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Abstract

Spatial independent component analysis (ICA) is a well-established technique for multivariate analysis of functional magnetic resonance
imaging (fMRI) data. It blindly extracts spatiotemporal patterns of neural activity from functional measurements by seeking for sources that
are maximally independent. Additional information on one or more sources (e.g., spatial regularity) is often available; however, it is not
considered while looking for independent components. In the present work, we propose a new ICA algorithm based on the optimization of an
objective function that accounts for both independence and other information on the sources or on the mixing model in a very general
fashion. In particular, we apply this approach to fMRI data analysis and illustrate, by means of simulations, how inclusion of a spatial
regularity term helps to recover the sources more effectively than with conventional ICA. The improvement is especially evident in high
noise situations. Furthermore we employ the same approach on data sets from a complex mental imagery experiment, showing that
consistency and physiological plausibility of relatively weak components are improved.
© 2009 Elsevier Inc. All rights reserved.
Keywords: Independent Component Analysis; Blind source separation; fMRI; Spatial regularity; Simulated annealing
1. Introduction

Independent Component Analysis (ICA) aims to find a
linear decomposition of a given data set into a more
“meaningful” one, by achieving maximal independence
among the vectors of the new representation [1]. Since its
introduction, this technique has received great attention in
various research fields, due to the generality of the
assumptions underlying its model. In fact, like other
“blind” techniques, no specific assumptions are made on
the nature of the independent sources or on the way they
have been mixed to generate the observations.

ICA has been successfully employed in many research
fields, including functional neuroimaging, where its data-
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driven nature makes it a powerful tool to extract relevant
information from functional magnetic resonance imaging
(fMRI) and electro- and magnetoencephalography (EEG/
MEG)data,without relying on strong apriori assumptions [2].
Since its initial application to fMRIdata analysis byMcKeown
et al. [3,4], ICA has become a well-established analytical tool
for functional neuroimaging. ICA is applied to fMRI data as an
alternative to traditional hypotheses-driven techniques (e.g.,
GeneralLinearModel), to reveal neural activity embedded in a
complex background of noise and other (independent)
activities. Furthermore, it helps highlight signal co-variations
in networks of brain regions (functional connectivity).

Considering an m-dimensional random vector x, the
classical ICA model for the observation is:

x =As ð1Þ

where s is an n-dimensional vector whose components are
maximally independent and it is usually referred to as the
sources vector, A is an m by n matrix, often called mixing
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matrix, that accounts for the mixing process of the sources.
The aim of ICA is to retrieve both A and s “blindly,” i.e.,
without making specific assumptions on the nature of the
sources or of the mixing process. To solve an ICA problem, a
linear transformation W on observed data is performed such
that the estimated sources

y =Wx ð2Þ

are maximally independent (thus W is an estimate of the
unmixing matrix A−1).

Several criteria have been proposed in order to obtain
independence including maximization of differential entropy
(INFOMAX [5]) and maximization of a robust approxima-
tion of negative entropy (negentropy, FastICA [6]). For
comprehensive reviews of ICA algorithms, see Refs. [7,8].

In many situations, some additional information on the
sources is available, but it is generally discarded while
performing ICA decomposition. There are several reasons to
incorporate prior information in an ICA model, when it is
available. In fact, if a particular feature of a source is known
in advance, it is possible to retrieve it first, without extracting
the whole data set of components and, thereafter, performing
a post-selection. This could be extremely useful in real-time
applications and when a deflation approach is employed,
since errors which arise whilst retrieving a source propagate
to the subsequently extracted ones, and therefore, the source
may not be extracted satisfactorily [9]. Moreover, if the prior
information is accurate, in a high-noise situation, it can be
employed to improve source recovery.

Several algorithms and methodologies have been
proposed in the literature to account for prior information
on an ICA problem. In Ref. [10], a methodology named
“Principal Independent Component Analysis” was devel-
oped in order to extract a target source first. This procedure
is based on a cumulant approach, where the learning is
driven by a reference generator based on prior information
on the target source. In Ref. [11], the authors, starting from
second-order methods [12], show how it is possible to
extract first a source whose autocorrelation function is
Fig. 1. Three different spatial maps (A–C) having the same histogram (D). An algor
spatial regularity in map (A).
known a priori. A Bayesian framework for source
separation has been proposed in Ref. [13], showing how
it is possible to account for information on the mixing
coefficients or on the probability density functions of the
sources. A Bayesian framework for source separation was
presented by Rowe in [14,15] and applied to fMRI data
analysis in [16] to determine the reference function from
functional time series.

As both sources and mixing coefficients are unknown,
some prior information could be available on mixing
coefficients rather than on sources. In Ref. [17], it has been
shown how to account for knowledge on the mixing
coefficients in the most employed ICA algorithms, showing
how the inclusion of such information improves the speed
of the algorithms. In Ref. [18], a constrained ICA approach
was developed. Starting from Lagrange multipliers theory,
the authors set up a “constrained ICA” algorithm where
independence is maximized with an additional constraint
imposed a priori. This technique was applied to fMRI data
analysis, where it is possible to include a reference function
(i.e., an approximation of the time-course of an experi-
mental condition) into temporal ICA, extracting therefore
only task-related sources. This technique has been applied
also in [19] to EEG and MEG data analysis, to remove
artifacts. In Ref. [20], a complementary approach was
implemented to include this information in spatial ICA by
extracting all the sources together and performing a gradient
optimization of independence together with a term influen-
cing correlation between the selected source and the time
course. The proposed approach, named “semi-blind ICA,”
has proved useful as an alternative to General Linear
Model, whereas the prior information on the experimental
paradigm lacks precision. In Ref. [21], a framework to
include specific templates of spatial activation into spatial
ICA was proposed.

All the proposed approaches, however, consider only
specific knowledge on the sources. When there is some
information available on an unknown group of sources, none
of the proposed approaches can incorporate it into the ICA
extraction procedure.
ithm that only employs probability densities, may discard the information of
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Consider fMRI data analysis; some more general
assumptions, in addition to independence, can be made
for the source recovery. A physiologically plausible
activation obtained by ICA (in both spatial and temporal
version) should show regularities in space and in time.
However, classical ICA algorithms do not pursue this
objective while looking for statistical independence. An
illustrative example is presented in Fig. 1, where three 2-
dimensional maps have the same histogram, but completely
different interpretation. In fact, the first one (a) may be
interpreted as a meaningful activation, while the others
(b–c) carry no useful spatial information. In many of the
common ICA algorithms employed in fMRI, data are
always treated as “random variables” rather than “signals,”
meaning that only their joint statistical distribution is
considered while performing extraction, regardless of the
structure in space or in time.

In order to include a regularity term in the extraction, we
have developed a new ICA approach. We employ an
objective function, the optimization of which leads to the
desired decomposition that accounts for both independence
and prior knowledge.
2. Materials and methods

2.1. ICA with prior information

Our approach is based on the maximization of a new
objective function defined as follows:

F = JG + kH ð3Þ

JG is a negentropy estimate, as in [6], defined as:

JG yð Þ = E G yð Þf g � E G nð Þf g½ �2 ð4Þ

where υ is a Gaussian distributed random variable with the
same mean and variance as y.

While JG accounts for independence, H is related to the
available prior information and λ weighs the two functions.
The role played by the weight term λ will be discussed
extensively below.

If the additional term λH is set to zero, the maximization
of F leads to “classical” independent components. As in
FastICA algorithm, it is possible to perform independent
component extraction in deflation and in symmetric
approach. In the first one, sources are estimated one at a
time, and each component is decorrelated from the previous
ones during the extraction procedure. In symmetric
approach, components are estimated all together, and the
decorrelation procedure is applied at each iteration to the
whole data set. After whitening, that linearly transforms
original data set x into a new one x ̃ with identity covariance
matrix, independent components can be retrieved from the
unmixing coefficients matrix Z in the whitened space. For
the deflation approach, Eq. (3) becomes:

F zð Þ = JG zTx ̃
� �

+ kH z; x ̃
� � ð5Þ

where F, JG and H are real valued functions. For the
symmetric approach, Eq. (3) becomes:

F Zð Þ =
X
i

JG zTi x ̃
� �

+ kH Z; x ̃
� � ð6Þ

where zi denotes the ith column of Z. The decorrelation
procedure for both cases is the same as in [6]. As pointed out
in [1], an objective function suitable for an ICA problem
must be invariant up to scale change, due to the double
indeterminacy. This influences the possible choices of H,
since it must be: H(az)=H(z),∀z≠0. However, since data are
whitened, the unit norm constraint on independent compo-
nents implies that ||z||2=1; therefore, H must be such that
H(−z)=H(z),∀z≠0.

The additional term H poses new challenges to the
optimization. In fact, in the FastICA algorithm, fixed-point
iteration can be extremely fast thanks to a particularly
convenient approximation of the Hessian matrix. Unfortu-
nately, the inclusion of the additional term may be
troublesome for a gradient-based scheme, in case it is not
differentiable or defined in closed form. In order to also
optimize these cases, we decided to perform optimization
by means of simulated annealing (SA) [22] that allows
dealing with global nondifferentiable maximization (mini-
mization) by means of a random search with a probabilistic
acceptance criterion. It has to be noted, however, that a SA
optimization procedure is considerably slower than a
gradient based one. Other optimization algorithms can be
employed, according to the class of functions used for the
objective function. The use of SA stems from the need for
non-differentiable, or procedurally defined, objective func-
tions, that cannot be optimized by employing derivatives.
Another advantage of such an approach is that relatively
minor modifications are needed when changing the
objective function.

The core of a SA optimization is the Metropolis
algorithm. Starting from a random state (i.e., a random
choice of unmixing coefficients w0), by means of a suitable
perturbation rule the system, gets to a new state w1 with
associated cost function F1=F(w1). If F1NF0=F(w0), then the
new state is accepted; otherwise, it is accepted with a
probability related to a control parameter T, often called
temperature, evaluated as:

p = exp F1 � F0ð Þ=Tð Þ ð7Þ

SA is based on multiple iterations of the Metropolis scheme
at different temperatures. The system starts from a high
temperature (i.e., such that most of the perturbations are
accepted anyway) and, according to a cooling schedule,
decreases the temperature until the system “freezes'” and
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reaches the optimum. Thanks to the probabilistic acceptance
criterion, the algorithm reaches the global optimum with
Probability 1, since it avoids getting trapped in local optima
of the problem.

As discussed in [23], several perturbation schemes may
be adopted in order to reach convergence. In our work, we
implement the following rule (for the deflation scheme):

wk + 1 =wk + k0 + k1=lð Þdm ð8Þ

where k0 and k1 are some suitable constants, l is a quantity
that increases according to the temperature and δm is an m-
dimensional vector whose components are uniformly
distributed (−1,1). In this study, the values of the
parameters k0 and k1 were 0.01 and 0.05, respectively.
Subsequently, we normalize the standard deviation and
decorrelate the state wk+1 from the one generated by the
previously found component before evaluating the objec-
tive function in the current state. A similar scheme is
adopted for the symmetric extraction.

The annealing schedule (the combination of the
temperature decrease rate and the number of iterations at
each temperature) is crucial for the convergence of the
algorithm, and several studies have been conducted in order
to assess the convergence to the global optimum of the
procedure [24]. Several annealing schedules have been
proposed [25], and we choose to perform a geometric
decrease rate (i.e., Tk+1=αTk) for the temperature, with
α=.95. The starting temperature T0 was automatically
selected in such a way that, at T0, the perturbations that
were accepted were between 80% and 95% of the total.

2.2. Spatial regularity term

In this section, we show how to exploit generic prior
information by means of an additional term in the classical
objective function, whose aim is to improve source
recovery, especially in noisy environments. This kind of
information is general, in the sense that it is not related to a
specific source but rather to a group of “interesting” and
unknown sources. In particular, it is known that spatio-
temporal patterns of activity exhibit regularities over both
space and time. The most employed techniques for fMRI
data analysis, namely FastICA and Infomax [26], com-
pletely discard this information, as they only employ joint
statistics. In fact, if one scrambled all the voxels (in the
same way) in each fMRI volume, the spatial independent
component extraction would be exactly the same (i.e., with
the same unmixing coefficients). However, information is
present in a spatial map, as an independent component with
isolated active voxels may have no physiological meaning.
It is useful to exploit this “regularity”' information together
with independence in order to achieve an extraction where
sources are more biologically plausible (like in Fig. 1A). It
is to be noted that spatial regularity alone does not allow
extracting sources. We therefore employed the scheme
presented in the previous section to address this problem in
spatial ICA, by optimizing independence together with a
spatial regularity measure. The measure that proved the
most effective is the one-lag spatial autocorrelation of the
peak values of a spatial map. This autocorrelation is higher
for those maps that present structured activity, and there-
fore, it can be seen as a measure of how plausible the map
is, from an interpretative point of view. Therefore, adding
this term to negentropy leads to less independent (that is,
with lower values of negentropy) but more plausible
solutions. It is to be noted, however, that the sources are
still uncorrelated, as the source extraction is performed on
the whitened data.

The evaluation of the additional term H can be divided in
two steps: spatial map thresholding and spatial autocorrela-
tion evaluation. Concerning the first step, we consider the
linear combination of the whitened data x ̃ by means of
unmixing coefficient z, y=zTx ̃; since this linear combination
is performed in the whitened space, it holds μy=0 and σ2

y=1.
We choose an appropriate threshold t and consider ỹ=ft (y),
with ft (y) defined as follows:

ft yð Þ = y if jyjzt
0 if jyjbt

�
ð9Þ

This thresholding procedure is employed due to the fact
that it is more robust and physiologically plausible to focus
the autocorrelation analysis on the “active” areas of a
spatial map, rather than focusing on the overall auto-
correlation map. Since sources of interest in fMRI have a
super-Gaussian distribution, t=2 (two times the standard
deviation) proved a suitable choice for the following
analyses. Before evaluating the spatial autocorrelation on
the thresholded map, we perform z-score transform of the
thresholded map y ̃.

The second step of the procedure is the evaluation of the
spatial autocorrelation. Even if a spatial map is usually
considered as a single vector, the spatial structure is
intrinsically three-dimensional (two-dimensional if we
restrict the analysis to a single slice or the reconstructed
cortical sheet). In a simple monodimensional case, the one-
lag autocorrelation of a vector T can be evaluated as
H=E{y(t)y(t+1)}, if the mean of y is zero. In a three-
dimensional problem, we consider all the possible transla-
tions in every direction and average them to have a global
measure of autocorrelation. A computationally efficient
way of evaluating such a measure, is to store in a matrix N
the information on neighboring voxels. N is a highly sparse
square matrix, with as many rows as voxels in the analysis,
and where:

N i; jð Þ = 1=Ki if iaNi

0 if igNi

�
ð10Þ
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where Ni is the set of voxels that, within the cerebral
cortex, is in the cube of edge length 3 (voxels) centered on
voxel i, and Ki is a normalization constant, that accounts
for the number of neighbors of each voxel and the total
number of voxels in the cortical mask that are considered
for the analysis. The spatial autocorrelation (when the mean
of y ̃ is zero) can be therefore evaluate in the following way:

H y ̃
� �

= y ̃TNy ̃ ð11Þ

For the purposes of our analysis, we also considered a
threshold applied to the spatial autocorrelation term, namely
ts such that it holds:

Hs y ̃
� �

=
H y ̃
� �

if H y ̃
� �

bts
ts if H y ̃

� �
zts

�
ð12Þ

This thresholding procedure is motivated by the fact that
maps that have an autocorrelation higher than ts are already
acceptable; therefore, no improvement is required in the
autocorrelation term. The final objective function is:

F zTx ̃
� �

= JG zTx ̃
� �

+ kHs ð13Þ

It is to be noted that optimizing an objective function
consisting of fastICA and an additional term that considers
(thresholded) spatial autocorrelation, is not identical to
extract sources from spatially smoothed data. As spatial
filtering is a linear operation, the extracted sources of a
smoothed data set are, under the ICA model, a smoothed
Fig. 2. Three artificial maps employed for the analysis on the simulated fMRI dat
resting state fMRI data set at different CNR ratios. Each source is visualized by m
version of the sources of the original data set, with identical
mixing coefficients (see Ref. [7]). The proposed method,
instead, improves estimation on both sources and mixing
coefficient (as illustrated in Section 3). Furthermore, our
method preserves the original spatial resolution of the data,
with possible advantages for high spatial resolution func-
tional imaging.

All the analyses presented in this work have been
conducted using the fastICA package (http://www.cis.hut.fi/
projects/ica/fastica/) and a SA code developed for this work,
both implemented in MATLAB (www.mathworks.com).

2.3. Simulated fMRI data set

We considered an fMRI resting state data set. It is well
known from the literature (see, e.g., Ref. [27]) that during
rest, some networks of underlying activity are still present
and they can be found by means of spatial ICA. To evaluate
the effectiveness of the source extraction procedure, we
therefore superimposed some artificial activation, at different
contrast to noise ratios. In this way it is possible to determine
quantitatively how well a source is recovered in a realistic
framework, as the artificial sources are embedded in a real
fMRI data set. The contrast-to-noise ratio (CNR) is defined
as the ratio between the signal enhancement ΔS due to
activity, and the standard deviation of noise σn in an active
area [28]. We considered different situations, with values of
CNR ranging from 0.8 to 3, similar to Ref. [26].

The resting state experiment was performed by a healthy
volunteer at the University of Maastricht, Department of
Cognitive Neuroscience. The whole brain data was acquired
a set, together with respective time courses. The sources are injected into a
eans of a reconstructed glass brain view.

http://www.cis.hut.fi/projects/ica/fastica/
http://www.cis.hut.fi/projects/ica/fastica/
http://www.mathworks.com
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on a 3T Siemens Allegra (TR 1.5 s, interslice time 46 ms,
32 slices, matrix 64×64, thickness 3 mm, 210 volumes).
The first two volumes were skipped due to T2⁎ saturation
effect. Linear detrending and high pass filtering, removing
low-frequency nonlinear drifts of three or less cycles (0.009
Hz) per time series, were performed on the fMRI data set by
means of a well-known fMRI data analysis tool, Brain-
Voyager QX (www.brainvoyager.com ). We performed
cortex-based ICA [29], i.e., we reduced our analysis to
only cortical voxels.

We considered three artificial activations, inserted on
cortical sites with different time course (Fig. 2). Sources
consisted of activations within: (a) (Source 1) left and
right superior temporal gyrus and left inferior frontal gyrus
(IFG); (b) (Source 2) right middle temporal gyrus and left
and right inferior parietal sulcus; (c) (Source 3) left and
right IFG (partially overlapping with source one) and left
lateral occipital cortex. The time course of each of the
three independent components has been obtained con-
sidering a square wave with ON and OFF periods of nine
time points each. Each time course has been convolved
with an estimate of the hemodynamic response function
(HRF) [30], with parameters changing slightly from source
to source, to account for a realistic variability of the HRF.
We considered 20 transversal slices corresponding to
Talairach transverse coordinate ranging from z=114 to
z=134; in such a situation, the percentage of active voxels
of the three artificial sources with respect to the total
number of points considered for the analysis was 5.5%,
4.9% and 4%, respectively.

2.4. fMRI experiment

We furthermore considered a time-resolved fMRI experi-
ment involving a complex mental imagery task [31]. Since
complex tasks normally involve the activation of networks of
brain regions with different HRFs, the use of a conventional
hypothesis-driven method — assuming a spatially invariant
model of the HRF — may not be optimal. ICA and other
data-driven methods, instead, do not rely on explicit
modeling of the hemodynamics and are thus particularly
suitable in highlighting functional connectivity [32].

In the “auditory” condition of the experimental paradigm
from Sack et al. [31], subjects were asked to build up simple
geometrical figures based on a sequence of auditory
instructions. They were subsequently presented a target
figure and asked, after performing mental rotation, whether
the imagined and target figures were identical or mirror
symmetric versions of each other. During each functional
run, 18 trials lasting 30 s each were acquired. The acquisition
was performed on a 3-T Siemens Allegra scanner, using
single-shot, gradient-echo, echo-planar imaging sequence
(TE 30 ms, TR 1500 ms, matrix 64×64, 23 transversal slices,
730 images).

An analysis of these data using fuzzy clustering (FC) on
the averaged time series revealed, besides other clusters, a set
of interesting task-related clusters. This set of task-related
clusters was very consistent within and across subjects and
included one “auditory” cluster accounting for the responses
to the auditory instructions, two “imagery” frontal-parietal
clusters and a visual cluster that accounted for the response
of the visual cortex to the presentation of the target. In
particular, based on the relative timing of their time-courses,
the two frontal-parietal clusters were labeled “Imagery early”
and “Imagery late” and were interpreted as reflecting two
subsequent cognitive processes involved in the mental
imagery task (see Ref. [31] for details).

Using classical spatial ICA on the time series (without
previous averaging as it was done for FC) of the same data,
we observed convergence in most of the subjects and found
very similar spatiotemporal modes as the ones obtained with
FC. However, in some “noisy” subjects, spatial ICAwas not
able to retrieve the “late” imagery cluster with frontal-
parietal distribution on all the runs [33]. In the present paper,
we reevaluated these “noisy” data sets with the new
algorithm including the spatial-regularity term. Based on
the results of the simulations (see below), we expected an
improvement, compared to FastICA, in retrieving the
“weak” components both in terms of spatial layout and
time course.
3. Results and discussion

3.1. Simulated data set

A comparison of classical ICA extraction (by means of
FastICA) and the algorithm with the inclusion of the
spatial regularity term was carried out on the simulated
data set at different CNR levels. To evaluate and compare
the two techniques, we employed receiver operating
characteristic (ROC) analysis [26,34,35], estimating an
ROC curve for each of the three injected sources recovery
at each CNR level.

We performed an initial FastICA extraction on the resting
state fMRI data set with superimposed activations at CNR 1.
We observed for each recovered source the values of
negentropy and of spatial autocorrelation and considered
the average among all the extracted components of the ratio
ρ=Hs/Jg. We therefore decided to weight the additional term
a half of the negentropy term. Since the average ρ for the
data set was approximately 10, we set λ to 0.05.
Furthermore, an appropriate choice for ts was found to be
90% of the maximum value of spatial autocorrelation among
the sources obtained with FastICA, namely 0.4. All the
subsequent analyses have been carried out with these
parameters. The employed annealing schedule consisted of
a geometric temperature decrease rate with ratio α=0.8, with
a maximum number of iterations at a fixed temperature equal
to 800.

We conducted our analysis at different levels of CNR,
ranging from 0.8 to 3. For each level of noise, we
performed 20 extractions for both algorithms. All data sets

http://www.brainvoyager.com


Fig. 3. Analysis of performances at different Contrast to noise ratios. FastICAvalues are indicated by a square (■) symbol, ICAwith spatial autocorrelation by a
diamond (◊) one. (Left) mean ROC power as a function of CNR. (Right) Correlation of the recovered time course with the original one. Results are presented in
logarithmic scale with respect to X axis.

Table 1
Consistency of the retrieved components across different runs (subject “CJ”)

Component FASTICA Negentropy+spatial
regularity

Mean Variance Mean Variance

Auditory 0.69 0.0047 0.7383 3.7⁎10-4

Imagery(I) 0.5450 0.0215 0.5817 8⁎10−4

Visual/motor 0.6517 0.0049 0.6433 0.0048
Imagery(II) 0.3533 0.0546 0.4450 0.0168

For each of the techniques, the average and the variance of the spatial
correlation are presented.
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were composed of 100 volumes, to reduce computational
load. Furthermore, no dimension reduction was carried out
for both approaches, as in low CNR cases; this may affect
source extraction for both algorithms. We therefore
extracted 100 components for FastICA algorithm, while
we stopped the sequential source extraction at the 60th
component for our algorithm. This was due to the global-
optimum-driven nature of our optimization algorithm and to
the observation that the three sources were always
recovered among the first 40 components regardless of
the CNR.

In Fig. 3 we considered the mean ROC power (i.e., the
integral of the ROC curve) for the three sources and the two
algorithms, at CNR ranging from 0.8 to 3. Not surprisingly,
in low-noise (high-CNR) situations, both algorithms are
able to recover the sources with ROC power of nearly 1, as
seen in Fig. 3, left panel; in the right panel, instead, the
correlation between the recovered time-courses and the
original ones are depicted.

These results indicate that it is possible to enhance ICA
capabilities by means of an additional term, which is not
related to statistical properties of the sources, but to their
spatial structure. One important remark is that, in low noise
situation (i.e., high CNR), when negentropy alone is able to
recover the sources satisfactorily, the additional term does
not lead to any change in source extraction. On the other
hand, when the noise level is such that classical algorithms
performances deteriorate, the additional term helps improve
the extraction.
The reason for the different behavior of the three
recovering results for the three sources may be due to the
fact that weight parameter λ has been chosen in a heuristic
fashion. Despite the good results obtained with Source 2, it
may be possible that this parameter is less optimal with
respect to Source 1, whose extraction is not significantly
improved, and Source 3, where in low CNR situations,
there is an improvement. These results suggest that further
investigation in parameter setting must be done in order to
assess the optimal parameter setting procedure. None-
theless, a non optimal weight setting improves the source
extraction procedure.

Another interesting issue is the noise level at which the
proposed methodology (as well as classical ICA by means of
FastICA) fail to reliably recover the sources of interest, but it
is beyond the purpose of this work.
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3.2. Real data set

In the analysis of data from the mental imagery
experiment, we performed a preliminary extraction by
means of FastICA for each run. The setup of the objective
function parameters (λ and ts) has been carried out for each
run separately. The value of λ was set according to the values
of negentropy and spatial autocorrelation as in the simulated
data set. The annealing schedule as well was the same
employed for the simulated data set. We furthermore
considered a threshold ts equal to 95% of the highest spatial
autocorrelation among the components found by means
of FastICA.

We performed a comparison between the two approaches
examining the task-related components across the different
runs. All the components were manually inspected and
labeled as referring to a particular cognitive processing stage
(for each processing stage, we chose a single component).
Subsequently, correlation between the spatial maps related to
the same processes in different runs was evaluated. We
considered the mean value of this spatial correlation (and its
variance) for both FastICA and our approach.

The results on components related to the three main
cognitive stages (auditory processing of the instructions,
imagery of shapes and visual/motor responses to visual
targets) are presented in Table 1, together with the results on
the second Imagery component. These results indicate that
the inclusion of the spatial autocorrelation term within the
objective function increases (in a completely blind fashion)
the consistency of the physiologically related independent
components across the different runs.

Fig. 4 shows the time course of the second imagery
component, averaged with respect to the experimental
Fig. 4. Average of the time courses of the components associated with the second
normalized units. (A) FastICA extraction. (B) Negentropy with the additional spa
protocol, in the four runs and for both techniques, while
the spatial layout of the maps is presented in Fig. 5. As
already pointed out in [33], independence alone did not
succeed in retrieving the second imagery component in all
the four runs, as it can be seen in Fig. 4, left panel. In some of
the runs, in fact, the brain networks involved in the cognitive
process associated with the considered mental task were
grouped together with other areas not involved in the task
(and thus the discrepancies in the averages of the four runs).
The spatial regularity terms makes the extraction more
robust, without considerably altering the consistent compo-
nents and increasing the consistency of the “weak” ones (and
physiological plausibility, as the averages are general similar
to those that can be obtained with other techniques that make
explicit use of protocol information), as suggested by the
simulated data set.
4. Conclusion

In this work we have introduced a new procedure to
incorporate prior information into ICA extraction. The
proposed methodology relies on a modification of a classical
ICA objective function. This technique is very general, and
allows optimizing objective functions which are not
differentiable, or defined in a procedural fashion, using a
suitable optimization algorithm as SA.

We have shown how to account for “generic” prior
information by including a spatial regularity term into ICA
extraction, and we have shown that this term helps in
improving source recovery in low CNR situations, while at
high CNRs, it yields results similar to those of classical ICA.
The effectiveness of the source recovery can be seen by
Imagery processing stage in the four runs of subject “CJ.” The values are in
tial regularity term.



Fig. 5. Comparison between the retrieved independent components associated with the late imagery processing stage for the two algorithms in the four runs of
the experiment.
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means of ROC integrals and by the correlation of the
recovered time courses with the original ones. Both these
measures show that our methodology improves robustness of
source extraction procedure to noise.

The same algorithm setting has been employed to analyze
a time-resolved fMRI experiment, involving a complex
mental imagery task. The results confirm the findings on
simulated data set. In fact the additional term did improve the
consistency of the retrieved components across runs,
especially the weak ones, that independence alone did not
prove able to recover in all the runs.

Further investigation is needed in order to extend these
results to the analysis of data acquired with different field
strength and acquisition parameters (e.g., spatial resolution).
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