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A B S T R A C T

Investigating the interactions among various drugs is an indispensable issue in the field of computational
biology. Scientific literature represents a rich source for the retrieval of knowledge about the interactions
between drugs. Predicting drug–drug interaction (DDI) types will help biologists to evade hazardous drug
interactions and support them in discovering potential alternatives that increase therapeutic efficacy and reduce
toxicity. In this paper, we propose a general-purpose method called ADDI (standing for Alternative Drug–Drug
Interaction) that applies deep learning on PubMed abstracts to predict interaction types among drugs. As an
application, ADDI recommends alternatives for drug–drug interactions (DDIs) which have Negative Health
Effects Types (NHETs). ADDI clearly outperforms state-of-the-art methods, on average by 13%, with respect
to accuracy by using only the textual content of the online PubMed papers. Additionally, manual evaluation
of ADDI indicates high precision in recommending alternatives for DDIs with NHETs.
1. Introduction

Lately, discovering interactions among drugs attracted a lot of at-
tention [1–8]. Biological literature is a rich source of knowledge for dis-
covering interactions among drugs [9–14] and this gives computational
text mining approaches an important role in current drug studies [15–
17]. The intended effect of a drug can be changed with the simulta-
neous use of another drug [18]. There are varied definitions for drug-
interaction with respect to different perspectives/vocabularies/etc.
Some definitions for drug interactions are:

− ‘‘A drug interaction is a change in the action or side effects
of a drug caused by concomitant administration with a food,
beverage, supplement, or another drug’’ [19].

− ‘‘A drug interaction has occurred when the administration of one
drug alters the clinical effects of another. The result may be an
increase or decrease in either the beneficial or harmful effects of
the second agent’’ [20].

− ‘‘A drug interaction can be defined as an interaction between a
drug and another substance that prevents the drug from perform-
ing as expected’’ [21].

− ‘‘One drug can affect the activity of another when they are
administered together, which can cause adverse drug reactions
or sometimes improve therapeutic effects’’ [22].

∗ Corresponding author.

− ‘‘A drug interaction occurs when a substance affects the activity
of a drug, either increasing or decreasing its efficacy, or, alter-
natively, a new effect is observed that is not observed with just
the drug alone’’ [23].

Understanding types of DDIs is essential to recommend alternatives
that decrease unexpected adverse drug events (ADEs) and increase
synergistic advantages [24–26].

Available computational methods for predicting DDIs are usually
based on structural and other similarities or drug–target associations
[27–34]. In the following, we refer to selected representatives of these
related approaches. Cheng et al. [35] generated a drug–drug net-
work by quantifying the relationships between drug targets and dis-
ease proteins in the human protein–protein interactome to predict
clinically useful drug combinations for specific diseases. Rohani and
Eslahchi [32] proposed a neural network-based method for DDI pre-
diction that applied the neural network model with similarity selection
and fusion methods to increase the accuracy of predicting DDIs. Qian
et al. [36] constructed a gradient boosting-based classifier to predict
adverse DDIs using genetic interactions between the gene targets of
two drugs. They discovered that adversely interacting drug targets are
more likely to have more synergistic genetic interactions than non-
interacting drugs targets. Karim et al. [37] combined a convolutional
vailable online 19 August 2020
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Fig. 1. Overview of ADDI method.
neural network (CNN) and a long short-term memory (LSTM) network
to predict DDIs in multiple data sources that are integrated using
Knowledge Graphs. They embed the nodes in the graph applying vari-
ous embedding approaches. Ryu et al. [24] proposed a computational
framework, DeepDDI, that takes chemical structural information of two
drugs as inputs and accurately predicts relevant DDI types for the input
drug pair.

The main drawback of previous methods for predicting DDIs is that
they require detailed drug information such as the chemical structure of
drugs, drug targets or side effects as input, which are often error-prone
and costly and time-consuming to provide. As an alternative to these
methods, there are methods that exploit text-mining to extract DDIs
using less information. Huang et al. used LSTM and POS embedding to
extract features from the text in order to predict DDIs [38]. Zhao et al.
proposed a syntax convolutional neural network (SCNN) based DDI ex-
traction method [39]. Lim et al. used PubMed-and-PMC-w2v and LSTM
to extract DDIs [40]. Shi et al. used matrix factorization to predict drug–
drug interactions (DDIs) [41]. They used drug-binding proteins. Zheng
et al. proposed a method called DDI-PULearn that predicted DDIs using
SVM and KNN algorithms as well as using the PCA feature reduction
method [42]. All of these text-mining approaches apply pre-trained
models on only one kind of text input and are limited in their extension
capacity. In this paper, we propose an expandable method called ADDI
(Alternative Drug–Drug Interactions) that uses online text resources
such as PubMed to predict interaction types among drugs. ADDI ap-
plies a word-embedding technique known as Word2vec [43,44] on 29
million PubMed paper abstracts [45] to extract drug embeddings. ADDI
uses a neural network that receives drug embeddings as input to predict
DDI types as output. Additionally, ADDI creates a drug–drug network.
ADDI applies a clustering algorithm to recommend alternatives for DDIs
which have negative health effects types (NHETs). The key contribution
of this paper is:

− ADDI is the first and still informative method in combining most
recent advanced deep learning-based text mining approaches
with graph mining approaches for the task of recommending
novel alternatives for drug pairs with negative health effects.
Additionally, compared to the state-of-the-art methods, ADDI
2

Table 1
Parameters configuration of Word2Vec.

Parameter Setting

Model CBOW
min-count 5
dim 200
samp 1e−4
win 8

produces more accurate results by using less amount of infor-
mation (only online PubMed texts) as input data. The manual
evaluation of recommended alternatives indicates the predictive
power of ADDI.

The structure of this paper is as follows: ADDI is described in
detail in Section 2. The empirical results are presented in Section 3
and discussed in Section 4. Section 5 summarizes major insights and
proposes promising directions for future research.

2. ADDI

The basic idea underlying ADDI is to apply deep learning to discover
DDI types and to recommend alternatives for interactions with negative
health effects. The main steps of ADDI are shown in Fig. 1, and the
following subsections will discuss each main step in detail.

2.1. Pre-processing

Pre-processing consists of the following four sub-steps through
which the input data are polished and integrated so that they can be
further processed in the subsequent main steps ‘‘Numerical Evaluation’’
and ‘‘Application’’:

1. ADDI is a general method that works on textual data that con-
tains relevant information about drugs and DDIs. For this pur-
pose, ADDI employed two datasets in the experimental analysis
described in Section 3. As a text repository containing drug
information, ADDI uses the PubMed dataset which contains all



Computers in Biology and Medicine 125 (2020) 103969M. Allahgholi et al.
Table 2
14 DDI types known as Negative Health Effects.

Index Negative Health Effects

1 Cardiotoxicity
2 Central neurotoxicity
3 Hepatotoxicity
4 Nephrotoxicity
5 Neurotoxicity
6 Ototoxicity
7 Hypersensitivity
8 Adverse effects
9 Bleeding
10 Heart failure
11 Hyperkalemia
12 Hypertension
13 Hypotension
14 QTc prolongation

the information regarding PubMed papers, such as title, abstract,
authors’ name, year of publication, etc. ADDI extract abstracts of
all papers in the PubMed dataset. This resulted in a repository of
30 GB data, which we made available in [46]. ADDI constructs
word2vec embedding for each drug term using the PubMed
dataset. These embeddings are considered as input features of
multilayer perceptron (MLP) network [47] (discussed later in
Section 2.2).

2. ADDI requires data that comprises DDIs. For the experiments
reported in Section 3, ADDI used the drug–drug interaction
(DDI) dataset described in [24], which contains 192,284 DDIs
representing 86 DDI types. Each DDI represents a zero–one
feature 𝐷𝐷𝐼 𝑡𝑘𝑖,𝑗 indicating whether DDI type 𝑡𝑘 existed between
two drugs 𝑑𝑖 and 𝑑𝑗 . These features are used in the output layer
of the MLP network (discussed later in Section 2.2). The list of all
86 DDI types is available at [48,49]. DDI types describe changes
in pharmacological effects and the risk of adverse drug events as
a result of the interaction between two drugs in pairs [24]. For
instance, one drug may alter the pharmacokinetics of another.
Among the 86 DDI types, 14 DDI types are known to be classed
as ‘‘Negative Health Effects’’ (see Table 2). The drug pairs having
‘‘negative health effects’’ are those which are described with
‘‘the increased risk or severity of adverse effects’’ and explicit
expression such as ‘‘cardiotoxic activity’’, ‘‘nephrotoxic activity’’,
and ‘‘the increased risk or severity of bleeding’’.

3. ADDI applies Word2Vec [44,50] on the PubMed dataset to de-
scribe each drug term in PubMed. Word2Vec is a two-layer
neural network that processes text by describing each word in
the text with a small vector. Word2vec takes as its input a text
corpus and produces a set of feature vectors that represent words
in that corpus [50]. CBOW and Skip-gram are two Word2vec
models. Skip-gram and CBOW are more efficient in the case of
smaller and larger volumes of training data, respectively [43].
When running ADDI with 30GB of data (which is considered as
a high volume of data), we expected that CBOW would discover
more DDIs than skip-gram. The configuration of Word2Vec is
shown in Table 1. The minimum count (min-count) specifies
the minimum number of occurrences needed for a word to
be included in the word vectors. The vector dimension (dim)
is the learned word vector size. High-frequency words usually
provide little information. Sub-sampling (samp) is the process of
diminishing frequent word occurrences (words with a frequency
above a certain threshold) in order to increase training speed.
The context window size (win) denotes the range of words to be
included as the target word context [51–53]. The values used in
our experiments for these parameters are shown in Table 1 and
have been chosen according to best practices described in the
literature [44,51,54–58].
3

Fig. 2. Accuracy of MLP network in varied hidden layers. Accuracy maximizes when
the number of hidden layers equals 7. MLP network overfits when the number of hidden
layers exceeds 8.

Fig. 3. An illustration of the MLP neural network used by the ADDI method.

4. ADDI predicts DDIs using drug embeddings extracted by
Word2Vec from our text repository (For each drug term (𝑑𝑖) in
PubMed dataset, Word2vec extracts a vector ( ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑖))). There-
fore, from all the DDIs in the DDI dataset, we only considered the
DDIs in which the involved drugs exist in our Word2Vec model.

2.2. Numerical evaluation

ADDI utilizes neural networks [59,60] to predict the type of inter-
action among drug pairs. These networks consist of multiple layers of
simple processing units called neurons, where each such unit generates
an output signal based its input signals according to some activation
function. Neural networks have been shown in various domains to be
extremely powerful pattern recognition tools [59,60].

1. Specifically, for the experiments reported here, Multilayer Per-
ceptrons (MLP) was used [47]. This is a class of feedforward
artificial neural network that has the following architecture:

− The input layer contains 400 neurons (200 dimensions
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑖) + 200 dimensions ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑗 )).

− The output layer contains 86 neurons, one for each of the 86
DDI types in the DDI dataset (see Section 2.1).

− Neurons’ activation functions, Sigmoid [61] and Softmax
[62], are used in the hidden layers and in the output layer,
respectively.

− To determine the number of hidden layers, we examined the
MLP network with a varied range of hidden layers, calculating
accuracy using a 10-fold cross validation. As shown in Fig. 2,
the MLP network reaches its best accuracy when the number
of hidden layers equals 7. It was also observed that with more
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Table 3
The result of ADDI compared to state-of-the-art methods.

Methods Type Accuracy

ADDI Text-mining 95.4%
Ryu et al. [24] Chemical structures 92.4%
Huang et al. [38] Text-mining 69%
Zhao et al. [39] Text-mining 68.9%
Lim et al. [40] Text-mining 83.8%
Shi et al. [41] Text-mining 90%
Zheng et al. [42] Text-mining 90.4%

than 8 layers, the MLP network overfits to the training data
and produced a worse result.
An illustration of the MLP neural network is shown in Fig. 3.
The network consists of an input layer with 400 neurons,
seven hidden layers each having 128 neurons, and output
layer with 86 neurons.

2. ADDI utilizes the MLP neural network to predict DDIs and em-
ploys 10-fold cross-validation for evaluation and comparing
itself with previous methods.

.3. Alternative recommendation

ADDI recommends alternatives for drug pairs with negative health
ffects by executing the following four steps:

1. For all (𝑑𝑖, 𝑑𝑗 ), ADDI uses the cosine similarity between ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑖)
and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑗 ) to calculate their semantic similarity (see For-
mula (1)):

𝑆𝑒𝑚𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑗 ) =
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑖) ⋅ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑗 )

‖

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑖)‖ × ‖

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑗 )‖
(1)

where ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑖) ⋅ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑗 ) is the dot product of the Word2Vec
vectors of 𝑑𝑖 and 𝑑𝑗 and ‖

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 2𝑉 (𝑑𝑖)‖ stands for the magnitude
of that vector. 𝑆𝑒𝑚𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑗 ) indicates the semantic similar-
ity of two drugs 𝑑𝑖 and 𝑑𝑗 with respect to their Word2Vec
models. ADDI considers only the most informative discovered
interactions between drug pairs by pruning the interactions
with semantic similarity values less than 𝛾1. More precisely, an
interaction between two drugs 𝑑𝑖 and 𝑑𝑗 (𝐷𝐷𝐼(𝑑𝑖, 𝑑𝑗 )) is pruned
if 𝑆𝑒𝑚𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑗 ) < 𝛾1 (see Formula (2)):

Pruning(𝐷𝐷𝐼(𝑑𝑖, 𝑑𝑗 )) =

{

remove(𝐷𝐷𝐼(𝑑𝑖, 𝑑𝑗 )), if 𝑆𝑒𝑚𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑗 ) < 𝛾1
keep(𝐷𝐷𝐼(𝑑𝑖, 𝑑𝑗 )), otherwise

(2)

For the experiments reported here, 𝛾1 = 0.7 was chosen. In our
studies, we found that 𝛾1 = 0.7 is high enough to exclude most
irrelevant interactions and low enough to prevent loss of possibly
relevant interactions.
ADDI constructs a graph 𝐺(𝑉 ,𝐸) of the DDIs in which each node
𝑣𝑖 ∈ 𝑉 represents a drug 𝑑𝑖 and each edge 𝑒𝑖𝑗 ∈ 𝐸 indicates that
the semantic similarity (see Formula (1)) between the interacting
drugs 𝑑𝑖 and 𝑑𝑗 is greater than 0.7.

2. ADDI applies the Glay algorithm [63] to cluster the graph
of DDIs. This algorithm partitions the graph 𝐺 into m non-
overlapping clusters 𝑐1,… , 𝑐𝑚. If 𝑑𝑖 is the member of cluster 𝑐𝑘
(1 ≤ 𝑘 ≤ 𝑚) then 𝐶𝑜𝑀𝑒𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑑𝑖) returns the set of drugs
belonging to same cluster as drug 𝑑𝑖. Formally this is expressed
by Formula (3)

𝐶𝑜𝑀𝑒𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑑𝑖) =
⋃

𝑑𝑗∈𝐷

(

𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑑𝑖) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑑𝑗 )
)

(3)

where 𝐷 is the set of all drugs and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑑𝑖) returns the index of
cluster of 𝑑 . 𝐶𝑜𝑀𝑒𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑑 ) indicates a set of drugs that are
4

𝑖 𝑖
in the same cluster of drug 𝑑𝑖 and accordingly, are contextually
similar to each other with respect to their appearance in the
biological text repository.

3. Among the 86 DDI types in DDI dataset, 14 DDI types are known
to be of the ‘‘Negative Health Effects’’ type (see Table 2). ADDI
extracts 180 drug pairs with these 14 DDI types in order to
recommend alternatives. In the rest of this paper, we refer to
these 14 DDI types with Negative Health Effects as ‘‘NHETs’’.

4. ADDI uses the result of clustering to reduce the search space
for recommending alternative drugs. For this purpose, if an
interaction between drugs 𝑑𝑖 and 𝑑𝑗 is among the NHETs then
ADDI aims to discover all alternative drugs 𝑑𝑖′ for drug 𝑑𝑖 that
fulfill the following three conditions:

(1) 𝑑𝑖′ ∈ 𝐶𝑜𝑀𝑒𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑑𝑖)
(2) 𝑑𝑖′, individually, does not have negative health effects (ADDI

uses the SIDER dataset1 to consider each drug’s side-effect
individually and exclude drugs that cause negative health
effects. SIDER contains information on marketed medicines
and their recorded adverse drug reactions.)

(3) 𝐷𝐷𝐼𝑇𝑦𝑝𝑒𝑠(𝑑𝑖′, 𝑑𝑗 ) ∉ NHETs (To eliminate drug pairs that
have NHETs, ADDI utilizes DrugBank dataset.2 The Drug-
Bank database is a unique bioinformatics and cheminformat-
ics resource that combines detailed drug data with compre-
hensive drug target information.)
where 𝐷𝐷𝐼𝑇𝑦𝑝𝑒𝑠(𝑑𝑖′, 𝑑𝑗 ) is interaction type between two
drugs 𝑑𝑖′ and 𝑑𝑗 . In other words, ADDI examines the drugs
that are in the same cluster as 𝑑𝑖, looking for all drugs 𝑑𝑖′
that do not have negative health effects individually and in
combination with drug 𝑑𝑗 . In exactly the same way ADDI
aims to discover all alternative drugs 𝑑𝑗′ for 𝑑𝑗 that have no
negative effects with drug 𝑑𝑖.
For all discovered alternative drugs 𝑑𝑖′ and 𝑑𝑗′ ADDI calcu-
lates the semantic similarities 𝑆𝑒𝑚𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑖′ ) and 𝑆𝑒𝑚𝑆𝑖𝑚
(𝑑𝑗 , 𝑑𝑗′ ), respectively. In a last step, ADDI is looking for (i)
𝑑𝑀𝑎𝑥𝑆𝑖𝑚
𝑖′ as an alternative for 𝑑𝑖 so that 𝑆𝑒𝑚𝑆𝑖𝑚(𝑑𝑖, 𝑋) is

highest for X = 𝑑𝑀𝑎𝑥𝑆𝑖𝑚
𝑖′ and (ii) 𝑑𝑀𝑎𝑥𝑆𝑖𝑚

𝑗′ as an alternative for
𝑑𝑗 so that 𝑆𝑒𝑚𝑆𝑖𝑚(𝑑𝑗 , 𝑌 ) is highest for Y = 𝑑𝑀𝑎𝑥𝑆𝑖𝑚

𝑗′ . Finally,
ADDI recommends three alternatives for 𝐷𝐷𝐼(𝑑𝑖, 𝑑𝑗 ):

(1) 𝐷𝐷𝐼(𝑑𝑀𝑎𝑥𝑆𝑖𝑚
𝑖′ , 𝑑𝑗 )

(2) 𝐷𝐷𝐼(𝑑𝑖, 𝑑𝑀𝑎𝑥𝑆𝑖𝑚
𝑗′ )

(3) 𝐷𝐷𝐼(𝑑𝑀𝑎𝑥𝑆𝑖𝑚
𝑖′ , 𝑑𝑀𝑎𝑥𝑆𝑖𝑚

𝑗′ ) where
𝐷𝐷𝐼𝑇𝑦𝑝𝑒𝑠(𝑑𝑀𝑎𝑥𝑆𝑖𝑚

𝑖′ , 𝑑𝑀𝑎𝑥𝑆𝑖𝑚
𝑗′ ) ∉ NHETs.

Among all the drugs 𝑑𝑖′ that 1- Are in the same cluster of drug
𝑑𝑖 and 2- Have no negative health effect in interacting with drug 𝑑𝑗 ,
𝐷𝐷𝐼(𝑑𝑀𝑎𝑥𝑆𝑖𝑚

𝑖′ , 𝑑𝑗 ) returns 𝑑𝑀𝑎𝑥𝑆𝑖𝑚
𝑖′ that have the maximum contextual

similarity with drug 𝑑𝑖. In other words, 𝐷𝐷𝐼(𝑑𝑀𝑎𝑥𝑆𝑖𝑚
𝑖′ , 𝑑𝑗 ) returns an

alternative drug that is biologically very similar to drug 𝑑𝑖 and can
replace drug 𝑑𝑖 and more importantly, does not have negative health
effect interaction with drug 𝑑𝑗 . In some cases, It is better to replace both
drug 𝑑𝑖 and drug 𝑑𝑗 in the drug combination. Among all the drugs 𝑑𝑖′
in the same cluster as 𝑑𝑖 and among all the drugs 𝑑𝑗′ in the same cluster
of drug 𝑑𝑗 , 𝐷𝐷𝐼(𝑑𝑀𝑎𝑥𝑆𝑖𝑚

𝑖′ , 𝑑𝑀𝑎𝑥𝑆𝑖𝑚
𝑗′ ) recommends drug pair (𝑑𝑖′ , 𝑑𝑗′ ) with

the maximum contextual similarity as an alternative recommendation
for drug pair (𝑑𝑖, 𝑑𝑗).

3. Empirical results

In the following subsections, we first evaluate the predicted DDI
types and then demonstrate the ability of ADDI to recommend alter-
natives for DDIs with NHETs.

1 http://sideeffects.embl.de/.
2 https://www.drugbank.ca/.

http://sideeffects.embl.de/
https://www.drugbank.ca/
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Table 4
99 DDIs with NHE-type and their alternatives.

(continued on next page)
3.1. Predicting DDI types

ADDI accepts the Word2Vec of two drugs as an input of a neural
network (as described in Section 2.2) and predicts the interaction types
of two input drugs as an output of the neural network. We made the
structure of the MLP algorithm available at [49]. Comparing ADDI to
state-of-the-art methods, ADDI outperforms those methods with respect
to accuracy (see Table 3). Accuracy is defined as (see Formula (4)):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = Number of Correct (Predicted) DDIs (4)
5

Number of existed DDIs (in Dataset)
This is remarkable because ADDI succeeded in outperforming both
text mining-based [38–40] and non-text mining-based [24] approaches.
In particular, compared to Ryu et al. [24], which receives chemical
structures of two drugs as input, ADDI generates an equally accurate
(and even slightly better) result with significantly less information —
it only uses the information available online in the PubMed dataset.

3.2. Recommending alternatives

A key feature of ADDI is its ability to recommend alternatives for
DDIs with NHETs. As described in Section 2, this ability is based on
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Table 4 (continued).
the application of the Glay Algorithm on the drug–drug network to
partition it into clusters of mostly related drugs. As a result of applying
the Glay clustering algorithm on the pruned DDI graph, 110 clusters
with an average member size 8 and an average clustering coefficient of
0.445 are generated. We made the result of this clustering available on
GitHub [49].

ADDI uses the result of clustering to recommend alternatives (for
details see Section 2.3). As a result, ADDI discovered 99 out of 180
DDIs with NHETs that fulfill all constraints regarding recommending
alternatives. The 99 DDIs with NHETs, together with their alternatives,
are shown in Table 4 and are also available at [49]. We used SIDER to
exclude drugs which have the same side effect as an NHET. In Table 4,
different colors represent the common drug classes, each of which is
shown in Table 5.

4. Discussion

A more detailed look into Table 4 shows that most of the NHETs are
QTc prolongations. QTc prolongation is a known side effect of many
drug groups, including Class Ia and Class III antiarrhythmics, antipsy-
chotics, and kinase inhibitors [64,65]. It can lead to life-threatening
torsade de points tachycardia. Class Ia antiarrhythmics are sodium
channel blockers that lengthen the heart’s action potential leading to
QT interval elongation [66]. Class III antiarrhythmics lengthen the
hearth’s action potential as well as making the repolarisation longer
through inhibiting the potassium channels. These antiarrhythmics treat
ventricular tachycardias. ADDI suggested using various type Ib and Ic
antiarrhythmics, such as using flecainide (Ib) or mexiletine (Ic). Class
Ib drugs shorten the action potential of the hearth; meanwhile, Ic type
6

Table 5
Common drug classes with colors selected to display them in Table 4.

of drugs do not change it; only make the depolarization slower [66].
Flecainide is indicated for use in atrial fibrillation and supraventricular
tachycardias, but clinical trials suggested it’s use in catecholaminergic
polymorphic ventricular tachycardia, a genetic heart disease [67]. Mex-
iletine is used as well for the treatment of ventricular tachycardias.
In the case of antipsychotics [68] and antidepressants [69], many
such drugs can have QT interval elongation effects. ADDI suggested
avoiding such drugs e.g., lurasidone instead asenapine (line 82) or
clomipramine instead of citalopram (line 71). In the case of any antiar-
rhythmic treatments with depression or psychosis, ADDI can be a useful
tool to find alternative drugs for patients. In the case of the B-RAF
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inhibitor vemurafenib, ADDI suggested the EGFR inhibitor erlotinib.
Vemurafenib is used in B-RAF mutant melanoma treatment [70]. Tar-
geting EGFR besides B-RAF can increase the sensitivity of the tumors
to vemurafenib [71], but erlotinib cannot replace vemurafenib.

Among the NHETs, besides QT elongation, are hypertension, hyper-
kalemia, and neurotoxicity. In the case of hypertension, ADDI suggested
the use of hydrazidine instead of methyldopa. Both methyldopa and
hydralazine are used primarily in hypertonic crisis and preeclampsia.
The potential hypertonia causing interaction between methyldopa and
monoamine oxidase inhibitor antidepressants starts from the inhibition
of the methyldopa metabolizing monoamine oxidase. Methyldopa can
form dopamine and noradrenaline, which causes hypertension [72].
This is the exact opposite of the desired therapeutic outcome. ADDI was
able to find this DDI and suggest better alternatives e.g., the tetracyclic
antidepressant maprotiline instead of the monoaminoxidase inhibitor
minaprine.

In this case, the semantic similarity was inadequate for a replace-
ment drug. In the case of hyperkalemia, ADDI suggested the use of
loop (bumetanide) or thiazide (chlorothiazide) diuretics instead of the
potassium-sparing diuretics amiloride and triamterene [73].

In the case of Neurotoxicity, ADDI suggested the use of the topoi-
somerase blocker teniposide [74] and the vinca alkaloid vincristine the
use of fotemustine, a guanine alkylating agent [75] and vinblastine
another vinca alkaloid [76] instead. Vincristine can exist at higher
concentration into the central neuron system compared to vinblastine
in rats [77]. Such chemotherapeutic regimes and a combination of
them need careful evaluation. ADDI can flag the chemotherapeutic
agents with major NHETs to consider alternatives, e.g., in the case of
vincristine and vinblastine.

In conclusion, ADDI was able to recommend various therapeutic
considerations, e.g., in the case of diuretics or antipsychotics, however
the therapeutic indications overwrite the recommendations like in the
case of vemurafenib. ADDI was able to find such NHETs where none of
the drugs individually have the side effect as in the case of monoamine-
oxidase inhibitors and methyldopa. After finding this NHET, ADDI
recommended alternative drugs to avoid discovered NHET. In the
case of antiarrhythmics, the drugs’ side effect and the desired effect
match, so to avoid a potentially fatal side effect, proper dosage is
required. Nonetheless, ADDI recommendations of the use of non-QT in-
tervals or increasing antidepressants, or antipsychotics in combination
with antiarrhythmics can be a useful tool for flagging life-threatening
NHETs.

5. Conclusions and future work

Recently, the use of Drug–Drug Interactions (DDIs) to recommend
alternative drugs has attracted much attention. To the best of our
knowledge, there is no method available to use online text resources
for this purpose. In this paper we proposed ADDI as such a method.
ADDI applies Word2vec on text resources to extract drug embeddings
and uses deep learning to predict DDI types. For the empirical results
presented here, 29 million PubMed paper abstracts [45] were used
as ADDI’s text input. The experimental results show that, in terms
of accuracy, ADDI outperforms the state-of-the-art methods by 13%
on average, and it does so by using online text resources only. ADDI
generates a drug–drug network and uses a clustering algorithm to
recommend plausible alternatives for DDIs with negative health effects.

Regarding future research induced by our work, we see three par-
ticularly important and very promising directions for refinement and
extension of our approach. First, to consider additional data available
for drugs (such as chemical data and side effects) as input of ADDI
that can be represented by a vector for predicting DDIs. Second, to
extend ADDI towards detecting drug combinations (i.e., synergistic or
antagonistic interactions) in the drug–drug interactions network. Third,
to use the DDI network proposed by ADDI to discover novel relation-
ships among drug side-effects. The main hypothesis to be evaluated
is to check if two connected drugs in DDI network share same set of
7

side-effects. We are currently focussing on the use of additional data.
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