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Vitamin K, well known for its role in coagulation,
encompasses 2 major subgroups: vitamin K1 is exclusively
synthesized by plants, whereas vitamin K2 mostly
originates from bacterial synthesis. Vitamin K serves as a
cofactor for the enzyme g-glutamyl carboxylase, which
carboxylates and thereby activates various vitamin K–
dependent proteins. Several vitamin K–dependent proteins
are synthesized in bone, but the role of vitamin K for bone
health in chronic kidney disease patients, in particular the
prevention of osteoporosis, is still not firmly established.
Herein, we focus on another prominent action of vitamin K,
in particular vitamin K2 (namely, the activation of matrix g-
carboxyglutamic acid protein, the most potent inhibitor of
cardiovascular calcifications). Multiple observational
studies link relative vitamin K deficiency or low intake to
cardiovascular calcification progress, morbidity, and
mortality. Patients with advanced chronic kidney disease
are particularly vitamin K deficient, in part because of
dietary restrictions but possibly also due to impaired
endogenous recycling of vitamin K. At the same time, this
population is characterized by markedly accelerated
cardiovascular calcifications and mortality. High-dose
dietary supplementation with vitamin K2, in particular the
most potent form, menaquinone 7, can potently reduce
circulating levels of dephosphorylated uncarboxylated (i.e.,
inactive matrix g-carboxyglutamic acid protein) in patients
with end-stage kidney disease. However, despite this
compelling data basis, several randomized controlled trials
with high-dose menaquinone 7 supplements in patients
with advanced chronic kidney disease have failed to
confirm cardiovascular benefits. Herein, we discuss
potential reasons and solutions for this.
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V itamin K is well known for its role in coagulation and
the therapeutic interference with it in patients
requiring systemic anticoagulation. Less well known

are the roles of vitamin K in cardiovascular disease, in
particular calcification. In the present review, we discuss the
physiology of the vitamin K system and its disturbances in
patients with chronic kidney disease (CKD) as well as
emerging intervention studies targeting the cardiovascular
system in CKD.

Vitamin K sources and subforms
Vitamin K comprises different entities of naphthoquinone
derivatives with a variably long phytylic side chain. It was first
described in 1935 by the Danish noble laureate, Henrik Dam,
as an essential vitamin for blood coagulation (“Koagulation”).
The 2 major physiologic forms are vitamin K1 (phylloqui-
none) and vitamin K2 species (menaquinones [MKs] 4–13)
(Figure 11).

Vitamin K1 is exclusively synthesized by plants, where it
serves as an electron carrier inside the chloroplastic membrane
in photosystem I. Photosystem I is a complex of proteins and
pigments (carotenes and chlorophyll) and can be described as a
light-driven electron pump,2 where the initial light reaction of
photosynthesis takes place. Thus, green, leafy vegetables are the
mainstay of nutritional K1 supply.3 Foods with the highest
phylloquinone contents are kale, parsley, spinach, leek, and
purslane4 (Table 15–8). Vitamin K1 levels are higher in fresh
frozen compared with canned food, but the highest contents
per gram are detected in dried products.4 Overall, all natural
vitamin K forms are stable to heat, and cooking losses are
negligible. Steaming or microwaving K-rich food items can
even increase the cellular vitamin K release.9 In contrast,
vitamin K is highly sensitive to daylight. For example, exposure
of rapeseed or safflower oil to daylight decreased its vitamin K1
content by z95% within 2 days of light exposure.10

Vitamin K2 mostly originates from bacterial synthesis.
One synthesis pathway occurs in lactic acid bacteria, where
menaquinones are used for electron transport.5,11 Lacto-
coccus lactis strains can synthesize MK5 to MK912 and are
used in food manufacturing to ferment and preserve dairies,
such as yogurt or cheese, as well as vegetables (e.g., sauer-
kraut). In humans, the most relevant forms are MK4 and
MK7. Beyond bacterial synthesis, MK4 can also be synthe-
sized endogenously from K1 or menadione by the enzyme
1023
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Figure 1 | Exogenous and endogenous sources of vitamin K1 and vitamin K2. Vitamin K1 is present in green leafy vegetables, whereas
vitamin K2 can be found in various fermented foods. Vitamin K2 subform menaquinone (MK) 4 can be endogenously synthesized from vitamin
K1 by the enzyme UbiA prenyltransferase domain-containing protein 1 (UBIAD1). However, next to vitamin K1, also vitamin K2 derivatives,
such as MK4 and MK7, can be converted into menadione to be used by UBIAD1 for conversion to MK4.1 Indeed, an increase in menadione after
vitamin K intake can be detected in urine. In addition, MK5 to MK13 can be synthesized by the microbiome (e.g., by Lactococcus species).
Whether the latter contributes to the pool, due to low amount of bile acids inside the colon, remains uncertain. Images are from https://
pixabay.com/, with special thanks to Lipefontes, AStoKo, Shutterbug75, and Hui Wang.

Table 1 | Selected vitamin K1 and vitamin K2 sources in
human diets

Vitamin K1 Amount, mg/100 g Vitamin K2 Amount, mg/100 g

Vegetables Vegetables
Kale 713–856 Natto 1096–10,985
Parsley 548 Sauerkraut 5–55
Spinach 380–471 Dairy —

Chive 380 Gouda 473–644
Purslane 381–394 Camembert 681
Broccoli 156–180 Emmentaler 433
Cabbage 80–154 Cheddar 235
Celery 40–41 Brie 125
Leek 47–49 Yogurt 1.0–1.2
Natto 35 Meat —

Sauerkraut 25 Liver (beef) 112
Dairy Beef 18.9
Emmentaler 3 Minced meat 9-76
Yogurt 0–0.4 Chicken 9–101
Oils Fish —

Olive oil 54–55 Eel 3–631
Rainbow trout 3
Egg 20

Data are from several sources.5–8

r ev i ew N Kaesler et al.: Vitamin K and cardiovascular disease in CKD patients
UbiA prenyltransferase domain-containing protein 1
(UBIAD1; Figure 2).13 However, next to K1, also vitamin K2
derivatives, such as MK4 itself and MK7, can be used as
source of MK4.1 The intermediate product in this conversion
is menadione, which might serve as a substrate for UBIAD1.1

This observation led to the conclusion that vitamin K is
converted in the intestine to menadione and that the pre-
nylation to MK4 takes place in tissues expressing UBIAD1.

So far, all major national nutritional databases lack sys-
tematic information on vitamin K2 contents. The food with
by far the highest content of vitamin K2 is natto, made by
fermenting soy beans (vitamin K2 content, >1000 mg/100 g,
mostly MK7).6 Natto is commonly consumed in Japan,
whereas in Western diets, dairy products are the predominant
source of vitamin K2.5 Specific sources are French cheese,
hard cheese, or minced meat (Table 1).6,7 The contribution of
K2 to the total vitamin K intake is estimated to be z25%.14

A third form, vitamin K3 (menadione), lacks the phytylic
side chain and is employed in animal nutrition. It remains
mainly synthetic but was also shown to be an intermediate in
the endogenous conversion from K1 to MK4 by the enzyme
UBIAD1.15 Reportedly, vitamin K3 exerts anti-cancer prop-
erties via cytostatic effects.16,17

Vitamin K recycling
Vitamin K serves as a cofactor for the enzyme g-glutamyl
carboxylase (GGCX), which catalyzes conversion of the Glu
residue of vitamin K–dependent proteins into g-carbox-
yglutamic acid (Gla; Figure 2). This process is driven by the
oxidation of vitamin K–hydroquinone to vitamin K–epoxide
in the vitamin K cycle, generating the possibility to
1024
introduce an extra carboxyl group at the g position of the
glutamate residue, thereby adding an extra negative charge to
the protein. Vitamin K–oxidoreductase (VKOR) then con-
verts vitamin K–epoxide to vitamin K and back to vitamin K–
hydroquinone, generating a recycling process.18 Vitamin K
antagonists (VKAs) inhibit VKOR and thereby the recycling
of vitamin K, resulting in a drug-induced vitamin K defi-
ciency.19 Recent studies have also suggested a role for vitamin
K as an antioxidant. This noncanonical function of vitamin K
Kidney International (2021) 100, 1023–1036
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Figure 2 | Vitamin K metabolism and recycling. A vitamin K–
dependent protein, such as matrix g-carboxyglutamic acid protein
(MGP), is being g-glutamyl carboxylated by the g-glutamyl-
carboxylase (GGCX). By introducing a second carboxyl group (COO–)
at the g c atom, MGP becomes a potent calcium chelator. The
reduced form of vitamin K (K-H2, here shown by MK4-H2) serves as a
cofactor for the GGCX and gets epoxidized (MK4 > 0). In the vitamin
K cycle, the epoxidized form gets stepwise recycled by 2 enzymes,
vitamin K epoxide reductase complex subunit 1 (VKORC1) and
reduced nicotinamide adenine dinucleotide phosphate
dehydrogenase–quinone 1 (NQO1). MK4 can be derived from
exogenous K1 by the enzyme UbiaA prenyltransferase domain-
containing protein 1 (UBIAD1). For the synthesis, UBIAD1 utilizes
geranylgeranyl pyrophosphate (GGPP). GGPP itself is derived from
mevalonate, an intermediate of the cholesterol synthesis pathway,
with hydroxyl-methyl-glutaryl-coenzyme A reductase (HMGCR) as a
key enzyme. Thus, HMGCR and UBIAD1 are functionally connected,
but they also do physically bind to each other. HMG-CoA, 3-hydroxy-
3-methyl-glutaryl–coenzyme A.
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relates to the oxidation-reduction potential of vitamin K and
scavenging intracellular free radicals.20 Moreover, we showed
that the CKD environment impacts on the activity of GGCX
but not the activity of vitamin K epoxide reductase complex
subunit 1 (VKORC1).21 This led to increased vascular calci-
fication in an animal model of CKD.

Vitamin K metabolism
Vitamin K needs to be absorbed from food to fulfill its un-
equivocal, nonredundant role as cofactor in the carboxylation
of vitamin K–dependent proteins. Vitamin K1 is tightly
bound to the thylakoid membrane (i.e., parts of the chloro-
plasts) of leafy green vegetables, thereby limiting its avail-
ability for absorption. Ingestion of vitamin K2 results in
higher circulating vitamin levels, compared with K1.6 Because
all vitamin K isoforms are fat soluble, they are packaged into
chylomicrons during absorption and taken up by enterocytes
in the small intestine. Chylomicrons are transported via the
lymph, after which they are taken up in the circulation. These
chylomicrons are then transformed to chylomicron remnants
Kidney International (2021) 100, 1023–1036
in the capillaries by lipoprotein lipase before being taken up
by the liver.22 Radiolabeled phylloquinone is thus removed
from the circulation within hours.23 Vitamin K1 is prefer-
entially retained in the liver to support carboxylation of
clotting factors. In contrast, vitamin K2, in particular long-
chain menaquinones, such as MK7, is redistributed to the
circulation and is equally available for extrahepatic tissues,
including bone and vasculature.24

Both vitamin K1 and K2 are taken up first by the liver via
the apolipoprotein E receptor. Long-chain menaquinones, such
as MK7, are taken up most efficiently.24,25 This was shown in
healthy volunteers treated with vitamin K antagonist aceno-
coumerol and supplemented with either K1 or MK7.25,26 MK7
was shown to interact with anticoagulation several fold
stronger than K1, indicating that the efficient uptake of MK7
corresponds with the greater bioactivity. Vitamin K1 and MK4
were readily cleared from the circulation within 2 hours after
ingestion, followed by MK7 within 4 hours and MK9 within 7
hours. However, postprandial serum concentrations of long-
chain menaquinones were some 10-fold higher than K1.24

Thus, compared with vitamin K1, long-chain menaquinones
are much longer available for extrahepatic tissues, because of
their presence in circulating lipoprotein particles.25

Intestinal microbiome
The intestinal microflora of humans produces large amounts of
long-chain menaquinones, which theoretically could serve as a
source of vitamin K, in particular K2. However, by far the largest
reservoir of intestinal bacteria is confined to the large intestine.
Because the absorption of bile salts and fat-soluble compounds
takes place in the duodenum and is completed in the ileum, the
contribution of menaquinones produced in the colon to human
nutritional needs is still debated. Experiments in vitamin K–
deficient rats given vitamin K via either the oral or the colo-
rectal route showed that the bioavailability of colonic vitamin K is
z50-fold lower than that of oral vitamin K.27 Moreover, feeding
both conventionally housed rats or rats kept under germ-free
conditions a vitamin K–deficient diet, vitamin K deficiency
became prevalent under both conditions within 3 days, demon-
strating that menaquinones synthesized in the large intestine are
not utilized sufficiently to prevent vitamin K deficiency.28 Thus, it
seems that relevant nutritional usage of endogenously produced
vitamin K2 is confined to those species that exhibit coprophagia
(i.e., rodents or monkeys).

In CKD, the colon plays an important role in the pro-
duction of uremic toxins. CKD-related gut dysbiosis may also
lead to decreased microbial synthesis of vitamin K.29 Because
vitamin K is produced by microbiota to support energy
production via ATP generation, and support gut microbiota
growth,30 the decreased colonic vitamin K synthesis in CKD
can further dysregulate gut microbiota. Drug and vitamin K
metabolism interactions in CKD are discussed below.

Vitamin K functions
Coagulation. In the liver, vitamin K functions as a

cofactor for vitamin K–dependent coagulation factors,
1025
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Figure 3 | Processes involved in vascular calcification.
Calcification is an active process, resulting from an imbalance of anti-
calcific factors (fetuin, klotho, osteopontin, pyrophosphate,
magnesium, carbonic anhydrase, bone morphogenic protein [BMP]-
7, vitamin K, and carboxylated matrix g-carboxyglutamic acid
protein [cMGP]) and procalcific factors (parathyroid hormone [PTH],
alkaline phosphatase, oxidative stress, inflammation, diabetes, lipids,
calcium [Ca2þ], phosphate [PO4

–], and BMP-2 and BMP-4). Fetuin (at
tissue sites), carbonic anhydrase, pyrophosphate, osteopontin, and
cMGP directly capture calcium phosphate crystals and prevent
release and precipitation of hydroxyapatite. Klotho, BMP-7, and
magnesium target PO4

– by stimulating its excretion or acting as
binding partners. Crystals, elastin breaks, and apoptotic bodies, as
wells as matrix vesicles, all activated by the crystals themselves,
serve as a nidus for more crystals, contributing to vascular smooth
muscle cell (VSMC) death.
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including 4 vitamin K–dependent plasma procoagulants
(“1972”; i.e., factors II, VII, IX, and X) and 3 anticoagulants
(proteins C, S, and Z). After carboxylation in the liver, factors
II, VII, IX, and X are essential in the formation of a fibrin clot.
Circulating as inactive (or zymogen) forms of serine pro-
teases, their biological activity depends on the ability to bind
to negatively charged phospholipid surfaces. Cleavage of these
zymogens bound to these surfaces yields the active protease
clotting factors. The carboxylation of these vitamin K–
dependent coagulation factors is necessary as the resulting
Gla residues provide an efficient chelating site for calcium
ions that enables phospholipid surface binding.31 The intri-
cate control of coagulation is illustrated by the fact that
protein C, once activated, acts as an anticoagulant by specif-
ically degrading phospholipid-bound, activated factors V and
VIII in the presence of calcium. This anticoagulant activity of
activated protein C, in turn, is dependent on protein S that
acts as a synergistic cofactor by enhancing the binding of
activated protein C to negatively charged phospholipids. The
consequence of vitamin K deficiency for hemostasis is an
1026
inability to synthesize active, carboxylated molecules of fac-
tors II, VII, IX, and X, resulting in a hypocoagulable state,
which promotes bleeding.

Bone. Several vitamin K–dependent proteins are synthe-
sized in bone. Most extensively studied is osteocalcin, a small
protein of 49 amino acid residues with a central domain
comprising 3 Gla residues. Osteocalcin is a highly abundant
noncollagenous protein of bone extracellular matrix and
synthesized exclusively by osteoblasts and odontoblasts. It has
a high-affinity binding to hydroxyapatite mineral in bone32

and appears to be involved in the regulation of bone
remodeling and mineralization.33 In Japan, vitamin K2 has
been licensed for the treatment of osteoporosis since 1995,
although so far there is insufficient evidence to recommend
the routine use of supplemental vitamin K to prevent osteo-
porosis and fractures in postmenopausal women.34,35

Vessels. Matrix Gla protein (MGP) is a vitamin K–
dependent protein, mainly synthesized by vascular smooth
muscle cells, valvular interstitial cells, and chondrocytes.36,37

MGP is widely expressed, yet predominantly accumulates in
calcified vascular tissue. The importance of carboxylated
MGP for cardiovascular health has been recognized for de-
cades.38 Although originally found in bone, MGP-deficient
mice exhibit no prominent bone phenotype, but die within 2
months after birth as a consequence of massively calcified
vessels, leading to hemorrhages due to, for example, aortic
rupture.39 Shortly thereafter, the role of vitamin K as a
cofactor to activate MGP was shown by inhibition of MGP
function using warfarin, a vitamin K antagonist.40 The role of
the Gla domain in inhibiting vascular calcification was
revealed by mutagenesis of the protein-bound glutamate
residues, resulting in nonfunctional MGP.41 Although the
precise mode of action of MGP has not been unraveled,
functions seem to include direct inhibition of calcium crystal
growth and blocking of bone morphogenic protein-2 and
bone morphogenic protein-4 binding to the bone morpho-
genic protein receptor42 (Figure 3).

Genetics. The enzymes involved in vitamin K–dependent
carboxylation, hence activation, are GGCX and VKORC1.
Mutations and/or polymorphisms affecting the activity of
either enzyme can alter carboxylation, usually resulting in
bleeding disorders, but they may also affect vascular calcifi-
cation43 via reduced activation of MGP. Genetic screenings
identified many naturally occurring mutations in GGCX of
patients with vitamin K–related disorders.44 Nonbleeding
phenotypes of these GGCX mutations lead to cardiac,
dermatologic, ophthalmologic, and osseous symptoms.44 In
both genetic and CKD-associated reduced activity of GGCX,
dietary vitamin K supplementation can rescue the carboxyl-
ation of vitamin K–dependent proteins to some extent.21,45

Warfarin inhibits recycling of vitamin K by reducing the
activity of VKORC1. The presence of particular poly-
morphisms in the VKORC1 gene is also associated with
reduced enzyme expression and activity.46 Several clinical
studies have linked these polymorphisms to an increased risk
of vascular calcification47 or cardiovascular disease.48
Kidney International (2021) 100, 1023–1036



Table 2 | Assessment of vitamin K status

Methods Normal range Remarks References

Food Frequency
Questionaire

70–200 mg intake per
day

Includes K1 only 49

51

52

K1 and K2 53

Biomarkers
Vitamin K1 in serum >0.15 ng/ml Highly dependent on short-term supply 54

International normalized
ratio

0.8–1.1 Target of vitamin K antagonists but also affected by, for example, hepatic
dysfunction

49

55

PIVKA-II in serum #2 mg/L Interassay variability 54

Osteocalcin in serum
ucOCN/tOCN
ucOCN/cOCN <20% Experimental 52

dp-ucMGP in plasma <500 pmol/L 56

cOCN, carboxylated osteocalcin; dp-ucMGP, dephosphorylated-uncarboxylated matrix g-carboxyglutamic acid protein; PIVKA-II, proteins induced by vitamin K absence or
antagonism (factor II); tOCN, total osteocalcin; ucOCN, uncarboxylated osteocalcin.
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Vitamin K status: biomarkers
Dietary assessments can provide an indirect tool to monitor
nutrient supply (e.g., via validated food frequency question-
naires), but this method is highly time-consuming and re-
quires expertise. Vitamin K1 status can also be assessed using
functional coagulation tests, such as the international
normalized ratio.49,50 However, such functional tests are not
particularly specific for vitamin K bioavailability. Therefore,
direct measurement of circulating vitamin K levels or, better
even, of vitamin K–dependent proteins is preferred to assess
the vitamin K status, as described below (Table 249,51–56).

Circulating vitamin K levels. Dietary intake or circulating
levels of vitamin K can be used as biomarkers of the vitamin
K supply. Most of circulating vitamin K is in the form of
phylloquinone.6 After a single phylloquinone ingestion,
plasma levels peak 2 to 4 hours later and decrease rapidly
thereafter.57 Thus, circulating vitamin K mainly reflects short-
term dietary supply rather than status, and interpretive errors
arise from recent dietary intake.54 Therefore, measurements
of phylloquinone need to be performed in fasting individuals.
Fasting phylloquinone reference values in healthy adults
exhibit large interindividual variations and range from 0.15 to
1.0 mg/L.58

Vitamin K1 and K2 concentrations can be quantified in
serum or plasma by high-performance liquid chromatog-
raphy coupled with different fluorescence detection units as
well by liquid chromatography/mass spectrometry tech-
niques.59 The Vitamin K External Quality Assurance
Scheme20 monitors the accuracy of vitamin K analyses. For
example, a reliable assay for MK7 in plasma requires 94%
recovery.60 In addition, sensitivity is high, and the methods
mentioned above have lower detection limits, ranging from
0.1 mg/ml to 0.03 ng/ml.61,62 Of note, at present, there is no
international gold standard for determining circulating
vitamin K levels.

Proteins inducedbyvitaminKabsenceorantagonism: factor II. In
states of vitamin K insufficiency or deficiency, uncarboxy-
lated vitamin K–dependent proteins are produced at their
site of synthesis and released into the bloodstream. The
Kidney International (2021) 100, 1023–1036
historical collective term for these uncarboxylated proteins is
PIVKA (proteins induced by vitamin K absence or antago-
nism). More recent terms specify the proteins and uncar-
boxylated species of prothrombin (factor II), for example,
and are therefore named PIVKA-II. PIVKA-II is a biomarker
for hepatic vitamin K status, as prothrombin is exclusively
produced in the liver. The half-life of prothrombin is some
60 hours, and the half-life of PIVKA-II is several days and
not impacted by recent dietary intake. Assays for PIVKA-II
are useful for monitoring subclinical vitamin K defi-
ciency,63 especially in at-risk groups such as young infants64

and CKD patients.8,65 The most sensitive PIVKA-II assays
are enzyme immunoassays with antibodies that recognize
uncarboxylated prothrombin but do not cross-react with the
native, carboxylated prothrombin. A sensitive immunoassay
for PIVKA-II exists that can detect uncarboxylated species of
factor II when its circulating concentration is as low as 0.2%
of total factor II. This threshold is well below the reduction
of z50% in circulating levels of active total factor II that is
needed to trigger a detectable change in the international
normalized ratio.63

Osteocalcin. Osteocalcin is released during bone forma-
tion and resorption and is thus regarded as a marker for bone
turnover. It can be produced as carboxylated, active osteo-
calcin (in case of vitamin K sufficiency) and uncarboxylated
osteocalcin (in case of vitamin K deficiency66). Carboxylated
osteocalcin has a high affinity for calcium ions and aids in
forming a hydroxyapatite lattice preceding mineralization of
bone.67 An increase of total circulating osteocalcin has been
demonstrated in CKD due to parathyroid hormone–related
bone resorption and retention of intact and fragments of
osteocalcin.68 Osteocalcin carboxylation was shown to be
responsive to changes on dietary intake69 and associates with
higher bone mineral content.70 Given the high prevalence of
bone loss in CKD, both uncarboxylated and carboxylated
osteocalcin levels are increased, resulting in a normal ratio.71

Uncarboxylated osteocalcin is not solely a marker of vitamin
K deficiency, but also released during bone resorption.72

Taken together, these CKD-related disturbances render
1027
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Figure 4 | Matrix g-carboxyglutamic acid protein (MGP) is
produced by vascular smooth muscle cells to prevent unwanted
mineralization of the vessel wall. For that function, MGP needs
vitamin K as cofactor to become biologically active. (a) In case of
vitamin K sufficiency, MGP prevents vascular calcification by
producing and releasing carboxylated MGP (cMGP). (b) In case of
vitamin K insufficiency or deficiency, MGP is produced in the
uncarboxylated form, unable to prevent or halt vascular
calcification. In the vessel wall, total uncarboxylated MGP (t-ucMGP)
is accumulating, likely because this fraction binds to hydroxyapatite
via the negatively charged phosphorylation sites in MGP. The
dephosphorylated-uncarboxylated MGP (dp-ucMGP), lacking all
post-translational modification and thus the most inactive form of
MGP, does not have affinity for hydroxyapatite in the vessel wall
and is thus easily released in the circulation. The dp-ucMGP is thus
the fraction that most likely resembles the vitamin K status of the
vessel wall.
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osteocalcin measurements in CKD patients difficult to inter-
pret and thus osteocalcin carboxylation may not be a useful
marker to assess vitamin K status in advanced CKD.73

Matrix Gla protein. The development of conformation-
specific antibodies against MGP has resulted in the detec-
tion and localization of uncarboxylated MGP (ucMGP) versus
carboxylated MGP in vascular tissue.74 Several studies have
demonstrated that ucMGP accumulates in and around
calcified vascular areas, whereas carboxylated MGP is less
abundant in calcified regions. Using these conformation-
specific MGP antibodies as biomarkers for detecting
vascular calcification or extrahepatic vitamin K deficiency is
an attractive possibility.65 Circulating MGP reflects what is
spilled over from the vasculature into the blood stream,
which, in turn, depends on MGP synthesis, MGP activity, and
binding of MGP to calcified vascular areas. Using antibodies
against different epitopes of MGP, significantly lower serum
total ucMGP levels were detected in dialysis patients
compared with healthy controls.75 Moreover, total ucMGP
levels were inversely associated with aortic stiffness, suggest-
ing that low ucMGP levels reflect the extent of vascular
calcification.75 The development of an assay for
dephosphorylated-uncarboxylated MGP (dp-ucMGP), a
biomarker for vitamin K bioavailability of the vasculature,
was first described in patients with CKD.76 Plasma dp-
ucMGP increased progressively with progression of CKD
and was associated with the severity of aortic calcification.77

Higher dp-ucMGP was also associated with higher all-cause
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and cardiovascular mortality in a Flemish general popula-
tion78,79 as well in patients with coronary heart disease.80

Moreover, both dp-ucMGP and dephosphorylated carboxyl-
ated MGP may serve as predictors of mortality in dialysis
patients.8,76 Today, dp-ucMGP is most often used to measure
vascular vitamin K bioavailability in CKD68 (Figure 4).

Besides CKD, dp-ucMGP concentrations in plasma are
also increased in patients with diabetes,81 in patients with
chronic obstructive pulmonary disease,82 and in hospitalized
coronavirus disease 2019 (COVID-19) patients.83

Vitamin K status
Status in healthy persons. Reports on vitamin K ingestion

mostly focus on vitamin K1 and range from 29 to 398 mg
average daily intake.84 The average American aged $55 years
consumes 80 to 210 mg of vitamin K1 per day, markedly
exceeding that of younger Americans (60–110 mg/d), which
seem to relate to a higher green leafy vegetable consumption
in older persons.85,86 In a Norwegian prospective cohort
study, the average intake of vitamin K1 varied widely, and the
median daily intake was 48 mg for K1 and 7 mg for K2. Intake
of both subforms was higher in women, and higher K2
consumption appeared to mitigate the risk for coronary heart
disease.87 A better vitamin K status was also detected in
Chinese women compared with men, as evidenced by lower
PIVKA-II levels.88 Above the age of 40 years, dp-ucMGP
plasma levels increased gradually and MK7 supplementation
was more effective in decreasing dp-ucMGP the more pro-
nounced the vitamin K insufficiency.89

Even in healthy individuals, vitamin K–dependent proteins
are not fully carboxylated,90 and subclinical vitamin K defi-
ciency can be present despite normal blood coagulation pa-
rameters.91 A high prevalence of vitamin K deficiency occurs
in newborns and during breast-fed early infancy. Vitamin K
supplementation is part of standard care to support coagu-
lation in the newborn to prevent vitamin K deficiency
bleeding. Other studies show a high prevalence of low vitamin
K status in hospitalized patients, particularly in intensive care
patients.92

Early observational studies revealed that patients with
previous femoral neck or spinal fractures had low circulating
vitamin K levels.93,94 More recently, a prospective study in
Japanese women followed up for 3 to 4 years also confirmed
an association between low vitamin K concentrations and
increased incidence of vertebral fractures.95 Vice versa, in the
Japanese diet, where natto is popular, MK7 is the predomi-
nantly ingested subform; and high natto consumption
correlated with a lower fracture risk.96 Finally, a meta-analysis
of 21 articles, including 222,592 participants, found that
higher dietary vitamin K consumption was associated with a
moderately lower risk of coronary heart disease.97 Also, in
that analysis, vitamin K deficiency, as assessed via plasma dp-
ucMGP concentrations, associated with higher all-cause and
cardiovascular mortality.97

Status in CKD patients. CKD patients commonly exhibit a
functional vitamin deficiency, as evidenced using
Kidney International (2021) 100, 1023–1036
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Parsley, spinach
Chive, purslane

Medium Processed so  cheese

(20–350 μg/100 g) Brined goat milk cheese

Pistacho Eggs, na ō Roquefort
Goose meat

Chinese cabbage Olive oil, bu er
Broccoli

Low Poppy seeds
(<20 μg/100 g) Peas, crisps Mushroom Chick peas

Haselnut, peanut Bun, pork
Salmon Salami, chicken

Cocoa, chips Milk, yogurt Olives
Banana Apple Rice, pasta

Tomato paste Cucumber, onion

Figure 5 | Classification of selected food items according to their vitamin K (K1 and K2) potassium and phosphorous contents. Data
are from several sources.5–8
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biomarkers.8,98,99 Although vitamin K1 concentration in
serum was low in only 6% of CKD stage 3 to 5 patients,99

PIVKA-II was increased in 97% of CKD stage 3 to 5 pa-
tients and in 64% of dialysis patients.8 The dp-ucMGP plasma
concentrations also increased with the CKD stage and were
increased 3.3-fold to 6.5-fold in dialysis patients.8,76 An in-
crease of uncarboxylated osteocalcin in serum was found in
60% of CKD stage 3 to 5 patients,99 and there was a highly
significantly increase in dialysis patients.100

The high prevalence of functional vitamin K deficiency in
CKD patients in part relates to dietary recommendations
aimed at reducing potassium and phosphate intake.101 The
reduced consumption of potassium-rich leafy green vegeta-
bles will result in low vitamin K1 intake, and restriction of
phosphate-rich dairy products will decrease vitamin K2
intake.71 However, in a study in 85 dialysis patients, dietary
intake and serum level of MK4, but not K1, were lower
compared with healthy controls.102 Furthermore, at least in
rats with adenine-induced CKD, we found reduced activity of
vitamin K recycling enzymes, in particular GGCX.21,103 Via
this mechanism, CKD mimics the actions of pharmacologic
inhibitors of the vitamin K cycle (i.e., warfarin or phenpro-
coumon, which inhibit the VKOR by chemical binding).104

Frequently prescribed medications in CKD might further
aggravate the low vitamin K status in CKD (see below).

In hemodialysis patients, high serum levels of uncar-
boxylated osteocalcin associated with a higher incidence of
bone fractures.105 In the Vitamin K Italian (VIKI) dialysis
study, vitamin K1 deficiency also independently predicted
vertebral fractures in hemodialysis patients.98

Dietary recommendations in healthy persons. In 2017, the
European food safety authority decided to not yet include
Kidney International (2021) 100, 1023–1036
menaquinones into the dietary reference intake values for
vitamin K. Thus, the current recommended daily allowance
for vitamin K is based on its role in blood coagulation. It only
includes vitamin K1 and is set in Europe by the European
Food Safety Authority for all reference groups to 1 mg/kg body
weight.49 The dietary reference intake by the US Department
of Agriculture is set to 90 mg/d for females and to 120 mg/d for
males.106

Dietary recommendations in CKD patients. There are
currently no dietary recommendations for vitamin K intake
in CKD patients. In patients with decreased kidney function,
dietary management usually targets hyperkalemia, hyper-
phosphatemia, protein intake, and salt and water load. In
advanced CKD, potassium intake should be restricted to <3
g/d107,108 and dietary phosphorous intake should be restricted
to 800 to 1000 mg/d.109 Overall, by adherence to the dietary
recommendations, a vitamin K–rich diet in CKD remains
highly challenging as the amount of either potassium (e.g., in
spinach) or phosphorous (e.g., in hard cheese) is too high
(Figure 55–8). Interestingly, a Lactococcus strain was developed
to increase the menaquinone synthesis in fermented foods,12

but introducing genetically modified organisms to food is
highly restricted.110 Vitamin K supplementation in CKD pa-
tients is discussed below.

Vitamin K status and cardiovascular disease in the general
population and CKD patients. In the Danish general adult
population, relative vitamin K deficiency, identified by
elevated plasma dp-ucMGP, correlated with obesity and a
history of cardiovascular events.111 Surprisingly, in chronic
hemodialysis patients, there was also an inverse relationship
between body weight and circulating MK7 levels.112 The
assessment of dietary K1 and K2 intakes in healthy elderly
1029



Chronic dialysis patient with nonvalvular atrial fibrillation

Comorbidity
(mechanical
valve, prior
thrombo-

embolism, etc.)

No clear indication
or contraindiction Comorbidity
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bleeding

episodes, etc.)

VKA VKA
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risk
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stroke?

Higher
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bleeding
(GI, brain,
    etc.)

Higher
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cardio-
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calcification

Higher
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Figure 6 | Decision algorithm pro or contra vitamin K
antagonist (VKA) therapy in a chronic dialysis patient with
nonvalvular atrial fibrillation. Although there is currently little
alternative for patients with particular comorbidity, including
mechanical heart valves, prior lung embolism, or other systemic
thromboembolism, the risks associated with VKA in end-stage
kidney disease seem to outweigh the unproven benefits in most
other patients. Modified from Kruger T, Brandenburg V, Schlieper G,
et al., Sailing between Scylla and Charybdis: oral long-term
anticoagulation in dialysis patients, Nephrology Dialysis
Transplantation, 2013, volume 28, issue 3, pages 534–541, by
permission of Oxford University Press.132 GI, gastrointestinal.

r ev i ew N Kaesler et al.: Vitamin K and cardiovascular disease in CKD patients
men and women also revealed a reduced all-cause mortality
risk, but not cardiovascular mortality, in those persons with a
higher vitamin K consumption.113 Similarly, a recent meta-
analysis of 3 nonrenal cohorts revealed an inverse associa-
tion between circulating vitamin K levels and all-cause mor-
tality.114 Vice versa, a higher dietary menaquinone intake
associated with reduced risk for coronary heart disease115 and
less coronary artery calcification.116

The dramatically higher cardiovascular morbidity and
mortality in CKD patients at least in part relates to accelerated
cardiovascular calcification,117 which, in turn, is linked to
their altered vitamin K metabolism and supply.99 In diabetic
CKD patients as well as in stable kidney transplant patients,
higher dp-ucMGP levels in the circulation associated with
increased all-cause mortality, cardiovascular mortality, and
progression of CKD.118,119 Similarly, low carboxylation of
MGP increased the risk for calcific uremic arteriolopathy
(CUA; calciphylaxis; see below) in dialysis patients.120 As in
the general population, in CKD patients, total vitamin K
intake above the current recommendations corresponded to a
reduced cardiovascular and all-cause mortality.121 Finally, in
end-stage kidney disease patients, poor vitamin K status
associated with more systemic inflammation and low bone
mineral density,122 both conditions known to promote car-
diovascular damage.

Vitamin K and the bone-vascular axis. Metabolic abnor-
malities in CKD disturb the balance between mineral
resorption and ectopic calcifications by disturbed mineral,
parathyroid hormone, and vitamin D metabolism.123 In this
bone-vascular axis, factors like vitamin K, which improve
bone quality and allow better mineralization, might at the
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same time counteract the ectopic cardiovascular calcifications
and, for example, allow a more liberal calcium administration
in the context of phosphate binding or osteoporosis treat-
ment.124 However, although appealing, firm evidence for this
hypothesis is lacking in CKD patients so far.

Therapeutic vitamin K antagonism
The administration of VKA potently increases circulating
markers of vitamin K deficiency in nonrenal and renal pa-
tients. For example, a Dutch study compared patients on
antithrombotic therapy, who were randomized to aspirin,
regular-intensity VKA, or low-intensity VKA.125 At 1 year,
VKA induced uncarboxylation of various Gla-containing
proteins, with osteocalcin identified as the most sensitive
marker of a poor vitamin K status. Excessively high levels of
circulating ucMGP have been observed in chronic dialysis
patients receiving VKA.8

It is now well established that VKAs promote the devel-
opment of cardiovascular calcification in many regions,
including coronary arteries, aorta, breast arteries, and cardiac
valves.126–128 An extreme form of vascular calcification is
CUA (calciphylaxis), a disease mostly manifesting in dialysis
patients and characterized by cutaneous necroses associated
with bacterial superinfection and high mortality. It is now
well established that VKA markedly increases the risk of CUA
(z10-fold).129 In the EValuation Of Cinacalcet Hydrochlo-
ride (HCl) Therapy to Lower CardioVascular Events
(EVOLVE) trial, which evaluated a calcimimetic (cinacalcet)
in dialysis patients with secondary hyperparathyroidism, we
observed that 11 of 24 (45%) of the CUA patients had been
on active vitamin K antagonist therapy at the time of CUA
manifestation in contrast to 5% to 7% at any one time point
in patients in whom CUA was not reported.130 All these ob-
servations plus the lack of proven benefit explain why various
guidelines suggest VKAs should not be used in chronic he-
modialysis patients with, for example, nonvalvular atrial
fibrillation131 (Figure 6132). Indeed, there is some evidence
that VKA administration increases morbidity and mortality in
chronic dialysis patients,133 but despite multivariate adjust-
ments, there are concerns about unmeasured confounders
that may explain this observation.

Impact of medication on vitamin K bioavailability
Several studies have investigated the impact of phosphate
binders on vitamin K bioavailability. At least in vitro, most
phosphate binders were found to bind fat-soluble vitamins,
including vitamin K.134,135 In the clinical situation, phosphate
binder use versus nonuse did not affect dp-ucMGP levels in
dialysis patients,136 but sevelamer monotherapy, when
analyzed separately, was associated with higher dp-ucMGP
levels as well as with an altered gut microbial meta-
bolism.29,136 In the cross-sectional Vitamin K Italian (VIKI)
dialysis study in hemodialysis patients, those treated with
sevelamer not only exhibited MK4 deficiency but also more
aortic calcification and vertebral fractures.137 This may at least
in part explain why it has been difficult to firmly establish
Kidney International (2021) 100, 1023–1036
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differential effects of calcium-containing versus calcium-free
phosphate binders on cardiovascular calcification progress
(i.e., the procalcific effect of calcium loading might have been
offset by a relative vitamin K depletion using calcium-free
phosphate binders, in particular sevelamer). However, a recent
meta-analysis nevertheless concluded that sevelamer retards
calcification progress compared with calcium-containing
binders.138 Unexpectedly, a pilot study in nondialyzed patients
with advanced CKD concluded that phosphate binders pro-
moted cardiovascular calcification, but on closer inspection of
the data, only those receiving calcium-acetate but not those
randomized to placebo, sevelamer, or lanthanum carbonate did
exhibit progressive vascular calcification.139 Whether, as in pre-
clinical studies, calcium-free phosphate binders, in particular
sevelamer, could be “fortified” to reduce vascular calcification
and mortality by combining them with vitamin K therapy, re-
mains to be proven in patients.124

Beyond phosphate binder therapy, a relative vitamin K
deficiency can occur with prolonged antibiotic therapy.140

Whether there are differential effects of the various antibi-
otics, whether there are thresholds for the duration of treat-
ment, and whether these effects are similar in nonrenal and
CKD patients are largely unknown. Another common class of
drugs potentially affecting vitamin K homeostasis are proton
pump inhibitors. Although no data are available for CKD
patients, in healthy volunteers on a vitamin K restricted diet,
proton pump inhibitors unexpectedly increased vitamin K
levels in the circulation and reduced levels of uncarboxylated
proteins (i.e., partially corrected the vitamin K deficiency).141

This was related to intestinal bacterial overgrowth with sub-
sequent production of menaquinones in the small intestine.

Finally, statins, frequently prescribed to inhibit 3-hydroxy-
3-methyl-glutaryl coenzyme reductase, limit endogenous
cholesterol synthesis and, as shown in Figure 2, 3-hydroxy-3-
methyl-glutaryl–coenzyme A reductase and the vitamin K
conversion enzyme UBIAD1 are connected with each other.
In vitro lipophilic statins are known to directly inhibit
UBIAD1,142 thus reducing endogenous MK4 levels.15 More-
over, it has been shown that vitamin K is converted to K3
(menadione), which is prenylated in target tissues to MK4.1

This conversion in target tissues, such as the vascular wall
(vascular smooth muscle cells), is inhibited by statins,143

thereby compromising vascular vitamin K status.

Vitamin K supplementation
Vitamin K, even if given at excessively high doses of up to
20,000 mg per day to Japanese pregnant women,144 has no
known human toxicity.145 This markedly facilitates the assess-
ment, whether even intense therapy affects cardiovascular dis-
ease manifestation or progression, in particular that of
calcifications. Only menadione, sometimes referred to as
vitamin K3, in large doses has been shown to cause allergic
reactions, hemolytic anemia, and cytotoxicity in liver cells.146,147

Studies in patients with normal or mildly reduced glomerular
filtration rate. With respect to vitamin K1, its supplemen-
tation (500 mg/d) for 3 years increased serum phylloquinone
Kidney International (2021) 100, 1023–1036
levels and reduced ucMGP in older adults.148 High-dose
vitamin K1 supplementation at 2 mg per day orally for 1
year also significantly attenuated the progress of aortic valve
calcification, with some 57% reduction compared with pla-
cebo in patients with mild to moderate aortic stenosis.149

Vitamin K2 trials so far have mostly been performed with
MK7. A Dutch double-blind randomized controlled trial
tested the effects of 360 mg/d MK7 or placebo given for 6
months in 68 diabetics with concomitant cardiovascular dis-
ease.150,151 MK7 supplementation reduced dp-ucMGP by
z200 pmol/L compared with placebo. Unexpectedly, active,
ongoing calcification in the femoral artery, as detected by 18F-
positron emission tomography, tended to increase in the MK7
group (P ¼ 0.06 vs. placebo), whereas no difference was
detected by conventional computed tomography scanning.
The ongoing Dutch Vitamin K–Coronary artery calcification
(VitaK-CAC) trial investigates progression of coronary artery
calcification in patients with coronary artery disease treated
with either placebo or 360 mg of MK7 daily for 2 years.152

Data on circulating dp-ucMGP and vascular stiffness and
cardiovascular mortality in the general population are less
consistent. A meta-analysis of 13 controlled trials and 14
interventional, longitudinal studies confirmed a reduction of
vascular calcification but not vascular stiffness with vitamin K
supplementation (K1 or K2) for >4 weeks in adults.153

Studies in patients with markedly reduced glomerular filtration
rate or end-stage kidney disease. Most published intervention
trials in CKD patients so far have focused on vitamin K2,
usually employing MK7. In a randomized trial with 3 parallel
groups, we assessed the effects of MK7 given orally and daily
at 45, 135, or 360 mg daily for 6 weeks to 53 chronic hemo-
dialysis patients versus 50 healthy age-matched individuals.154

Vitamin K deficiency was confirmed in the hemodialysis
patients, given 4.5-fold higher ucMGP and 8.4-fold higher
uncarboxylated osteocalcin serum levels compared with
controls. In the dialysis patients, MK7 supplementation
reduced uncarboxylated MGP levels by 77% and 93% in the
groups receiving 135 and 360 mg of MK7, respectively.
Similarly, a Belgian group performed a pilot trial in 200 he-
modialysis patients randomized to receive 360, 720, or 1080
mg of MK7 thrice weekly for 8 weeks. MK7 supplementation
reduced plasma dp-ucMGP by 17%, 33%, and 46%,
respectively.155

Effects of vitamin K2 on surrogate cardiovascular out-
comes have been studied in 4 randomized controlled trials
(Table 343,126,156–160). A small Polish study in 42 patients with
CKD stages 3 to 5 compared 90 mg MK7 together with 10 mg
of cholecalciferol with cholecalciferol alone.157 Nine months
later, the MK7 group exhibited a lower increase in carotid
intima-media thickness, whereas coronary artery calcification
progress was not slowed down. A Greek study randomized
102 patients on hemodialysis to 200 mg MK7 orally every day
for 1 year or no treatment.158 MK7 reduced ucMGP serum
levels by 47%. After 1 year of follow-up, 52 patients were
available for the analysis. Aortic calcification progress did not
differ between the 2 groups. In the British K4Kidneys trial,
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Table 3 | Intervention trials evaluating effects of vitamin K supplementation in patients with advanced CKD

Patients/trial Intervention
Duration of

follow-up, mo

Relative reduction in
ucMGP plasma

levels at study end

Effect on
calcification in
vitamin K group

Effect on other outcomes in
vitamin K group

Hemodialysis patients
with atrial fibrillation
(VALKYRIE)126

MK7, 2 mg, thrice
weekly

18 47% None None on pulse-wave velocity,
all-cause death, stroke, and
cardiovascular event rates

CKD stage 3b–4 patients
(K4Kidneys)156

MK7, 0.4 mg, daily 12 Uncertaina None None on pulse-wave velocity,
augmentation index, blood
pressure, B-type natriuretic
peptide, or physical function

CKD stage 3–5 ND
patients157

MK7, 0.09 mg,
daily

9 19% None Reduced progression of
common carotid artery intima-
media thickness

Hemodialysis patients158 MK7, 0.2 mg, daily 12 47% None —

Hemodialysis patients159 MK7, 0.36 mg,
daily

24 39% after 1 yr,
8% after 2 yr

None None on pulse-wave velocity
and blood pressure

Ongoing trials with vitamin K1

Hemodialysis patients
(VitaVasK)160

K1, 5 mg, thrice
weekly

18 >70% To be determined To be determined

Hemodialysis patients
(iPACK-HD)43

K1, 10 mg, thrice
weekly

12 To be determined To be determined To be determined

CKD, chronic kidney disease; iPACK-HD, Inhibiting the progression of arterial calcification with vitamin K in HemoDialysis patients; MK, menaquinone; ucMGP, uncarboxylated
matrix g-carboxyglutamic acid protein; VALKYRIE, The Effect of Replacement of Vitamin K Antagonist by Rivaroxaban With or Without Vitamin K2 Supplementation on Vascular
Calcifications in Chronic Hemodialysis Patients: A Randomized Controlled Trial; VitaVasK, Vitamin K1 to slow vascular calcification in hemodialysis patients.
aNo numbers given; the text states “Mean log-transformed dp-ucMGP results fell between baseline and 12 months with vitamin K treatment (7.08 versus 6.89) but not in the
placebo group (7.01 versus 7.06).”156(p2437)
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159 patients with an estimated glomerular filtration rate of 15
to 45 ml/min per 1.73 m2 were randomized to receive 400 mg
oral MK7 or placebo once daily for 1 year.156 The primary
outcome, carotid-femoral pulse wave velocity at 12 months,
did not differ between the groups, nor did augmentation in-
dex, blood pressure, B-type natriuretic peptide, or physical
function. Finally, a Belgian randomized trial investigated the
effect of VKA, rivaroxaban, 10 mg daily, or rivaroxaban, 10 mg
daily, plus MK7, 2000 mg, thrice weekly during 18 months on
vascular calcification progression in 132 hemodialysis patients
with atrial fibrillation.126 The ucMGP levels decreased by
z50% in the rivaroxaban plus MK7 group. Cardiovascular
calcification progress, changes in pulse-wave velocity, and
cardiovascular event rates did not differ at the end of follow-
up. Bleeding outcomes were not significantly different, except
for a lower number of life-threatening and major bleeding
episodes in the rivaroxaban arms versus the VKA arm. Finally,
the RenaKvit trial lowered dp-ucMGP serum levels in dialysis
patients by up to 39% via the administration of 360 mg MK7
daily, but failed to observe a significant impact on pulse-wave
velocity, coronary artery calcification, or abdominal aortic
calcification.159 A Singaporian ongoing trial also assesses the
cardiovascular effects of MK7, 360 mg, given 3 times weekly for
a total duration of 18 months to hemodialysis patients.161

None of the above studies reported any adverse events
related to vitamin K supplementation.

One issue that so far has affected all vitamin K2 trials is
that MK7 has not been available in a drug-grade formulation,
even if provided in a synthetic form. At least in Germany,
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regulatory bodies have argued that in clinical trials, where the
daily recommended dose of vitamin K is markedly exceeded,
only drug-grade formulations can be used, which has
restricted our choice to vitamin K1. At present, 2 similar
studies (Inhibiting the progression of arterial calcification
with vitamin K in HemoDialysis patients [iPACK-HD], NCT
01528800 in Canada; and Vitamin K1 to slow vascular
calcification in hemodialysis patients [VitaVasK], EudraCT
No. 2010-021264-14 in Europe), both testing high-dose
vitamin K1 therapy at 15 to 30 mg per week, and both
investigating progression of cardiovascular calcification, are
close to publication.43,160

A study in the United Kingdom (ViKTORIES) will inves-
tigate the effects of vitamin K3 (menadiol diphosphate) in
renal transplant recipients.162 The primary end point is aortic
distensibility, assessed by magnetic resonance imaging; and
secondary end points include cardiovascular calcifications.

So far, little information is available on the effect of supple-
mental vitamin K on bone fractures or density in dialysis patients.
In the ongoing iPACK-HD and RenaKvit studies, the impact of
vitamin K1 (NCT01528800) and MK7 (NCT02976246) supple-
mentation on the incidence of vertebral fractures and bone
mineral density is evaluated in hemodialysis patients.43

Conclusion
There is a solid biochemical and experimental basis to
implicate vitamin K, in particular K2, in the pathogenesis of
cardiovascular disease, especially calcifications. A multitude of
clinical observations also supports this association. A
Kidney International (2021) 100, 1023–1036
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particular high-risk population in this respect are patients
with end-stage kidney disease, because they not only exhibit
(in part iatrogenic) low vitamin K intake but also probably
have a defect in vitamin K recycling, which would mimic the
action of VKAs. Dietary supplementation of such high-risk
patients with physiological or highly supraphysiological
doses predictably corrects the vitamin K deficiency at the
biochemical level and exhibits no toxic effects. Against this
background, it is frustrating to see yet another easy and safe
approach tackling cardiovascular disease in CKD failing in
clinical trials. It is tempting to speculate that this is one more
situation where, in the highly complex and comorbid patients
with advanced CKD, a monotherapeutic intervention simply is
not effective enough to yield measurable effects. However, of
note, complete correction of vitamin K deficiency by MK7 was
never achieved in the interventional trials so far. In addition,
vitamin K supplementation may only improve cardiovascular
calcifications, if at the same time calcium and phosphate are
well controlled. However, before setting up such more complex
trials, we suggest waiting for the outcome of the 2 trials using
vitamin K1 instead of K2. Why? Because once again, we have
extrapolated from findings in nonrenal patients to dialysis
patients. Considering the massive alterations of the uremic
high-density lipoprotein–lipoprotein particle,163 we have
detected prominent disturbances of vitamin K transport
(Kaesler N, Schurgers L, Floege J, unpublished data, 2021) that
indicate that not all vitamin K is created equal in the uremic
situation. So, the story is not over (yet).
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