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CHAPTER 1

GENERAL INTRODUCTION
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11.1 Background

The congenital long-QT syndrome (LQTS) is an inherited cardiac syndrome in which ventricular 
repolarisation is altered due to genetic mutations in genes encoding ion channels involved in the 
repolarization phase of the action potential. Nowadays, mutations in at least 16 genes have been found 
in patients with congenital LQTS1. The most common LQTS genes (KCNQ1, KCNH2 and SCN5A) account 
for the vast majority of all LQTS genotype-positive cases2,3. Mutations in the KCNQ1 and KCNH2 genes 
can lead to an altered K+ current whereas mutations in the SCN5A gene can lead to an increased Na2+ 
inward current. Both lead to a prolonged action potential duration which is typically characterized by an 
increased QT-interval and/or an abnormal T-wave morphology on the electrocardiogram (ECG). 

Diagnosing LQTS as soon as possible is crucial since 26% of untreated symptomatic LQTS patients will 
have a lethal cardiac event within three years4. If recognized and treated early enough, mortality rate 
drops to approximately 1% over a 15-year follow-up5. Since LQTS is an inherited syndrome, genetic 
testing for known LQTS mutations might sound as the preferred diagnostic tool, however approximately 
20% of clinically diagnosed LQTS patients remain genetically elusive2. Furthermore, the known pathogenic 
variants seem to have a reduced penetrance and therefore do not always lead to symptoms and/or a 
prolonged QT-interval6,7. Since LQTS owes its name to a prolonged QT-interval, it seems obvious to 
diagnose LQTS based on the QT-interval. However, diagnosing LQTS solely based on the QT-interval, 
even if corrected for heart rate (QTc), comes with serious limitations. 

First of all, most physicians seem to be unable to identify a prolonged QT-interval when they encounter 
one8. Reasons for this could be erroneous QT-interval measurements, incorrect QTc calculations or 
the use of wrong QTc thresholds. Thereafter, two often used methods to manually assess the QT-
interval (the threshold and the tangent method) lead to significantly different QT-intervals and result in a 
different sensitivity and specificity9. Thresholds should therefore differ for the used method. An accurate 
computer algorithm which determines the QT-interval would be a solution for the measurement 
problems and can put an end to the method-specific thresholds if the same algorithm is used world-
wide. Unfortunately, the accuracy of the existing algorithms is doubted by worldwide LQTS experts10. 

Secondly, the considerable overlap in QTc obtained from standard resting ECGs between affected and 
unaffected individuals11 hampers screening for LQTS based on standard ECGs. Therefore, instead of 
studying QTc at rest, provocative tests have been introduced to study the capability of the QT-interval 
to adjust to changes in heart rate accomplished by epinephrine12,13, exercise14,15 or brisk standing16–18. 
Though these studies report improved diagnosis of LQTS, the suspicion for LQTS has to be raised before 
these tests will be used.

Finally, the QT-interval is effected by age, gender and hormones making it unstable over time19. LQTS 
patients can show a prolonged QT-interval on one ECG and a normal on a repeated ECG20. Considering 
all limitations mentioned above, Diagnosing Long-QT Syndrome: Simple but not so Easy. 

1.2 General Aim

In this thesis, we aim to improve the diagnosis of congenital LQTS based on computational analysis of 
the ECG. We hypothesize that the ECG contains more diagnostic information regarding LQTS than is 
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1 1QT-interval. As a consequence of a collateral damage occurring during isolation of the pulmonary veins, 
ganglionated plexi located outside of the left atrium may be modulated28. Recent studies have shown 
that this might also affect ventricular electrophysiology29,30. For example, an experimental study in canine 
hearts showed that the ventricular action potential duration significantly increased after ablating the 
ganglionated plexi. Therefore, in Chapter 8 we study whether the QT-interval (i.e. the ventricular action 
potential duration) prolongs as a consequence of pulmonary vein isolation. In Chapter 9 we study 
the effect of various calcium concentrations in dialysate on the QT-interval. Calcium is an important 
electrolyte in the repolarization of cardiac myocytes. Different calcium concentrations in dialysates might 
therefore affect the ventricular repolarization and lead to a prolonged QT-interval. 

In the final chapter of this thesis, Chapter 10, the findings of the various chapters are put into broader 
perspective in a general discussion. 

used in clinical practice. Therefore, we developed, analyzed and applied various algorithms which might 
improve the diagnosis of LQTS. 

1.3 Outline of Thesis

To solve the problems with measuring the QT-interval, we introduce a fully automatic algorithm to 
measure QT-intervals in Chapter 2 of this thesis. The algorithm is based on the tangent method to 
measure the end of the T-wave21. Apart from a detailed description, the algorithm is validated by a direct 
comparison of QT-intervals measured by the algorithm and as measured by three observers. 

Other genetic factors distinct from the LQTS mutation can influence the expression of the LQTS 
mutation22–24. Genetic testing of relatives in family screening only test for known LQTS mutations. A 
genotype-negative family member can therefore still have an altered repolarization caused by other 
mutations. Several studies used genotype-negative family members as controls whereas others use 
healthy subjects as controls. Whether the definition of the control group influences the results of these 
studies is unknown. Therefore, in Chapter 3 we investigate whether genotype-negative family members 
have a prolonged QTc with respect to healthy controls. 

In Chapter 4 we applied the automatic algorithm described in Chapter 2 to ECGs recorded during 
supine-standing tests to study the dynamic behaviour of the QTc and QT-interval in LQTS patients and 
genotype-negative family members. The so far promising results of the supine-standing test rely on 
manually assessed QT-intervals of several predefined complexes16–18. In this chapter we examine the 
diagnostic value of the QT-intervals of these complexes as well as the dynamic behaviour of the QTc 
and QT-intervals of all complexes in adult LQTS patients and controls. We furthermore investigate sex-
differences in the response to the supine-standing test. 

Since children not only have a higher heart rate at rest but also have a more pronounced reflex 
tachycardia25,  the promising results of the supine-standing tests in adults can’t be extrapolated to a 
paediatric cohort. Therefore, in Chapter 5 we study the usefulness of the supine-standing test in a 
paediatric cohort of healthy children and children with LQTS. Since this is the first supine-standing test 
study on a paediatric cohort including LQTS patients, we also study the reproducibility of the test on this 
cohort. 

Apart from the prolonged QT-interval, altered T-wave morphologies have also been recognized in 
LQTS patients26,27. In Chapter 6 and Chapter 7 we study whether the T-wave in a standard 10-second 
resting ECG can aid in the diagnosis of LQTS. In Chapter 6 we use various known T-wave morphology 
parameters and combine these in a support vector machine model to improve LQTS diagnosis. In 
Chapter 7 we introduce a new polynomial-based method to characterize the T-wave morphology and 
study the additional value of this characterization in the diagnosis of LQTS. 

A prolonged QT-interval is not only seen in LQTS patients. Other pathologies (e.g. ischemia, ionic 
imbalance) or treatments (e.g. drug-induced LQTS) can also lead to a prolonged QT-interval. Acquired 
prolonged QT-intervals are also associated with ventricular arrhythmias and therefore also need to be 
diagnosed as soon as possible. In Chapter 8 and Chapter 9, we study two interventions that might 
lead to a prolonged QT-interval. In Chapter 8 we study the effects of pulmonary vein isolation on the 
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2.1 Introduction

Prolongation of the QT-interval on the electrocardiogram (ECG) has been associated with Torsade de 
Pointes, a potentially lethal cardiac arrhythmia1,2. A prolonged QT-interval can be caused by Long-QT 
syndrome (LQTS), which can be either inherited or acquired due to an underlying medical condition or 
medication2. The measurement of the QT-interval is used world-wide on a daily basis in the diagnosis of 
LQTS or in the evaluation of possible effects of a new drug on the QT-interval3. 

Although the value of a prolonged QT-interval for risk assessment of future malignant arrhythmias 
is widely understood1, most physicians, including cardiologists, have difficulties to correctly identify a 
prolonged QT-interval4. Additionally to measurement difficulties, diagnosing LQTS is challenging since 
there is a considerable overlap of the QT-interval between LQTS patients and healthy controls.5,6 Because 
of this overlap in QT-intervals, additional measurements like QT dispersion7,8 and QT variability9 were 
introduced and assessed on their value to diagnose LQTS. Because these relatively new parameters 
are used to study QT dynamics, they require evaluation of large numbers of RR- and QT-intervals. QT 
variability, for example, is typically determined from 256-512 beats or 256-512 seconds duration ECG9. 
Furthermore, supine-standing tests are introduced to study QT-interval adaptation10,11 and changes in 
T-wave morphologies12 due to heart rate changes induced by brisk standing. In these tests, QT-interval 
dynamics are assessed based on a small number of QT-intervals10,11. Beat-to-beat analysis of supine-
standing tests might give more insight in the dynamic behaviour of the QT-interval and therefore 
improve its diagnostic value. Measuring these large numbers of RR- and QT-intervals manually is very 
time consuming and therefore automated QT-interval algorithms are necessary.

Currently, automatic algorithms for measuring the QT-interval embedded in commercial ECG systems 
measure the QT-interval on an average or median complex over time (cf. Appendix Kligfield et al.13). As 
a consequence, beat-to-beat detection algorithms which include the QT-interval dynamicity have been 
published, but often use only a single ECG lead (mostly II or V5), which makes the QT-interval susceptible 
to heart axis orientation and electrode placement14. In this article we present and validate an automatic 
QT-interval algorithm based on the tangent method15 which is unaffected by heart axis orientation and 
that can be applied on a beat-to-beat basis regardless of the T-wave morphology. 

2.2 Methods

2.2.1 Population and ECG recordings

Five minutes long ECGs from supine-standing tests recorded between December 2008 and February 
2016 of 73 LQTS patients and 54 controls were included in this study. These recordings were performed 
in the initial evaluation of individuals referred to the department of Cardiology and Cardiogenetics of the 
Academic Medical Centre in Amsterdam, The Netherlands, in the work-up during family screening for 
LQTS (i.e. after a diagnosis was made in an index patient). LQTS patients had a confirmed pathogenic 
mutation in either the KCNQ1, KCNH2 or SCN5A gene resulting in LQTS type 1 (LQT1), type 2 (LQT2) or 
type 3 (LQT3) respectively. Controls were genotype-negative family members or healthy volunteers. We 
obtained a waiver from the local ethical committee for ethical approval for the conduct of this study. 

Abstract

Background
To evaluate QT-interval dynamics in patients and in drug safety analysis, beat-to-beat QT-interval 
measurements are increasingly used. However, interobserver differences, aberrant T-wave 
morphologies and changes in heart axis might hamper accurate QT-interval measurements.

Objective
To develop and validate a QT-interval algorithm robust to heart axis orientation and T-wave 
morphology that can be applied on a beat-to-beat basis. 

Methods
Additionally to standard ECG leads, the root mean square (ECGRMS), standard deviation and 
vectorcardiogram were used. QRS-onset was defined from the ECGRMS. T-wave end was defined per 
individual lead and scalar ECG using an automated tangent method. A median of all T-wave ends 
was used as the general T-wave end per beat.

Supine-standing tests of 73 patients with Long-QT syndrome (LQTS) and 54 controls were used 
because they have wide ranges of RR and QT-intervals as well as changes in T-wave morphology and 
heart axis orientation. For each subject, QT-intervals in three random complexes chosen from the 
low, middle and high RR range, were compared with manually measurements by three observers.

Results
After visual inspection of the randomly selected complexes, 21 complexes were excluded because 
of evident noise, too flat T-waves or premature ventricular beats. Bland-Altman analyses of 
automatically and manually determined QT-intervals showed a bias of <4ms and limits of agreement 
of ±25ms. Intra-class coefficient indicated excellent agreement (>0.9) between the algorithm and the 
observers.

Conclusion
Our automated algorithm provides reliable beat-to-beat QT-interval assessment, robust to heart 
axis and T-wave morphology.
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Figure 2-1 Schematic representation the algorithm’s steps. A detailed description is given in the 
main text. Fs = sample frequency, Hz = hertz, IIR= infinite impulse response, FFT = fast Fourier transform, 
|VCG| = magnitude of the vectorcardiogram, SD = standard deviation, RMS = root mean square, SecDer 
= second derivative, Tend = T wave end. 

ECG recordings during supine-standing tests were used to validate the algorithm since these recordings 
consist of a wide range of RR- and QT-intervals as well as changes in T-wave morphology and heart axis 
orientation10–12.

2.2.2 Development of an automatic QT-interval detection algorithm

Data acquisition and pre-processing
All individual (pre-)processing steps of the algorithm are shown in Figure 2-1. All ECGs were recorded 
with a 600Hz sample frequency using Welch Allyn CardioPerfect (Welch Allyn, Skaneateles Falls, NY, USA). 
Data analysis was performed offline using a custom-made Matlab (2015b, The MathWorks, Natick, MA, 
USA) program. After acquisition, ECG data were filtered using a 2nd order bidirectional Butterworth 
band pass filter (0.5-100Hz16) and a 2nd order infinite impulse response notch filter (50Hz) with a -3dB 
bandwidth of 0.33Hz. For all individual leads, the residuals of a median filter with a 501 samples window 
were regarded as baseline deviations and were subtracted from the individual ECG leads to correct for 
baseline wander. The filtered ECGs were thereafter upsampled to 1000Hz to make the analysis sample 
frequency independent so it can be applied to ECGs recorded with different sample frequencies as well. 

Scalar ECG construction
Three types of scalar ECGs are constructed to emulate ECG signals unaffected by heart axis orientation. 
The root mean square (ECGRMS) and standard deviation (ECGSD) are calculated as follows:  
 

        (1)

        (2)

where ECG
i
(t) is the ECG signal at time t from lead i and ECG(t) is the mean ECG in time over the various 

leads. Note that there are only nine leads used in this calculation.  Ideally, one would use unipolar 
precordial leads and unipolar limb leads to reconstruct a scalar ECG from. Unfortunately, true unipolar 
limb leads are not recorded (or saved) in a standard 12-lead ECG. Mathematically, augmented limb leads 
are scaled true unipolar ECG leads. For example, the unipolar foot electrode (VF) would be calculated by:

  (3)

with F
f
, F

r
 and F

l
 the potential recorded at the foot, right arm and left arm respectively and F

wct
 the 

Wilson central terminal.

Pre-processing
2nd order Butterworth

Bandpass 0.5-150Hz +
2nd order IIR notch filter 
50Hz -3dB bandwith: 0.33Hz

Baseline deviation removal
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12 lead ECG
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ECGRMSECGSD|VCG|

See supplementary materials for equations

Local Tend detection
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amplitude smaller than 50 μV were considered to be too small for accurate determination of local Tend 
and therefore were not taken into account for the determination of the global Tend of that particular 
complex. For example, if the T-wave amplitude is low in all limb leads, global Tend will be calculated from 
the local Tend of the precordial leads and the scalar ECGs only.

Global
QRS onset

Global
R peak

Baseline
window

QRS onset
-30ms

Local Tpk

Local Tend

Baseline

RR

ECG RMS

SecDer

ECG II

500ms R+50ms R+0.7RR

Tpk window

Tend window

Tpk Tpk+0.3RR

Figure 2-2 Illustration of global QRS onset and local T wave landmarks detection. Global R peak 
is detected using a Pan-Tompkins algorithm on the ECGRMS signal. The global QRS onset is thereafter 
detected as a peak in the second derivative of the ECGRMS within a certain window preceding the global 
R peak. The local T peak (Tpk) is detected as the maximum or minimal peak between R+50ms and 
R+0.7RR. Thereafter, the tangent trough the point of maximum deflection between Tpk and Tpk+0.3RR 
is calculated from the first derivative. The intersection between this tangent and the baseline is detected 
as the local end of the T wave (Tend). Tpk = T-wave peak, Tend = T-wave end, RMS = root mean square, 
SecDer = second derivative, ms = milliseconds.

2.2.3 Validation 

From every ECG recording during a supine-standing test, one complex with an RR-interval below the 
10th percentile, one complex with an RR-interval above the 90th percentile, and one complex with an 
RR-interval within the interquartile range were randomly selected by the computer. This resulted in 
three complexes with a wide range of RR-intervals per supine-standing test. From the randomly selected 
complexes, QT-intervals were calculated both automatically using the algorithm described above and 
manually by three independent observers (BH, FB, TD). The manual measurements of the QT-intervals 
were done on paper using the tangent approach in a lead of choice15. All observers measured the QT-
interval with an accuracy of 0.5mm, which corresponded with 6ms. The observers were blinded for 
patient characteristics, QT-intervals determined by the algorithm and the measurements of the other 

The augmented limb lead aVF is calculated by:

     (4)

So, VF can be calculated from aVF by scaling aVF with 2/3.

     (5)

We used these calculated unipolar limb leads (2/3 aVR, 2/3 aVL, 2/3 aVF) and the unipolar precordial 
leads (V1-V6) to construct the ECGRMS and ECGSD.

Lastly, a vectorcardiogram (VCG) was constructed using the method described by Kors et al.17 The 
magnitude of this VCG (|VCG|) was used as the third scalar ECG.

R peak and QRS onset detection
R peaks were detected from the ECGRMS signal using the Pan Tompkins algorithm18. The largest peak in 
the second derivative of ECGRMS (calculated using a simple numerical differentiation) within a window 
of 100 to 20 milliseconds (ms) preceding the R peak was regarded to indicate the onset of the QRS 
complex, see Figure 2-2. 

T-wave landmarks
The peak of the T-wave (Tpeak) and the end of the T-wave (Tend) are estimated for every individual ECG lead 
as well as for the constructed scalar ECG signals. T-wave landmarks obtained from individual scalar ECG 
signals or ECG leads are called local T-wave landmarks. Since individual ECG leads are affected by heart 
axis orientation and scalar ECGs may blur information which is only present in one or two individual 
ECG leads, local T-wave landmarks are determined from both the individual ECG leads and the scalar 
ECGs. These effects are minimized by determining one global T-wave landmark from the local T-wave 
landmarks obtained from ECG leads and scalar ECGs. To detect the local T-wave landmarks, all individual 
ECG leads and the scalar ECG signals were smoothed using a 2nd order Savitzky Golay filter with a 50ms 
window. First, the local peak of the T-wave (local Tpeak) was detected as the maximum or minimum peak 
between the preceding R peak +50ms and the preceding R peak +70% RR of the smoothed signal (see 
Figure 2-2). Second, the slope of the maximum deflection between local Tpeak and local Tpeak +30% RR 
was calculated. A tangent through the point with the maximal slope in the final limb of the T-wave was 
estimated using a simple numerical differentiation within a ten ms window (dVdt(t)=(V(t+5)-V(t-5))/10). 
The intersection of this tangent and the baseline was used to detect the local end of the T-wave (local 
Tend). The baseline was defined as the median amplitude of the 30ms preceding the QRS onset of that 
particular complex. Local QT-intervals were calculated from the global QRS onset and local Tend and can 
be used for QT dispersion measures. 

Global T-wave landmarks 
From the local T-wave landmarks, a median Tpeak and Tend location was calculated for every complex. Local 
Tpeak and Tend landmarks that deviated more than two times the standard deviation (SD) from the median 
Tpeak and Tend were considered to be outliers and excluded. Global Tpeak and Tend locations were calculated 
as the median from the remaining local Tpeak and Tend locations. Finally, QT-intervals were calculated by 
calculating the interval between QRS onset and global Tend. Individual ECG leads with a local T-wave 
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In the remaining 358 complexes, the RR-intervals ranged from 470ms to 1419ms, with a mean RR of 
849ms (± 194ms). The mean heart axis was 42⁰ (± 42⁰) and the 95% percentile confidence interval (PCI: 
2.5th and 97.5th percentile of the data) ranged from -45⁰ to 119⁰. The mean T-wave axis was 26⁰ (± 42⁰) 
with a 95% PCI ranging from -85⁰ to 108⁰.

By visual inspection by one of the observers, 127 (35%) complexes had aberrant T-waves and/or 
prominent U-waves. Figure 2-3 shows an example of one complex with the QRS onset and global Tend 
detected by the algorithm for an LQT1, LQT2 and LQT3 patient as well as for a control.

Figure 2-3 An example of the results of our algorithm. The QRS onset and global Tend detected by the 
algorithm is shown for a healthy control and patients with LQT-1, 2 and 3. QTalg = QT-interval determined 
by the algorithm, μQTobs = mean QT-interval determined by three observers, ms = milliseconds.
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observers. The algorithm was validated by determining the inter-method variability between the QT-
interval measured by the algorithm (QTalg) and (I) the individual manual QT-interval measurements 
(QTobs1, QTobs2 and QTobs3) and (II) the mean QT-interval from all the individual measurements 
(μQTobs). In addition, the QT-interval measurements of the three observers were compared in order to 
assess the inter-observer variability.

2.2.4 Statistical analysis

Statistical analyses were performed in Matlab. Patient and ECG characteristics were presented in 
frequencies (percentage) for categorical variables and mean (± SD) for continuous variables with an 
approximately symmetric distribution. The inter-method variability and the inter-observer variability 
were expressed as correlation coefficients estimated by a Pearson correlation test, and the intra-class 
correlation coefficient (ICC) for single and averaged measurements based on a two-way mixed absolute 
agreement model19. Sample uncertainty was expressed as 95% confidence intervals (95% CI). Bland-
Altman analyses were performed to assess the systematic bias and the limits of agreement for both 
the inter-method and the inter-observer variability20. A p-value < 0.05 was considered to be statistically 
significant. 

2.3 Results

2.3.1 Population

The total study population of 127 subjects included 34 (26.8%) subjects with LQT1, 28 (22.0%) with LQT2, 
11 (8.7%) LQT3, and 54 (42.5%) controls. The characteristics of the study population are shown in Table 
2-1. 

Gender (M/F) Age (years) Number (-) QTc at  
low RR (ms)

QTc at  
mid RR (ms)

QTc at  
high RR (ms)

LQT1 13 / 21 33.9 ± 13.9 34 486 ± 44 460 ± 37 439 ± 33

LQT2 17 / 11 40.5 ± 15.1 28 498 ± 49 449 ± 35 427 ± 34

LQT3 4 / 7 35.2 ± 15.2 11 472 ± 45 439 ± 35 422 ± 35

Control 31 / 23 40.8 ± 15.8 54 446 ± 38 410 ± 26 392 ± 25

Total 65 / 62 38.4 ± 15.2 127 469 ± 47 435 ± 39 415 ± 36

Table 2-1 Characteristics of the study population. Data are given as mean ± standard deviation. M = 
male, F = female, RR = RR-interval, QTc = Corrected QT using Bazett’s formula.

2.3.2 Validation

The randomly computer based selected complexes were visually inspected and eight complexes (2.1%) 
had to be excluded based on the presence of artefacts, three complexes because of too flat T-waves in 
all ECG leads (0.8%), and two (0.5%) because the randomly chosen complex was a premature ventricular 
complex. 



24 | Chapter 2 Automatic QT-interval algorithm | 25

2 2

30
0

35
0

40
0

45
0

50
0

55
0

-1
00-5
00

5010
0

30
0

40
0

50
0

60
0

30
0

40
0

50
0

60
0

0
50

10
0

A
: L

in
ea

r R
eg

re
ss

io
n

B
: B

la
nd

-A
ltm

an
 p

lo
t

C
: D

is
tri

bu
tio

n 
of

 d
iff

er
en

ce
s

QTalg [ms]

µQTobs - QTalg [ms]

µQ
To

bs
 [m

s]
M

ea
n 

of
 µ

Q
To

bs
 a

nd
 Q

Ta
lg

 [m
s]

C
ou

nt
s 

[-]

M
ea

n 
di

ffe
re

nc
e 

+ 
1.

96
 S

D
 =

 2
5 

m
s 

M
ea

n 
di

ffe
re

nc
e 

- 1
.9

6 
SD

 =
 -2

5 
m

s 

M
ea

n 
di

ffe
re

nc
e 

= 
0 

m
s 

R
2 

= 
0.

93

Fi
gu

re
 2

-4
 V

al
id

at
io

n 
re

su
lt

s 
of

 th
e 

μQ
To

bs
 V

S 
Q

Ta
lg

. A
 li

ne
ar

 re
gr

es
si

on
 b

et
w

ee
n 

μQ
To

bs
 a

nd
 Q

Ta
lg

. B
 B

la
nd

-A
ltm

an
 a

na
ly

si
s 

sh
ow

s 
no

 b
ia

s 
(s

ol
id

 b
la

ck
 

lin
e)

 a
nd

 n
ar

ro
w

 li
m

it 
of

 a
gr

ee
m

en
ts

 (d
as

he
d 

lin
es

). 
C 

Th
e 

D
is

tr
ib

ut
io

n 
of

 d
iff

er
en

ce
s 

sh
ow

s 
th

at
 th

e 
di

ffe
re

nc
es

 a
re

 n
or

m
al

ly
 d

is
tr

ib
ut

ed
 a

ro
un

d 
ze

ro
. A

ll 
nu

m
be

rs
 c

or
re

sp
on

di
ng

 w
ith

 th
is

 fi
gu

re
 c

an
 b

e 
fo

un
d 

in
 T

ab
le

 2
-2

. Q
Ta

lg
 =

 Q
T-

in
te

rv
al

 d
et

er
m

in
ed

 b
y 

th
e 

al
go

rit
hm

, μ
Q

To
bs

 =
 m

ea
n 

Q
T-

in
te

rv
al

 d
et

er
m

in
ed

 
by

 th
re

e 
ob

se
rv

er
s,

 S
D

 =
 s

ta
nd

ar
d 

de
vi

at
io

n,
 m

s 
= 

m
ill

is
ec

on
ds

.

2.3.3 Inter-method variability

Results of the comparison between the QTalg and the individual observers are shown in Table 2-2. 
There was a strong correlation (Pearson’s r ranging from 0.935 to 0.959) and agreement (ICC ranging 
from 0.933 to 0.956) between the QTalg and the individual observers, with a systematic bias ranging 
between -1.88ms and 3.39ms. Figure 2-4 shows the Bland-Altman plot for the inter-method variability 
of QTalg and μQTobs. The correlation and agreement between QTalg and μQTobs were also strong (r = 
0.962, ICC = 0.981). 

LQTS type specific validation showed similar agreements between QTalg and μQTobs for all LQTS types 
(ICC ranging from 0.934 (LQT2) to 0.989 (LQT1). See supporting information: Figure S.2-1 and Table 
S.2-1). 

Pearson correlation

r (95% CI) p

QTalg vs. QTobs1 0.959 (0.949 – 0.966) < 0.001

QTalg vs. QTobs2 0.935 (0.920 – 0.946) < 0.001

QTalg vs. QTobs3 0.948 (0.936 – 0.957) < 0.001

QTalg vs. μQTobs 0.962 (0.954 – 0.969) < 0.001

Intra-class coefficient

ICC (95% CI) p

QTalg vs. QTobs1 0.956 (0.943 – 0.966) < 0.001

QTalg vs. QTobs2 0.933 (0.917 – 0.945) < 0.001

QTalg vs. QTobs3 0.947 (0.935 – 0.957) < 0.001

QTalg vs. μQTobs 0.981 (0.976 – 0.984) < 0.001

Bland-Altman

Mean difference (ms) Limits of agreement (ms)

QTalg vs. QTobs1 3.39 -23.23 : 30.01

QTalg vs. QTobs2 -2.65 -36.09 : 30.79

QTalg vs. QTobs3 -1.88 -31.53 : 27.78

QTalg vs. μQTobs -0.38 -25.41 : 24.65

Table 2-2 Inter-method variability 95% CI = 95% confidence interval, obs = observer(s), r = Pearson’s 
r, p = p-value, ICC = intra-class coefficient, ms = milliseconds.

2.3.4 Inter-observer variability

Results of the comparison between observers are shown in Table 2-3. The agreement between all 
observers was strong (Pearson’s r ranging from 0.945 to 0.964, ICC ranging from 0.939 to 0.958). The 
Bland-Altman analysis showed that the inter-observer bias ranged from -0.74ms to 6.28ms. The limits of 
agreement range from 26ms to 31ms.



26 | Chapter 2 Automatic QT-interval algorithm | 27

2 2

2.4.2 Algorithms by manufacturers

All modern ECG machines provide users with automated measurements of ECG intervals. A general 
downside of these algorithms is that the QT-interval is determined on an averaged complex over time 
(cf. Appendix Kligfield et al.13). Therefore, temporal fluctuations in QT-interval are lost and the dynamicity 
and adaptation of the QT-interval to changes in heart rate cannot be studied using these algorithms. 
Another downside of these algorithms is that the details about the algorithms are often unavailable 
for their users. Despite the latter, many cardiologists do use and trust the QTc provided by the ECG 
machine. Using a custom-made algorithm enables visualisation of the determined QRS-onset and 
T-wave end, making it easier to distinguish between correct and erroneous measurements.

2.4.3 Custom-made QT-interval algorithms

Custom-made (semi-)automated QT-interval algorithms were developed in order to study QT dynamics. 
Berger et al.14 for example, described a template matching algorithm to study QT dynamics. In his 
algorithm, a template (which is selected by the user) is matched to all complexes in order to measure 
individual QT-intervals. A disadvantage of his algorithm is that it only uses one ECG lead (I or II) and is 
therefore susceptible to heart axis orientation. For example, an algorithm that uses only lead II will most 
likely be unable to define Tend in the ECG of the LQT2 patient as shown in Figure 2-3, due to the low 
T-wave amplitude in ECG lead II. Since our algorithm takes all leads into account, it is still able to define 
Tend as long as the T-wave is large enough in at least one lead (see Figure 2-3). 

More sophisticated single- and multilead algorithms have also been reported22–26. However, a general 
downside of those techniques is that they have not yet been validated for LQTS patients with various 
T-wave morphologies. Therefore it remains unknown how well these algorithms perform in T-wave 
morphologies alternated by LQTS. Almeida et al. proposed a multi-lead ECG delineation algorithm which 
has been validated against multiple annotated databases26. Almeida et al. report mean differences of 
7.5 ± 11.2 ms and 7.9 ± 21.7 ms for the QRS-onset and T-wave end detection, respectively26. Although 
the exact mean differences in QT-interval can’t be perceived from these results, the mean differences 
of QRS-onset and T-wave end detection suggest the differences in QT-interval to be similar to our 
validation results. 

2.4.4 Development

Our algorithm is an extensive automated version of the tangent method first described by Lepeschkin 
and Surawicz.15 The tangent method has been shown to be an accurate and reproducible method for 
diagnosing prolonged QT-intervals, even by inexperienced ECG readers21. We applied this method to 
all 12 standard ECG leads as well as to the three constructed scalar ECGs (ECGRMS, ECGSD, |VCG|) to 
make it unaffected by heart axis orientation and applicable regardless of the T-wave morphology. Since 
prominent U-waves, notches, low T-waves and other altered T-wave morphologies often occur in only a 
few ECG leads, morphology-induced erroneous local Tend detections will not affect the global Tend. 

It is important to bear in mind that though our algorithm is applicable regardless of the T-wave 
morphology, the T-wave morphology on its own can still be useful for the diagnosis of LQTS.

Pearson correlation

r (95% CI) p

QTobs1 vs. QTobs2 0.947 (0.935 – 0.957) < 0.001

QTobs1 vs. QTobs3 0.964 (0.955 – 0.970) < 0.001

QTobs2 vs. QTobs3 0.945 (0.934 – 0.956) < 0.001

Intra-class coefficient

ICC (95% CI) p

QTobs1 vs. QTobs2 0.939 (0.908 – 0.958) < 0.001

QTobs1 vs. QTobs3 0.958 (0.932 – 0.972) < 0.001

QTobs2 vs. QTobs3 0.946 (0.934 – 0.956) < 0.001

Bland-Altman

Mean difference (ms) Limits of agreement (ms)

QTobs1 vs. QTobs2 6.28 -24.67 : 37.23

QTobs1 vs. QTobs3 5.54 -20.41 : 31.49

QTobs2 vs. QTobs3 -0.74 -31.06 : 29.58

Table 2-3 Inter-observer variability 95% CI = 95% confidence interval, obs = observer(s), r = Pearson’s 
r, p = p-value, ICC = intra-class coefficient, ms = milliseconds.

2.4 Discussion

We have developed and validated an automatic QT-interval algorithm based on the tangent method 
which is unaffected by heart axis orientation and that can be applied on a beat-to-beat basis regardless 
of the T-wave morphology. There is a high agreement between the automatic algorithm and manual 
measurements of the QT-interval. Measuring errors between our algorithm and manual measurements 
are similar or even smaller than inter-observer measuring errors. In contrast to manual measurements, 
our algorithm enables users to study large amounts of complexes. Therefore, it can be used to study 
novel QT-interval parameters that require beat-to-beat QT-interval analysis. 

2.4.1 Measuring the QT-interval

Recognition of an abnormal QT-interval is an important element to gain an impression of the risk for 
malignant arrhythmias and it guides treatment. However, determination of the QT-interval can be 
challenging4 and its result may frustrate treatment6. For manual QT assessment, the tangent method 
in lead II or V5 has been proposed. It has been suggested that with this method even inexperienced 
ECG readers can, after minimal education, accurately diagnose prolonged and normal QT-intervals15,21. 
However, manual assessment has considerable limitations. Proper manual QT-interval assessment is 
time consuming. Therefore, most physicians pick one lead and one complex to measure. Whether the 
QT-interval from the measured complex in the chosen lead is representative for the patient can be 
questionable. Measuring QT-intervals of multiple complexes over all leads is too time-consuming for 
daily clinical practice. Therefore, objective, standardized automated QT-interval algorithms unaffected 
by heart axis orientation are desirable. 
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might result in a larger error in Tpeak and Tend detection. This is partially dealt with by excluding individual 
complexes on individual ECG leads if that particular complex has a T-wave amplitude smaller than 50μV. 
However, by excluding individual complexes on certain ECG leads, the remaining ECG leads become 
more important in those complexes. If respiration affects T-wave amplitude, a different number of 
individual ECG signals might be used for every complex within one respiratory cycle. This might induce 
detected QT variability. 

Second, Tend detection using the tangent approach is influenced by baseline deviations. Robust baseline 
determination techniques are rare and although the validation of our algorithm was successful, 
improving baseline determination might still improve the outcome. 

Baumert et al.28 stated that conventional QT algorithms are not the best choice to measure beat-to-beat 
QT-interval changes. However, the conventional QT algorithm that has been studied in this article is a 
threshold method on the first derivative of a single lead ECG. Since our algorithm is based on the tangent 
method and takes all leads into account, the statement from Baumert et al.28 can’t be projected on 
our algorithm. To find out whether our algorithm can be used for beat-to-beat QT-interval parameters 
as described in the position paper from Baumert et al.9, a validation focused on these parameters is 
required.

Lastly, the observers measured the QT-interval from one lead only, while the algorithm takes all leads 
into account. However, since there is no true gold standard in the measurement of the QT-interval, we 
chose to validate the algorithm against the most objective manual assessment available. 

2.5 Conclusion

Our validation results show that the QT-interval detection algorithm is as accurate in determining QT-
intervals as instructed manual observers are. Since the algorithm is fast, objective, unaffected by heart 
axis orientation, applicable regardless of the T-wave morphology and can provide beat-to-beat QT-
intervals, the algorithm might be useful to help improving the diagnosis of LQTS or the evaluation of 
QT-interval prolonging effects of new drugs.

The isoelectric baseline was defined as the median amplitude of the 30ms preceding a QRS onset. The 
P-Q segment was chosen instead of the T(U)-P segment because the PQ segment is less affected by 
heart rate changes since at high heartrates the P wave can coincide with the T-wave. 

2.4.5 Validation

The results of our validation study show good agreements between observers and our algorithm. The 
mean differences and limits of agreements between the observers and our algorithm are in the same 
range as the inter-observers’ differences in this study as well as in a previous study27. The same holds 
for the results from ICC. This suggests that our algorithm is as accurate in determining the QT-interval 
as the observers. 

The QT-intervals measured by the observers and the algorithm had an approximately normal 
distribution. To be sure not to make mistakes by using parametric tests, Spearman’s correlation test 
and the Kendal’s W coefficient of concordance were also computed and the results were compared 
with the Pearson’s correlation test and the intra-class correlation coefficient. The differences between 
the parametric and non-parametric tests were small and the results of the non-parametric tests did not 
change the conclusion. 

From our results we conclude that our algorithm is a good alternative for manual QT-interval 
measurements. Moreover, because the algorithm is unaffected by heart axis orientation and can 
provide beat-to-beat QT-intervals, it might have an additional value in diagnosing LQTS and evaluating 
new drugs.

2.4.6 Advantages

Additional advantages of our algorithm are that we are the first to combine T-wave landmarks derived 
from individual ECG leads with landmarks derived from scalar ECGs. By doing so, the algorithm combines 
the better of two worlds. The scalar ECGs are independent to heart axis orientation but since they are a 
mean (ECGRMS), standard deviation (ECGSD) or weighted mean (VCG) of individual ECG leads, information 
which is only present in one or two ECG leads is blurred and would have been lost if our algorithm 
wouldn’t have used also the individual ECG leads. By calculating the median Tend after outlier removal, the 
global Tend is based on both the scalar ECGs and individual ECG leads. Secondly, the ECGRMS and ECGSD 
are calculated from unipolar ECG leads only. By doing so, all ECG leads contribute equally to the scalar 
ECGs. Another advantage is that our algorithm treats every complex individually and it does not require 
a priori knowledge. Methods like the one described by Ritsema van Eck23 might run into problems by 
sudden changes in T-wave morphology because each individual complex is cross-correlated with the 
average of the remainder complexes. Lastly, we described all necessary details to rebuild the algorithm 
and kept it as simple as possible. By doing so, the algorithm is reproducible and understandable for 
future users and clinicians.

2.4.7 Limitations

Although the algorithm had a high agreement with manual measurements, we acknowledge it has 
some limitations. First, low T-wave amplitude will result in a smaller signal-to-noise ratio and therefore 
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2.7 Supplementary Material

Figure S.2-1 LQTS specific validation of μQTobs VS QTalg. Bland-Altman analysis shows the bias (solid 
black line) and the limit of agreements (dashed lines) per LQTS type. QTalg = QT-intervals determined by 
the algorithm, μQTobs = mean QT-interval determined by three observers, ms = milliseconds
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Abstract

Background: 
The brisk standing test has been shown to contain additional value in the diagnosis of the long-QT 
syndrome (LQTS) in adults. The diagnostic accuracy and cut-offs for a paediatric population remains 
unknown. 

Objective
In this study we aim to evaluate the reproducibility of the standing test as well as its diagnostic value 
for the diagnosis of LQTS in children.

Methods
Electrocardiogram recordings of standing tests of genetically confirmed LQTS patients and LQTS 
genotype-negative controls were used in this study. The recordings were analysed manually in line 
with the initial studies on adults as well as automatically by a custom-made beat-to-beat QT-interval 
algorithm. The reproducibility was examined by inter- and intra-reader validity by Bland-Altman 
analyses and intra-class correlation coefficients. The diagnostic accuracy of the test was examined 
by receiver-operator curve (ROC) analyses.

Results
A total of 87 controls and 47 LQTS patients were included for manual analyses. Digital ECGs were 
available for beat-to-beat analysis from 42 controls and 29 LQTS-patients. The inter- and intra-
reader validity of the measurements were good/high for all parameters. The diagnostic accuracy of 
the baseline QT-interval corrected for heart rate (QTc) resulted in the highest AUC (0.841). None of 
the “brisk standing test parameters” had a significant increased diagnostic value compared to the 
baseline QTc. Beat-to-beat analysis revealed that the QTc differed at between LQTS patients and 
controls at baseline and that this difference remained the same after standing. 

Conclusion
QTc after standing did not differ between LQTS-children and controls. Therefore, the brisk standing 
test has no additional value as a screening test to diagnose LQTS as compared to a standard 
10-second 12-leads resting ECG.

5.1 Introduction

Congenital long-QT syndrome (LQTS) is an inherited cardiac arrhythmia disorder associated with 
malignant ventricular arrhythmias especially in the young. The hallmark of the clinical diagnosis of LQTS is 
a prolongation of the QT-interval corrected for the heart rate (QTc) on a 12-lead rest electrocardiography 
(ECG).1,2 Besides a prolonged QTc, LQTS can also be diagnosed based on (I) the presence of clinical and 
other electrocardiographic features that are associated with LQTS or (II) the presence of a confirmed 
pathogenic genetic variant.1,2 These three elements in the diagnosis of LQTS are hampered by clinical 
challenges. LQTS-patients can have a borderline prolonged or even a normal resting QTc.3 Therefore 
a considerable overlap in QTc exists between affected and unaffected individuals.4 Furthermore, 
interpretation of symptoms as either benign or malignant is sometimes difficult5,6 whereas distinguishing 
pathogenic variants from innocuous rare variants can be very complex, especially in the current era of 
DNA-panels and whole-genome-sequencing.7 In addition, one third of the clinically diagnosed LQTS-
patients have no mutation in one of the known pathogenic genes for LQTS.8 

Diagnosing LQTS remains therefore demanding. Consequently, additional tests to enhance diagnostic 
capacity such as QTc measurements during the  recovery phase of exercise9,10 and during epinephrine 
infusion11,12 have been developed. More recent, a “standing test” was developed, which showed that 
adult LQTS-patients with intermediate QTc at baseline, have an insufficient QT-interval shortening in 
response to the tachycardia provoked by abrupt standing compared to controls13 and that the QTc 
remained prolonged even after the heart rate returned to baseline.14 

Children have a higher heart rate during resting conditions and a more pronounced reflex tachycardia 
compared to adults.15 When performing a “standing test” in healthy children, they have a QTc prolongation 
after standing that is more pronounced than in healthy adults.16 Therefore, using adult cut-off values for 
children may yield false positive results with the risk of incorrect LQTS-diagnosis and overtreatment. We 
aimed to further evaluate the diagnostic value of the “standing test” for the diagnosis of LQTS in children.

5.2 Methods

5.2.1 Study design, setting and population

We performed a prospective cohort study from January 2009 until September 2018. All patients under 
the age of 18 who underwent a “standing test” in the Amsterdam UMC, The Netherlands, were included. 
Patients received a “standing test” as part of regular care for (I) family screening in case of familial LQTS 
or  sudden cardiac death (SCD) in the family, or (II) because of symptoms often in combination with a 
prolonged or high normal QTc on the 12-lead rest ECG.

The study was approved by the Academic Medical Center Review Board and informed consent of the 
individuals was waived as this study used retrospective data from regular care.
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5.2.2 Data collection and measurements

ECGs and additional data
From all patients, the first recorded standing test ECG was included. The “standing test” was performed 
as described in previous studies.13,14,17 The patient rested in a supine position for 5 minutes of which 
the final 2 minutes were recorded. Than they were asked to stand up quickly and remained standing 
for 3 minutes during continued ECG recording. Patient characteristics were collected including date of 
birth, sex, reason for genetic testing, and presence of cardiac events at baseline. At time of the ECG-
recording the presence of beta-blocker therapy was also documented. Patients were stratified into four 
subgroups: (I) Controls (healthy individuals after cardiac screening due to a high normal/prolonged QTc 
and genotype-negative family members of LQTS patients), (II) LQTS (confirmed pathogenic variant in 
KCNQ1, KCNH2 and SCN5A), (III) Possible LQTS (Prolonged QTc and/or positive epinephrine test without 
a confirmed pathogenic variant, family members of genotype-negative LQTS-patients, suspected family 
history for LQTS), (IV) Other (screening for aborted cardiac arrest (ACA) or sudden cardiac death (SCD) in 
the family, idiopathic ventricular fibrillation (VF), cardiomyopathies, polymorphisms, Brugada Syndrome).

Manual  measurements
All included standing-test ECGs were manually analyzed in line with previous studies.13,14 After standing, 
<5 seconds were precluded for measurements due to movement-related artefacts. One reader (SV), 
blinded for patient’s characteristics measured the QT-interval and the preceding RR-interval at four 
points in time: (I) baseline, the first complex in supine position in which the RR-interval corresponds 
with the maximal sinus bradycardia after standing when  the brief tachycardia is stabilized, (II) maximal 
tachycardia, during the maximal sinus rate as a response to standing, (III) maximal QT-interval stretching, 
defined at the time point after standing at which the end of the T-wave  gets nearest to the next P-wave, 
(IV) return to baseline, during the maximal sinus bradycardia at standing position. In order to find 
matching RR-intervals in supine and standing position, first the complex with the longest preceding RR-
interval within 30 seconds after standing was used for the measurements of return to baseline. Then 
the first complex during baseline with a corresponding RR-interval (RR-interval at return to baseline 
+/- 40ms) was thereafter used for the baseline measurements.. This is a slight deviation of protocol 
compared to previous studies,13,14 to avoid exclusion of patients whose heart rate does not return to the 
RR-interval previously determined to be baseline. 

At all stages the QT-interval was measured from the onset of the QRS-complex to the end of the T-wave 
using the tangent method and corrected for heart rate using Bazett’s formula. All QT-intervals were 
measured in one lead preferably in lead II or V5.

Validity of manual measurements
To determine inter- and intra-reader validity for the measurements, a random sample of 10% was 
measured by an additional reader (JP) and re-measured by (SV).

Automated  measurements
To study the dynamic response of the QT-interval to the abrupt change in heart rate in more detail, 
all digitally available standing-test ECGs were analysed beat-to-beat using custom-made software in 
MATLAB (2018a, Mathworks, Natick, MA, USA). After ECG filtering (0.05-80Hz bandpass filter + 50Hz 
notch filter), R-peaks were detected using the Pan-Tompkins algorithm.18 QRS-onset and the end of the 

T-wave were detected using a modified version of our previously described QT-interval algorithm.19 In 
short, QRS-onset is detected as the first peak of the second derivative of the root mean square of the 
ECG preceding the R-peak. The end of the T-wave is detected using an automated tangent approach in 
which the interception of the baseline with a tangent through the last limb of the T-wave defines the end 
of the T-wave. Although the original algorithm used a median of the T-wave ends from all ECG leads as 
the global T-wave end, in this study we applied the algorithm to a single ECG lead to make the results 
more comparable with the manual QT-interval assessment. To compare the automated measurements 
to the manual measurements, single complexes where chosen based on the same definitions as the 
manual measurements: (I) baseline, (II) maximal tachycardia, (III) maximal QT-interval stretching and (IV) 
return to baseline. Furthermore, a moving average filter with a 15 second window with 5 second overlap 
was applied to the beat-to-beat QT- and RR-intervals for every subject. Then, the median (as well as 
the first and third quartiles) dynamic behaviours of these moving average intervals were calculated for 
controls and LQTS-patients. In addition, to further understand the QT-interval dynamics during standing 
we stratified the analyses for sex and LQTS-genotype (i.e. LQTS type 1 (LQT-1), LQTS type 2 (LQT-2) and 
LQTS type 3 (LQT-3)).

5.2.3 Statistical analysis

All data were analyzed with R version 3.4.3. (The Foundation for Statistical Computing, Vienna, Austria). 
Baseline and ECG-characteristics were presented as numbers (percentage, %) for categorical variables 
and mean (± standard deviation, SD) or median (interquartiles) for continuous variables, stratified by 
group (i.e. control, LQTS, possible LQTS, other). Differences between the groups were tested using a 
χ2-test for categorical variables, and with a one–way ANOVA test or a Kruskal Wallis test for continuous 
variables as appropriate. For post-hoc analyses a Bonferroni correction was done in order to correct for 
multiple comparisons.

Inter- and intra-reader validity for manual measurements, and inter-method validity for the automatic 
measurements, were expressed as the intra-class correlation coefficient (ICC) for multiple measurements 
based on a two-way agreement (inter-reader validity) and consistency (intra-reader validity, inter-method 
validity) model according to Cicchetti20 and Fleiss.21 Bland-Altman analyses22 were performed to assess 
bias and 95% limits of agreement (LoA). 

To test the diagnostic value of the standing test for LQTS, only controls and LQTS-patients were included 
and a receiver-operating characteristic (ROC) curve analysis was used to calculate the area under 
the curve (AUC) and to evaluate the specificity at a predefined sensitivity of 90% (i.e. similar to earlier 
studies).13,14 DeLong’s method23 was used to calculate the 95% confidence interval (CI) around the AUC 
and to compare ROC-curves.

A sensitivity analyses was performed by excluding all patients with an obviously long or obviously normal 
QTc at baseline because additional test can be considered  superfluous for these individuals. Accordingly, 
we limited the analysis only including, controls and LQTS-patients with a baseline QTc under the 440.4  

Sampling uncertainty was quantified with 95% CI and p-values. P-values <0.05 were considered to be 
statistically significant, but when corrected for multiple comparisons using the Bonferroni correction a 
p-value of <0.002 was considered to be statistically significant.
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5.3 Results

5.3.1 Study population

From a total of 180 individuals who were eligible for the study, 18 (10%) had to be excluded because of 
inability to retrieve the standing-test ECGs and two (1%) because standing-tests were insufficient due 
to a very low quality. The remaining 160 were included in the analysis. The study cohort consisted of 
87 controls, 47 patients with LQTS (26 LQT-1, 19 LQT-2 and 2 LQT-3), 15 with possible LQTS, and 11 
individuals with other final diagnoses (e.g. Brugada syndrome). Baseline characteristics of the included 
individuals are shown in Table 5-1. The four groups were of similar age, with a mean between 10 to 13 
years old, but showed a difference in the number of included girls (p=0.011). As expected, the groups 
differed in the reason for testing (p<0.001), present symptoms at baseline (p=0.002) and the number of 
patients that were on beta-blocker therapy (p=0.002). Note that there were two controls on beta-blocker 
therapy, this was due to Wolff-Parkinson-White syndrome and due to hypertension.

5.3.2 Manual measurements

Table 5-1 shows the results for the manual measurements. As expected, the baseline QT-interval and 
QTc differed between the four groups (p<0.001 for both) were LQTS-patients had the longest QT-interval 
and QTc compared to controls (p<0.001 for both).

Response to standing
In standing position, the mean QT-interval and QTc differed per group during maximal tachycardia 
(p<0.001 for both), at maximal QT-interval stretching (p<0.001 for both) and when the heart rate returned 
to baseline (p<0.001 for both). This was explained, by the longer QT-interval or QTc in LQTS-patients 
compared to controls (p<0.001 for all comparisons). The mean heart rate after standing differed slightly 
between the groups. 

As a response to standing, there was an increase in heart rate and the mean QT-interval at the point 
of maximal tachycardia and QT-interval stretching was shorter in all groups compared to baseline. 
Furthermore, QTc prolongation at maximal tachycardia and QT-interval stretching was present in all 
the groups, but did not differ between the groups (p=0.877 and p=0.594). The phenomenon of “QT-
stunning”14 (the persistence of QTc prolongation as the heart rate slows back to baseline) was present 
in especially LQTS-patients (delta QTc upon return to baseline heart rate 20, SD ±50) but did not 
significantly differ between the groups (p=0.059).

Validity of manual measurements
Supplementary Table S5-1, shows the inter- and intra-reader validity of the manual measurements.  
There was a good to high validity for all parameters, the  QT-interval at return to baseline however, had 
the highest measurement variation (inter-reader 3ms, 95% LoA ±121ms; intra-reader 17ms, 95%  LoA 
±78ms).

Table 5-1. Baseline characteristics and manual ECG measurements. SCD=Sudden Cardiac Death, OHCA=Out of 

Hospital Cardiac Arrest, SCA=Sudden Cardiac Arrest, BB=beta-blocker, HR=heart rate, QTc= QT-interval corrected for 

heart rate using Bazett’s formula, bpm= beats per minute, ms= milliseconds. ¥ p-values <0.002 are considered to be 

significant

Control
N=87

LQTS
N=47

Pos. LQTS
N=15

Other
N=11 p

Age, years 10 (7-14) 12 (8-15) 13 (10-15) 13 (12-15) 0.095

Girls 39 (45%) 29 (62%) 11 (73%) 2 (18%) 0.011

Presentation <0.001

Family screening 48 (55%) 39 (81%) 3 (20%) 1 (9%)

SCD in family 8 (9%) 0 (0%) 1 (7%) 2 (18%)

Near-drowning/OHCA/SCA 1 (1%) 0 (0%) 2 (13%) 3 (27%)

Other 30 (34%) 9 (19%) 9 (60%) 5 (45%)

Symptomatic at presentation 1 (1%) 3 (6%) 2 (13%) 3 (27%) 0.002

On BB therapy 2 (2%) 9 (19%) 4 (27%) 2 (18%) 0.002

Supine position¥

HRbaseline,bpm 80 (±15) 73 (±16) 74 (±17) 71 (±13) 0.032

QTbaseline,ms 368 (±35) 429 (±58) 415 (±60) 378 (±30) <0.001

QTcbaseline 421 (±29) 466 (±36) 452 (±39) 410 (±28) <0.001

Standing position¥

HRmaxHR, bpm 112 (±15) 100 (±17) 110 (±19) 102 (±14)  0.001

QTmaxHR,ms 361 (±35) 421 (±61) 393 (±56) 374 (±44) <0.001

QTcmaxHR 489 (±37) 537 (±51) 526 (±55) 483 (±37) <0.001

HRstretch, bpm 110 (±16) 99 (±17) 109 (±20) 99 (±11)  0.002

QTstretch,ms 364 (±37) 429 (±62) 395 (±55) 378 (±46) <0.001

QTcstretch 489 (±42) 544 (±56) 527 (±55) 483 (±40) <0.001

HRreturn, bpm 81 (±14) 74 (±16) 78 (±16) 71 (±11)  0.024

QTreturn,ms 372 (±39) 450 (±74) 405 (±61) 376 (±26) <0.001

QTcreturn 429 (±37) 492 (±60) 456 (±70) 406 (±35) <0.001

Response to standing¥

Time to maximal tachycardia, s 11 (  9-14) 11 (10-13) 11 (  8-13) 9 (  7-12) 0.241

Time to maximal QT-stretching, s 11 (  9-14) 10 (  9-12) 10 (  8-13) 8 (  7-11) 0.321

Time to return to baseline, s 22 (18-27) 20 (19-29) 20 (17-29) 22 (18-24) 0.904

Δ HR during maximal tachycardia,bpm 32 (±11) 27 (±  9) 36 (±  9) 30 (±11) 0.010

Δ QT during maximal tachycardia,ms -10 (±22) -9 (±30) -22 (±35) -3 (±29) 0.268

Δ QTc during maximal tachycardia 66 (±41) 71 (±47) 73 (±47) 75 (±49) 0.877

Δ HR during maximal QT-stretching,bpm 31 (±12) 26 (±  9) 35 (±  9) 28 (±  6) 0.009

Δ QT during maximal QT-stretching,ms -7 (±21) 0 (±39) -20 (±40) 1 (±35) 0.140

Δ QTc during maximal QT-stretching 66 (±43) 78 (±54) 74 (±53) 74 (±51) 0.594

Δ HR upon return to baseline HR,bpm 1 (±  2) 1 (±  2) 1 (±  4) 1 (±  1) 0.991

Δ QT upon return to baseline HR,ms 5 (±29) 22 (±47) -5 (±58) 3 (±23) 0.056

Δ QTc upon return to baseline HR 7 (±32) 26 (±50) -1 (±70) 5 (±23) 0.059
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Diagnostic value
The QTc of LQTS-patients versus controls was already different at baseline, as shown in Table 5-1, 
and this difference remained present during standing with no difference in the response to standing 
between both groups (Supplementary Table S.5-2). As a consequence, the ROC curves demonstrate an 
AUC of 0.841 (95% CI 0.770-0.912) for baseline QTc but do not show a significant incremental diagnostic 
value for QTc during maximal tachycardia, during maximal QT-interval stretching or at return to baseline 
(Table 5-2). The baseline QTc that identified LQTS-patients with a 90% sensitivity was 435 and yielded a 
64% specificity. 

Table 5-2. Inter- and intra-reader validity. QTc= QT-interval corrected for heart rate using Bazett’s 
formula, AUC= Area Under the Curve, CI= confidence interval.

Sensitivity analyses manual measurements
Including only controls and LQTS-patients with a baseline QTc<440ms, did not show any significant 
differences between the two groups (60 controls and 11 LQTS-patients) with respect to parameters 
during standing or response to standing (Supplementary Table S.5-3). 

5.3.3 Automated measurements

A total of 84 individuals (53%) had an available standing-test ECG, including 42 controls, 29 LQTS-
patients, 10 possible-LQTS patients and 3 other individuals. Baseline characteristics, measurements at 
standing position and responds to standing did not show any major differences with the total cohort or 
with the direct manual measurements (Supplementary Table S.5-4 and Table S.5-5).

Response to standing
In order to study the dynamic response of the QT-interval to the abrupt change in heart rate in more 
detail, we performed beat-to-beat analyses (Figure 5-1, 5-2 and 5-3). Figure 5-1 shows the data of 
the controls versus LQTS-patients. At baseline, LQTS-patients have a longer QT-interval and QTc with a 
lower hear rate compared to controls. This difference remains present after standing up (left column). 
After standing-up, LQTS-patients seem to get a higher heart rate about 30 seconds after standing 
compared to controls. While there is no difference in QTc adaptation, there is a decrease in absolute 
QT-interval in LQTS-patients as a consequence of the higher heart rate. This phenomenon seems to be 
more present in LQTS-boys (Figure 5-2, Supplementary Figure S.5-1) and in LQT-1 patients (Figure 5-3, 
Supplementary Figure S.5-2). 

Validity of automated measurements
Supplementary Table S.5-6, shows the inter-method validity between the automatic and the manual 
measurements. There was a good too high validity for almost all parameters, except for the QT-interval 
at return to baseline (ICC 0.774) with a systematic error of 20ms (95% LoA ± 84ms).

90% Sensitivity
AUC 95% CI Cut-off Specificity

QTcbaseline 0.841 0.770-0.912 435 64%

QTcmaxHR 0.786 0.697-0.875 476 40%

QTcstretch 0.806 0.723-0.889 491 63%

QTcreturn 0.809 0.728-0.890 422 44%
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Figure 5-1 Dynamics of the standing test. Left column shows the median and interquartile range of 
the absolute QT-interval, QTc and heart rate of controls (blue) and LQTS-patients (orange). The right 
column shows the relative change of the QT-interval, QTc and heart rate to the baseline values for 
controls and LQTS-patients. Transition from supine to standing is indicated by the black solid line. HR= 
heart rate, LQTS= Long-QT syndrome,  QTc= QT-interval corrected for heart rate using Bazett’s formula.
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Figure 5-2 Sex difference in dynamics of the standing test. Including 36 boys (25 controls and 11 
LQTS-patients) and 36 girls (18 controls and 18 LQTS-patients). The median and interquartile ranges of 
the relative change of the QT-interval, QTc and heart rate to the baseline for controls (blue) and LQTS-
patients (orange), stratified for boys (left column) and girls (right column). Transition from supine to 
standing is indicated by the black solid line. HR= heart rate, LQTS= Long QT-syndrome,  QTc= QT-interval 
corrected for heart rate using Bazett’s formula.

Figure 5-3 Genotype differences in dynamics of the standing test. Including 14 LQT-1, 13 LQT-2 
and 2 LQT-3 patients. Median and interquartile ranges of the relative change of the QT-interval, QTc and 
heart rate to the baseline for controls and LQTS type 1 (LQT-1), LQTS type 2 (LQT-2), LQTS type 3 (LQT-
3). Note that for LQT-3 we only showed the data of the 2 individual patients. Transition from supine to 
standing is indicated by the black solid line. HR= heart rate, LQTS= Long QT-syndrome,  QTc= QT-interval 
corrected for heart rate using Bazett’s formula. 
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5.4 Discussion

An accurate diagnosis of LQTS is crucial as LQTS is a treatable but potentially lethal syndrome, especially 
in children. A LQTS diagnosis can however be difficult, with both under- and over diagnosis resulting in  
adverse events.24 Especially in children a correct diagnosis is of significant value because events may 
already occur in the very young and because there are many children who experience faints which could 
be due to vasovagal circumstances of e.g. due to malignant but self-terminating ventricular arrhythmias 
as can occur in LQTS. Because children often have pronounced sinus arrhythmia troubling QT-interval 
assessment, and because reference cohorts are often of a rather small size, test with additional 
diagnostic value are appreciable. We here evaluated whether there could be an added diagnostic value 
of the standing test in children and we found that the test had no clear additional value as a screening 
test to diagnose LQTS and to discriminate (borderline) LQTS-patients from healthy children as compared 
to QTc obtained from a standard resting ECG. 

5.4.1 Diagnostic value

The normal response to standing is a sudden acceleration of the heart rate with a gradual shortening of 
the QT-interval. Since the adaptation of the QT-interval to sudden changes in heart rate is delayed (‘QT-
hysteresis’), the vagally mediated reflex tachycardia after standing results in a transiently prolongation 
of the QTc. This phenomenon is present in healthy individuals but in adults, LQTS-patients entirely fail 
to shorten the QT-interval during the short-lasting tachycardia provoked by standing (impaired QT-
hysteresis) resulting in a longer QTc compared to healthy individuals.13,14 In healthy children, however, it 
was shown that the QT-interval barely decreased after standing and that QTc subsequently prolonged, 
mainly due to heart rate changes induced by standing.16,25 The more important role of the heart rate in 
children compared to adults was expected, since age has a negative correlation with postural heart rate 
increments.15 This was reflected in the decreased time to maximal heart rate and greater magnitude 
of heart rate change in healthy children compared to healthy adults as shown in previous studies.13,16  

In our cohort, the controls showed a slight QT-interval shortening (-10ms, ±22ms) after standing 
compared to previous findings (0ms) in children,16 ,25 but considerable less compared to healthy adults 
(-21ms, ±19ms).13 The observed QTc prolongation (66ms, ±41) was subsequently mainly dependent on 
the heart rate change induced by standing. In LQTS-children, there was an approximately equal degree 
in QT-interval shortening, QTc prolongation and heart rate change compared to healthy children. Hence, 
the standing test did not add diagnostic value upon the baseline QT (AUC 0.786 for QTcmaxHR versus 
AUC 0.841 for QTcbase). Excluding individuals with an obvious long QTc, however, show a trend towards 
a QT-interval prolongation after standing in LQTS-children, which was previous seen in LQTS-adults.13  

The sudden heart rate acceleration produced by standing not only increases the QTc but it has been 
described that it also exposes abnormal T waves that are valuable for diagnosing LQTS.17 

5.4.2 Dynamic response to standing 

As QT-hysteresis involves the direct and short-term QT-interval adaptation to sudden heart rate changes, 
it relates to dynamic changes. With the evaluation of selected single time points, as performed in the 
standing test, dynamic responses can be analyzed suboptimal. We performed beat-to-beat, non-steady-

state analyses, in order to evaluate the QT- interval and heart rate responds to standing in LQTS-patients 
and controls. In particular, the heart rate and heart rate responds to standing seemed to be of an 
important value. 

At baseline, LQTS-patients had a lower heart rate compared to controls. One could argue that this is due 
to a difference in beta-blocker therapy (controls 2% versus 19% in LQTS-patients), however the absolute 
number of patients on beta-blocker therapy is very low. It is known that LQTS- fetuses have a subtle 
slower fetal heart rate (<3rd percentile for gestational age)26,27.  Hence, gene-carriers can have a lower 
heart rate compared to controls, in addition to the effect of  beta-blocker therapy in our study.

In the normal responds to standing, once in the upright position, the blood volume shifts from the 
thorax into the legs, pelvis and abdomen due to gravitational pooling. Therefore, there is less blood 
available for the heart to eject (i.e. decreased venous return and preload). As a consequence, there is a 
decrease in cardiac filling, stroke volume and cardiac output resulting in a steep fall in blood pressure28 
which a causes the removal of the tonic inhibition of the baro-mechanoreceptors (baroreflex), inducing 
a decrease in parasympathic (vagal) activity and a consequent increase in heart rate within 3 seconds. 
A more gradual secondary increase in heart rate, starting around 5 seconds after stand up, is mainly 
due to further reflex inhibition of cardiac vagal tone and increased sympathetic outflow to the sinus 
node and can be attributed to diminished activation of arterial baroreceptors by the fall in arterial 
pressure.29 In LQTS-patients, cardiac events are often elicited by an increased sympathetic activity (i.e. 
swimming/diving or sudden loud noise)30 and the initiation of these arrhythmias can be suppressed by 
beta-adrenergic blocking agents31 or by ablation of the left sympathetic chain ganglion.32 It is therefore 
thought that LQTS-patients have an imbalance of the autonomic nervous system, with a more prominent 
sympathetic tonus. It is however unclear whether the autonomic balance at rest or the dynamicity in 
autonomic activity is more relevant. In this study we noticed that LQTS-patients had a slightly more 
gradual increase in heart rate after standing up compared to controls, which can be the result of a more 
prominent sympathetic tonus. In addition, it is interesting to see that this phenomenon is more present 
in boys and LQT-1 patients as it is known that LQT-1 patients have their cardiac events during increased 
sympathetic activity (i.e. swimming) and that LQT-1 males have a higher risk during childhood and an 
earlier onset of cardiac events than LQT-1 females.33-35 

5.4.3 Limitations

This study encounters several limitations. First, as the study is part of regular care we are hampered with 
problems of ‘real-world data’. Some patients had to start beta-blocker therapy before the performance 
of the standing test because of comorbidity (e.g. hypertension, supraventricular tachycardia) or due to 
a cardiac event during exercise without a clear cause. Although the absolute number of patients on 
beta-blocker therapy is low, it could be a confounding factor. Second, the number of included patients 
was limited and although a larger number was naturally wanted, the originally study of Viskin et al.13 
included a similar cohort size (68 LQTS-patients and 82 controls) but did show significant differences 
between LQTS-patients and controls. Third, standing tests were not performed by the same investigator 
at a standard time of the day, nor where we informed about the pre-test physical activity. This could 
all have had effect on the heart rate and repolarization.36 Furthermore, we have no data on the intra-
subject variability of the test as we did nog repeated the test in the same subject which hampers us to 
say something about reproducibility. 
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5.5 Conclusion

The QTc after standing is more pronounced in children compared to adults as a consequence of a higher 
heart rate responds, but did not differ between LQTS-children and controls. Compared to differences in 
baseline QTc between LQTS-children and controls, we could not determine additional diagnostic value 
of the standing test as a screening test to diagnose LQTS in children. However, analyzing beat-to-beat 
heart rate and QT-interval dynamics during the standing test may have a role in the risk-stratification of 
LQTS-children.
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5.8 Supplementary materials

Table S.5-1 Inter- and intra-reader validity. HR=heart rate, QTc= QT-interval corrected for heart rate 
using Bazett’s formula, bpm= beats per minute, ms= milliseconds, ICC= intraclass correlation coefficient, 
IC= confidence interval, LoA= Limits of agreement.

Inter-reader Intra-reader

ICC  
(95% CI)

Mean  
(±95% LoA)

ICC  
(95% CI)

Mean  
(±95% LoA)

Su
pi

ne

HRbaseline,bpm 0.807  
(0.378-0.938)

6 (±15) 0.843  
(0.605-0.994)

3 (±16)

QTbaseline,ms 0.919  
(0.779-0.972)

4 (±66) 0.870  
(0.614-0.956)

17 (±57)

St
an

di
ng

HRmaxHR, bpm 0.937  
(0.822-0.978)

0 (±11) 0.904  
(0.772-0.968)

3 (±12)

QTmaxHR,ms 0.939  
(0.820-0.979)

9 (±40) 0.885  
(0.683-0.962)

4 (±58)

HRstretch, bpm 0.935 
(0.813-0.979)

1 (±12) 0.920  
(0.778-0.973)

2 (±13)

QTstretch,ms 0.916  
(0.757-0.972)

0 (±51) 0.902  
(0.723-0.967)

4 (±60)

HRreturn, bpm 0.832  
(0.478-0.945)

5 (± 5) 0.843  
(0.597-0.944)

4 (±16)

QTreturn,ms 0.784  
(0.464-0.922)

3 (±121) 0.853  
(0.618-0.948)

17 (±78)
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Control N=87 LQTS N=47 p

Age, years 10 (7-14) 12 (8-15) 1.000

Girls 39 (45%) 29 (62%) 0.554

Presentation <0.001

Family screening 48 (55%) 39 (81%)

SCD in family 8 (9%) 0 (0%)

Near-drowning/OHCA/SCA 1 (1%) 0 (0%)

Other 30 (34%) 9 (19%)

Symptomatic at presentation 1 (1%) 3 (6%) 1.000

On BB therapy 2 (2%) 9 (19%) 0.010

Supine position¥

HRbaseline,bpm 80 (±15) 73 (±16) 0.069

QTbaseline,ms 368 (±35) 429 (±58) <0.001

QTcbaseline 421 (±29) 466 (±36) <0.001

Standing position¥

HRmaxHR, bpm 112 (±15) 100 (±17) 0.001

QTmaxHR,ms 361 (±35) 421 (±61) <0.001

QTcmaxHR 489 (±37) 537 (±51) <0.001

HRstretch, bpm 110 (±16) 99 (±17) 0.002

QTstretch,ms 364 (±37) 429 (±62) <0.001

QTcstretch 489 (±42) 544 (±56) <0.001

HRreturn, bpm 81 (±14) 74 (±16) 0.047

QTreturn,ms 372 (±39) 450 (±74) <0.001

QTcreturn 429 (±37) 492 (±60) <0.001

Response to standing¥

Time to maximal tachycardia, s 11 (  9-14) 11 (10-13) 1.000

Time to maximal QT-stretching, s 11 (  9-14) 10 (  9-12) 1.000

Time to return to baseline, s 22 (18-27) 20 (19-29) 1.000

Δ HR during maximal tachycardia,bpm 32 (±11) 27 (±  9) 0.050

Δ QT during maximal tachycardia,ms -10 (±22) -9 (±30) 1.000

Δ QTc during maximal tachycardia 66 (±41) 71 (±47) 1.000

Δ HR during maximal QT-stretching,bpm 31 (±12) 26 (±  9) 0.070

Δ QT during maximal QT-stretching,ms -7 (±21) 0 (±39) 1.000

Δ QTc during maximal QT-stretching 66 (±43) 78 (±54) 1.000

Δ HR upon return to baseline HR,bpm 1 (±  2) 1 (±  2) 1.000

Δ QT upon return to baseline HR,ms 5 (±29) 22 (±47) 0.120

Δ QTc upon return to baseline HR 7 (±32) 26 (±50) 0.095

Table S.5-2. Baseline characteristics and manual ECG measurements for post-hoc analyses 
between controls and LQTS-patients. SCD=Sudden Cardiac Death, OHCA=Out of Hospital Cardiac 
Arrest, SCA=Sudden Cardiac Arrest, BB=beta-blocker, HR=heart rate, QTc= QT-interval corrected for 
heart rate using Bazett’s formula, bpm= beats per minute, ms= milliseconds. ¥ p-values <0.002 are 
considered to be significant

Control N=60 LQTS N=11 p

Age, years 10 (7-13) 8 (8-15) 0.768

Girls 26 (43%) 7 (64%) 0.362

Presentation 0.606

Family screening 38 (63%) 9 (82%)

SCD in family 5 (8%) 0 (0%)

Near-drowning/OHCA/SCA 1 (2%) 0 (0%)

Other 16 (27%) 2 (18%)

Symptomatic at presentation 1 (2%) 0 (0%) 1.000

On BB therapy 0 (0%) 1 (9%) 0.155

Supine position¥

HRbaseline,bpm 78 (±14) 76 (±13) 0.621

QTbaseline,ms 360 (±34) 380 (±28) 0.054

QTcbaseline 406 (±19) 424 (±23) 0.027

Standing position¥

HRmaxHR, bpm 112 (±16) 107 (±  9) 0.162

QTmaxHR,ms 355 (±33) 381 (±43) 0.076

QTcmaxHR 481 (±31) 507 (±56) 0.149

HRstretch, bpm 110 (±16) 104 (±  9) 0.136

QTstretch,ms 357 (±35) 393 (±50) 0.042

QTcstretch 479 (±39) 516 (±62) 0.079

HRreturn, bpm 79 (±14) 80 (±11) 0.767

QTreturn,ms 367 (±37) 399 (±47) 0.066

QTcreturn 416 (±30) 458 (±52) 0.032

Response to standing¥

Δ HR during maximal tachycardia,bpm 35 (±10) 31 (±  8) 0.153

Δ QT during maximal tachycardia,ms -9 (±18) 1 (±38) 0.405

Δ QTc during maximal tachycardia 74 (±34) 83 (±56) 0.606

Δ HR during maximal QT-stretching,bpm 34 (±11) 28 (±  7) 0.048

Δ QT during maximal QT-stretching,ms -9 (±21) 13 (±44) 0.140 

Δ QTc during maximal QT-stretching 73 (±40) 93 (±62) 0.324

Δ HR upon return to baseline HR,bpm 0 (±  2) 1 (±  2) 0.179

Δ QT upon return to baseline HR,ms 8 (±25) 21 (±45) 0.388

Δ QTc upon return to baseline HR 10 (±27) 13 (±56) 0.325

Table S.5-3.  Baseline characteristics and manual ECG measurements of the sensitivity analyses 
including only QTc <440 (95th percentile) on baseline ECG. SCD=Sudden Cardiac Death, OHCA=Out 
of Hospital Cardiac Arrest, SCA=Sudden Cardiac Arrest, BB=beta-blocker, HR=heart rate, QTc= QT-
interval corrected for heart rate using Bazett’s formula, bpm= beats per minute, ms= milliseconds.¥ 
p-values <0.002 are considered to be significant
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Control
N=42

LQTS
N=29

Pos. LQTS
N=10

Other
N=3 p

Age, years 9 (6-13) 13 (10-15) 14 (11-17) 16 (14-16) 0.015

Girls 18 (43%) 18 (62%) 6 (60%) 1 (33%) 0.314

Presentation <0.001

Family screening 18 (43%) 25 (86%) 2 (20%) 0 (  0%)

SCD in family 1 (  2%) 0 (  0%) 0 (  0%) 0 (  0%)

Near-drowning/OHCA/SCA 1 (  2%) 0 (  0%) 2 (20%) 1 (33%)

Other 22 (52%) 4 (14%) 6 (60%) 2 (67%)

Symptomatic at presentation 1 (  2%) 2 (  9%) 2 (20%) 1 (33%) 0.046

On BB therapy 1 (  2%) 6 (21%) 3 (30%) 0 (  0%) 0.014

Supine position¥

HRbaseline,bpm 78 (±12) 69 (±16) 72 (±20) 59 (±  6) 0.030

QTbaseline,ms 356 (±27) 433(±56) 381 (±57) 375 (±30) <0.001

QTcbaseline 403 (±28) 455 (±36) 407 (±27) 373 (±49) <0.001

Standing position¥

HRmaxHR, bpm 115 (±13) 99 (±15) 111(±23) 91 (±  4) <0.001

QTmaxHR,ms 347 (±32) 421 (±56) 281 (±51) 373 (±28) <0.001

QTcmaxHR 479 (±34) 536 (±45) 509 (±50) 460 (±28) <0.001

HRstretch, bpm 113 (±14) 97 (±16) 109 (±23) 90 (±  3) <0.001

QTstretch,ms 355 (±31) 430 (±60) 395 (±51) 372 (±30) <0.001

QTcstretch 486 (±35) 539 (±44) 526 (±54) 456 (±32) <0.001

HRreturn, bpm 78 (±14) 68 (±14) 75 (±21) 60 (±  6) 0.018

QTreturn,ms 359 (±33) 432 (±49) 390 (±49) 371 (±30) <0.001

QTcreturn 406 (±44) 454 (±43) 426 (±41) 372 (±47) <0.001

Response to standing¥

Time to maximal tachycardia, s 11 (10-14) 12 (11-15) 11 (8-14) 8 (8-10) 0.445

Time to maximal QT-stretching, s 11 ( 9-13) 10 ( 9-13) 11 (9-13) 7 (7-10) 0.692

Time to return to baseline, s 26 (22-28) 24 (21-28) 25 (23-27) 20 (17-23) 0.624

Δ HR during maximal tachycardia,bpm 38 (±12) 31 (±  9) 38 (±14) 32 (±  8) 0.045

Δ QT during maximal tachycardia,ms -9 (±23) -12 (±26) 0 (±22) -2 (±10) 0.568

Δ QTc during maximal tachycardia 77 (±36) 81 (±39) 102 (±51) 86 (±24) 0.316

Δ HR during maximal QT-stretching,bpm 36 (±12) 28 (±  9) 37 (±14) 31 (±  7) 0.034

Δ QT during maximal QT-stretching,ms -1 (±17) -3 (±26) 14 (±27) -3 (±  8) 0.183

Δ QTc during maximal QT-stretching 84 (±33) 85 (±40) 118 (±51) 82 (±19) 0.066

Δ HR upon return to baseline HR,bpm 0 (±  8) -1 (±10) 3 (±  8) 0 (±  2) 0.594

Δ QT upon return to baseline HR,ms 4 (±17) 0 (±25) 9 (±22) -2 (±  6) 0.599

Δ QTc upon return to baseline HR 4 (±30) -2 (±34) 22 (±31) -2 (±12) 0.247

Table S.5-4. Baseline characteristics and automatic ECG measurements. HR=heart rate, QTc= QT-
interval corrected for heart rate using Bazett’s formula, bpm= beats per minute, ms=milliseconds.¥ 
p-values <0.002 are considered to be significant

Control
N=42

LQTS
N=29

Pos. LQTS
N=10

Other
N=3 p

Supine position¥

HRbaseline,bpm 82 (±11) 70 (±16) 73 (±20) 61 (±7) 0.001

QTbaseline,ms 362 (±27) 443 (±57) 417 (±73) 362 (±27) <0.001

QTcbaseline 423 (±26) 469 (±37) 448 (±43) 405 (±43) <0.001

Standing position¥

HRmaxHR, bpm 116 (±14) 98 (±17) 110 (±24) 91 (±3) <0.001

QTmaxHR,ms 355 (±35) 431 (±59) 388 (±65) 393 (±50) <0.001

QTcmaxHR 491 (±42) 544 (±48) 517 (±61) 484 (±55) <0.001

HRstretch, bpm 115 (±14) 97 (±18) 120 (±24) 91 (±30) <0.001

QTstretch,ms 357 (±37) 442 (±58) 384 (±63) 393 (±50) <0.001

QTcstretch 490 (±43) 554 (±54) 510 (±53) 484 (±55) <0.001

HRreturn, bpm 83 (±12) 69 (±14) 79 (±20) 62 (±9) <0.001

QTreturn,ms 367 (±37) 475 (±72) 398 (±69) 360 (±0) <0.001

QTcreturn 429 (±37) 505 (±62) 449 (±79) 365 (±26) <0.001

Response to standing¥

Time to maximal tachycardia, s 10 (  8-13) 10 (  9-12) 10 (  7-13) 7 (  7-10) 0.674

Time to maximal QT-stretching, s 10 (  8-12) 10 (  9-12) 10 (  7-12) 7 (  7-10) 0.698

Time to return to baseline, s 20 (17-23) 20 (17-22) 19 (17-21) 20 (18-21) 0.963

Δ HR during maximal tachycardia,bpm 33 (±11) 28 (±10) 37 (±10) 31 (±  6) 0.066

Δ QT during maximal tachycardia,ms -7 (±23) -11 (±30) -29 (±41) -10 (±36) 0.189

Δ QTc during maximal tachycardia 69 (±38) 75 (±50) 69 (±56) 78 (±60) 0.937

Δ HR during maximal QT-stretching,bpm 32 (±11) 27 (±10) 37 (±10) 31 (±  6) 0.066

Δ QT during maximal QT-stretching,ms -4 (±20) -1 (±42) -33 (±41) -10 (±36) 0.056

Δ QTc during maximal QT-stretching 69 (±38) 85 (±57) 61 (±57) 79 (±60) 0.449

Δ HR upon return to baseline HR,bpm 1 (±  2) 0 (±  2) 1 (±  5) 1 (±  2) 0.654

Δ QT upon return to baseline HR,ms 5 (±27) 32 (±55) -11 (±63) -25 (±  7) 0.018

Δ QTc upon return to baseline HR 7 (±29) 36 (±56) -6 (±77) -20 (±10) 0.034

Table S.5-5. Manual measurements of the automatic measured ECGs. HR=heart rate, QTc= QT-
interval corrected for heart rate using Bazett’s formula , bpm= beats per minute, ms= milliseconds. ¥ 
p-values <0.002 are considered to be significant
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Figure S.5-1. Sex difference in dynamics of the standing test. Including 36 boys (25 controls and 11 
LQTS-patients) and 36 girls (18 controls and 18 LQTS-patients). The median and interquartile range of 
the absolute QT-interval, QTc and heart rate of controls (blue) and LQTS-patients (orange), stratified for 
boys (left column) and girls (right column). Transition from supine to standing is indicated by the black 
solid line. HR= heart rate, LQTS= Long QT-syndrome,  QTc= QT-interval corrected for heart rate using 
Bazett’s formula.
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Figure S.5-2. Genotype differences in dynamics of the standing test. Including 14 LQT-1, 13 LQT-2 
and 2 LQT-3 patients. Median and interquartile ranges of the absolute change of the QT-interval, QTc 
and heart rate to the baseline for controls and LQTS type 1 (LQT-1), LQTS type 2 (LQT-2), LQTS type 3 
(LQT-3). Note that for LQT-3 we only showed the data of the 2 individual patients. Transition from supine 
to standing is indicated by the black solid line. HR= heart rate, LQTS= Long QT-syndrome,  QTc= QT-
interval corrected for heart rate using Bazett’s formula. 
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Abstract

Background
Diagnosing long-QT syndrome (LQTS) is challenging due to a considerable overlap of the QTc-interval 
between LQTS patients and healthy controls. 

Objective
The aim of this study was to investigate the added value of T-wave morphology markers obtained 
from 12-lead ECGs in diagnosing LQTS in a large cohort of gene-positive LQTS patients and gene-
negative family members using a support vector machine.

Methods
A retrospective study was performed including 688 digital 12-lead ECGs recorded from genotype-
positive LQTS patients and genotype-negative relatives at their first visit. Two models were trained 
and tested equally: a baseline model with age, gender, RR-interval, QT-interval and QTc-intervals as 
inputs and an extended model including morphology features as well.

Results
The best performing baseline model showed an area under the receiver operating characteristic 
curve (AUC) of 0.821, whereas the extended model showed an AUC of 0.901. Sensitivity and 
specificity at the maximal Youden’s indexes changed from 0.694 and 0.829 with the baseline model 
to 0.820 and 0.861 with the extended model. Compared to clinically used QTc-interval cut-off values 
(>480ms), the extended model showed a major drop in false negative classifications of LQTS patients.

Conclusion
The support vector machine-based extended model with T-wave morphology markers resulted in a 
major rise in sensitivity and specificity at the maximal Youden’s index. From this, it can be concluded 
that the T-wave morphology has an added value in the diagnosis of LQTS.

6.1 Introduction

Long-QT syndrome (LQTS) is an inheritable disease entity associated with malignant arrhythmias 
at young age. The diagnosis of congenital LQTS, once based on a scoring system of clinical and 
electrocardiographic parameters, is nowadays aided by genetic testing. Despite the fact that genetic 
testing is currently relatively easy to perform at relatively low costs, it remains of utmost importance 
to preserve genetic testing to persons suspected for LQTS, since distinguishing pathogenic variants 
from innocuous rare variants can be very complex1. To identify persons suspected for LQTS, gender-
based cut-off values for a prolonged QT-interval corrected for heart rate (QTc) are used. However, it is 
known that there is a considerable overlap in QTc between LQTS patients and healthy controls2, which 
hampers the accuracy of diagnosing LQTS based on QTc. Therefore, attempts have been made to take 
advantage of the fact that LQTS patients often display abnormal responses to heart rate changes. This 
led to diagnostic interventions in which the QT-interval adaptation to heart rate changes is studied in 
for example the exercise recovery phase3, after epinephrine provocation4 and the brisk-standing-test5. 
Although these interventions are known to improve LQTS diagnosis, a clinician should have an LQTS 
suspicion before such a test will be performed. LQTS patients with a normal QTc on the resting ECG are 
likely to never be tested with such an interventional diagnostic test when they are not overt symptomatic 
or become part of a family evaluation for LQTS and may therefore remain undiagnosed. Still, they may 
have exaggerated risks for malignant arrhythmias under particular conditions such as the use of certain 
drugs and they may have children who can become severely symptomatic when undiagnosed6.

Apart from a prolongation of QTc, variations in the morphological configuration of the T-wave are seen 
in LQTS patients, especially in relation to the LQTS type7,8 Previous studies have indicated that using 
T-wave morphologies during interventions as an additional marker to diagnose LQTS improves the 
diagnosis9,10. These studies however not only require an intervention but their manually assessment of 
T-wave morphologies makes the results clinician dependent. 

The added value of T-wave morphology markers in standard 10-seconds 12-lead ECGs to identify 
possibly LQTS genotype-positive patients of the three most common mutated genes has not yet been 
investigated. In this study we use a machine-learning approach to investigate the added value of T-wave 
morphology markers obtained from baseline 10-seconds 12-lead body surface ECGs to diagnose LQTS 
in a large cohort of gene-positive LQTS patients and gene-negative family members. 

6.2 Methods

6.2.1 Study population

A retrospective cohort study consisting of LQTS patients and their family was performed. LQTS patients 
with LQTS type 1 (LQT1), type 2 (LQT2) and type 3 (LQT3) were confirmed by pathogenic variants in 
KCNQ1, KCNH2 or SCN5A respectively. All genotype-negative family members were used as healthy 
controls. All individuals were seen in the Academic Medical Centre in Amsterdam, The Netherlands, 
between January 1996 and December 2016. Inclusion criteria for this study were an age ≥16 years, 
known genetic testing results and digitally available ECG at first presentation. Exclusion criteria were 
the presence of any comorbidity that might affect ventricular re- and/or depolarization. The study was 
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approved by the Academic Medical Center Review Board and informed consent of the individuals was 
waived as this study used retrospective data from regular care.

6.2.2 Electrocardiograms

Digital standard 10-seconds 12-leads body surface ECGs performed in the initial evaluation of individuals 
in the work-up during (family) screening for LQTS were collected. ECGs were excluded when the ECG 
contained too much noise and when all T-waves in all ECG leads were too flat (<40µV) to reliably assess 
the QT-interval and T-wave morphology automatically. To avoid subjective evaluation of the T-wave 
morphology, all ECG landmarks and T-wave morphology features were calculated automatically using 
custom-made software in MATLAB (2017a, Mathworks, Natick, MA, USA).

6.2.3 Data acquisition and pre-processing

ECGs were stored in the MUSE Cardiology Information system (GE Healthcare, Little Chalfont, UK) and 
recorded with a 250 or 500 Hz sample frequency. All further processing and analyses in this study were 
done using custom-made software in MATLAB. ECGs were first filtered using a 2nd order bidirectional 
Butterworth band pass filter (0.5-125Hz) and a 2nd order infinite impulse response notch filter (50Hz). 
For all individual ECG leads, the residuals of a median filter with a 600ms window were regarded as 
baseline deviations and were therefore subtracted from the individual leads to correct for baseline 
wander. After filtering, a 1D Fourier up-sampling method was used to up-sample all ECG data to 1kHz to 
assure sampling frequency independency of our analysis.

6.2.4 Average complex construction

To obtain the best signal-to-noise ratio, analysis was done on average complexes as constructed for 
all individual ECG leads. To construct these average complexes, first all R-peaks were detected in the 
ECG lead with the highest R-peak amplitude using a modified Pan-Tompkins algorithm.11 From these 
R-peaks, a trimmed mean RR-interval was calculated after omitting 10% of the outermost RR-intervals. 
The individual complexes were selected from the R-peak location minus 25% of the trimmed mean 
RR-interval to the R-peak plus 70% of the trimmed mean RR-interval. All complexes were aligned on 
the R-peak and an average complex was calculated. Thereafter, to guarantee averaging of only reliable 
complexes, individual complexes with a correlation coefficient below 0.9 when correlated with the 
average complex as well as complexes with an RR-interval deviating more than 20% from the mean RR 
were excluded. If less than 60% of all complexes in the whole ECG were preserved after these exclusions, 
the entire ECG was excluded for further analysis. Furthermore, if less than 60% of all complexes in an 
individual lead were preserved, the entire lead was not taken into account since no reliable average 
complex could be constructed for this lead. Finally, if a complex was excluded in more than 3 leads, 
the complex was excluded for all leads to guarantee exclusion of e.g. ventricular extra systoles into the 
average complex. A new and final average complex for all remaining ECGs and leads was constructed 
from all remaining complexes. These final average complexes were used for further analysis.

Table 6-1 T-wave morphology features summary. TH = T-wave heterogeneity, RH = R-peak 
heterogeneity, SP = spatial peak, SM = spatial mean, VCG = vectorcardiogram, PCA1 = the first component 
of principal component analysis, ECGRMS = root mean square of the unipolar ECG leads.

6.2.5 Landmark detection

To detect a global R-peak and QRS-onset, a root mean square ECG (ECGRMS) was constructed from the 
precordial leads and the reconstructed unipolar leads VR, VL, VF as described previously by our research 
group.12 The first component of principal component analysis (PCA1) using singular value decomposition 
on the unipolar ECG leads (VR, VL, VF and V1-V6) from R-peak + 95ms to R-peak + 0.7xRR was used for 
global T-wave landmarks. The peak of the T-wave (Tpeak) was detected as the most prominent peak of 
PCA1. The start and end of the T-wave (Tstart and Tend) were detected by means of an automated tangent 
method as we described earlier.12 Tstart and Tend  were manually checked by one observer (TD) since 
multiple T-wave morphology features rely on a proper determination of Tstart and Tend.

6.2.6 T-wave morphology features

All T-wave morphology features, apart from the T-wave heterogeneities, were computed within the 
window Tstart and Tend for all unipolar ECG leads. Most of the features were calculated for all ECG leads 
individually. For some features, the ECGRMS, PCA1 or a vectorcardiogram (VCG) (reconstructed using the 
Kors matrix13) were used. All computed features are listed in Table 6-1. For a more detailed description 
of the T-wave morphology features, see Supplementary materials.

Features Short description Calculated for

Area Integral over time of T-wave amplitudes (can be negative and positive) VR, VL, VF, V1-V6

Absolute area Integral over time of absolute T-wave amplitudes VR, VL, VF, V1-V6

Length Interval between Tstart and Tend PCA1

Biphasicness 1-(|Area|)/(Absolute area)  
(1 = biphasic, 0 = not biphasic)

VR, VL, VF, V1-V6

Amplitude Height of the highest absolute value of the T-wave VR, VL, VF, V1-V6

Time to onset8 Interval between R and Tstart ECGRMS and PCA1

Skewness14 Degree of symmetry VR, VL, VF, V1-V6

Kurtosis14 Degree of peakedness VR, VL, VF, V1-V6

Notch score14 Derived from Andersen et al. VR, VL, VF, V1-V6

Asymmetry score14 Derived from Andersen et al. VR, VL, VF, V1-V6

QRS amplitude15 Height of the highest absolute value of the QRS-complex VR, VL, VF, V1-V6

THV1-V3, THV4-V6
16 

RHV1-V3, RHV4-V6

T-wave and R-peak heterogeneity = max(√(var(X)))
in which X is an n-by-3 matrix consisting of three ECG leads of length n.

V1-V3 
V4-V6

SP QRS-T angle17 Spatial peak QRS-T angle is the smallest angle between the vector at 
maximal T-wave magnitude and the vector at maximal QRS complex 
magnitude in the VCG

VCG

SM QRS-T angle17 Spatial mean QRS-T angle is the smallest angle between the mean vector of 
the T-wave and the mean vector of the QRS-complex in the VCG

VCG

Tpeak-Tend interval15 Interval between Tpeak and Tend PCA1
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6.2.7 Support vector machine

Model inputs 
Subjects were classified as gene-positive or gene-negative by a machine learning classification model 
based on multiple inputs. Missing feature values were replaced by random values within mean ± 
standard deviation for the corresponding feature. Two models were created: a baseline model with age, 
gender, RR-interval, QT-interval and QTc (QT corrected for heart rate by the correction formulas of Bazett, 
Fridericia, Framingham and Hodges18) as inputs and an extended model with all morphology features 
as additional model inputs. The performance of the baseline model was used to determine the optimal 
classification using commonly used clinical parameters. The difference between the baseline model and 
the extended model demonstrates the added diagnostic value of T-wave morphology features. 

Model training and testing
The model and training used in the current study are summarized in Figure 6-1. Both the baseline 
and the extended model were support vector machine models with a linear kernel and were trained 
and tested on the ECGs of the entire cohort using cross-validation. Therefore, the performance of 
these models cannot be assessed directly. Hence, to investigate the performances of the baseline and 
extended models, 100 similar models were trained and tested on different randomized training and 
testing sets. This was done for both the baseline and extended model. Training sets consisted of a 
randomly chosen subset of ECGs containing 90% of all individuals whereas testing sets consisted of 
the ECGs of the remaining 10% of all individuals. The mean performance of these 100 models is the 
expected performance of the final model.19 

Fi
na

l 
m

od
el

Best overall performance α = 0.4

α = 0.8

α = 0.4

α = 0.4

Best
Performance

Feature 
selection

Mixing 
parameter

α = 0, 0.2, ..., 1

α = 0, 0.2, ..., 1

α = 0, 0.2, ..., 1

α = 0.4

Expected
performance1 2 3 4 5 96 97 98 99 100

1 2 3 4 5 96 97 98 99 100
Randomization

Average 
performance
of all models 
with α = 0.4

Model

1

2

100

Test setSelected feature
Unselected feature

Gene-negative Gene-positive Training set

Figure 6-1 Schematic representation of the machine learning steps. A detailed description is given 
in the main text. α = mixing parameter.

For each of these 100 models, features with the highest discriminative performance were selected by 
means of elastic net regularization, combined with maximum likelihood estimation in a logistic regression 
model. For a detailed description of elastic net regularization, we refer to Zou and Hastie.20 In short, it 
combines two feature selection methods (lasso and ridge regression). The mixing parameter (α) controls 
the ratio of both feature selection methods to obtain an optimal combination. The tuning parameter (λ) 
controls the strength of this optimal combination. For each of the 100 models, during feature selection, 
the value of α was varied from 0 to 1, with steps of 0.2. For each value of α, 100 values of λ ranging from 
λmax (at which all features were excluded) to 10-4•λmax were tested. 21 For each λ, the cross-validated error 
resulting from 10-fold cross-validation on the current training set was noted. Subsequently, for each α, 
selected features resulting from the cross-validation were noted at λmin (at the minimal cross-validated 
error) and λ1SE (λmin + 1 standard error). 

For each of the 100 models, the AUC was calculated with each α at λmin and λ1SE. The combination of α 
and λ with the highest mean AUC over all 100 models was selected as the optimal combination. This α 
and λ were used in the final model.

6.2.8 Statistical analysis 

Values are expressed as mean ± standard deviation. The differences between LQTS patients and 
genotype-negative family members were analysed by independent samples T-test for parametric 
data, and chi-square for non-parametric data. A p-value <0.05 was considered statistically significant. 
Receiver-operating characteristic (ROC) analysis was used to determine the performance of the models. 
Optimal performance was the point with the maximal Youden’s index (YImax=sensitivity+specificity-1). The 
area under the curve (AUC), YImax, the sensitivity and specificity were used to quantify the ability of the 
different models to diagnose LQTS.

6.3 Results

6.3.1 Study population

Of all 1087 individuals with digitally available ECGs in their work-up during (family) screening for LQTS, 284 
were <16 years of age and for 48 individuals genetic testing results were unknown. From the remaining 
755 individuals eligible for the study, 45 (6.0%) were excluded based on the presence of comorbidities 
that might potentially affect ventricular re- and/or depolarization (varying from e.g. bundle branch 
blocks, hypokalaemia, thalassemia, angina pectoris, an overlap syndrome with Brugada syndrome, to 
severe post-anoxic encephalopathy). In 11 (1.5%) individuals the ECG registration contained too much 
noise and in 6 (0.8%) individuals T-waves were too flat (<40V) to reliably calculate Tstart and Tend. In 5 
(0.7%) individuals a correct ECG export failed. The remaining 688 (91.1%) individuals were included in the 
analyses. The baseline characteristics of the LQTS patients and the genotype-negative family members 
are shown in Table 6-2. LQTS patients were statistically significant younger compared to controls (41±15 
versus 45±15 years, p<0.001). 
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Number [-] Gender (m/f) Age [years]

Control 348 163 / 185 45±15

LQTS 340 143 / 197 41±15

LQT1 129 52 / 77 42±15

LQT2 160 72 / 88 42±15

LQT3 51 19 / 32 40±15

Table 6-2 Study population characteristics. Age is given as mean ± standard deviation. All others are 
presented as counts. LQTS = long QT syndrome, LQT1, LQT2 and LQT3 = long QT syndrome type 1, 2 
and 3.

6.3.2 Baseline model

The best performing support vector machine-based baseline model was reached with an α of 1 and an 
elastic net tuning parameter of λmin. The selected features for the baseline model were: age, QT-interval 
and QTc-Hodges. The ROC of the best performing baseline model is shown in Figure 6-2. ROC analysis 
resulted in an AUC of 0.821 and a YImax of 0.523 with a corresponding sensitivity and specificity of 0.694 
and 0.829 respectively. 

6.3.3 Extended model

The best performing support vector machine-based extended model with additional morphology inputs 
was reached with an α of 0.2 and an elastic net tuning parameter of λ1SE. ROC curves, shown in Figure 
6 2, resulted in an AUC of 0.901 (95% CI 0.893-0.909), a YImax of 0.681 and a sensitivity and specificity 
of 0.820 and 0.861 respectively. All selected features along with their coefficients are listed in Table 6-3. 
Compared to the baseline model, AUC, sensitivity and specificity increased with 0.080, 0.126 and 0.032 
respectively.
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Figure 6-2 Average receiver operating characteristic curves with 95% confidence intervals of the 
extended model (solid turquoise) and the baseline model (dashed red).

Feature β

Age -0.010

QT 0.002

QTc Bazett 0.0048

QTc Fridericia 0.0044

QTc Framingham 0.0043

QTc Hodges 0.0048

Area in VL, V2, V3 3.57x10-6, 1.69x10-7 and 1.96x10-6

Absolute area in VL, V1, V2, V3 2.28x10-6, 1.35x10-5, 1.45x10-6 and 4.13x10-6

Biphasicness in VR, V1, V2, V6 -0.51, -0.09, -0.08 and -0.35

Amplitude in VR, VF, V6 5.49x10-4, -1.54x10-5 and -1.35x10-4

Length 0.011

Time to onset 0.007

Skewness in VR, VL, VF, V4, V5, V6 -0.69; -0.24; -0.47; -0.07; -0.40; -0.21

Kurtosis in VL and V3 0.43; 0.30

Asymmetry in VR, VL VF, V2, V3 1; 0.09; 0.07; 0.03; 0.21

Tpeak to Tend interval 2

QRS amplitude VL, VF, V1 -1.40x10-4, -2.99x10-4, 6.19x10-5

SP QRS-T angle 0.0018

RHV4-V6 -3.00x10-4

THV4-V6 0.0012

Table 6-3 Selected features. Note that all features are unitless because all features are normalised 
by subtracting the mean and dividing the result by the standard deviation (with mean and standard 
deviation determined from the training set). TH = T-wave heterogeneity, RH = R-peak heterogeneity, SP 
= spatial peak.

6.3.4 Clinical QTc cut-off value

Figure 6-3 shows the amount of correctly and incorrectly classified cases and controls based on the 
clinically used QTc-Bazett thresholds (>480ms22) as well as the classification results based on the 
extended model. As shown in Figure 6-3, the extended model resulted in a major drop of incorrectly 
classified LQTS patients. It can also be seen that some controls with a QTc >480ms are correctly classified 
as control by the extended model. This all comes at the cost of some controls (with QTc <480ms) being 
incorrectly classified as LQTS patients.



96 | Chapter 6 T-wave morphology improves LQTS diagnosis | 97

6 6

350 450 550 650 350 450 550 650
QTc Bazett [ms] QTc Bazett [ms]

Gene-negative Gene-positive

40

30

20

10

40

30

20

10

0

0Su
pp

or
t v

ec
to

r 
m

ac
hi

ne

Co
un

ts
 [-

]
Co

un
ts

 [-
]

Q
Tc

 th
re

sh
ol

ds

Correctly classi�ed 
Incorrectly classi�ed 

Figure 6-3 Graphic representation of the added value of the support vector machine with T-wave 
morphology features on clinically used QTc thresholds. The amount of correctly and incorrectly 
classified gene-negative subjects (left) and gene-positive subjects (right) based on QTc cut-off value of 
480ms (top panel) and based on our final support vector machine (bottom panel). The classifications as 
shown in this figure are the average classifications for each individual patient at YImax obtained from 
1000 Monte Carlo cross-validations.

6.4 Discussion

In the current study, we compared a baseline model using age, gender, QTc and QT-interval as inputs with 
a model extended with T-wave morphology inputs to investigate the added value of T-wave morphology 
markers in the automated diagnosis of LQTS. Comparison of the ROC analyses of both models showed 
that the model extended with T-wave morphology markers resulted in a better performance. Since both 
models were trained and tested similarly, this improved performance can be attributed to the addition of 
the T-wave morphology markers. In other words, it can be concluded that T-wave morphology markers 
have an added value to age, gender, QTc and QT-interval in automatically distinguishing LQTS patients 
from genotype-negative family members. 

The sensitivity and specificity of respectively 0.820 and 0.861 from our extended model might seem 
modest to previous studies, which have suggested higher performances when using T-wave markers 
for the diagnosis of LQTS.9,14,23,24 However, our study population consisted of LQTS patients and gene-
negative family members whereas other studies used healthy individuals as controls.9,14,23,24 In our study, 
QTc of the control group showed considerable more overlap with QTc of LQTS patients than in the 
above-mentioned studies. Therefore, distinguishing gene-positive LQTS from gene-negative family 
members is more challenging than distinguishing LQTS patients from healthy controls. This might 
explain the higher performance of other studies on the added value of T-wave morphology markers 
to identify LQTS patients. Beside the use of different control groups, the ECG recordings also differed 
between our study and the studies by Immanuel et al.23 and Chorin et al.9 who respectively studied 

24h Holter registrations and T-wave morphologies during the brisk-standing-test. The current study 
only used standard 10-second 12-leads body surface ECGs but could nevertheless show that T-wave 
morphology markers in these ECGs improve prediction results. Since these standard ECGs are widely 
available and are part of clinical routine, the added value of being able to improve LQTS diagnosis from 
these recordings is considerable. 

In this study population, gene-negative family members were found to be significantly older than LQTS 
patients. Not surprisingly, age was a selected feature in both the baseline and the extended model and 
contributed to the performances of both models. However, since age was a selected feature in both 
models, the effect of age on the performance of the models is expected to be the same. Therefore, the 
comparison between both models is still valid. 

Next to the support vector machine, a logistic regression model and a bagged random forest were used. 
From these methods, the support vector machine resulted in the best mean discriminative performance 
and was therefore used as the machine learning method in this study.

Although it has been shown that Hodges’ QTc is less correlated with heart rate compared to the others,18 
still QTc Bazett is the most commonly used QTc correction method. However, the fact that the only QTc 
method selected in our baseline model was QTc Hodges might be another argument that the clinical use 
of QTc Hodges should be re-evaluated.

6.4.1 Limitations

Although the results of this study are promising, there is still room for improvement. First of all, no notch 
scores are used in our models. Initially, we implemented the notch score as described by Andersen et al.14 
However we found a very poor agreement between the implemented notch score and visual inspection 
by two blinded observers. We therefore chose to exclude this feature from all models. Secondly, Tstart 
or Tend have been manually adjusted for 30 out of 688 ECGs. Although the algorithm seems to work for 
the majority of ECGs, improving these steps might be necessary before our algorithm can be used on a 
larger scale. A third potentially important limitation of the methodology used in this study is that too flat 
T-waves (<40µV) have to be excluded even though flat T-waves are a specific aberrant T-wave morphology 
feature in LQTS patients.Next, the signal quality of these retrospectively collected ECGs was relatively 
poor for the current study purpose in relatively many cases. Since all ECGs were recorded because of 
clinical routine, no special care was taken to obtain very high-quality ECGs. Though the relatively poor 
ECG quality might be an explanation for the two limitations described above, future directions should be 
to increase the robustness of the model to deal with ECGs from daily clinical routine. 
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6.5 Conclusion

In the current study, we compared a baseline and an extended model including T-wave morphology 
inputs, both using support vector machines, to investigate the added value of T-wave morphology 
markers in diagnosing LQTS. The performances of both models showed that the model extended with 
T-wave morphology markers resulted in a better performance in the diagnosis of LQTS. Therefore, it 
can be concluded that the use of T-wave morphology markers has an added value to distinguish LQTS 
patients from genotype-negative family members.
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6.7 Supplementary materials

T-wave morphology feature calculations

Amplitude 
To calculate the T-wave amplitude, both the most positive and the most negative peak in the signal were 
detected. The peak with the largest absolute value was noted as the T-wave amplitude.

Area and absolute area
The area was calculated as the integral of the T-wave amplitudes (with regard to its sign) between Tstart 
and Tend. The absolute area is calculated as the integral of the absolute T-wave amplitudes.

Biphasicness score
The biphasicness score of a T-wave was calculated by dividing the absolute value of the T-wave area by 
the absolute area of the T-wave and subtracting it from 1. For example, a negative T-wave with an area 
of -2 and an absolute area of 2 will have a biphasicness score of 1-(|-2|⁄2)=0. A biphasic T-wave that is 
60% positive and 40% negative with an area of 0.4 and an absolute area of 2 will have a biphasicness 
score of 1-(|0.4|⁄2)=0.8. In biphasic T-waves (defined as T-waves with a biphasicness score of ≤ 0.25) no 
skewness, kurtosis, notch score and asymmetry score were calculated.

Skewness and kurtosis 
For the calculation of the T-wave skewness and kurtosis, T-waves were treated as probability distribution 
curves and normalized between 0 and 1 before calculating the skewness and kurtosis.

Notch and asymmetry scores
Notch and asymmetry scores were derived from Andersen et al.20 However, instead of calculating the 
notch score only in the first principal component of the signal, a notch was sought for in every lead. 

To calculate the asymmetry score, first the first derivative of the ECG was split into a segment from Tstart 
to Tpeak and a segment from Tpeak to Tend. Both segments were scaled between 0 and 1. Segment 2 was 
flipped over both the horizontal and vertical axis. Finally, the mean difference between the two segments 
was calculated as the asymmetry score.

Spatial and mean peak QRS-T angle
The spatial peak QRS-T angle is defined as the angle between the vector at maximal T-wave magnitude in 
the VCG and the vector at maximal QRS complex magnitude in the VCG. The spatial mean QRS-T angle is 
defined as the angle between the mean vector of the T-wave and the mean vector of the QRS-complex 
in the VCG.

R-peak and T-wave interlead heterogeneity
R-peak and T-wave inter-lead heterogeneity were calculated as described by Tan et al.23 In summary: to 
calculate R-peak and T-wave heterogeneity, the QRS-complex and T-wave were selected in two groups 
of precordial leads (V1-V3 and V4-V6). The maximum value of the square root of the variance around the 
average of the three leads was calculated and used as the interlead heterogeneity.
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Abstract

Background
Diagnosing long-QT syndrome (LQTS) remains challenging due to a considerable overlap in QT-
interval between LQTS and healthy subjects. Characterizing T-wave morphology might improve 
LQTS diagnosis. 

Objective
To improve LQTS diagnosis by combining new polynomial-based T-wave morphology parameters 
with the corrected QT-interval (QTc), age and sex in a model. 

Methods
A retrospective cohort consisting of 333 LQTS patients and 345 genotype-negative family members 
was used in this study. For each patient, a linear combination of the first 2 Hermite-Gauss (HG) 
polynomials was fitted to the STT-segments of an average complex of all precordial leads and limb 
leads I and II. The weight coefficients as well as the error of the best fit were used to characterize 
T-wave morphology. Subjects were classified as LQTS or controls by clinical QTc cut-offs and three 
support-vector-machine (SVM) models fed with different features. An external cohort consisting of 
72 patients and 45 controls was finally used to check the robustness of the models.

Results
Baseline QTc cut-offs were specific but had low sensitivity in diagnosing LQTS. The model with T-wave 
morphology features, QTc, age and sex had the best overall accuracy (84%) followed by a model with 
QTc, age and sex (79%). The Extended model especially performed better in LQT-3 patients (69%).

Conclusion
T-wave morphologies can be characterized by fitting a linear combination of the first 2 HG-
polynomials. Adding T-wave morphology characterizations to age, gender and QTc in an SVM-model 
improves LQTS diagnosis.

7.1 Introduction

Early diagnosis of congenital long-QT syndrome (LQTS) is crucial since early treatment can prevent 
malignant arrhythmias. Current guidelines recommend diagnosing LQTS based on either QT-interval 
corrected for heart rate (HR) using Bazett’s formula (QTc), DNA testing, or the Schwartz-score1–3. These 
methods have some clinical limitations. First of all, diagnosing LQTS solely based on (sex specific) QTc 
cut-offs comes with some limitations. For example, the QT-interval seems hard to measure since the 
95% interobserver limits of agreement ranges up to 30ms and even the interobserver variation between 
LQTS experts can measure up to 70ms4,5. Furthermore, LQTS diagnosis is troubled because there is a 
considerable overlap in QTc between affected and unaffected subjects and QTc is variable over time4,6,7. 
Secondly, DNA-testing for known LQTS mutations also has limitations as approximately 20% of clinically 
diagnosed LQTS patients remain genetically elusive and known LQTS mutations seem to have a reduced 
penetrance and therefore not always lead to clinical signs8,9. Furthermore, classification and reporting 
of potentially malign genetic variants might currently be incomplete and misleading10. Lastly, though 
a Schwartz-score of ≥3 has a higher specificity in the diagnosis of LQTS compared to a baseline QTc 
cut-off of ≥430ms (99% vs 86%), this comes at the costs of a very low sensitivity (36% vs 72%) when 
genetic testing results are used as the true LQTS diagnosis11. Apart from these traditional tests, more 
sophisticated tests like individualized corrected QT-intervals12 and provocative tests that study QT-
interval adjustment to changes in HR have been suggested13–19. A downside of these studies is that the 
suspicion for LQTS has to be raised before these tests will be used. Improved LQTS diagnosis based on 
standard ECGs would therefore still be useful. 

Apart from a prolonged QTc, altered T-wave morphologies can be seen on LQTS patient’s standard 
ECGs and could aid in diagnosing LQTS20–22. LQT-1 patients often show an early-onset broad T-wave, 
LQT-2 patients can have asymmetric, low voltage, biphasic and notched T-waves and LQT-3 patients 
typically have a late-onset T-wave. Although it is not strictly mentioned in the guidelines, LQTS experts 
will not only measure the QT-interval but also evaluate the T-wave morphology to diagnose LQTS23,24. 
Characterizing the T-wave morphology by eye-balling however is subjective and its diagnostic value 
depends on cardiologist’s experience. Previous studies have shown that algorithm-based automatic 
assessment of the T-wave morphology can help in the diagnosis of LQTS25,26. Such algorithms might 
furthermore be useful to monitor treatment efficiency in diagnosed LQTS patients and by doing so can 
be useful in determining optimal patient specific treatments and drug doses. 

The aim of this study was to improve diagnosis of LQTS based on standard ECGs by a machine-learning 
model with a new polynomial-based T-wave morphology characterization. After training and testing our 
approach on the cohort used in a previous report25 we pursued additional validation on an external 
dataset. Lastly, the performance of our model was compared to the diagnostic accuracy of a QT-expert.

7.2 Methods

7.2.1 Study population

The same cohort (from now on called the Amsterdam data) as included in our earlier study was used in 
this study. A detailed description can be found in our previous study 25. In short, this retrospective cohort 
from the Academic Medical Centre in Amsterdam (The Netherlands) consists of confirmed LQTS Type 1 
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(LQT-1), Type 2 (LQT-2) and Type 3 (LQT-3) patients and their genotype-negative family members who 
are used as controls. Exclusion criteria were age <16years, absence of genetic testing results, absence of 
baseline data and all other pathologies or medications that affect T-wave morphology. According to the 
Dutch Act on Medical Research involving Human Subjects, written informed consent was not necessary 
to obtain for the present study, due to the observational design of the study.

A retrospective cohort from the University Hospital Leuven (Belgium) was used as an additional external 
test set (from now on called the Leuven data). Similar to the Amsterdam data, the LQTS patient group 
consists of LQT-1, LQT-2 and LQT-3 and the control group consists of genotype-negative family members. 
Many patients from this cohort were included in a previous study12. The research protocol was approved 
by the local ethics committee. The same exclusion criteria were used for the Leuven data. 

7.2.2 ECG analysis

Acquisition and pre-processing
All standard ECGs were recorded with a 250 or 500Hz sample frequency and stored in the MUSE 
Cardiology Information system (GE Healthcare, Little Chalfont, UK). All analyses were performed offline 
using custom-made software in Matlab (2018a, Mathworks, Natick, MA, USA). To improve signal-to-noise 
ratio, a median complex was calculated for all individual ECG leads by aligning individual complexes on 
the R-peak after filtering and up-sampling to 1000Hz.

Landmark detection
The R-peak, QRS-onset and T-wave end were detected by our previously described algorithms27. In short, 
the R-peak was detected on the root mean square ECG (ECGRMS) using the Pan-Tompkins algorithm. 
The onset of the QRS-complex was defined as the largest positive peak in the second derivative of 
the ECGRMS preceding the R-peak. The beginning of the window in which we performed our analysis 
was defined as R-peak+70ms. The end of the T-wave was detected by means of an automated tangent 
method. All ECG landmarks and median complexes were checked manually.

T-wave characterization
Hermite-Gauss polynomials (HG-polynomials) have been used to characterize the morphology of QRS-
complexes28,29. A linear combination of the first two HG-polynomials were fit on the STT-segment of leads 
I, II and v1 to v6. The first-order HG-polynomial is symmetrical bell-shaped whereas the second order is 
biphasic (Figure-1). The fitting was performed by first aligning the top of the first-order HG-polynomial 
and the zero crossing of the second-order HG-polynomial on the T-peak (Figure 7-1 (1)). Thereafter, a 
linear combination of weight coefficients of the first- (c1) and second-order (c2) HG-polynomial for a fixed 
range of HG-polynomial widths (Figure 7-1 (2)) were fit using the least-squares method (c1 and c2, Figure 
7-1 (3)). The weight coefficients of the fit that resulted in the smallest fitting error (defined as the root 
mean square of the difference between the reconstructed and original signal normalized to the signal’s 
maximum) was used as the T-wave characterization. Since a normal T-wave is positive and slightly 
asymmetric, c1 will be positive and since the first-order HG-polynomial is symmetric a small (negative) c2 
is needed to capture the slightly asymmetric morphology of a normal T-wave. Abnormal morphologies 
will lead to abnormal weight coefficients. For example, high/low amplitude T-waves will have high/low 
coefficients; c2 will be larger than c1 in a biphasic T-wave since the second-order polynomial captures the 
biphasic morphology; and a negative T-wave will result in a negative c1 (Figure 7-1). Complex T-waves 

(e.g. notched T-waves) cannot be fit accurately with only the first- and second-order HG-polynomials. 
Therefore, the fitting error was also used in the characterization of the T-wave morphology. By doing so, 
complex T-waves that cannot be fit properly using only the first two order HG-polynomials can still be 
classified as an altered T-wave because of the high fitting error.

 
Figure 7-1 T-wave characterization using Hermite-Gauss polynomials. (1) The T-peak and the peak 
of the first order HG-polynomial were aligned. (2) A fixed range of HG-polynomial widths were fitted on 
the STT-segment. (3) The weight coefficients (c1 and c2) obtained from the best fit were used as T-wave 
characterization. LQT-n, long QT-syndrome subtype n; error was defined as the root mean square of the 
difference between the fit and original signal.

7.2.3 QTc cut-offs

Two QTc cut-offs were used to classify subjects as LQTS patients or controls. First, following current HRS/
EHRA/APHRS Expert Consensus recommendations30, a QTc cut-off of ≥480ms was used. Secondly, the 
99th-percentile from healthy males (450ms) and females (460ms) to classify LQTS patients was used as 
the QTc cut-off4.

7.2.4 Machine learning

Subjects were classified as LQTS patients or controls by three Support-Vector-Machine (SVM) models 
trained on three different sets of features. The first model (Baseline model) contains age, sex and QTc 
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as inputs and reflects the optimal classification based on these basic and clinically used parameters. The 
second model (Morphology model) contains c1, c2 and the fitting error from the precordial ECG leads 
and lead I and II as well as age and sex and reflects the optimal classification based on the morphology 
markers without QTc. The third model (Extended model) combines all inputs from the baseline and 
the morphology model. A detailed description of the machine learning approach can be found in the 
supplementary materials. In short, all models were trained and tested on the Amsterdam data using a 
10-fold cross-validation. In a 10-fold cross-validation, the entire dataset is partitioned into 10 equally 
sized subsets. A model is trained on 9 subsets and tested on the 10th subset. This is repeated 10 
times until all subsets served once as the test set. The mean performance of these 10 validations was 
considered the expected performance of the final model that was trained on the entire Amsterdam 
data. In general, internal cross-validation is an adequate measure of external performance. However, to 
further investigate the robustness of our final model on new data, it was externally tested on the Leuven 
data. Model performances were quantified by sensitivity, specificity and the total number of correctly 
classified individuals (accuracy).  

7.2.5 QT-expert

To further validate the Extended model, a QT-expert (P.P.) classified all subjects from the Leuven data 
as LQTS patient or control, based on the full ECG with knowledge of the subject’s sex and age and 
the corresponding QT-, RR-intervals and QTc which were provided by our algorithms. The agreement 
between the Extended model and the QT-expert was evaluated. 

7.2.6 Statistical analyses

All continuous variables are presented as mean ± standard deviation, categorical variables are presented 
as number and percentage. Receiver-operating characteristic (ROC) curve analysis was used to calculate 
the area under the curve (AUC) as well as the sensitivity and specificity at the optimal cut-off determined 
by the Youden-index. DeLong’s method31 was used to compare ROC curves of the Baseline, Morphology 
and Extended model. A P-value<0.05 was considered significant. All analyses were done in Matlab 
(2018a, Mathworks, Natick, MA, USA).

7.3 Results

7.3.1 Study population

After exclusions, 678 subjects were included in the Amsterdam data and 117 subjects were included 
in the Leuven data. Ten subjects were excluded from the Amsterdam data because at least one ECG 
lead contained too much noise. The final Amsterdam data consisted of 345 genotype-negative family 
members and 333 LQTS patients (126 LQT-1, 156 LQT-2, 51 LQT-3). No subjects were excluded from the 
Leuven data which consisted of 45 genotype-negative family members and 72 LQTS patients (16 LQT-1, 
51 LQT-2, 5 LQT-3). Study population characteristics for both datasets are shown in Table 7-1.

Table 7-1 Study population characteristics. Values are expressed as mean ± standard deviation. m, 
male; f, female; QTc, QTc Bazett; ms, milliseconds.

7.3.2 Classification results

A large overlap in QTc between patients and controls exists in both the Amsterdam (top left) and the 
Leuven data (top right) as illustrated in Figure 7-2. Subjects incorrectly classified by our Extended model 
are shown as dark blue dots. The majority of subjects (84%) are classified correctly by the Extended 
model. Moreover, the Extended model was able to correctly classify LQTS patients with a QTc as low 
as 400ms, while it was also capable of correctly classifying controls with a QTc up to 460ms. Almost 
all incorrectly classified patients are LQTS patients with a normal QTc while the majority of incorrectly 
classified controls have a prolonged QTc. The ten parameters with the highest weight (most important) 
in the Extended-model were QTc, errorV2, errorv3, age, errorI, c2,I, errorII, errorv6, c1,v3, and c2,v1.

Accuracies of respectively the Amsterdam and Leuven data for the Baseline (80% and 76%), Morphology 
(76% and 1%) and Extended model (84% and 79%) as well as of the two clinically used QTc cut-offs 
(62% and 52% for QTc≥480ms and 72% and 65% for QTc≥450/460ms) are shown in the lower half of 
Figure 7-2. The chart shows that the Extended model has the best performance while the QTc cut-offs 
have the poorest performance in both datasets. It can furthermore be noted that the performance of 
the different classification methods used are similar between both datasets, indicating that the model 
is robust. The accuracy was furthermore determined on a subset of the data in which all overt LQTS 
subjects (QTc>450/460ms) were excluded. The Extended model had the highest performance (80.8%) 
whereas the Baseline model had the lowest accuracy (75.7%).

Sensitivity and specificity for each model or QTc cut-off are shown in Table 7-2. The best sensitivity for 
both datasets was achieved with the Extended model (83% and 75%) followed by the Baseline model 
(75% and 69%). As expected from the QTc distributions, using only QTc cut-off to diagnose LQTS results 
in the highest specificity (99% and 98%) with the lowest sensitivity for both datasets (24% and 24% 
respectively). No AUC and confidence intervals were calculated for the Leuven data since the models 
and cut-offs obtained from the Amsterdam data were applied on the Leuven data and therefore no ROC 
curve was generated for the Leuven data.

The AUC of the Extended model was significantly higher compared to both Baseline and Morphology 
model (p<0.001) using Delong’s method to compare ROCs. The AUC of the Baseline model furthermore 
was significantly higher compared to the Morphology model (p<0.001).

Amsterdam Leuven

Age (years) Sex (m/f) QTc (ms) Age (years) Sex (m/f) QTc (ms)

Controls 45±15 160/185 410±28 42.8±16.6 18/27 402±27

LQTS 42±15 137/196 457±38 37.5±14.0 32/40 456±37

LQT-1 41±15 49/77 455±34 44.3±9.4 4/12 467±44

LQT-2 42±15 69/87 462±36 35.7±15.0 28/23 455±34

LQT-3 40±15 19/32 446±50 34.8±10.2 0/5 421±11
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Figure 7-2 Classification accuracies of the various models on the Amsterdam and Leuven dataset. 
QTc, QTc Bazett; m, male; f, female; ms, milliseconds; LQT-n, long-QT syndrome subtype n.

 
Table 7-2 ROC analyses of the various models on the Amsterdam and Leuven datasets. Sens, 
sensitivity; spec, specificity; AUC, area under the curve; QTc, QT corrected for heart rate using Bazett’s 
formula.
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7.3.3 LQTS subtypes

The accuracy for LQTS subtypes and controls is furthermore shown in Figure 7-2. It can be appreciated 
that the Extended model has the highest accuracy for all LQTS patients but especially in LQT-3 patients. 
QTc≥480ms has the highest accuracy in controls but the lowest accuracy in LQTS patients.

7.3.4 QT-expert

The QT-expert had a total accuracy of 79% (n=93) on the Leuven data with a sensitivity and specificity 
of 75% and 86% respectively (see Table 7-3). The Extended model and the QT-expert agreed in 87% 
(n=102) of all cases. In 17 subjects (13 LQTS, 4 controls) both the QT-expert and the Extended model 
were wrong. The QT-expert indicated that he was not sure about his diagnosis in 24% of all cases (n=28).

  

Table 7-3 Number of (in)correctly classified subjects by the Extended model and the QT-expert. 
LQTS, long-QT syndrome.

7.4 Discussion

In this study, we evaluated the additional value for diagnosing LQTS of the T-wave morphology 
characterized by HG-polynomials with respect to various diagnostic SVM-models/thresholds based on 
QTc. The Extended model has the best accuracy on both the Amsterdam (84%) and the Leuven data 
(79%) closely followed by the Baseline model (80% and 76% respectively). In contrast to the Baseline 
model, the Extended model is even able to accurately diagnose LQTS patients with a QTc down to 
400ms. ROC curve comparison by Delong’s method showed that the AUC of the Extended model was 
significantly higher compared to both the Baseline as well as the Morphology model. The predictions 
by the Extended model moreover has a good agreement with the QT-expert. This indicates that the 
Extended model cannot replace QT-experts but can be used by physicians less familiar/experienced 
with diagnosing LQTS. We are willing to share our Matlab-code on request by e-mail. Future users should 
however realise that the model was not trained and tested on other pathologies that affect the STT-
segment like ischemia, ion-disturbances or ventricular conduction problems. 

When looking at the accuracy per LQTS subtype, it can be seen that although the Baseline model’s 
performance in controls, LQT-1 and LQT-2 patients, does not differ that much from the Extended model, 
the Extended model as well as the Morphology model do increase the sensitivity for LQT-3 patients. An 
improved diagnosis for LQT-3 patients itself is relevant since cardiac events are reported to be lethal 
more frequently in LQT-3 patients32. Also, it is important to note that since the LQT-3 patients account for 
only 7% and 4% of all subjects in the Amsterdam and Leuven data respectively, this improved sensitivity 
is hardly reflected by the total number of correctly classified subjects. The low number of LQT-3 patients 

Diagnosis

LQTS Control

Pr
ed

ic
te

d LQTS 54
54

7
6

Control 18
18

38
39

Model
Expert



112 | Chapter 7 Polynomial-Based T-wave Characterization | 113

77

is indeed a limitation of this study and more LQT-3 patients are needed to investigate whether this 
observation is true.

Strikingly, the QTc>480ms cut-off, recommended by the current Expert Consensus, has the poorest 
performance with an accuracy of 62% and 52% on the Amsterdam and Leuven data respectively. 
Based on these guidelines, in subjects with a QTc<480ms, LQTS can only be diagnosed with a Schwartz-
score≥3.5 or an unequivocally pathogenic mutation in one of the LQTS genes2,30. It has however been 
shown that the Schwartz-score>3 has a high specificity (99%) but a low sensitivity (36%) in diagnosing 
disease carriers11. Of note, subjects with a QTc<480ms might never reach a Schwartz-score of ≥3.5 since 
Torsade de pointes, T-wave alternans, notched T-waves or a clinical history with syncope is needed to 
reach 3.5 but are found very infrequently and/or are not specific2,11.

Other studies also showed poor predictive performance of the ≥480ms QTc cut-off with similar 
sensitivity and specificity (26% and 99% respectively)4 or recommend lower cut-offs11. Although lower 
cut-offs will lead to a higher sensitivity, they will be accompanied by a decrease in specificity. The well-
known considerable overlap4,6 in QTc between patients and controls will hamper LQTS diagnosis no 
matter which fixed QTc cut-off is used. Our Baseline model shows that LQTS diagnosis can already be 
improved by using a sex- and age-dependent QTc cut-off. The advantage of the Baseline model is that it 
can be used without sophisticated software. As shown by the improved accuracy of the Extended model 
and the Morphology model for LQT-3 patients, introducing T-wave morphology markers in the diagnosis 
of LQTS further solves the issue of the considerable overlap in QTc between patients and controls. 

The morphology score developed by Andersen et al.33 is frequently used to characterize the T-wave 
morphology and has been shown to improve LQTS diagnosis25,26. One of its strengths is that the 
interpretation of the parameters is easy to understand and can guide cardiologists in the manual 
assessment of the T-wave morphology. A downside of the score is that it only describes altered LQTS 
T-wave morphology characteristics known so far. Unrecognized altered LQTS T-wave morphology 
characteristics might therefore not lead to an abnormal morphology score. In this study we therefore 
developed an objective method in which the SVM-model decides which characteristics are important. 
This makes our HG-polynomial based method unbiased by current knowledge. Sugrue et al. developed 
a T-wave analysis program that is also not based on known LQTS T-wave morphology characteristics34. 
Although the overall accuracy of their T-wave analysis program is comparable with ours (86%), it should 
be noted that Sugrue et al. included age- and sex-matched controls with no history of cardiac diseases. 
A head-to-head comparison between both algorithms should assess whether either algorithm has 
improved accuracy over the other, or whether there are certain subgroups in which one performs 
better. Combining T-wave morphology characterizations of Sugrue et al. with ours might even lead to a 
new, improved model.

In this study we only used the first two orders of the HG-polynomials to reduce the number of features 
used in our approach. The errors of the fit in lead I, II, v2, v3 and v6 were among the most important 
parameters in the Extended model. This indicates that the complexity of the T-wave is an important 
classification in the diagnosis of LQTS. Although adding more orders or fitting more parameters might 
improve the fits and the diagnosis, more data is likely needed for these more complicated models and 
parameters. Unfortunately, current datasets do not include follow-up ECGs. Therefore, the reproducibility 
of our algorithm could not be addressed.

The aim of this study was to improve the diagnosis of genotype-positive LQTS patients. DNA testing 
was used as the gold standard for diagnosing LQTS. However, DNA testing might not (yet) be a proper 
gold standard for diagnosing LQTS since it has been shown that approximately 20% of clinically 
diagnosed LQTS patients remain genetically elusive8,9. Vice versa, pathogenic variants seem to have a 
reduced penetrance and therefore do not always lead to symptoms and/or a prolonged QT-interval8,9. 
Predicting phenotype-positive LQTS patients based on symptomaticity might therefore be more useful 
than predicting genotype-positive LQTS patients. However, studying symptomaticity bears other clinical 
challenges since patients should ideally be off-treatment and followed intensively. Therefore, DNA 
testing is still the most objective diagnostic method currently available.

7.5 Conclusion

In this study we showed that T-wave morphology can be characterized by using an automatic algorithm 
that fits the T-wave using the first two Hermite-Gauss polynomials. We furthermore showed that a 
support-vector-machine model based on combining weight coefficients of Hermite-Gauss polynomials 
and the error of the fit, with age, gender and QTc significantly improves the diagnosis of genotype-
positive LQTS patients and their genotype-negative family members based on standard ECGs.



114 | Chapter 7 Polynomial-Based T-wave Characterization | 115

77

7.6 References

1. Priori SG, Wilde AA, Horie M, et al.: HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis 
and Management of Patients with Inherited Primary Arrhythmia Syndromes. Heart Rhythm Elsevier, 
2013;10:1932–1963. 

2. Schwartz PJ, Moss AJ, Vincent GM, Crampton RS: Diagnostic criteria for the long QT syndrome. An 
update. Circulation 1993;88:782–784. 

3. Bazett HC: An analysis of the time-relation of electrocardiograms. Heart 1920;7:353–370. 
4. Vink AS, Neumann B, Lieve KVV, et al.: Determination and Interpretation of the QT Interval. 

Circulation 2018;138:2345–2358. 
5. Viskin S, Rosovski U, Sands AJ, et al.: Inaccurate electrocardiographic interpretation of long QT: The 

majority of physicians cannot recognize a long QT when they see one. Heart Rhythm 2005;2:569–
574. 

6. Viskin S: The QT interval: Too long, too short or just right. Heart Rhythm Heart Rhythm Society, 
2009;6:711–715. 

7. Vink AS, Clur SAB, Wilde AAM, Blom NA: Effect of age and gender on the QTc-interval in healthy 
individuals and patients with long-QT syndrome. Trends Cardiovasc Med Elsevier, 2018;28:64–75. 

8. Kapplinger JD, Tester DJ, Salisbury BA, et al.: Spectrum and prevalence of mutations from the first 
2,500 consecutive unrelated patients referred for the FAMILION® long QT syndrome genetic test. 
Heart Rhythm Elsevier Inc., 2009;6:1297–1303. 

9. Crotti L, Spazzolini C, Schwartz PJ, et al.: The common long-QT syndrome mutation KCNQ1/A341V 
causes unusually severe clinical manifestations in patients with different ethnic backgrounds: 
Toward a mutation-specific risk stratification. Circulation 2007;116:2366–2375. 

10. Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ: Classification and Reporting of Potentially 
Proarrhythmic Common Genetic Variation in Long QT Syndrome Genetic Testing. Circulation 
2018;137:619–630. 

11. Hofman N, Wilde AAM, Kaab S, et al.: Diagnostic criteria for congenital long QT syndrome in the era 
of molecular genetics: do we need a scoring system? Eur Heart J 2007;28:575–580. 

12. Robyns T, Willems R, Vandenberk B, et al.: Individualized corrected QT interval is superior to QT 
interval corrected using the Bazett formula in predicting mutation carriage in families with long QT 
syndrome. Heart Rhythm Elsevier Inc., 2017;14:376–382. 

13. Vyas H, Hejlik J, Ackerman MJ: Epinephrine QT Stress Testing in the Evaluation of Congenital Long-
QT Syndrome. Circulation 2006;113:1385–1392. 

14. Shimizu W, Noda T, Takaki H, et al.: Diagnostic value of epinephrine test for genotyping LQT1, LQT2, 
and LQT3 forms of congenital long QT syndrome. Heart Rhythm 2004;1:276–283. 

15. Sy RW, Van Der Werf C, Chattha IS, et al.: Derivation and validation of a simple exercise-based 
algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation 2011;124:2187–
2194. 

16. Horner JM, Horner MM, Ackerman MJ: The diagnostic utility of recovery phase QTc during treadmill 
exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm Elsevier Inc., 
2011;8:1698–1704. 

17. Viskin S, Postema PG, Bhuiyan ZA, et al.: The Response of the QT Interval to the Brief Tachycardia 
Provoked by Standing. J Am Coll Cardiol Elsevier Inc., 2010;55:1955–1961. 

18. Adler A, van der Werf C, Postema PG, et al.: The phenomenon of “QT stunning”: The abnormal QT 
prolongation provoked by standing persists even as the heart rate returns to normal in patients 

with long QT syndrome. Heart Rhythm Elsevier Inc., 2012;9:901–908. 
19. Chorin E, Havakuk O, Adler A, et al.: Diagnostic value of T-wave morphology changes during “QT 

stretching” in patients with long QT syndrome. Heart Rhythm Elsevier, 2015;12:2263–2271. 
20. Lehmann MH, Suzuki F, Fromm BS, et al.: T wave “humps” as a potential electrocardiographic 

marker of the long QT syndrome. J Am Coll Cardiol Elsevier Masson SAS, 1994;24:746–754. 
21. Moss AJ, Zareba W, Benhorin J, et al.: ECG T-Wave Patterns in Genetically Distinct Forms of the 

Hereditary Long QT Syndrome. Circulation 1995;92:2929–2934. 
22. Yan G-X, Antzelevitch C: Cellular basis for the normal T wave and the ECG manifestations of the long 

QT syndrome. J Electrocardiol 1998;30:148. 
23. Schwartz PJ: Clinical significance of QT prolongation: a personal view. In Butrous G, Schwartz PJ, eds: 

Clinical Aspects of Ventricular Repolarization. London: Farrand Press, 1989, pp. 343–356. 
24. Schwartz PJ, Ackerman MJ: The long QT syndrome: A transatlantic clinical approach to diagnosis and 

therapy. Eur Heart J 2013;34:3109–3116. 
25. Hermans BJM, Stoks J, Bennis FC, et al.: Support vector machine-based assessment of the T-wave 

morphology improves long QT syndrome diagnosis. EP Eur 2018;20:iii113–iii119. 
26. Porta-Sánchez A, Spillane DR, Harris L, et al.: T-Wave Morphology Analysis in Congenital Long QT 

Syndrome Discriminates Patients From Healthy Individuals. JACC Clin Electrophysiol 2017;3:374–
381. 

27. Hermans BJM, Vink AS, Bennis FC, et al.: The development and validation of an easy to use automatic 
QT-interval algorithm. Baumert M, ed: PLoS One 2017;12:e0184352. 

28. Laguna P, Jané R, Olmos S, et al.: Adaptive estimation of QRS complex wave features of ECG signal 
by the Hermite model. Med Biol Eng Comput 1996;34:58–68. 

29. Lyon A, Ariga R, Mincholé A, et al.: Distinct ECG Phenotypes Identified in Hypertrophic Cardiomyopathy 
Using Machine Learning Associate With Arrhythmic Risk Markers. Front Physiol 2018;9:1–13. 

30. Priori SG, Wilde AA, Horie M, et al.: HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis 
and Management of Patients with Inherited Primary Arrhythmia Syndromes: Document endorsed 
by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart 
Rhythm Elsevier, 2013;10:1932–1963. 

31. DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the Areas under Two or More Correlated 
Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988;44:837. 

32. Zareba W, Moss AJ, Schwartz PJ, et al.: Influence of the Genotype on the Clinical Course of the Long-
QT Syndrome. N Engl J Med 1998;339:960–965. 

33. Andersen MP, Xue JQ, Graff C, et al.: A robust method for quantification of IKr-related T-wave 
morphology abnormalities. 2007 Comput Cardiol IEEE, 2007, pp. 341–344. 

34. Sugrue A, Noseworthy PA, Kremen V, et al.: Identification of Concealed and Manifest Long QT 
Syndrome Using a Novel T Wave Analysis Program. Circ Arrhythmia Electrophysiol 2016;9:1–8. 



116 | Chapter 7

7

7.7 Supplementary materials

7.7.1 Machine learning methods

The total Amsterdam dataset was divided into 10 folds of equal size with an equal ratio of LQTS patients 
to controls within each fold. Each fold served as a test set once, while the remaining nine folds served 
as the training set. Within each training fold, all features were normalized to have a mean of zero and 
a variance of one. The test set was normalized using the original mean and variance of the features 
of the training set to avoid any influence of the test set. For every fold, support-vector-machine (SVM) 
models with 30 configurations consisting of every possible combination of three kernels (linear, radial 
and 2nd order polynomial kernel) and ten different box constraints were trained and tested. The 
box constraint parameter (varied from 1e-5 to 1e5 in multiplications of 10) indicates how strictly the 
model separates between LQTS and controls, with higher box constraint values leading to a stricter 
separation. The different kernels use different functions to transfer the originally possibly non-linear 
data into a higher-dimensional space in which the data becomes separable. All 30 model configurations 
calculated a score reflecting the probability of exhibiting LQTS for all subjects once. Receiver operator 
characteristics curves were calculated based on these scores and the model configuration that resulted 
in the highest area under the curve was considered as the optimal SVM model configuration. Since the 
composition of the ten folds can have an effect on the optimal model configuration, the optimization 
was repeated 100 times whilst varying the division of subjects over the folds. The model configuration 
that had the highest area under the curve the most frequently was used as the optimal configuration 
and was trained and tested using a final 10-fold cross-validation. All steps were repeated for the three 
different feature sets (Baseline, Morphology and Extended model) and only the performances of the 
optimized SVM model were reported for every feature set. Finally, one model was trained on the entire 
dataset using the optimal configuration for the feature set. This final model was thereafter validated on 
the external validation set.
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8.1 Introduction

An impaired parasympathetic activity (or increased sympathetic activity) is known to increase the 
susceptibility of the heart to ventricular arrhythmias (VA)1,2. Since parasympathetic postsynaptic neurons 
are mainly located in the atrial ganglionated plexi (GP)3–5, modulation of the GP may alter ventricular 
autonomic innervation. Atrial GP located close to the pulmonary veins may be modulated by pulmonary 
vein isolation (PVI), the cornerstone treatment of atrial fibrillation (AF)6. Unintentional partial atrial 
denervation caused by modulation of the GP is known to increase the heart rate7,8 but might also affect 
ventricular electrophysiology9–13. It has been shown that a small number of AF patients develop outflow 
tract ventricular premature beats (VPB) and non-sustained ventricular tachycardias after isolation of the 
pulmonary veins10,12. This might be caused by an affected ventricular electrophysiology as a consequence 
of altered autonomic innervation.

Recently, an experimental study in murine hearts showed that mechanical disruption or pharmacological 
blockade of parasympathetic innervation shortened ventricular effective refractory perios (ERP) and 
increased susceptibility to VA with programmed stimulation9. Another experimental study in canine 
hearts also showed an increased susceptibility to VA after a targeted GP ablation but contrary to the 
previous findings reported a significantly increased ventricular ERP13. It was furthermore shown that the 
ventricular action potential duration (APD) significantly increased in canine hearts after ablating the GP13. 

To the best of our knowledge, it is unknown whether the APD increases in AF patients after PVI. This can 
be relevant to know since an increased APD is associated with VA14,15 and might therefore explain new 
onset VA in post-PVI patients. In normal physiological circumstances, the APD adapts to changes in heart 
rate16. Since the heart rate often increases in post-PVI AF patients (because of an inevitably modulation 
of the intracardiac neural network7–9) the capability of the (ventricular) APD to adapt to changes in heart 
rate might also be disturbed because of the neural modulations. An adaptation of the APD is especially 
relevant in patients with AF recurrence because of the irregular ventricular rates. The objective of this 
study therefore is to examine whether a PVI induces a mismatch between heart rate and APD. In this 
clinical study we measure the QT-interval as a surrogate marker for gross ventricular APD and assume 
that a change in the relationship between gross ventricular APD and heart rate should be reflected by a 
change in the QT-interval corrected for heart rate (QTc). 

8.2 Methods

8.2.1 Study population

All data used in this study were gathered from a registry of AF patients scheduled for PVI at the 
Maastricht University Medical Centre. Inclusion criteria of the registry were: documented AF; ≥18 years 
of age; scheduled for an AF ablation and able and willing to provide informed consent. Since in this 
study we focus on the QT-interval, we excluded all pathologies that possibly influence the QT-interval 
(e.g. left/right bundle branch block, ventricular paced rhythms, etc.). We only included patients who were 
in sinus rhythm during the ECG since an irregular ventricular rhythm might also affect the QT-interval. 
Written informed consent was obtained from every patient and the study protocol was approved by the 
hospital’s ethics committee.

Abstract

Background 
Pulmonary vein isolation (PVI) has become the cornerstone treatment for atrial fibrillation (AF). 
Unintentional modulation of the ganglionated plexi by PVI was suggested to possibly affect 
ventricular electrophysiology.

Objective
The objective of this study is to examine whether standard of care PVI induces a change in the 
relationship between heart rate and ventricular repolarization, as indicated by the QT-interval 
corrected for heart rate (QTc).

Methods
Data was gathered from a registry of 279 AF patients scheduled for PVI. Five-minute-long 
electrocardiograms were recorded at hospital’s admission (T-1d), one day after the procedure (T+1d) 
and at three months post-procedure (T+3m). Only patients who were in sinus rhythm at all three 
recordings (n=117, 42%) were included in the study. QT intervals were with custom-made software 
and QTc was calculated using Fridericia’s formula. A repeated-measures ANOVA with Bonferroni 
post-hoc correction was used to compare intervals obtained at the three different recording times. 

Results
The QT- and RR-intervals were significantly shortest at T+1d and longest at T-1d. There was no statistically 
significant within-subject difference in QTc between the recordings. Results from a univariate 
analysis of variance showed that age (p=0.06), sex (p=0.81), self/non-self-terminating AF (p=0.31), 
ablation technique (p=0.08), first or re-do procedure (p=0.76) and self-reported AF recurrence at 12 
months post-PVI (p=0.72) did not influence the QTc-interval at T+3m with respect to the QTc at T-1d.

Conclusion
In this study we showed that standard of care PVI with possible moderation of the ganglionated 
plexi, does not induce a change in the relationship heart rate and ventricular repolarization.
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8.3 Results

8.3.1 Study population

Out of 279 patients included in the registry, 117 (42%) met the inclusion criteria and were included in 
this study. Their mean age was 64 ± 8 years, 48 (41%) were females and 76 (65%) had self-terminating AF 
while the other 41 (35%) had non-self-terminating AF. The majority of patients (n=78; 67%) were treated 
using the cryoballoon. The remaining patients were treated with RF (n=34; 29%) or were treated with a 
Hybrid approach (n=5; 4%). The majority of this cohort were re-do patients (n=94; 80%). The response 
rate of the questionnaire was 71% (n=83). The recurrence rate of the 83 patients who did response to 
the questionnaire was 53%.

8.3.2 Influence of PVI on QT-intervals

Figure 8-1 shows the absolute QTc, QT- and RR-intervals (left) as well as their change relative to T-1d 
(right). There was a statistically significant within-subjects difference in QT and RR between the three 
recording times determined by a repeated measures ANOVA (p<0.001). 

Figure 8-1 QTc, QT-, RR-intervals before and after pulmonary vein isolation. QTc, QT corrected for 
heart rate using Fridericia’s formula; T-1d, one day prior to the procedure; T+1d, one day post procedure; 
T+3m, 3 months post procedure.
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8.2.2 Ablation procedure

All patients included in the registry received a standard AF ablation procedure following institutional’s 
protocols. The technique used for PVI was either a wide antral circular ablation using radiofrequency 
(RF) energy, a cryoablation using the cryoballoon or a hybrid procedure. The decision which technique 
was performed was at the treating physician’s discretion and was based on medical indication and the 
physician’s preference. Since all patients only received a PVI and no mapping of AF was performed, anti-
arrhythmic drugs were continued throughout the study. 

8.2.3 ECG recordings and analysis 

As part of the registry, patients received a five-minute long 12-lead ECG recording at hospital’s admission 
(T-1d), one day after the procedure (T+1d) and at the first routine outpatient clinic visit at three months 
post-procedure (T+3m). Only patients who were in sinus rhythm during all three ECG recordings were 
included in the study. Hospital’s admission typically was on the day or morning before the procedure. 
The ECG at T+1d was performed on the evening or morning after the procedure. ECGs were recorded 
for five minutes using the Cam-USB (GE Healthcare, Piscataway, NJ, USA) or YRS100 ECG-system 
(YourRhythmics, Maastricht, The Netherlands) with a 500Hz sample frequency and stored for offline 
analysis using Matlab 2018a (Mathworks, Natick, MA, USA).  

To improve signal-to-noise ratio, a median complex was constructed for all individual ECG leads from 
aligned individual complexes on the R-peak after filtering and up-sampling to 1000Hz. The R-peak, 
QRS-onset and T-wave end were detected using our previously described algorithms17. In short, the 
R-peak was detected on the root mean square ECG (ECGRMS) using the Pan-Tompkins algorithm18. 
The onset of the QRS-complex was defined as the largest positive peak in the second derivative of the 
ECGRMS preceding the R-peak. The end of the T-wave was detected by means of an automated tangent 
method17. All landmarks and median complexes were checked manually and edited or deleted when 
necessary. The QT-interval was corrected for heart rate (QTc) using Fridericia’s formula (QTc = QT / RR1/3) 
since studies have shown that Fridericia’s correction is the most accurate heart rate correction19,20. QT 
dispersion over all twelve leads was calculated as the difference between the latest and earliest T-wave 
end between ECG leads of the median complex. AF recurrence was measured using a questionnaire at 
12 months post-PVI.

8.2.4 Statistical methods

All continuous variables are presented as median and interquartile range and categorical variables are 
presented as frequencies and percentages. QTc, QT- and RR-intervals obtained at the three different 
ECG recording times were compared using repeated-measures ANOVA with Bonferroni post-hoc 
correction for comparison between means. The influence of age, sex, self/non-self-terminating AF, 
ablation technique, first or re-do procedure and self-reported AF recurrence at 12 months post-PVI 
on the changes in QTc were studied using a univariate analysis of variance. A p-value of < 0.05 was 
considered statistically significant.
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8.4 Discussion

The objective of this study was to investigate the impact of PVI procedure on ventricular APD and heart 
rate since a change between these two might be an underlying cause of the increased burden of VPBs 
and NSVTs which are seen in a small number of AF patients following PVI9–12. 

The results of this study show that the RR-interval significantly decreases after a PVI. This is in line with 
an earlier study who have reported an increase in heart rate after a AF ablation due to a reduction 
of cholinergic control9. In normal physiological circumstances, the QT-interval should adapt to this 
shortening in RR-interval16. In our study the QT-interval indeed significantly shortens in line with the 
RR-interval. Both QT and RR are shortest at one day post-procedure but remain shortened at three 
months post-procedure. No significant within-subject differences in QTc were seen for any of the 
recording times which suggests that PVI has no significant impact on the capability of the ventricular 
APD (measured by the QT-interval) to adapt to the higher heart rates. Whether this is because PVI does 
not modulate the GP (enough) or whether GP modulation does not induce a change in the relationship 
between ventricular APD and heart rate cannot be concluded from this study. 

Jungen et al. have shown that a small subset of their patients (n=6 out of 111) have an increased VPB 
burden after a PVI9. In these six patients with increased VPB burden, QT dispersion was significantly 
higher post-PVI on average9. However, whether QT dispersion can be used to estimate the risk of an 
increased VPB burden is not clear from this observation. It is also not clear whether an increased 
QT dispersion leads to an increased VPB burden or whether an increased VPB burden leads to an 
increased QT dispersion. Our results show that the post-PVI QT dispersion of these six patients reported 
by Jungen et al. (40±6ms) are within the range of QT dispersion measure before the PVI. Since Jungen 
compared only six patients with an increased VPB burden with six age- and gender-matched controls, 
chances are that among the remaining patients some also have an increased QT dispersion without an 
increase in VPB burden. Our results show no significant difference between the QT dispersion before 
and after a PVI treatment for the entire study population indicating that, on average, PVI does not affect 
the ventricular repolarization heterogeneity. It has furthermore to be noted that QT dispersion is a 
very laborious measure. It therefore is easily affected by biphasic T-waves, flat T-waves and prominent 
U-waves. Furthermore, a broad range of QT dispersions has been reported in healthy populations21. 
We therefore doubt the usefulness of this measure and would advise to study T-wave morphology 
differences between leads instead of the QT dispersion. 

The mechanism(s) behind the increased susceptibility for VA after PVI remains unclear. Apart from 
the hypothesis that GP modulation causes the increased susceptibility, others have hypothesized that 
propafenone therapy for AF was associated with new-onset VA in AF patients22. The results of a study 
by Wu et al. does however not support this finding since propafenone was not prescribed in their study 
and patients still show new-onset VA post-PVI12. The only measure associated with new-onset VA in the 
study of Wu et al. was an increased serum leukocyte count which implies that an inflammatory response 
caused by the PVI may be an underlying mechanism of VA12. Patel et al. showed a significant difference 
in post-PVI ejection fraction and heart rate between patients that developed VPB and patients who did 
not10. However, since the ejection fraction remained in the normal range and increased post-PVI heart 
rates have been described in larger cohorts7,8, the clinical relevance of these finding are unclear.

The results of the Bonferroni post hoc tests, shown in Table 8-1, show that the QT- and RR-intervals 
were shortest at T+1d and longest at T-1d. There was no statistically significant within-subject difference 
in QTc between the recordings. Also, the Bonferroni post hoc tests for QTc did not show any significant 
differences.

 
Table 8-1 Bonferroni post hoc test results. Mean differences are presented with 95% confidence 
intervals between brackets. T-1d, one day prior to the procedure; T+1d, one day post procedure; T+3m, 3 
months post procedure; NS, not significant. 

Results from the univariate analysis of variance showed that age (p=0.06), sex (p=0.81), self/non-self-
terminating AF (p=0.31), ablation technique (p=0.08), first or re-do procedure (p=0.76) and self-reported 
AF recurrence at 12 months post-PVI (p=0.72) did not influence QTc at T+3m with respect to the QTcat T-1d.

Figure 8-2 shows the QT dispersion at T-1d, T+1d, and T+3m (left) as well as the QT dispersion change 
with respect to T-1d. There was no statistically significant difference in QT dispersion determined by the 
repeated-measures ANOVA as well as by the Bonferroni post-hoc test (Table 8-1). 

 
Figure 8-2 QT dispersion before and after pulmonary vein isolation. T-1d, one day prior to the 
procedure; T+1d, one day post procedure; T+3m, 3 months post procedure.
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In this study we used Fridericia’s formula to correct the QT-interval for heart rate. Interestingly, the QT 
correction method used, influences the results. Although Bazett’s formula has been shown to be inferior 
to Fridericia’s (because Bazett’s formula is known to overestimate QTc with an RR-interval ≤1000ms and 
underestimates QTc with an RR-interval <1000ms19) we also tried Bazett’s formula in this study and 
found a significant increase in the QTc calculated with Bazett’s formula after PVI. This can however be 
explained by the fact that half of our study population had an RR-interval ≥1000ms prior to the PVI which 
shortened to ≤1000ms as a result of the PVI. The increase in QTc as a result of the PVI therefore could 
be a result of the QTc overestimation of Bazett. Another remarkable coincidental finding of this study is 
the broad range of QTc within one patient over time. From long QT syndrome studies, it is known that 
the QT-interval may vary over time and therefore hampers the diagnosis of the long-QT syndrome23. Our 
data shows that this also applies in a study cohort not suspected of long-QT syndrome. 

8.4.1 Study limitations

This study has several limitations due to the observational design of the registry. First of all, the cohort 
might be biased because we only included patients who were in sinus rhythm during all three ECG 
recordings. This might explain the relatively high number of re-do patients in this cohort. Secondly, 
because the cohort consists of many re-do patients, the QT-interval prolonging mechanism of PVI might 
already have taken place after the first procedure. However, the univariate analysis of variance showed 
that there was no difference in QTc at T+3m with respect to T-1d between re-do and first-time procedure 
patients. The high recurrence rate in this cohort, however, might be explained by the high number of 
re-do patients. Since a lot of patients needed a re-do procedure, these might be complex AF patients. 
Thirdly, we did not look into QT prolonging drug use in this study. However, following the institution’s 
standard of care, all antiarrhythmic drugs (if any) were continued through the entire period of this 
study. Therefore, drug use will most likely not alter the results. Finally, the self-reported AF recurrence 
of course has its limitations. Patients might suffer from silent AF or might interpret other arrhythmias as 
AF. Because many patients were referred back to their treating physicians in other hospitals, we do not 
have access to 24-hour Holter reports and can therefore not address this issue.

 
8.5 Conclusion

In this study, we showed that pulmonary vein isolation is not resulting in a change in the relationship 
between heart rate and ventricular action potential duration as objectivated by the absence of change 
in QTc after this procedure. Furthermore, the change in QTc at three months post-PVI did not differ 
between sex, ablation techniques, redo or index procedures, self-terminating or non-self-terminating AF 
and recurrence or no recurrence.
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Abstract

Background 
Lower dialysate calcium (dCa) concentration and dialysate citric-acidification may positively affect 
calcification propensity in serum of haemodialysis (HD) patients. However, the accompanying lower 
ionized blood calcium concentration may lead to a prolonged cardiac action potential, which is 
possibly pro-arrhythmic.

Objectives 
The aim of this study is to investigate the influence of dCa and citric-acidification on the continuously 
measured QTc. 

Methods 
We conducted a four-week multicentre, randomized cross-over trial in which chronic and 
haemodynamic stable HD patients had continuous ECG monitoring during their thrice weekly HD 
sessions. In the first and third week (wash-out) they received acetic-acid dialysate with a dCa of 
1.50mmol/l (A-Ca1.50), in the second week acetic-acid dialysate with a dCa of 1.25mmol/l (A-Ca1.25) 
or citric-acid dialysate with a dCa of 1.50mmol/l (C-Ca1.50) depending on randomization. In the 
fourth week, patients received the opposite treatment of week two. HD sessions were bicarbonate-
based. 

Results 
Out of 20 participating patients, the continuous ECG-data of 13 HD patients were available for 
analysis. It showed a significant though limited increase of QTc-interval with A-Ca1.25 (from 431 
to 449ms (start to end); p<0.001) and with C-Ca1.50 (from 427 to 444ms; p=0.007), but not during 
A-Ca1.50 (from 439 to 443ms; p=0.13). There were no differences in electrolytes composition 
otherwise between the dialysis fluids.

Conclusion 
In conclusion, we found that the use of C-Ca1.50 or A-Ca1.25 is associated with a significantly 
prolongation of QTc that was however relatively limited. 

9.1 Introduction

Although lower dialysate calcium concentrations (dCa) may positively affect the calcification tendency 
in serum of haemodialysis (HD) patients, they potentially have a prolonging effect on cardiac action 
potential. International guidelines are conflicting upon proposed dCa. Whereas a dCa of 1.25mmol/l is 
more common in the United States, in Europe and Japan also a dCa of 1.50mmol/l is frequently used. 
Higher dCa is associated with an increased risk for all-cause mortality, while lower dCa (< 1.25mmol/l) 
is associated with a higher risk for sudden cardiac death and arrhythmia1,2. The most common dialysis 
fluid in bicarbonate dialysis is based on a combination with acetate which even in small concentrations 
is hypothesized to have an effect on haemodynamic stability during dialysis3. The recently developed 
citric-acid dialysate (dCit) showed a positive influence on the dialysis efficiency while haemodynamic 
stability was possibly improved4,5.  

HD is associated with a risk of prolongation of the heart rate-corrected QT-intervals (QTc)6,7. It is known 
that citrate chelates ionized calcium (iCa) and magnesium. The lower iCa effects cardiac repolarisation 
and eventually can lead to increased QTc and higher risk on arrhythmia8. However, general studies 
comparing different dCa concentrations only addressed differences in QTc between the start and end 
of dialysis, whereas to the best of our knowledge the effect of dCa on QTc during HD nor the effect of 
dCit on QTc has not been studied yet. We studied the influence of conventional bicarbonate dialysis 
combined with acetate-acid with dCa 1.50mmol/l (A-Ca1.50), dCa 1.25mmol/l (A-Ca1.25) and dCit with 
dCa 1.50mmol/l (C-Ca1.50) on QTc and RR-interval during the complete dialysis sessions. The hypothesis 
was that QTc would increase during HD with C-Ca1.50 and A-Ca1.25 as compared to A-Ca1.50.  

9.2 Methods

9.2.1 Study design

This multicentre, randomized cross-over trial was conducted in two Dutch hospitals (Catharina hospital 
Eindhoven and Maastricht Medical University Centre). Chronic and stable HD patients were recruited 
between April and September 2017. Patients were on thrice weekly HD for at least three months, had a 
stable blood access and a QTc below 470ms recorded by a 12-lead ECG at inclusion. Patients with acute 
ongoing illness, malignancy or uncontrolled diabetes were excluded. 

Patients received A-Ca1.50 in the first week, in the second week either A-Ca1.25 or C-Ca1.50 depending 
on randomization, in the third week A-Ca1.50 as a washout and in week four the opposite treatment of 
the second week. All patients used a high-flux membrane and maintained the same blood- and dialysate 
flow during the study. They all received thrice weekly HD sessions between three to four hours with a 
Fresenius 5008 Therapy System dialysis machine (Fresenius Medical Care, Bad Homburg, Germany). 
Baseline characteristics were attained from medical files. 

9.2.2 Dialysate composition

HD sessions were bicarbonate-based. All three dialysis fluids consisted of 138.0 mmol/l sodium, 0.5 
mmol/l magnesium and 1.0 g/l glucose. The calcium (Ca) concentration was either 1.25mmol/l (A-Ca1.25)  
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or 1.50mmol/l (A-Ca1.50 and C-Ca1.50). Whereas A-Ca1.25 and A-Ca1.50 contained 3.0 mmol/l acetate, 
the acetate was replaced with 1.0 mmol/l citrate in C-Ca1.50. Potassium (2-3 mmol/l) and bicarbonate 
(provided with Bibag®, range 30-36mmol/l) were individualized, but the concentrations did not change 
during the study. All used dialysates are registered products that are common in daily practice. All 
patients had A-Ca1.50 as their regular dialysate.

9.2.3 Electrocardiography analysis

The Task Force Monitor (TFM, CN Systems, Austria) was used to record ECG during dialysis sessions. To 
improve ECG signal-to-noise ratio, a median complex was constructed for every two minutes by aligning 
all complexes within these two minutes on the R-peak. QT-intervals were determined offline using an 
automated tangent approach by a custom-made algorithm in MATLAB (2017a, Mathworks, Natick, MA, 
USA)9. All ECG landmarks were checked manually by one observer who was blinded for the treatment. 
QTc was calculated using Bazett’s formula10. The first median complex (i.e. first two minutes after start 
dialysis) was used as the baseline (QTcBaseline). For each hour of dialysis, median QTc (QTc1h, QTc2h etc) and 
RR-intervals (RR1h, RR2h etc) were calculated. All recordings were made during the second or third session 
of week one, two and four in order to omit the effects of a long interdialytic period on the haemodynamic 
response during HD. 

9.2.4 Statistical analysis

The derived data were analysed using IBM SPSS Statistics for Windows version 23.0 (IBM Corp. Armonk, 
NY, USA). Data was expressed as median with interquartile range [25th; 75th percentile]. Due to the 
small sample size, non-parametric testing was applied (Friedman and Wilcoxon Signed Rank test). All 
tests were two-tailed and a p-value <0.05 was considered statistically significant. No additional correction 
for multiplicity was used.

9.3 Results

Out of the 20 patients, 7 patients were excluded because of missing recordings (n=3) or cardiologic 
disorders that may affect QTc (atrial fibrillation (n=1), repolarisation disorders (n=2) and frequent 
ventricular extrasystoles (n=1)). Patients had a median age of 69[51; 75] years, 7 were male (53.8%) 
and the median dialysis vintage was 25 [7.5; 66] months. Out of the 13 patients, causes of renal failure 
were renal vascular disease (n=5; 38.5%) of which 2 (15.4%) were due to hypertension, diabetes mellitus 
type 2 (n=2; 15.4%), congenital renal dysplasia with urinary tract malformation (n=1; 7.7%), membrano-
proliferative glomerulonephritis (n=1; 7.7%), chronic renal failure aetiology unknown (n=1; 7.7%) and 
other (n=3; 23.1%). A total of 12 (92.3%) patients were diagnosed for hypertension and 3 (23.1%) are 
current smokers.

9.3.1 QTc

Data are expressed in Table 9-1. Baseline QTc did not differ significantly between the three dialysis 
fluids. For A-Ca1.25, there was a significant increase at QTc1h, QTc2h, QTc3h and QTc4h as compared 
to baseline (p=0.002; p=0.005; p=0.009; p=0.006 respectively; not shown). Furthermore, QTc2h and 
QTc3h significantly increased from QTc1h (p=0.02 and p=0.04; not shown). For C-Ca1.50, there was also 

a significant increase of QTc between baseline and QTc1h, QTc2h, QTc3h and QTc4h (p=0.007; p=0.01; 
p=0.003; p=0.006; not shown).

There were no significant differences in QTc between the various hours of HD for A-Ca1.50. For A-Ca1.25 
the largest QTc change was between QTc1h and QTc2h, and the second biggest QTc change was found 
between QTcBaseline and QTc1h. For C-Ca1.50 the largest QTc change was between QTcBaseline and 
QTc1h. In general, the largest rise in QTc was observed during the first hours of dialysis and was more 
pronounced with A-Ca1.25 and C-Ca1.50.

A-Ca1.50 A-Ca1.25 C-Ca1.50 p-value*

Q
Tc

 [m
s]

QTcBaseline 439 [415; 447] 431 [397; 451] 427 [408; 438] 0.37

QTc1h 439 [418; 448] 440 [401; 456] 434 [416; 456] 0.23

QTc2h 442 [421; 452] 448 [409; 460] 441 [422; 457] 0.50

QTc3h 447 [422; 455] 449 [406; 463] 443 [430; 466] 0.29

QTc4h 443 [415; 460] 449 [408; 467] 444 [427; 467] 0.23

p-value 0.13 <0.001 0.007

ΔQ
Tc

 [m
s]

ΔQTc1 0 [2; 9] 5 [3; 9] 10 [2; 17] 0.15

ΔQTc2 4 [-9; 9] 7 [1; 13] 4 [-2; 13] 0.58

ΔQTc3 1 [0; 9] 1 [-4; 7] 4 [-2; 9] 0.50

ΔQTc4 1 [-5; 5] 2 [-1; 5] 0 [-3; 6] 0.93

Io
ni

ze
d 

ca
lc

iu
m

 
[m

m
ol

/l] Predialysis 1.07 [1.14; 1.20] 1.13 [1.09; 1.21] 1.14 [1.06; 1.21] 0.91

Post dialysis 1.23 [1.20; 1.30] 1.12 [1.08; 1.17] 1.10 [1.01; 1.13] <0.001

Delta 0.06 [0.09; 0.13] 0.0 [-0.07; 0.02] -0.04 [-0.08; 0.03] <0.001 

Delta iCa vs. delta QTc (r; 
p)**

0.13; 0.70 -0.49; 0.09 -0.46; 0.12

Table 9-1 Overview of QTc and ionized calcium per dialysate. Data are expressed as median with 
[25th; 75th percentile]. p-value is calculated with Friedman test. *p-value is calculated with Friedmand 
test between dialysates. **r and p are measured with Spearmans’s correlation. A-Ca1.50 = acetic- 
acid dialysate with calcium concentration 1.50mmol/l. A-Ca1.25= acetic-acid dialysate with calcium 
concentration 1.25mmol/l. C-Ca1.50 = citric-acid dialysate with calcium concentration 1.50mmol/l. 
QTcBaseline = QTc of the first median complex (first 2 minutes of haemodialysis). QTc1h, QTc2h, QTc3h, QTc4h 
= median QTc of respectively the first, second, third and fourth hour of haemodialysis. ΔQTc1, ΔQTc2, 
ΔQTc3, ΔQTc4 = ΔQTc of respectively between the first hour and baseline, second and first, third and 
second, and fourth and third hour of haemodialysis.

9.3.2 RR-interval

Only A-Ca1.25 showed a significant decrease of RR-interval from 869 [743; 975] ms at baseline till 794 
[712; 926] ms at fourth hour (p=0.02), with significant differences between RRBaseline and RR1h, RR2h, RR3h 
and RR4h (p<0.05; p=0.03; p=0.01). There were no significant differences in ΔRR within and between the 
three dialysates (not shown).
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Figure 9-1 QTc and RR per hour. Data are expressed as median, interquartiles with minimum and 
maximum. A-Ca1.50 = acetic-acid dialysate with calcium concentration 1.50mmol/l. A-Ca1.25 = acetic-
acid dialysate with calcium concentration 1.50mmol/l. C-Ca1.50= citric-acid dialysate with calcium 
concentration 1.50mmol/l. QTcBaseline = QTc of the first median complex (first 2 minutes of haemodialysis). 
QTc1h, QTc2h, QTc3h, QTc4h = median QTc of respectively the first, second, third and fourth hour of 
haemodialysis. RR1h, RR2h, RR3h, RR4h = median RR-interval of respectively the first, second, third and 
fourth hour of haemodialysis. p-value was measured with Friedman’s test

9.3.3 Ionized calcium

There is a significant difference in Δionized calcium (iCa) between the three dialysis fluids (p<0.001). 
It was significant different between A-Ca1.50 (0.06[0.09; 0.13] mmol/l) and A-Ca1.25 (0.0[-0.07; 0.02] 
mmol/l; p=0.002) but as well as between A-Ca1.50 and C-Ca1.50 (-0.04[-0.08; 0.03] mmol/l; p=0.002). 
There is no correlation between ΔiCa and ΔQTc.

9.4 Discussion

Our results showed that the QTc significantly increased during A-Ca1.25 and C-Ca1.50, but not during 
A-Ca1.50, albeit without a significant difference in the QTc between the dialysis fluids. The largest 
changes in QTc were seen during the first hours of treatment for C-Ca1.50 and for A-Ca1.25.

Whereas our study showed the largest  increase of QTc in the first hours of the dialysis, Eldehni et al. 
stated that the haemodynamic stress reached its peak around the third to fourth hour of dialysis11.  We 
suggest that the change of QTc is most likely caused by intra- and extracellular shifts of electrolytes, 
which are likely most pronounced at the start of dialysis because at this point in time the concentration 
gradient is the largest. Genovesi et al. showed that concentrations of calcium and potassium are 
associated with changes in ventricular repolarization duration12. They found a significant increase of 
QTc in the first hour of low dCa (1.25mmol/l) and low potassium (2mmol/l)12. Another study in A-Ca1.25 
observed a larger mean Ca loss in dialysate and ultrafiltrate at the beginning of the treatment as 
compared to its end13. In our study, there was no significant inverse correlation between ΔQTc and iCa, 
which is in contrast with other studies8. Our finding that the QTc remained mainly stable in A-Ca1.50 is 
in conformation with other studies8.

In C-Ca1.50 there was an increase in QTc during dialysis without a correlation with iCa. The difference 
might additionally be caused by a decline in ionized magnesium, which can also be caused due to the 
chelating effect of citric acid. Regrettably, we did not have the opportunity to assess ionized magnesium 
levels in our study. 

A limitation of our study is its small study size. Furthermore, QTc-dispersion between leads could not 
be calculated since precordial ECG leads are not recorded. For future research, it might be relevant to 
follow-up QTc in the hours after HD because it is known that Ca may rebound up to 180 minutes after 
dialysis14. It might also be of added value to monitor at-risk patients with implanting devices such as 
Reveal LINQ for detecting arrhythmias15,16.

Although the effects on QTc appeared in general to be relatively minor, we suggest that this study can 
contribute to the clinical decision to personalize the optimal dialysate for each patient, which can be 
based on the calcification propensity, haemodynamic stability and the plasma- to- dialysate calcium 
ratio14.

In conclusion, we show that QTc significantly increases during haemodialysis with A-Ca1.25 and C-Ca1.50, 
but not with A-Ca1.50. Although not statistically different, the largest increase in QTc happens in the first 
hours of the dialysis. 
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10.1 Introduction

In this final chapter, the results, limitations and clinical relevance of the studies presented in this thesis 
are linked and put in broader perspective. To that end, this chapter is divided into paragraphs that 
discuss topics that either hamper or could aid in the diagnosis of LQTS. The following two paragraphs 
(Paragraph 10.2 and 10.3) of this chapter discuss what to keep in mind when measuring and interpreting 
the QT-interval and also briefly touches upon more sophisticated parameters derived from QT-interval 
measurements. The added value of the T-wave morphology in the diagnosis of LQTS will be discussed in 
Paragraph 10.4. Paragraph 10.5  reviews current issues with gold standard for the diagnosis of LQTS. 
Finally, future perspectives for the diagnosis of LQTS are discussed in the last paragraph of this chapter 
(Paragraph 10.6).

10.2 Measuring the QT-interval

10.2.1 Manual assessment of the QT-interval

The assessment of the QT-interval on standard 10-second electrocardiograms (ECG) has been used 
worldwide for decades to evaluate the risk of sudden cardiac death due to LQTS1,2. Traditionally, lead II is 
often referred to as the best lead to measure the QT-interval from3,4. Although all modern ECG recording 
systems provide users with a QT-interval and a QT-interval corrected for heart rate (QTc), cardiologists 
are often trained not to rely on automatically assessed QT-intervals and therefore often measure the 
interval by hand. Unfortunately, many physicians (including cardiologists) cannot accurately estimate QT 
and/or calculate a QTc and can therefore not correctly identify a prolonged QT-interval or QTc5. Both 
underestimation of the QTc of patients with LQTS and overestimation of the QTc of healthy patients 
were common5. Driven by this distressing finding, Postema et al. reintroduced the tangent approach to 
correctly and reliably determine the end of the T-wave6,7, since determining the end of the T-wave is the 
hardest part of measuring a QT-interval. In another approach used to determine the end of the T-wave, 
the end is defined as the intersection of the terminal limb of the T-wave with the isoelectric baseline8. 

Several studies compared the tangent and threshold approach head-to-head and concluded that both 
methods are more or less equally reliable and reproducible in determining the end of  the T-wave8–11. 
Still, we would advise to use the tangent approach since even inexperienced ECG readers were able to measure 
QT-intervals accurately when using the tangent approach7.

A general downside of a manual QT-interval assessment is that it is time consuming wherefore, many 
physicians will measure one complex and use only one ECG lead to do so. Since QT-intervals can change 
over time as well as between ECG leads, the chosen complex as well as the used ECG lead influence 
the measured QT-interval. We therefore advise that if manual QT-interval assessment is needed, measure 
QT-intervals in multiple leads and complexes, especially when dealing with a borderline prolonged QT-interval.

10.2.2 Automatic QT-interval measurement algorithms 

QT experts still question the accuracy of automatic measurements and recommend to supplement 
these measurements with manual reading4. This distrust might be fed by a limited number of extreme 
cases. Moreover, the current use of automatic algorithms can be improved. First of all, the algorithms 
embedded in the ECG recording systems often are a black box. Understanding why and in which cases 
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the determination of the QT-interval might be erroneous might improve users’ confidence. Secondly, 
not only the algorithm is a black box, also the detected landmarks (QRS onset and T-wave end) are often 
not provided with the ECG by the systems. Users can therefore not appreciate the performance in a 
blink of the eye by checking whether landmarks are correctly placed but have to manually estimate the 
QT-interval instead. The third unknown in many algorithms is the used complex. The QT-interval is often 
determined on an averaged complex over time (cf. Appendix Kligfield et al.12) which is not provided by 
standard ECG exports. All manual reassessments therefore assess other complexes which might lead to 
other QT-intervals and once more feeds the idea that algorithms are questionable. Manufacturers should 
provide details of their algorithms and show the landmarks used to calculate the intervals from in standard 
ECG exports. 

Custom-made algorithms are widely available, but also have some general limitations. First of all, custom-
made algorithms are often published in technical journals not read by physicians and therefore these 
algorithms do not make it to the clinics. Secondly, details are often not provided wherefore implementing 
the algorithm by others Is not straightforward. Cardiology departments furthermore often lack technical 
knowledge to implement custom-made algorithm. Finally, the most important limitation might be the 
missing or poor validation of many custom-made algorithms. The community should invest in developing 
and validating a reliable open-source algorithm that can easily been used by clinicians all over the world.

10.3 Diagnosing LQTS using the QT-interval

10.3.1 QT cut-offs

In genetically confirmed LQTS, genetic mutations might lead to malfunction of ion channels thereby 
delaying ventricular repolarization2. This delayed ventricular repolarisation is reflected by a prolonged 
QT-interval on the body surface ECG. Unfortunately, a prolonged QT-interval is not always caused 
by LQTS and a normal QT-interval does not always imply that the patient does not have LQTS13. The 
considerable overlap in QTc between LQTS patients and healthy controls have been shown in multiple 
studies8,13,14 including the studies shown in this thesis (Chapters 3 - 8). This considerable overlap is one 
of the main reasons for the troublesome diagnosis of LQTS. 

Current international guidelines mainly focus on QTc cut-offs in the diagnosis of LQTS15,16. The latest EHRA 
guidelines recommend a QTc cut-off of ≥480ms in repeated ECGs or an LQTS risk score17 ≥3 for clinical 
diagnosis of LQTS in asymptomatic patients16. LQTS should further be considered in the presence of a 
QTc ≥460ms in patients with an unexplained syncopal episode16. Data from the cohort used in Chapters 
3 - 7 of this thesis illustrates that a large number of LQTS patients with confirmed pathogenic variants 
in KCNQ1, KCNH2, or SCN5A have QTc < 460ms. Apart from genetic testing, these patients can only be 
diagnosed using the LQTS risk score according to the guidelines. However, since QTc is incorporated 
in the LQTS risk score, reaching an LQTS risk score ≥ 3 with a QTc < 460ms is difficult18. Many LQTS 
patients will therefore not be diagnosed if one applies the diagnostic criteria recommended in the latest EHRA 
guidelines. The diagnostic criteria in the guidelines should therefore be updated. Furthermore, the guidelines 
should elaborate on the issues with diagnosing LQTS solely based on QTc to warn physicians unfamiliar with 
these limitations and the possible consequences.

The guidelines furthermore do not elaborate on what method should be used to assess the QT-interval 
nor do they elaborate on the heart rate correction method. A comprehensive analysis of a large cohort 
of LQTS patients and controls showed that diagnostic cut-offs should be specified both for the method 
used to determine the QT-interval as well as for the method used to calculate the QTc with8. The best 
known and most frequently used QTc correction in both clinical practice and research is Bazett’s formula: 
QTc=QT/RR1/2 (with QT in milliseconds and RR in seconds)19. However, Bazett’s formula overestimates QTc 
at high heart rates and underestimates QTc at low heart rates20. The QTc correction formula proposed 
by Fridericia (QTc = QT/RR1/3) has been shown to be superior to Bazett by several studies20–22. The result 
from Chapter 8 is a clear example of possible clinical implications of using Bazett’s correction method: 
whereas the QTc calculated using Bazett’s formula showed a significant increase after a pulmonary vein 
isolation, the QTc using Fridericia’s formula did not show any significant difference in QTc. The significant 
increase in QTc Bazett can be explained by the increase in heart rate in halve of the study cohort and 
the fact that Bazett is known to overestimate QTc at high heart rates. If we wouldn’t have used Fridericia’s 
formula as well, the conclusion of this study would be completely different. Although we do encourage 
the use of Fridericia’s formula to correct QT-intervals for heart rate, one should keep in mind that all QTc 
cut-offs derived from studies using Bazett’s formula cannot be applied on QTc calculated with the use 
of Fridericia’s formula. In summary, consensus on what heart rate correction method should be used should 
be reached. Since Fridericia has been shown to be superior to Bazett and is as easy to calculate as Bazett, we 
suggest shifting to Fridericia as the standard heart rate correction method. As a consequence of that, QTc cut-
offs should be adjusted for Fridericia’s method.

The QTc furthermore is affected by other influences such as age, sex, and hormones23. Therefore, in 
Chapter 7 we described a support vector machine model which is trained to identify LQTS patients 
based on the inputs age, sex and QTc. We showed that this model improved the diagnosis of LQTS 
tremendously when compared with two often mentioned QTc cut-offs from ≥480ms and ≥450/460ms 
for males/females. Large clinical studies on the possible added value of sex and age-based QT-interval cut-offs 
should be performed and depending on the results, QT-interval cut-offs might have to be age- and sex-specific.

10.3.2 QT dynamics

Cardiac events are often triggered by physical or emotional stress in LQTS genetic subtypes LQT-1 
and LQT-21,24. Therefore, studying the QT-interval dynamic behaviour during circumstances that mimic 
arrhythmogenic triggers instead of using a standard 10-second resting ECG might improve LQTS 
diagnosis. Three provocation tests that improve LQTS diagnosis have been described: exercise tests25–28, 
epinephrine infusion29–31 and the brisk standing test32,33. A general downside of these studies is that they 
all (except one30) rely on manually assessed QT-interval measurements and therefore only measure a 
limited number of complexes with the inevitable consequence that information is lost. In Chapter 4, we 
applied our QT-interval algorithm from Chapter 2 on ECGs obtained during brisk standing tests and 
extracted the same parameters as the initial studies did32,33. Although we were unable to reproduce the 
diagnostic accuracy of this initial studies, a remarkable difference between male and female subjects as 
well as between LQTS subtypes was found in our study (Chapter 4). Female LQTS patients were found 
to have a more pronounced QT-interval prolongation initiated by the brief tachycardia provoked by 
standing. Furthermore, the QT-interval prolongation was most pronounced in LQT-2 patients whereas 
LQT-3 patients, on average, did not show any prolongation of the QT-interval. We encourage the use of 
QT-interval algorithms to study the QT-interval dynamics in provocation tests since a manual assessment of the 
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QT-intervals of a provocation tests offers a restrictive view of the dynamic behaviour. However, the landmarks 
of QRS onset and T-wave end as detected by the algorithms should be manually checked to ensure reliable 
QT-intervals. This is especially important for exercise and brisk standing tests since these are associated with 
muscle noise and baseline wander. 

10.3.3 Other QT measures

Two more sophisticated QT measures are QT variability34–36 and QT dispersion37–39. QT variability 
reflects subtle temporal variations in ventricular repolarization duration and is repeatedly reported 
to be increased in LQTS patients40–42. The underlying physiological mechanism is not yet completely 
understood. At rest, variations in heart rate might be the underlying cause of QT-interval variations43. 
Other explanations and theories for QT-interval variations are: spontaneous sarcoplasmic reticulum 
calcium release; fluctuations in ion channel gating properties; and changes in sympathetic tonus44. It 
could very well be that all these explanations are entangled and therefore hamper the interpretation of 
QT variability. Besides this, the interpretation of QT variability is furthermore hampered by the diverse 
methods being used to determine QT variability. These methods range from the standard deviation or 
variance of QT-intervals over time to sophisticated measures that require frequency domain analysis 
of QT-intervals44. Furthermore, since QT variabilities are very small and require a lot of complexes to 
be measured, proper use of reliable QT-interval algorithms as well as high quality ECGs are needed to 
acquire a reliable QT variability. To conclude, QT variability could in future be a measure that improves LQTS 
diagnosis but requires more research on the mechanistic as well as the technical aspects of this measure.

Whereas QT variability is a measure for QT variations in time, QT dispersion measures the difference in 
QT-interval of one complex between ECG leads. The rationale behind QT dispersions is straight forward. 
Experimental mapping studies showed that heterogenic ventricular repolarization times were associated 
with ventricular arrhythmias45–47 and ECGs were believed to be capable of recording regional differences 
in de- and repolarization. However, the interpretation, measurement and cut-offs for QT dispersions are 
not as straight forward as the idea itself. Malik et al. showed that reported normal values of QT dispersion 
range from 10 to 71 milliseconds39. This is supported by the broad range of QT dispersions within 
patients and between patients with atrial fibrillation undergoing a pulmonary vein isolation as shown in 
this thesis (Chapter 8). A reason for this broad range of QT dispersion might be the measurement error 
which, according to Malik et al., is about the size of the differences between patient groups39. Since QT 
dispersion is calculated as the difference between the longest and the shortest QT-interval, only one 
erroneous QT-interval calculation is enough for a false increased QT dispersion. However, even after 
manually checking all QRS onset and T-wave end landmarks in the QT dispersions mentioned in Chapter 
8, the range of QT dispersions found within and between patients with atrial fibrillation was still broad. 
Lastly, a large QT dispersion most likely is a result of an altered T-wave morphology in at least one ECG 
lead. It might therefore be more useful to study the T-wave morphology itself instead of a measure that 
is affected by the morphology. In conclusion, though a ventricular heterogenic repolarization might lead 
to different QT-intervals between ECG leads, the accuracy and reliability of current QT dispersion algorithms 
should be investigated intensively before it can be used in the diagnosis of LQTS. Since an aberrant T-wave 
morphology most likely is the cause of a large QT dispersion, an intensively study to the possible added value 
of the T-wave morphology might be more useful than an intensive in QT dispersion.

10.4  T-wave morphology

Apart from a prolonged QT-interval, altered T-wave morphologies have been described in LQTS 
patients48–52. Many years ago, Peter Schwartz therefore already said: ‘Don’t (only) measure the QT-interval 
– look at it!’53. The T-wave morphology might thus contain additional diagnostic information that is not 
reflected by only the QT-interval. However, the interpretation of the T-wave morphology is subjective and 
relies on experience. Therefore some groups developed algorithms to characterize T-wave morphology 
and showed an improved diagnosis when using these algorithms54–56. Despite these promising results, 
none of these T-wave morphology characterizations are mentioned in current international guidelines 
yet. In Chapters 6 and 7 we showed that two different T-wave morphology characterization methods 
combined with age, sex and QTc improved LQTS diagnosis in a cohort consisting of LQTS patients and 
LQTS family members. Though, the fact that T-wave morphology can aid in the diagnosis of LQTS is 
proven by now, what algorithm has the best performance is still unknown and requires a head-to-head 
comparison between available algorithms. Apart from the T-wave morphology at rest, Chorin et al. 
showed that changes in T-wave morphology increased the diagnostic value of the brisk standing test57. 
Therefore, apart from standard 10-second ECGs, T-wave morphology characterization algorithms should 
also be applied to ECGs obtained during provocation tests to study T-wave morphology dynamics. For 
example, applying the Hermite-Gauss polynomial T-wave morphology characterization we’ve described 
in Chapter 7 to quantify changes in T-wave morphology provoked by standing might further improve 
the diagnostic value of the brisk standing test. Altogether, the question to be answered is not if the T-wave 
morphology can aid in the diagnosis of LQTS, the question is how we can get the best out of the T-wave 
morphology in the diagnosis of LQTS. 

10.5 What do we want to diagnose?

Although many efforts are made to improve LQTS diagnosis, what should be diagnosed is still not 
completely understood. In many studies (including Chapters 4-7 of this thesis), genetic testing results 
were used as the gold standard for diagnosing LQTS. Although interpreting genetic testing results 
seems relatively simple and straight forward, studies have shown differently. First of all, no known LQTS 
mutations can be found in approximately 20% of clinically diagnosed LQTS patients58–60. Furthermore, 
known pathogenic variants seem to have a reduced penetrance and therefore do not always lead to 
symptoms and/or a prolonged QT-interval61. To use genetic testing results as gold standard is therefore 
debatable. In Chapters 6 and 7 a sensitivity of respectively 0.82 and 0.83 was reached by combining 
QTc, age, sex with T-wave morphology parameters in support vector machine models. In Chapter 7, 
the model was validated on an external cohort and reached a sensitivity of 0.79. Figure 7-2 shows that 
all LQTS patients that were classified incorrectly by our model have a QTc within or slightly above the 
normal range. Knowing that the penetrance of LQTS gene mutations are low, these ‘LQTS patients’ could 
be patients without any phenotypic sign of LQTS and therefore classified as healthy controls by our 
model. The other way around, some genotype-negative family members that were incorrectly classified 
by our model, have prolonged QTc. These subjects might be LQTS phenotypic subjects without any 
known LQTS mutation. Whether this is true remains unknown but it clearly illustrates the fact that we 
don’t know what should be diagnosed. 

One could also say we should predict symptoms (for example syncope and cardiac arrest) since the 
reason we want to diagnose LQTS after all is to prevent symptoms regardless of genetic mutations. 
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However, conducting good clinical studies to predict symptoms is very complicated because of several 
reasons. First of all, an asymptomatic patient can become symptomatic because of ageing or other 
external influences24. Therefore, susceptibility for ventricular arrhythmias might change within months, 
weeks, days or even within one day. How much time before the onset of symptoms should a method 
therefore be able to predict symptomaticity is unknown. For example, if a patient becomes symptomatic 
one month after it was predicted to be an asymptomatic patient, it is not clear whether the prediction 
was wrong or whether external influences changed and subsequently caused the symptoms. Not only 
does this hamper a future implication of such a model, it also hampers its development. Secondly, 
though preventive treatments could blur the first recognizable effects of, for example, a patient’s ECG, 
they cannot be withheld from LQTS patients since the consequences might be devastating. Lastly, 
symptoms very likely occur in an unmonitored setting through which the precise underlying mechanism 
of the symptoms remains unclear. An incidental syncope in a patient suspect for LQTS can still be a 
vasovagal syncope and therefore does not proof LQTS. For instance, Hofman et al. reported that 50 
out of 87 subjects that experienced a syncope in a large cohort of LQTS relatives were non-carriers18. It 
remains unclear whether these patients should be treated as phenotype-positive or genotype-negative 
LQTS patients. To conclude, predicting symptoms and the susceptibility to ventricular arrhythmias could be 
very useful but is still far away from reality. Therefore, in this thesis, genetic testing results were used as the gold 
standard method to diagnose LQTS.

10.6 Future Perspectives

The diagnosis of LQTS is hampered by many known and probably also by many unknown factors. First 
of all, the lack of consensus on the QT-interval measurement method and correction for heart rate 
methods probably are the easiest to address. What method should be the gold standard for measuring 
the QT-interval and correcting it for heart rate should be included in the international guidelines. We 
recommend using Fridericia’s formula to correct QT-intervals for heart rates. The same holds for QT-
interval algorithms. Currently, all ECG system manufacturers and many researchers use their own 
algorithm to measure the QT-interval. The community should invest in developing and validating an open 
source QT-interval algorithm. Secondly, QT-interval cut-offs should be lowered and should be adjusted 
for sex and age. Furthermore, automatic assessment of the T-wave morphology can guide in the aid of 
diagnosing LQTS and should therefore be widely available. The diagnostic value of T-wave morphology 
dynamics during provocation tests is an undiscovered field of research and should furthermore be 
studied. Lastly, intensive cooperation between large LQTS centers is required to address the issues 
of whether symptoms or LQTS mutations should be diagnosed. A large international structured 
registry of all individuals suspect for LQTS containing at least standard 10-second ECGs, 24-hour Holter 
measurements, symptoms, genetic mutations and medication use should be performed to unravel 
factors that might affect LQTS diagnosis. Not only should data from more patients be gathered, studies 
should also focus on gathering data of individual patients more frequently. Furthermore, the use of non-
invasive mapping with electrocardiographic imaging (ECGi) is a new and promising field that could aid in 
the diagnosis of LQTS and should be explorer further62. The use of wearables and home monitoring is 
currently an unexplored field of research that could aid in understanding the mechanisms behind and 
the temporal fluctuations in LQTS. If all this data is combined and studied carefully, hopefully, someday 
a PhD student will defend his/her thesis entitled ‘Diagnosing LQTS, Simple’.
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The congenital long-QT syndrome (LQTS) is an inherited condition in which the ventricular cardiac action 
potential can be prolonged due to an altered repolarization. The underlying mechanism of the altered 
repolarization is a mutation in genes encoding ventricular ion channels involved in the repolarization 
phase of the action potential. The prolonged action potential duration and altered repolarization is 
typically characterized by an increased QT-interval and/or an abnormal T-wave morphology on 
the electrocardiogram (ECG). LQTS patients have an increased risk on potentially lethal ventricular 
arrhythmias such as Torsades de Pointes. An early diagnosis is crucial since current treatments are well 
able to reduce the risk on a cardiac event. 

Since LQTS owes its name to a prolonged QT-interval, it seems obvious to diagnose LQTS based on the 
QT-interval. However, diagnosing LQTS solely based on the QT-interval comes with serious limitations. 
First of all, manual assessment of the QT-interval is subjective and may lead to erroneous measurements. 
Besides that, two often used methods to manually measure the QT-interval (the threshold and tangent 
method) result in different QT-intervals while all maintaining the same cut-off for a prolonged QT-interval. 
The sensitivity and specificity for the currently used cut-offs therefore differ per method. Secondly, an 
existing considerable overlap in QT-intervals at rest between LQTS patients and healthy individuals 
hampers the diagnosis of LQTS. Therefore, the diagnostic accuracy of a QT-interval driven diagnosis is 
poor. 

Apart from the diagnostic limitations of the QT-interval, DNA testing for known LQTS mutations also has 
limitations. Other (unknown) genetic factors like mutations or variants distinct from the LQTS mutation 
can influence the expression of the LQTS mutation or affect the repolarization via other pathways. As a 
result, approximately 20% of phenotype-positive LQTS patients remain genetically elusive whereas on 
the other hand, genotype-positive LQTS patients can be phenotype-negative. Therefore, classification 
and reporting of potentially malign genetic variants might currently be incomplete and misleading. 

In this thesis we addressed several of the above-mentioned limitations to improve the diagnosis of LQTS.

In Chapter 2, we developed and validated a QT-interval algorithm robust to heart axis orientation and 
T-wave morphology that can be applied on a beat-to-beat basis. The algorithm not only uses the standard 
12 ECG leads, but also a root mean square, standard deviation and vectorcardiogram to measure the 
QT-interval from. Whereas the QRS-onset is taken from the root mean square, the end of the T-wave is 
defined per individual lead and per reconstructed scalar ECG leads by an automated tangent approach. 
The median of all T-wave ends is finally used as the general T-wave end for the particular complex. 
To validate the algorithm, QT-intervals measured using the algorithm were compared with the QT-
intervals manually measured by three observers. Measuring errors between our algorithm and manual 
measurements were similar or even smaller than inter-observer measuring errors and therefore we 
concluded that the algorithm was a good objective alternative for manual QT-interval measurements. 

In Chapter 3 we investigated whether genotype-negative individuals from LQTS families have a prolonged 
QT-interval with respect to healthy controls. We hypothesized that, due to modifier genes, there would 
be a graded increase in QTc from shortest in healthy non-family members, intermediate in genotype-
negative individuals from LQTS families and finally longest in genotype-positive LQTS patients. To study 
this hypothesis, we applied our QT-interval algorithm as described in chapter 2 to standard 10-second 
twelve-lead ECGs obtained from healthy subjects, genotype-negative individuals from LQTS families 
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and genotype-positive LQTS patients. A multilevel linear regression analysis with QTc as the dependent 
variable and sex, age, and LQTS-family vs no-family and LQTS vs no-LQTS as independent variables 
showed that there was no difference between genotype-negative individuals from LQTS families and 
healthy control subjects. 

In Chapters 4 and 5 we studied the brisk standing test that has been presented as a promising bed-
side provocation test that could aid in the diagnosis of LQTS. The so far promising results of the brisk 
standing test rely on manually assessed QT-intervals of several predefined complexes. In Chapters 4 
and 5 we examine the diagnostic value of the QT-intervals of these complexes as well as the dynamic 
behaviour of the QT-intervals of all complexes in adult (Chapter 4) and paediatric (Chapter 5) LQTS 
patients and controls. For both the adult and the paediatric cohort, the brisk standing provocation did 
not result in a better classification of LQTS patients. The diagnostic accuracy of QT-intervals measured 
during provocation did not significantly improve compared to the diagnostic accuracy of QT-intervals 
during baseline (i.e. QT-intervals at rest). The reasons why our results differ from previous studies 
remain unknown. Assuming that the analysis protocol and the use of our QT-interval instead of manual 
assessment of the QT-interval did not cause these differences, inequalities in our cohort compared 
with the previously used cohorts might explain the differences. The data used in our study is more 
a reflection of a ‘real-world-population’ than the data used in the previous studies. For example, the 
control groups of the previous studies largely consisted of healthy volunteers whereas we included 
patients suspect for LQTS as controls.

Apart from a prolongation of the QT-interval, T-wave morphology variations are also seen in LQTS 
patients. In Chapters 6 and 7 we investigate the added value of T-wave morphology markers obtained 
from standard 10-second 12-lead ECGs in the diagnosis of LQTS. In Chapter 6 we trained and tested two 
models: a baseline model with age, sex, heart rate, QT-interval and QT-interval corrected for heart rate 
(QTc) as inputs and an extended model including several known T-wave morphology-features next to 
the baseline model parameters. The extended model resulted in a major rise in sensitivity and specificity 
compared to the baseline model. From this, we concluded that T-wave morphology does have an 
added value in the diagnosis of LQTS. Although the model described in Chapter 6 already increased the 
diagnostic accuracy, a downside of the morphology features used in this chapter is that they describe 
altered LQTS T-wave morphology characteristics known so far. Unrecognized altered LQTS T-wave 
morphology characteristics might therefore not lead to an abnormal morphology characterisation. 
Therefore, in Chapter 7 we developed an objective method to characterize T-wave morphology based 
on Hermite-Gauss polynomials. The diagnostic accuracy was again compared with a baseline model 
containing age, sex and QT-intervals. The extended model again had a better overall accuracy compared 
to the baseline model and could, based on the T-wave morphology characterization and in contrast to 
the baseline model, also accurately diagnose LQTS patients with a QTc down to 400ms.

Other pathologies or treatments can also lead to a prolonged QT-interval. In Chapters 8 and 9 we 
studied two interventions that might lead to a prolonged QT-interval. In Chapter 8 we studied the effect 
of a pulmonary vein isolation (PVI) on QTc. PVI has become the cornerstone treatment for atrial fibrillation 
but unintentional modulation of the ganglionated plexi by PVI might affect ventricular electrophysiology. 
Recently, an experimental study in canine hearts showed an increased ventricular action potential 
duration after ablating the ganglionated plexi. To investigate whether PVI induces a prolongation of 
QTc, we compared QTc’s obtained one day before, one day after and three months after PVI in 279 

patients. No statistically significant within-subject difference in QTc was found between the recordings 
indicating that PVI on average does not prolong QTc. Whether this is because a standard PVI does 
not modulate the ganglionated plexi (enough) or whether the gaglionated plexi modulation does not 
prolong QTc cannot be concluded from this study. In Chapter 9 we study the effect of various calcium 
concentrations in dialysates on the QT-interval. A low dialysate calcium concentration may positively 
affect the calcification tendency in serum of haemodialysis patients. However, calcium is an important 
electrolyte in the repolarization of cardiac myocytes and a lower calcium concentration in the dialysate, 
and subsequently in the blood, might lead to a prolonged cardiac action potential and thus a prolonged 
QT-interval. In Chapter 9 we analysed ECGs recorded in a four-week multicentre randomized cross-
over trial in which 13 patients received different dialysates during their thrice weekly haemodialysis 
sessions. The results of this study showed that QTc significantly increases during haemodialysis session 
with an acetic-acid dialysate with calcium concentration of 1.25mmol/L and a citric-acid dialysate with 
a calcium concentration of 1.50mmol/L whereas the QTc did not significantly increase during sessions 
with an acetic-acid dialysate with a calcium concentration of 1.50mmol/L. Benefits of the lower calcium 
concentration might therefore not be worthy in all haemodialysis patients and, hence, dialysate 
concentrations should be personalized for each patient.

In Chapter 10, all findings of the various chapters as well as all currently known limitations of the 
diagnosis of LQTS were put into broader perspective. The main conclusions of this thesis that could 
improve LQTS diagnostics are:

• The automatic QT-interval algorithm described in Chapter 2 is as accurate as instructed manual 
observers are. 

• QT-intervals at rest do not differ between healthy subjects and genotype-negative individuals from 
LQTS families (Chapter 3).

• Contradictory with earlier studies, we could not replicate earlier documented added diagnostic 
value of brisk standing tests for the diagnosis of LQTS in an adult and paediatric cohort (Chapter 
4 and 5)

• T-wave morphology contains additional diagnostic information that can be useful to diagnose 
LQTS. (Chapter 6 and 7)

• Pulmonary vein isolation, on average, does not induce a prolongation of QTc (Chapter 8)

• QTc significantly increases during haemodialysis with an acetic-acid dialysate with calcium 
concentration of 1.25mmol/L as well as with a citric-acid dialysate with a calcium concentration of 
1.50mmol/L (Chapter 9)
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B.1 Introduction

Diagnosing the long-QT syndrome (LQTS) as soon as possible is crucial since 26% of untreated symptomatic 
LQTS patients will have a lethal cardiac event within three years1. If recognized and treated early enough, 
mortality rate drops to approximately 1% over a 15-year follow-up2. Unfortunately, as the title of this 
thesis already highlights, diagnosing LQTS is simple but not easy. One reason for this is the complex 
underlying genetic origin of LQTS that is not yet completely understood. For example, approximately 
20% of phenotype-positive LQTS patients remain genetically elusive, i.e. none of the currently known 
pathogenic mutations are found in these patients3. A phenotype-based diagnosis of LQTS can also be 
complicated since known pathogenic mutations do not always lead to symptoms or other phenotypic 
signs of LQTS4,5. A considerable overlap in QT-intervals obtained from electrocardiograms (ECG) between 
affected and unaffected individuals6 hampers screening for LQTS based on standard ECGs.

Research into the field of diagnosing LQTS is very relevant for two reasons. First of all, new studies might 
directly lead to better diagnosis of LQTS because of new diagnostic tools. Secondly, studies into the 
field of diagnosing LQTS might lead to an enhanced understanding of the disease and the link between 
genotype and phenotype. In this thesis, we aimed to improve the diagnosis of genotype-positive LQTS 
based on computational analysis of the electrocardiogram and therefore contribute to both fields. 

B.2 New diagnostic tools

In Chapter 2 we present a fully automated algorithm to measure QT-intervals. This could lead to a 
better diagnosis of LQTS since it has been shown that most physicians seem to be unable to identify a 
prolonged QT-interval when they encounter one7. One of the reasons for this is erroneous QT-interval 
measurements. Therefore, diagnosis would be easier for physicians if they would have access to a 
reliable, objective and automated method to measure the QT-interval. Our algorithm is widely applicable 
and formed the basis of this thesis as it is applied in all follow chapters. 

Apart from a prolonged QT-interval, altered T-wave morphologies can often be seen on ECG from LQTS 
patients and could therefore aid in the diagnosis of LQTS8–10. Many LQTS experts do not only measure 
the QT-interval but also evaluate the T-wave morphology in an ECG suspect for LQTS11,12. This subjective 
method, however, requires training and experience causing it to be more or less reserved for LQTS 
experts.  In Chapter 6 and Chapter 7 we therefore developed two algorithm-based automatic T-wave 
morphology characterization methods that can help in the diagnosis of LQTS. Both algorithms had an 
increased accuracy in the diagnosis of LQTS compared to QT-interval driven diagnosis. 

Both the automated algorithm to measure QT-intervals (Chapter 2) as well as the T-wave morphology 
characterizations (Chapters 6 and 7) are applicable on standard 10-second 12-lead ECGs. Since it is 
very cheap to record these ECGs and since they are already being recorded in all LQTS suspects, both 
methods can be applied without any additional costs. Especially because the algorithms are easy to 
reproduce or are made freely available on request by e-mail. Thereafter, since the algorithms are fully 
automatic, using the algorithms does not require any additional effort and physicians’ experience does 
not affect the result. The diagnostic accuracy of LQTS could also be increased in non-specialized centres 
when using the algorithms presented in this thesis. Fewer patients should thereafter be referred to 
specialized centres for diagnosis. Apart from an improved diagnosis, the ‘time-to-diagnosis’ can also be 
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significantly reduced by these algorithms meaning that therapies can be started earlier and patients 
will be kept shorter in uncertainty. The algorithms might furthermore be useful in the follow-up of LQTS 
patients. Changes in lifestyle, ageing or other (new) health conditions might change the expression 
of LQTS wherefore treatments could be reduced or should be enhanced to prevent cardiac events. 
The algorithms might be a useful tool to assess the expression of LQTS and therefore might lead to 
personalized treatments. However, this has not been investigated within this thesis, new research on 
this topic is needed. 

B.3 Enhanced understanding

In 2010, a new elegant bed-side provocation test that could aid in the diagnosis of LQTS was introduced13. 
The QT-interval of LQTS patients was thought to adapt less to a short episode of tachycardia provoked 
by standing in comparison with healthy subjects13. In Chapter 4, we examine the diagnostic value of this 
test and study the dynamic behaviour of the QT-interval in a beat-to-beat manner. Up until now, the 
diagnostic value of the supine-standing test was promising. However, all studies were performed on an 
adult cohort. In Chapter 5 we examined the diagnostic value of the supine-standing test on a paediatric 
cohort. For both the adult (chapter 4) and the paediatric cohort (chapter 5), we remarkedly found that 
the QT-intervals measured during the test did not have an additional value to the QT-interval measured 
during baseline (which is similar to a QT-interval measured on a standard ECG). Since we were unable 
to reproduce the diagnostic value of the supine-standing test in adult patients and found no additional 
value in a paediatric cohort, the usefulness of the test suddenly is unclear. These new insights revealed 
that the test might lead to false positive or even worse, false negative diagnosis. As a result, healthy 
subjects might receive unnecessary treatment and LQTS subjects might remain untreated with all the 
associated consequences. 

B.4 References

1. Schwartz, P. J. Idiopathic long QT syndrome: Progress and questions. Am. Heart J. 109, 399–411 
(1985).

2. Schwartz, P. J. & Crotti, L. Cardiac Electrophysiology: From Cell to Bedside. (Elsevier/Saunders, 2009).
3. Kapplinger, J. D. et al. Spectrum and prevalence of mutations from the first 2,500 consecutive 

unrelated patients referred for the FAMILION® long QT syndrome genetic test. Heart Rhythm 6, 
1297–1303 (2009).

4. Priori, S. G., Napolitano, C. & Schwartz, P. J. Low penetrance in the long-QT syndrome: clinical 
impact. Circulation 99, 529–533 (1999).

5. Crotti, L. et al. The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe 
clinical manifestations in patients with different ethnic backgrounds: Toward a mutation-specific 
risk stratification. Circulation 116, 2366–2375 (2007).

6. Viskin, S. The QT interval: Too long, too short or just right. Heart Rhythm 6, 711–715 (2009).
7. Viskin, S. et al. Inaccurate electrocardiographic interpretation of long QT: The majority of physicians 

cannot recognize a long QT when they see one. Heart Rhythm 2, 569–574 (2005).
8. Lehmann, M. H. et al. T wave ‘humps’ as a potential electrocardiographic marker of the long QT 

syndrome. J. Am. Coll. Cardiol. 24, 746–754 (1994).
9. Moss, A. J. et al. ECG T-Wave Patterns in Genetically Distinct Forms of the Hereditary Long QT 

Syndrome. Circulation 92, 2929–2934 (1995).
10. Yan, G.-X. & Antzelevitch, C. Cellular basis for the normal T wave and the ECG manifestations of the 

long QT syndrome. J. Electrocardiol. 30, 148 (1998).
11. Schwartz, P. J. Clinical significance of QT prolongation: a personal view. in Clinical Aspects of 

Ventricular Repolarization (eds. Butrous, G. & Schwartz, P. J.) 343–356 (Farrand Press, 1989).
12. Schwartz, P. J. & Ackerman, M. J. The long QT syndrome: A transatlantic clinical approach to diagnosis 

and therapy. Eur. Heart J. 34, 3109–3116 (2013).
13. Viskin, S. et al. The Response of the QT Interval to the Brief Tachycardia Provoked by Standing. J. Am. 

Coll. Cardiol. 55, 1955–1961 (2010).



APPENDIX C

DANKWOORD / ACKNOWLEDGEMENTS



Dankwoord / Acknowledgements | 167

C

Het moet ongeveer rond deze tijd zijn geweest, 12 jaar (!!) geleden, dat ik voor de eerste keer bij Biomedical 
Engineering aan een stage begon. Toen nog voor de opleiding Biometrie. Ik besloot vervolgens zowel 
mijn afstudeerstage voor Biometrie als die voor Technische Geneeskunde bij BME te doen. Nu heb ik 
mijn laatste ‘academische examen’ hier ook afgerond. Ik zou dus met recht kunnen zeggen: ‘de cirkel is 
rond’. Het is onmogelijk iedereen die mij op wat voor een manier dan ook geholpen heeft tijdens deze 
hele periode te bedanken. Ik richt mij daarom op de afgelopen vier jaar, dat is al moeilijk genoeg. 

Uiteraard onmisbaar in deze vier jaren waren mijn promotors, prof. Delhaas en prof. Pison. Beste 
Tammo, jou kende ik al vanaf mijn eerste stage. Ik hoefde (in tegenstelling tot vele voorgangers, aan 
hun dankwoorden te lezen...) dan ook niet te wennen aan je directe commentaar. Ik heb me vanaf het 
begin altijd op mijn gemak bij je gevoeld. Overleg tussen ons voelde vaak als overleg tussen collega’s 
in plaats van als overleg tussen student en leermeester of medewerker en baas. Ik heb je altijd enorm 
benaderbaar gevonden. Ik kon daardoor over de kleinste dingen meteen overleggen waardoor we 
weer op één lijn zaten en ik mijn eindsprint heb weten te voltooien. Bedankt ook voor je advies over 
carrièremogelijkheden. Mede dankzij jou ben ik technische geneeskunde gaan doen. Al weet jij nog 
steeds niet echt wat je daar mee moet.

Beste Laurent, jouw kennis over de elektrofysiologie is ongekend. Ik zal nooit vergeten hoe je meer dan 
eens ‘Ja! Eén blik, één diagnose!’ zei op de vaatkamer. Jij wist al wat er aan de hand was terwijl ik nog niet 
eens wist naar welke katheter ik moest kijken. Wat heb ik veel van je geleerd en wat had ik graag nog 
meer van je geleerd. Je bent een waar voorbeeld geweest en ik hoop iets van je kennis, maar ook zeker 
van je manieren (en vooral je geduld) overgenomen te hebben. Al jouw patiënten waren namelijk lovend 
over je. Nu ik als postdoc weer aan de slag mag met ‘voorkamerfibrilleren’ hoop ik je nog vaak tegen te 
komen!

Zeker ook onmisbaar was mijn co-promotor, dr. Postema. Beste Pieter, toen ik in het laatste jaar van 
mijn promotie besloot om mijn promotieonderwerp van boezemfibrilleren naar het lange QT-syndroom 
te veranderen kon ik echt niet zonder jou. Je was in deze periode zeer betrokken. Dat bleek niet alleen 
uit onze skypemeetings buiten werktijd maar ook zeker toen je in Lissabon, vlak voor mijn presentatie, 
op mijn schouder tikte en je een paar maand later ook in San Francisco plots naast mijn poster stond. 
Ik heb je inzet altijd enorm gewaardeerd en ik weet echt 100% zeker dat dit boekje zonder jouw hulp 
nooit gelukt was. 

Prof. Volders, prof. Blom, prof. Prinzen, prof. Vos en dr. Zeemering, leden van de beoordelings-
commissie, wil ik graag hartelijk bedanken voor de kritische en vooral de snelle beoordeling van mijn 
proefschrift.

Ruud, het was niet altijd makkelijk in jouw voetsporen te treden. Als een echte havist betaamd, was ik 
namelijk een stuk minder gemotiveerd dan mijn grote broer en vond ik een zesje wel prima. Toen ik 
een laatbloeier bleek te zijn, is toch alles goed gekomen. Hoe mooi is het om deze dag met jou als mijn 
paranimf te kunnen delen. 

Frank, we zijn bijna 10 jaar lang directe collega’s geweest, hebben menig (ECTM-)borrel uitgespeeld en 
tijdens een stage zelfs een appartement in Rotterdam gedeeld. Daarnaast hebben we talloze projecten 



168 | Appendix C Dankwoord / Acknowledgements | 169

CC

tijdens de studie samen met Bennis en Timon afgerond. Ons huzarenstukje moet toch wel ‘Ed de GUI’ 
zijn geweest! Een logische keuze dus om jou als paranimf te vragen. Bedankt! 

Suzanne ben ik enorm veel dank verschuldigd. Beste Suzanne, eerlijk is eerlijk, er zat in het begin wat 
ruis op de lijn. Van de een op de andere dag kwamen één stel nerds uit Maastricht (of all places) jouw 
databases plunderen. Zo moet het ongeveer gevoeld hebben. Uiteindelijk is het allemaal wel goed 
gekomen (hoop ik). De hoeveelheid werk die jij verzet is buitengewoon. Inhoudelijk had jij zo maar een 
copromotor van me kunnen zijn. Ook de andere collega’s uit Amsterdam, prof. Wilde, Veronique, 
Puck en Jean-Luc bedankt voor de samenwerking. Ik bewonder hoe jullie dringende wetenschappelijke 
vragen aanpakken, ongeacht de hoeveelheid (hand)werk die daarvoor nodig is. 

Bennis, jij bent als geen ander in staat om van iets simpels iets complex te maken. Nu nog andersom. 
;) Bedankt voor alle hulp met machine learning. Ingewikkelde vragen tijdens mijn verdediging verwijs ik 
graag naar je door, dan weet ik zeker dat het uur zo om is. Ik zal een flip-over meenemen zodat je je 
legendarische ‘Wait! I’ll make a drawing’ nog eens kunt herhalen. 

Alle (ex-)collegae van BME enorm bedankt voor de super gemoedelijke en fijne sfeer op de afdeling. 
Voornamelijk dankzij de sfeer op de afdeling kijk ik terug op een leuke tijd. In de lunchpauzes hebben 
we diverse wereldproblemen opgelost maar de AIVD-kerstpuzzels waren ons toch echt de baas. Sjeng, 
onze origami kunstwerken en je nutteloze feitjes zal ik niet snel vergeten. Maarten, dat er door onze 
sportieve activiteiten op het lab niets kapot is gegaan, blijft een wonder. Je bent een werkpaard, houd dat 
vol maar maak het niet te bont. Erik, ouwe klusser, hoewel we er vaak over gelachen hebben, verdient 
het niets dan respect hoe jij promoveren en het verbouwen van een huis (in je eentje!) combineert. 
Peter, weinig mensen zijn zo lomp als jij. Als jij mee voetbalde waren scheenbeschermers zelfs tijdens 
het hooghouden geen overdreven luxe. Niek, nu je AIOS bent heeft je witte pekske eindelijk nut! Ik 
neem aan dat je je brieven in een combinatie van MATLAB en LaTeX maakt. Raoul, blijf oefenen met CS, 
misschien wordt het ooit nog wat. Aurore, merci pour les chocolats et vos conseils tout en complétant 
ma thèse (did absolutely not use translate for that!). Lauren, it’s friday b*tch! Tijmen, bedankt voor de 
wekelijkse analyses over de hoogte- en dieptepunten van Oranje, Fortuna, F.C. Twente en PSV. Myrthe, 
‘muizen-meisje’, bedankt voor de gezelligheid. Je hebt nu het mooiste bureau van het lab, pas er goed 
op. Letty, jouw komst is de sfeer op het lab zeker ten goede gekomen. Pamir, veel succes met de 
afronding van jouw promotie en uiteraard veel geluk in Zitterd! Nick, bedankt dat ik jouw kamer als 
wachtkamer voor Tammo mocht gebruiken. Mehrdad, thank you for the ‘pantoffel’ football moments! 
Wouter, Theo en Koen, bedankt voor alle adviezen door de jaren heen. Luumes, bedankt voor alle 
wijze raad! Bij GVCG is het bij een talent gebleven maar ik weet zeker dat het top-talent het op de UM wel 
gaat maken. ;) Het is aan de nieuwe(re) garde van BME, Tim, Anneloes, Lian, om de sfeer erin te houden 
op de afdeling. Jeroen, geniet van je pensioen! Clêhr!, bedankt voor het regelen van alle administratieve 
rompslomp en je interesse in huis tuin en keuken zaken en met name de schaapjes. 

Uyen, Floor, Luuk, Nick, Erik, Aurore, bedankt voor de gezelligheid tijdens EHRA en HRS! 

Timon, bedankt voor alle TBFF-uitjes samen met de Franken. Als mijn verdediging maar half zo goed 
gaat als die van jou, ben ik dik tevreden! 

Alle stagiaires die ik tijdens mijn promotie heb mogen begeleiden wil ik bedanken voor de samenwerkingen. 
Job en Sebastiaan wil ik hier extra voor bedanken. Jullie legden de basis (of nog meer dan dat) voor, 
respectievelijk, hoofdstuk 6 en 9. 

Hoewel het werk niet tot veel hoofdstukken in dit proefschrift heeft geleid, wil ik toch alle (EFO-)
laboranten, Suzanne Philippens en Matthias Zink bedanken voor de samenwerking en support. Ik 
zal jullie allen de komende tijd nog vaker lastigvallen! 

Karlien en alle overige co-auteurs van de hoofdstukken in dit proefschrift wil ik bedanken voor de hulp 
en goede samenwerking. 

Prof. Crijns, dr. Vernooy, Alex, Luuk en Henk, bedankt voor het actief meedenken over mijn 
toekomstplannen!

Leuke jongens, bedankt voor alle sjaele zeiver. Wat er ook speelde op het werk, tijdens de leuke jongens 
dag, een avond in de kantine of in de kelder of tijdens ons oud en nieuw uitje zorgen jullie voor de nodige 
afleiding. Al had ik de dag daarna meestal andere kopzorgen... Stefanie bedankt voor de tips and tricks 
in InDesign. Als je nu nog dingen opvallen, mag je ze voor je houden. ;)

Pa en ma, om jullie te bedanken voor alle hand-en-spandiensten in en om het huis ligt wel heel erg voor 
de hand. Of nu een koelkast in Enschede opgehaald moest worden, een oude vijver uitgegraven moest 
worden of ik van of naar station moest, jullie stonden klaar. Maar ik wil jullie nu ook vooral bedanken 
voor het vertrouwen, de support en alle kansen die jullie mij geboden hebben. Zonder dat was ik nooit 
zover gekomen. Merci!

Lieve Carry, waar het verhuizen naar Sittard en Guttecoven voor mij een soort thuiskomen was, 
betekende dit voor jou vooral opnieuw beginnen. Ik ben zo trots op hoe jij dit gedaan hebt! Het is echt 
niet makkelijk om als Tukker in Limburg te integreren, maar jou is het gelukt. In de laatste periode van 
het promoveren heb jij veel alleen moeten doen en ben ik er niet altijd voor je geweest. Ik heb wat goed 
te maken. Nuup, bedankt voor je vertrouwen en support!



APPENDIX D

CURRICULUM VITAE



Curriculum Vitae | 173

D

About the author

Ben Hermans was born in Sittard in 1988 and grew up in Einighausen. In 2005 he graduated for his HAVO 
degree at the Trevianum in Sittard. After secondary school, Ben started to study Medical Technology 
(Dutch: Biometrie) at the Zuyd University for Applied Sciences. After his graduation in 2009, he started 
to study Technical Medicine at the University of Twente in Enschede. He obtained his Bachelor’s degree 
for Technical Medicine in 2012 and continued to study for the Master’s degree of Technical Medicine. 
During the three-year lasting Master track, Medical Sensing and Stimulation, he performed clinical 
internships at the Neonatal Intensive Care Unit in the RadboudUMC (Nijmegen), Intensive Care Unit 
in the Erasmus UMC (Rotterdam), general surgery department in the Meander MC (Amersfoort), and 
Cardiology department in the Maastricht UMC+. In 2015 he obtained his Master’s degree after finishing 
his graduation internship at the deparments of Biomedical Engineering, Physiology and Cardiology. 
Ben was a student-assistant in the Experimental Centre for Technical Medicine and assisted in various 
bachelor courses during his study. After graduation, Ben started as a PhD candidate at the departments 
of Biomedical Engineering and Cardiology under supervision of prof. Delhaas and prof. Pison. He initially 
worked on improving the treatment of atrial fibrillation by using an advanced and new electroanatomical 
mapping system. Unfortunately, due to unexpected delays in the delivery of this system and high 
procedural costs, Ben changed his PhD project to improving the diagnosis of Long-QT Syndrome by 
advanced signal analysis of the electrocardiogram. Dr. Postema from the cardiology department of the 
Amsterdam UMC joined as a supervisor. As of November 2019, Ben works as a postdoctoral researcher 
at the department of Physiology under supervision of prof. Schotten. 



174 | Appendix D 

D

List of publications

• Van Geldorp IE, Delhaas T, Hermans B, et al.: Comparison of a non-invasive arterial pulse contour 
technique and echo Doppler aorta velocity-time integral on stroke volume changes in optimization 
of cardiac resynchronization therapy. Europace 2011; 13:87–95. 

• Lansdorp B, Hermans B, Miedema H: Simulation instructor saved by student. Simul Healthc 2012; 
7:391. 

• Blankman P, Shono A, Hermans BJM, Wesselius T, Hasan D, Gommers D: Detection of optimal 
PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance 
tomography during decreasing levels of PEEP in post cardiac-surgery patients. Br J Anaesth 2016; 
116:862–869. 

• Zwanenburg A, Hermans BJM, Andriessen P, Niemarkt HJ, Jellema RK, Ophelders DR, Vullings R, 
Wolfs TG, Kramer BW, Delhaas T: Comparison of ECG-based physiological markers for hypoxia in a 
preterm ovine model. Pediatr Res IOP Publishing, 2016; 79:907–915. 

• van’t Hullenaar CDP, Hermans B, Broeders IAMJ: Ergonomic assessment of the da Vinci console in 
robot-assisted surgery. Innov Surg Sci  2017; 2:97–104. 

• Hermans BJM, Vink AS, Bennis FC, Filippini LH, Meijborg VMF, Wilde AAM, Pison L, Postema PG, 
Delhaas T: The development and validation of an easy to use automatic QT-interval algorithm. 
Baumert M, ed: PLoS One 2017; 12:e0184352. 

• Engels EB, Mafi-Rad M, Hermans BJM, Aranda A, van Stipdonk AMW, Rienstra M, Scheerder COS, 
Maass AH, Prinzen FW, Vernooy K: Tailoring device settings in cardiac resynchronization therapy 
using electrograms from pacing electrodes. EP Eur 2017; . 

• Sathyaprabha TN, Koot LAM, Hermans BJM, Adoor M, Sinha S, Kramer BW, Raju TR, Satishchandra 
P, Delhaas T: Effects of Chronic Carbamazepine Treatment on the ECG in Patients with Focal 
Seizures. Clin Drug Investig 2018; 38. 

• Filippini LHPM, Postema PG, Zoubin K, Hermans BJM, Blom NA, Delhaas T, Wilde AAM: The brisk-
standing-test for long QT syndrome in prepubertal school children: defining normal. EP Eur 2018; 
20:f108–f112. 

• Hermans BJM, Stoks J, Bennis FC, Vink AS, Garde A, Wilde AAM, Pison L, Postema PG, Delhaas T: 
Support vector machine-based assessment of the T-wave morphology improves long QT syndrome 
diagnosis. EP Eur 2018; 20:iii113–iii119.

• Andriessen P, Zwanenburg A, van Laar JOEH, Vullings R, Hermans BJM, Niemarkt HJ, Jellema 
RK, Ophelders DRMG, Wolfs TGAM, Kramer BW, Delhaas T: ST waveform analysis for monitoring 
hypoxic distress in fetal sheep after prolonged umbilical cord occlusion. Frasch MG, ed: PLoS One 
2018; 13:e0195978. 


	Table of Contents
	Chapter 1 - General Introduction
	Chapter 2
	Chapter 3: EMBARGOED
	Chapter 4: EMBARGOED
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10 - General Discussion
	Summary
	Valorisation
	Curriculum Vitae



