Eqn. (4) and � denotes the Hadamard (i.e., entrywise) matrix 
product. The matrix T depends solely on the embedding param-
eters M and τ and carries all the connectivity information on the 
graph G X . If G X happens to be a complete graph, then all the 
entries of T are non-zero and Eqn. (9) can be used to find W . 
Otherwise T p,q = 0 for some nodes p and q, whence I X,p,−q = 0
and W p,q = cpcq cannot be computed directly. But from part (2) of 
Theorem 2.1 we have that the diameter of a connected graph G X

is either 1 or 2. This is exploited in the following theorem.

Theorem 3.4. Let x(t) be a zero-mean real signal from our class, as-
sumed to have a nonempty finite spectrum. Let the embedding parame-
ters M and τ be given and let the matrices Ĩ X , W and T be defined as 
described above. Define the non-negative matrix S to have the entries

S p,q = |T p,q| =
{

M for (p − q)τ ∈ Z,

| sin(π(p−q)Mτ )|
| sin(π(p−q)τ )| for (p − q)τ /∈ Z.

(13)

Also, define the matrix Î X by Î X := W � S. Then it holds that

M Î X diag( Î X )−1 Î X = W � S2, (14)
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in which diag( Î X ) denotes the diagonal matrix coinciding with Î X on its 
main diagonal.

The matrix S2 is strictly positive if and only if the graph G X is con-
nected.

Note that S and Î X can be computed from T and Ĩ X . The entries 
on the main diagonal of Ĩ X are given by I X,p,−p = M|cp|2, which 
all are real and strictly positive (for p ∈ K X ). They coincide with 
the entries of diag( Î X ). As indicated, for a connected graph G X

the matrix S2 is strictly positive and the matrix W can then be 
computed by elementwise division of M Î X diag( Î X )−1 Î X by S2:

W p,q = M( Î X diag( Î X )−1 Î X )p,q/(S2)p,q. (15)

Summary of the procedure to reconstruct a signal from a given URP, 
with known M and τ :

First one computes the 2D-FFT of the squared URP, URP2
X (u, v). 

This gives the 2D-Fourier coefficients C X , from which the coef-
ficients I X,p,q are directly obtained by Proposition 3.1. The co-
efficients Ĩ X,p,q = I X,p,−q follow by relabeling. The node set K X

consists of all k for which Ĩ X,k,k = M|ck|2 is positive. (For practical 
purposes, a numerical tolerance can be set to decide on signifi-
cant deviation from zero.) To verify unique reconstructibility of x(t)
from URPX (up to a sign), one may compute h from K X and use 
Theorem 2.1.

From M , τ and K X , the matrices T and S follow using Eqns. (4)
and (13) The matrix Î X follows from Ĩ X using T and S . From S the 
matrix S2 is computed, of which all entries are strictly positive if 
and only if reconstructibility holds. Then W follows by factoring 
S2 from Eqn. (14) in Theorem 3.4, as indicated in Eqn. (15).

Finally, the SVD is used to compute the vector w of nonzero 
Fourier coefficients ck of x(t) (up to a sign), in accordance with 
Proposition 3.3, from which we finally build x(t) itself.

To provide some insight about the numerical sensitivity of this 
entrywise division for small values of (S2)p,q , we have the follow-
ing result.

Proposition 3.5. Let τ ∈ Q ∩ (0, 1) be represented as τ = n
d , with n and 

d co-prime integers such that d ≥ 2 and n ∈ {1,2, . . . ,d − 1}. Let δ be 
computed from d as:

δ =
⎧⎨⎩tan

(
π

max(d,4)

)
if d is even,

2 sin
(

π
2d

)
if d is odd.

(16)

(1) If p and q are two adjacent nodes in K X , then:

S p,q ≥ δ, (17)

(2) If the graph G X is connected, then:

(S2)p,q ≥ δ2. (18)

As the proof in the appendix shows, the value of δ in this 
proposition refines the easier to prove lower bound sin( π

d ). This 
improvement is particularly useful for small values of d. The bound 
in part (2) can also be used to set a threshold to test connected-
ness of G X numerically, by evaluating the entries of S2. Typically 
the bounds provided here are not sharp, especially if G X has many 
nodes and each node pair (p, q) is connected by many different 
paths of length 2.

4. Simulation experiments

To investigate robustness and sensitivity of the SVD-based re-
construction procedure proposed in the previous section, we have 
carried out a couple of simulation experiments. In each of these 
experiments we start from a known signal x(t), treated as a peri-
odic signal on [0, 1], for which we record the frequency content. 
I.e., we determine the node set K X and also the value of h. Then 
we select embedding parameters M and τ , for which we deter-
mine the unthresholded recurrence plot URPX (u, v). Next, we add 
a disturbance to this URP to simulate an ‘observed’ URP, denoted 
ÛRPX , which we use to reconstruct a signal x̂(t) by the proposed 
method.

This reconstruction proceeds as described in the summary of 
the procedure given in the previous section, starting from ÛRPX . 
To determine a corresponding node set K̂ X , one must use a thresh-
old, which can be set in various ways. In our experiments we did 
not aim to optimize this, but simply decided to choose K̂ X to con-
sist of all k for which |ĉk|2 exceeds 0.01 max{|ĉ�|2 | � ∈ Z}. (Then 
ĥ can be computed from K̂ X , and used to verify reconstructibility.) 
The approximation x̂(t) which finally results can then be compared 
to the original x(t) to assess the quality of the approximation, in 
view of the nature of the given signal, the selected embedding pa-
rameters, and the amount of noise added to the URP.

The embedding parameters in the next two experiments are 
chosen such that in the cases (A) and (B) the graph G X is con-
nected and disconnected respectively. For a connected graph G X

we may observe to which extent the reconstruction gets distorted 
as a result of the noise we introduced. When G X is disconnected, 
reconstruction is nonunique, but this may not properly be recog-
nized when noise is added.

Experiment 1: Reconstruction of a triangular signal with a narrow 
band spectrum.

The periodic signal x(t) of this experiment resembles a trian-
gular wave. It is displayed, together with its discrete spectrum, 
in Fig. 2. It consists of 1000 samples, it is of zero mean and it 
has a narrow band spectrum with 5 low frequencies only, with 
K X = ±{1, 3, 5, 7, 9}. The corresponding value of h equals 2. It 
therefore holds that x(t + 1

2 ) = −x(t), for all t .
(A) For the embedding parameters M = 4 and τ = 0.200 the 

URP of the signal is given in Fig. 3(A). For these parameters 
hMτ = 1.600 /∈ Z, so that G X is connected and x(t) is uniquely 
reconstructible (up to a sign) from URPX . The disturbance applied 
to this (true) URP was chosen to consist of normally distributed 
white noise of zero mean and a small standard deviation given 
by σ = 0.008 max(URPX ). The observed URP does not visibly dif-
fer from the true URP. The reconstructed signal x̂(t) is displayed in 
Fig. 4(B) (in blue) together with the original signal x(t) (in red) and 
the mismatch between both (in green). The corresponding node set 
K̂ X was obtained as K̂ X = K X ∪ ±{112} with ĥ = 1.

(B) For the embedding parameters M = 4 and τ = 0.125, the 
graph G X is disconnected so that unique reconstruction of x(t) is 
impossible and the estimate x̂(t) will be unreliable. The resulting 
URP is given in Fig. 3(B). The disturbance applied to this (true) URP 
was again chosen to consist of normally distributed white noise of 
zero mean and the small standard deviation σ = 0.008 max(URPX ). 
The observed URP again does not visibly differ from the true URP. 
The reconstructed signal x̂(t) is displayed in Fig. 4(B) (in blue) to-
gether with the original signal x(t) (in red, largely overlayed) and 
the mismatch between both (in green). The corresponding node 
set K̂ X was in this case obtained as K̂ X = K X ∪ ±{430} for which 
ĥ = 1. Note that ĥMτ = 0.500 /∈ Z, which indicates connectedness 
of G X and unique reconstructibility of x(t) during the reconstruc-
tion procedure.

We conclude that the proposed method in case (A) allows the 
signal x(t) to be reconstructed with high accuracy from the lightly 
disturbed URP. In case (B), the value τ = 0.125 is unwanted, as it 
corresponds to G X being disconnected. The chosen threshold for 
determining K̂ X in this case is too low, causing frequencies intro-
duced by the disturbance to be included in the reconstruction and 
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Fig. 2. Signal x(t) for Experiment 1. (i) The triangular zero mean periodic signal. (ii) Its narrow band power spectrum.

Fig. 3. URPs for x(t) in Experiment 1. (A) For M = 4 and τ = 0.200. (B) For M = 4 and τ = 0.125.

Fig. 4. Reconstructed signals for Experiment 1. Red solid line: original signal x(t). Blue solid line: reconstructed signal x̂(t). Green dashed line: reconstruction error x̂(t) − x(t). 
(A) For M = 4 and τ = 0.200. (B) For M = 4 and τ = 0.125. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
disconnectedness of G X not to be recognized. The resulting ap-
proximation x̂(t) is inaccurate (though the URPs are highly similar). 
This emphasizes the need to determine K̂ X and ĥ more conserva-
tively.

Experiment 2: Reconstruction of an ECG-like signal with a broad band 
spectrum.

The signal x(t) of this experiment resembles an ECG signal. It is 
displayed, together with its discrete spectrum, in Fig. 5. As in the 
previous experiment, it consists of 1000 samples. It was filtered 
to have zero mean and a broad band spectrum with 45 frequen-
cies, whence K X = ±{1, 2, . . . , 45}. The corresponding value of h
equals 1.

(A) For the embedding parameters M = 5 and τ = 0.010 the 
URP of the signal is given in Fig. 6(A). For these parameters 
hMτ = 0.05 /∈ Z, so that G X is connected and x(t) is uniquely 
reconstructible (up to a sign) from URPX . The disturbance ap-
plied to this (true) URP was chosen to consist of normally dis-
tributed white noise of zero mean and a very small standard 
deviation: σ = 0.0006 max(URPX ). The observed URP does not vis-
ibly differ from the true URP. The reconstructed signal x̂(t) is 
displayed in Fig. 7(A) (in blue) together with the original sig-
nal x(t) (in red) and the mismatch between both (in green). 
The corresponding node set K̂ X was obtained as K̂ X = K X ∪
±{71, 72, 107, 167, 170, 215, 289, 479, 490} with ĥ = 1.

(B) For the embedding parameters M = 5 and τ = 0.200, the 
graph G X is disconnected so that unique reconstruction of x(t) is 
impossible and the estimate x̂(t) will be unreliable. Avoiding this 
choice of τ , we set it to the nearby value τ = 0.199 (requiring τ
to be a multiple of 1/1000 to deal with delays of the sampled sig-
nal in a convenient way). The resulting URP is given in Fig. 6(B). 
Now hMτ = 0.995 /∈ Z, so that G X is again connected and x(t) is 
uniquely reconstructible (up to a sign) from URPX . The disturbance 
applied to this (true) URP was again chosen to consist of normally 
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Fig. 5. Signal x(t) for Experiment 2. (i) The ECG-like zero mean periodic signal. (ii) Its broad band power spectrum.

Fig. 6. URPs for x(t) in Experiment 2. (A) For M = 5 and τ = 0.010. (B) For M = 5 and τ = 0.199.

Fig. 7. Reconstructed signals for Experiment 2. Red solid line: original signal x(t). Blue solid line: reconstructed signal x̂(t). Green dashed line: reconstruction error x̂(t) − x(t). 
(A) For M = 5 and τ = 0.010. (B) For M = 5 and τ = 0.199. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
distributed white noise of zero mean and the small standard de-
viation σ = 0.0006 max(URPX ). The observed URP again does not 
visibly differ from the true URP. The reconstructed signal x̂(t) is 
displayed in Fig. 7(B) (in blue) together with the original signal 
x(t) (in red, largely overlayed) and the mismatch between both (in 
green). The corresponding node set K̂ X was in this case obtained 
as K̂ X = K X ∪ ±{195} for which ĥ = 1.

We conclude that the proposed method in both cases allows 
the signal x(t) to be reconstructed with high accuracy from the 
lightly disturbed URP. The value τ = 0.199 near the unwanted 
value τ = 0.200 does not exhibit any particular difficulties. (In ad-
ditional experiments, not shown here, we investigated the effect 
for values of τ closer to 0.200 by resampling the continuous-time 
signal x(t) at the corresponding delayed values. This indicated that 
effects do indeed become significant when τ approaches 0.200
as expected, but for this to show, the difference should be much 
smaller than 1/1000.)

5. Multi-level recurrence plots

One way to study the information content of RPs is by inter-
preting them as URPs subjected to (large) disturbances, as induced 
by the binary discretization resulting from application of the Heav-
iside function. From this point of view it is natural to also study 
what happens when a URP is discretized using multiple thresholds 
instead of just one (as used for RPs). Intuitively, such a multi-level 
recurrence plot (MRP) may carry far more information than an RP. 
Depending on the number of threshold levels used, it may also 
allow for a more accurate reconstruction of the underlying sig-
nal. In this section we will briefly sketch such a reconstruction 
procedure, using the same robust SVD approach described for the 
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Fig. 8. (i) Signal x(t) and its URP for M = 4 and τ = 0.167. (ii) Red solid line: original signal x(t), blue solid line: reconstructed signal x̂(t), green dashed line: reconstruction 
error x̂(t) − x(t) and the MRP for five equidistant levels. (iii) Red solid line: original signal x(t), blue solid line: reconstructed signal x̂(t), green dashed line: reconstruction 
error x̂(t) − x(t) and the RP for just one level. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
reconstruction of signals from URPs subject to disturbances. For-
mally, for given embedding parameters and for L threshold levels 
ε1 < . . . < εL , we introduce the MRP for a signal x(t) as:

MRPX (u, v) =
L∑

�=1

(ε� − ε�−1)�(URPX − ε�) , (19)

where ε0 := 0 < ε1 and εL < max(URPX ). For example, these levels 
may be chosen to be equidistant or such that their correspond-
ing level sets partition the square domain [0, 1] × [0, 1] of the 
URP into L + 1 subsets of equal area. Note that MRPX (u, v) =
ε1 (1 − RPX (u, v)) for the special case with L = 1. Also note that 
an MRP includes the combined information of all the RPs corre-
sponding to the L threshold levels ε1, . . . , εL .

To investigate the information content of an MRP we have car-
ried out two simulation experiments which start from a known 
zero mean periodic signal x(t) on [0, 1]. Next we select embed-
ding parameters M and τ , for which we determine the unthresh-
olded recurrence plot URPX . Then, for a given set of levels ε�, � ∈
{1, . . . , L} we compute MRPX from (19). As described in the previ-
ous section we reconstruct a signal x̂(t) from ÛRPX .
In our experiments we consider the signal x(t) = 6 cos(2πt) −
8 sin(2πt) + 2 cos(4πt) − 4 sin(4πt), which consists of 1000 sam-
ples. The corresponding node set is K X = ±{1, 2} with h = 1. 
Its URP is generated for the embedding parameters M = 4 and 
τ = 0.167. For these parameters hMτ = 0.668 /∈ Z, so that G X is 
connected and x(t) is uniquely reconstructible (up to a sign) from 
URPX . The signal x(t) and the unthresholded recurrence plot URPX

are displayed in Fig. 8(i).
(A) For the five equidistant levels ε1, 2ε1, 3ε1, 4ε1, 5ε1 for 

which 6ε1 = 32.983 equals the maximum of the URP, the MRP and 
the reconstructed signal x̂(t) are displayed in Fig. 8(ii) (in blue) 
together with the original signal x(t) (in red) and the mismatch 
between both (in green).

(B) For the level ε1 = 5.568 the RP and the reconstructed signal 
x̂(t) are displayed in Fig. 8(iii) (in blue) together with the original 
signal x(t) (in red) and the mismatch between both (in green). Re-
call that an MRP with one level is related to the corresponding RP 
as MRPX (u, v) = ε1 (1 − RPX (u, v)). This level is chosen such that 
the recurrence rate (RR or REC) does not exceed 10%, see [3]. The 
recurrence rate is an RQA quantity which is defined as the per-
centage of black points in an RP.
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Clearly, the reconstruction x̂(t) of the signal x(t) for five thresh-
olds is better than in the case of only one threshold (or the RP). 
Both experiments show that the information content of the ap-
proximated MRP depends on the number of the thresholds and 
their values.

6. Conclusions and discussion

When recurrence plot analysis is used to investigate properties 
of signals, through time-delay embedding with parameters M and 
τ , it is important to know which information is preserved in RPs. 
For URPs, this question can be answered for signals which have a 
finite Fourier series representation, as worked out in [1] and Sec-
tion 2. However, the fact that information is preserved does not 
mean that it is easily recovered: the inverse problem of computing 
x(t) from its URP may be ill-conditioned, for instance depending 
on the choice of embedding parameters. Likewise, for binary RPs, 
which are obtained from URPs by a simple discretization step, we 
have that they may also be viewed as the result of a (severe) 
disturbance applied to the URP. In this paper we have chosen to 
investigate these issues be studying how well signals can be re-
covered from disturbed URPs.

In Section 2 we presented a new and explicit characterization 
of connectedness of G X and, in the course of deriving it, we estab-
lished that the diameter of a connected graph G X always equals 1
or 2. This new characterization shows for each choice of M pre-
cisely which values of τ will cause disconnectedness. For such 
values, the URP will not be maximally informative and in choosing 
the embedding parameters we typically want to avoid them. We 
illustrated these results with a couple of examples.

In Section 3 it was found that the 2D-Fourier series of URP2
X

consists of coefficients with a special structure that can be ex-
ploited to compute x(t). The coefficients are used to calculate a 
square matrix Ĩ X which is the Hadamard product Ĩ X = W � T of 
a rank-one matrix W (determined by the non-zero Fourier coeffi-
cients of x(t) only) and a known matrix T (depending entirely on 
M and τ ). The matrix T allows for the determination of connect-
edness of G X . If connectedness holds, then, using the property that 
the diameter is at most 2, T can be factored from Ĩ X to obtain W . 
With singular value decomposition, the Fourier coefficients of the 
signal x(t) can then be computed from W in a numerically robust 
way.

In Section 4 we discussed two simulation experiments to 
demonstrate this procedure. We briefly analyzed robustness against 
noise of the reconstruction procedure, by adding noise to a URP 
before reconstruction. We also investigated sensitivity of the re-
construction near values of τ for which disconnectedness of G X

occurs.
In Section 5 we performed experiments to study the impact of 

truncation on URPs, such as applied when computing RPs. There 
we introduced the ‘multi-level recurrence plot’ (MRP) and we il-
lustrated that an MRP with only a limited number of discretization 
thresholds can sometimes preserve significantly more information 
than an RP, while still achieving a high compression rate compared 
to a URP. In [11] we have shown that knowing the URP along a fi-
nite number of well-chosen different curves, one of them being a 
contour line such as used in constructing an RP, is in general suf-
ficient to determine the URP completely. Intuitively it is likely that 
a sufficient number of threshold levels provides contours with a 
similar property (i.e., preserving the information on the signal x(t)
up to a sign), motivating the future use of MRPs. When curves are 
restricted to be diagonals, such as used for analysis in RQA, we 
expect similar properties to hold as indicated in [11].

Regarding MRPs, a couple of research questions remain open 
for future investigation. (1) How to select an adequate number of 
thresholds; and also: which threshold values should be chosen to 
construct MRPs with maximal information content? (2) To quantify 
patterns that occur in RPs, several measures have been proposed 
in the literature, see e.g. [3], that are currently used in RQA. For 
MRPs an important question concerns the generalization of these 
measures for use with MRPs.

Appendix A. Proofs

Proof of Theorem 2.1. (A) Suppose τ /∈ Q. Then for all (p, q) ∈ P
we have (p − q)Mτ /∈ Z so p and q are adjacent. Hence G X is a 
complete graph (i.e.: connected with diam(G X ) = 1). See also [1, 
Corollary 3.5, part (1)].

(B) Suppose τ ∈ Q. Then it can be uniquely written as τ = n
d

with (n, d) a co-prime pair of positive integers. (Here d > 1 and 
n ∈ {1, . . . , d − 1} because τ ∈ (0, 1).) For Mτ there also exists a 
unique representation Mτ = m

�
with (m, �) co-prime. Now τ can 

be written as

τ = m

�M
.

Then any pair of nodes (p, q) ∈ P is non-adjacent iff [ (p−q)n
d /∈ Z] ∧

[ (p−q)m
�

∈ Z], which equivalently holds iff [ (p−q)
d /∈ Z] ∧ [ (p−q)

�
∈ Z]

because of co-primeness of (n, d) and of (m, �).
(B.1) Suppose that � does not divide h. Then there exists (u, v) ∈ P

for which u − v is not divisible by �. (If for all (u, v) ∈ P it held 
that � divides u − v , then � divided h because of the definition of 
h, contradicting our assumption.) Should � divide both p − u and 
p − v then it also divides their difference u − v , which it does not. 
Hence there is a node r for which p − r is not divisible by � (at 
least one of the two nodes u and v will do), implying that p and 
r are adjacent. If (p, q) ∈ P is a non-adjacent pair of nodes, then 
� divides p − q. In this case q − r = (p − r) − (p − q) is again not 
divisible by �, so that q and r are adjacent. Therefore there is a 
path of length 2 from p to q via r.

It follows that any two nodes are either adjacent or con-
nected by a path of length 2. I.e., the graph G X is connected and 
diam(G X ) ∈ {1, 2}.

(B.2) Suppose that � divides h. Then denote f = h
�

, whence h = f �
and f ∈ N. Also, let m1 and M1 be the unique positive inte-
gers such that m

M = m1
M1

with (m1, M1) co-prime. Note that τ =
m
�M = m1

�M1
with (m1, �) and (m1, M1) both co-prime, whence also 

(m1, �M1) is co-prime. Therefore n = m1 and d = �M1.
Because of the definition of h, for every (p, q) ∈ P there exists 

a positive integer k such that p − q = kh. Now p and q are adja-
cent iff [ khm1

�M1
∈ Z] ∨[ khm

�
/∈ Z]. The latter of these two conditions is 

never satisfied since khm
�

= kf m, which is integer. Therefore adja-

cency holds iff kf m1
M1

∈ Z, which holds iff kf
M1

∈ Z (because (m1, M1)

is co-prime).
(B.2.1) Suppose that M1 divides f . Then all (p, q) ∈ P are adjacent 

and G X is a complete graph.
(B.2.2) Suppose that M1 does not divide f . Then we may write 

f
M1

= g
M2

in a unique way with (g, M2) co-prime. This also implies 
that M2 > 1. Then kf

M1
= kg

M2
is integer iff k

M2
is integer, i.e., iff p−q

hM2
is integer. So it then holds that p and q are adjacent iff p and q
belong to the same equivalence class modulo hM2. If there were 
only one such equivalence class in K X , then hM2 was a divisor 
of every value p − q in D . Since M2 > 1, this would contradict 
the definition of h. This shows that in K X there are at least two 
different equivalence classes modulo hM2.

Hence, in this case the graph G X is disconnected. The num-
ber of different connected components of G X equals the number 
of (non-empty) equivalence classes of K X modulo hM2 and ev-
ery connected component constitutes a complete subgraph of G X . 
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Note that p−q
hM2

is integer iff p−q
d is integer, since the latter expres-

sion is the condition from which the former is derived for the case 
(B.2.2). Therefore the number of different connected components 
is also equal to the number of (non-empty) equivalence classes of 
K X modulo d, in agreement with [1, Corollary 3.5, part (5)].

(C) The cases (A), (B.1), (B.2.1) and (B.2.2) are mutually exclusive 
and cover all possible situations. G X is connected for the cases (A), 
(B.1) and (B.2.1), with diam(G X ) ∈ {1, 2}, which shows statement 
(2). Also, G X is disconnected if and only if case (B.2.2) applies, 
i.e.: τ is rational and � divides h and M1 does not divide f . Then 
hMτ = hm

�
= f m ∈ Z which shows that τ is an integer multiple of 

1
hM . Also hτ = f m

M = f m1
M1

in which (m1, M1) is co-prime and M1

does not divide f . Hence hτ /∈ Z which shows that τ is not an 
integer multiple of 1

h .

Conversely, if τ is an integer multiple of 1
hM , then it is rational 

and there exists a positive integer n1 such that τ = n1
hM , whence 

Mτ = n1
h . The definition of m and � is such that n1

h = m
�

with (m, �)
co-prime. This shows that � divides h. With h = f � we also have 
n1 = f m. Now τ = f m

hM = f m1
hM1

with (m1, M1) co-prime. Then such 
τ is not an integer multiple of 1

h iff f m1
M1

is not integer, iff M1 does 
not divide f . Thus case (B.2.2) applies and G X is disconnected. 
This shows that G X is disconnected iff [hMτ ∈ Z] ∧[hτ /∈ Z], which 
proves statement (1). �
Proof of Proposition 3.1. Using the fact that X(t) is real, it fol-
lows that URP2

X (u, v) = 〈X(u) − X(v), X(u) − X(v)〉 = I X (u, u) −
2I X (u, v) + I X (v, v). The 2D-Fourier coefficients of the term 
−2I X (u, v) follow from Eqn. (6). Note that I X,p,0 = I X,0,q = 0 for 
all p and q, because c0 = 0.

Also, I X (u, u) = ∑
p∈Z

∑
q∈Z cpcqe2π(p−q)ui〈T p, Tq〉, in which 

〈T p, Tq〉 = 〈T p−q, T0〉. Changing the summation variables from 
(p, q) to (r, n) = (p − q, p), it follows that I X (u, u) =∑

r∈Z
(∑

n∈Z cncn−r
)

e2πrui〈Tr, T0〉. Hence, its 2D-Fourier coeffi-
cients only contribute to C X,r,0, by the amount
〈Tr, T0〉 ∑n∈Z cncn−r . The contribution of the term I X (v, v) is com-
puted likewise to involve only the coefficients C X,0,r by similar 
amounts.

To obtain the given expressions for C X,p,q in terms of the coeffi-
cients I X,p,q , note that 

∑
n∈Z I X,p−n,n = ∑

n∈Z cp−nc−n〈T p−n+n, T0〉. 
With ck = c−k for a real signal, the expression for the case p �= 0
and q = 0 follows. The other cases are obtained likewise.

Finally it is remarked that the coefficients C X,p,q are well-
defined, because for every r ∈ Z the quantity 

∑
n∈Z cncn−r con-

verges, since we are dealing with L2-functions on [0, 1). �
Proof of Proposition 3.2. (1) Clearly, J equals its own inverse as 
a result of its definition. Since every permutation is orthogonal, 
J−1 = J T .

(2) Because c−k = ck , the definition of J is such that J w = w . 
Then w = J w by part (1).

(3) Let x be an eigenvector of W with eigenvalue λ, whence 
w w∗x = λx. Using parts (1) and (2) it holds that J w w∗ J J x = λ J x
and equivalently w w∗ J x = λ J x. Because every eigenvalue of a Her-
mitian matrix is real, λ is real. Complex conjugation therefore 
gives: w w∗ J x = λ J x. Finally, note that J ( J x) = x. �
Proof of Proposition 3.3. Because W is Hermitian and positive 
semi-definite and nonzero (hence of rank one), λ is the unique 
eigenvalue of W which is real and positive. The vector u is a cor-
responding normalized eigenvector of W , which determined up to 
a unimodular scalar factor. The vector w is also an eigenvector, 
with eigenvalue w∗ w . Hence λ = w∗w and w = α

√
λu for some 

unimodular scalar α.
Now: w = J w gives α
√

λu = α
√

λ J u, which is equivalent to 
α2u = J u, whence α2 = u∗ J u. This shows that α = ± 

(
u∗ J u

)1/2

which fixes α and w up to a sign ±1, as claimed. �
Proof of Theorem 3.4. Note that ( Î X )k,k = M|ck|2. Since the indices 
k are restricted to Kx , this is strictly positive and diag( Î X )−1 exists. 
The entries of Î X diag( Î X )−1 Î X are given by:

( Î X diag( Î X )−1 Î X )p,q =
∑

k∈K X

( Î X )p,k( Î X )k,q

( Î X )k,k

=
∑

k∈K X

cpck S p,kckcq Sk,q

ckck Sk,k

= cpcq

M

∑
k∈K X

S p,k Sk,q.

Here cpcq = W p,q and 
∑

k∈K X
S p,k Sk,q = (S2)p,q . This proves 

Eqn. (15).
Finally, note that the entry (S2)p,q = ∑

k∈K X
S p,k Sk,q is com-

posed of a sum of products S p,k Sk,q = |〈T p, Tk〉〈Tk, Tq〉|. Each such 
term is non-zero if and only if in the graph G X there is a path 
of length 2 from node p to node q via node k, and by construc-
tion the term then is positive. Therefore, (S2)p,q > 0 if and only if 
there is a path of length 2 from p to q. In this formulation also 
adjacency of any node p to itself is included, which is supported 
by 〈T p, T p〉 = M > 0. Therefore, all the entries of S2 are strictly 
positive if and only if the diameter of G X is either 1 or 2. In The-
orem 2.1 this was proven to hold for G X if it is connected. �
Proof of Proposition 3.5. First note that the given bound δ is ≤ 1
for all d ≥ 2, with equality for d = 2, 3, 4. If (p − q)τ ∈ Z then 
S p,q = M and so the claim of part (1) holds. For S p,q = 0 we equiv-
alently have that (p − q)Mτ is integer while (p − q)τ is not; this 
case does not need to be addressed. It follows that we must still 
prove the claim of part (1) for (p − q)Mτ not being integer. The 
expression for S p,q only depends on k = p − q and with τ = n

d it 
takes the form

f (k) = | sin(π Mkn
d )|

| sin(πkn
d )| ,

which we aim to analyze for integer k such that both the numera-
tor and the denominator of f (k) are nonzero.

Clearly a lower bound for f (k) is obtained when the numerator 
is as small as possible and the denominator as large as possible. 
Writing Mkn = �d + r with � integer and r ∈ 0,1, . . . ,d − 1, shows 
that r = 0 is excluded to avoid a zero value for the numerator. Then 
a lower bound for the numerator is obtained for r = 1 (as well as 
for r = d − 1). For the denominator an obvious upper bound is 
given by 1. Together this gives the lower bound

f (k) ≥ sin(
π

d
).

To refine this bound, first note that the upper bound 1 on the de-
nominator is achieved if and only if kn

d is an integer plus a half. 
Then the numerator equals | sin( π M

2 )| which is either 0 or 1. As 
we excluded zero values for the numerator from consideration, we 
find that in this case f (k) = 1. Note that for d = 2 this case occurs 
for all k considered and the bound δ given in part (1) applies.

If the upper bound 1 on the denominator is not achieved, then 
a new upper bound is given for k such that kn

d is as close as pos-
sible to an integer plus a half. If d is odd, the difference is at least
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1
2d . Then the denominator has the upper bound sin( π

2 − π
2d ) =

cos( π
2d ), for which:

f (k) ≥ sin(π
d )

cos( π
2d )

= 2 sin(
π

2d
),

as claimed in part (1). If d is even, hence d ≥ 4, the difference is at 
least 1

d . Now the denominator has the upper bound sin( π
2 − π

d ) =
cos( π

d ), for which:

f (k) ≥ sin(π
d )

cos(π
d )

= tan(
π

d
),

as claimed in part (1) too.
For part (2), observe that (S2)p,q = ∑

k∈K X
S p,k Sk,q . In view of 

Theorem 2.1 and because each term in this sum is nonzero if and 
only if there is a path of length 2 from p to q via k, together with 
the bound of part (1) the claim of part (2) follows. �
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