
 

 

 

Systematic review of radiomic biomarkers for
predicting immune checkpoint inhibitor treatment
outcomes
Citation for published version (APA):

Zhang, C., Fonseca, L. D. A. F., Shi, Z., Zhu, C., Dekker, A., Bermejo, I., & Wee, L. (2021). Systematic
review of radiomic biomarkers for predicting immune checkpoint inhibitor treatment outcomes. Methods,
188, 61-72. https://doi.org/10.1016/j.ymeth.2020.11.005

Document status and date:
Published: 01/04/2021

DOI:
10.1016/j.ymeth.2020.11.005

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 13 Mar. 2024

https://doi.org/10.1016/j.ymeth.2020.11.005
https://doi.org/10.1016/j.ymeth.2020.11.005
https://cris.maastrichtuniversity.nl/en/publications/aa403c3c-c1c2-43d9-8f5d-c58281981d00


Methods 188 (2021) 61–72

Available online 1 December 2020
1046-2023/© 2020 Elsevier Inc. All rights reserved.

Systematic review of radiomic biomarkers for predicting immune 
checkpoint inhibitor treatment outcomes 

Chong Zhang 1,*, Louise de A. F. Fonseca 1,*, Zhenwei Shi, Cheng Zhu, Andre Dekker, 
Inigo Bermejo 2, Leonard Wee 2 

Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, the 
Netherlands   

A R T I C L E  I N F O   

Keywords: 
Solid cancers 
Immunotherapy 
Treatment response 
Immune response 
Radiomics 
Computed tomography 
Systematic review 

A B S T R A C T   

Background: Systemic therapy agents targeting immune checkpoint inhibitors have been approved for use since 
2011. This type of therapy aims to trigger a patient’s immune response to attack tumor cells, rather than acting 
against the tumor directly. Radiomics is an automated method of medical image analysis that is now being 
actively investigated for predictive markers of treatment response in immunotherapy. 
Objective: To conduct an early systematic review determining the current status of radiomic features as potential 
predictive markers of immunotherapy response. Provide a detailed critical appraisal of methodological quality of 
models, as this informs the degree of confidence about current reports of model performance. In addition, to offer 
some recommendations for future studies that could establish robust evidence for radiomic features as immu-
notherapy response markers. 
Method: A PubMed citation search was conducted for publications up to and including April 2020, followed by 
full-text screening. A total of seven articles meeting the eligibility criteria were examined in detail for study 
characteristics, model information and methodological quality. The review was conducted in the Cochrane style 
but has not been prospectively registered. Results are reported following Preferred Reporting Items for Sys-
tematic Review and Meta-Analysis Protocols (PRISMA) guidelines. 
Results: A total of seven studies were examined in detail, comprising non-small cell lung cancer, metastatic 
melanoma and a diverse assortment of solid tumors. Methodological robustness of reviewed studies varied 
greatly. Principal shortcomings were lack of prospective registration, and deficiencies in feature selection and 
dimensionality reduction, model calibration, clinical utility and external validation. A few studies with overall 
moderate to good methodological quality were identified. These results suggest that current state-of-the-art 
performance of radiomics in regards to discrimination (area under the curve or concordance index) is in the 
vicinity of 0.7, but the very small number of studies to date prevents any conclusive remarks to be made. We 
recommended future improvements in regards to prospective study registration, clinical utility, methodological 
procedure and data sharing. 
Conclusions: Radiomics has a potentially significant role for predicting immunotherapy response. Additional 
multi-institutional studies with robust methodological underpinning and repeated external validations are 
required to establish the (added) value of radiomics within the pantheon of clinical tools for decision-making in 
immunotherapy.   

1. Introduction 

Immunotherapy has emerged as an important tool in the oncologists’ 
arsenal of cancer treatment options for advanced-stage disease [1] and 

recalcitrant tumors [2,3]. A subset of modern drugs for immunotherapy, 
known as immune checkpoint inhibitors, aim to trigger an antitumor 
immune response from a patient’s T cells, instead of acting directly 
against the tumor itself [4]. Ipilimumab, a cytotoxic T lymphocyte 
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antigen 4 (CTLA-4), was the first of this new group of drugs to receive 
Food and Drug Administration (FDA) approval in 2011 for the treatment 
of metastatic melanoma [5]. In 2014, two other immune checkpoint 
agents, pembrolizumab and nivolumab, were also approved for meta-
static melanoma; these target the programmed cell death protein 1 (PD- 
1) [5,6] which allowed tumor cells to evade attack by T cells. The 5-year 
survival rate was shown to increase significantly from 5 to 19% to 
26–55% in patients receiving immunotherapy, depending on the 
metastasis location [7]. In 2016, atezolizumab, a programmed cell death 
ligand 1 (PD-L1) inhibitor, was approved for use in metastatic urothelial 
carcinoma, and extended to metastatic NSCLC, showing significant 
improvement in overall survival [8]. El-Khoueiry et al. [9] reported a 
20% response rate with immunotherapy for advanced hepatocellular 
carcinoma patients, in contrast with a 2% response rate observed by 
Llovet et al. [10] for patients treated without immunotherapy. 

The current range of approved uses of PD-1/PD-L1 inhibitors now 
includes metastatic non-small cell lung cancer (NSCLC), metastatic renal 
cell carcinoma, recurrent or metastatic squamous cell carcinoma (SCC) 
of head and neck, hepatocellular carcinoma (HCC) and locally advanced 
or metastatic urothelial carcinoma. Treatment response to immuno-
therapy from single-agent anti-PD-L1/PD-1 ranges between 10 and 40% 
for the overall population depending on the patient indication, but 
seems to be inferior to drugs targeting CTLA-4 [11]. There are also a 
number of side effects of immunotherapy that need to be taken into 
consideration, such as diarrhea, colitis, hypophysitis, immune hepatitis 
and polyarthritis. The cost of immunotherapy treatment is currently 
high, and when we combine the different response to treatment between 
patients and possible side effects, it makes a compelling case to use these 
agents on patients that have the highest probability of a good response to 
treatment. 

A patient’s immune profile is currently obtained through biomarker 
analyses of tissue samples (e.g. biopsy and core biopsy) for inflammatory 
cytokines, genetic mutation variants, levels of PD-L1, levels of CTLA-4 
and the presence of tumor-infiltrating lymphocytes [12]. The expres-
sion of these biomarkers is believed to indicate a favorable response to 
treatment. However, their current predictive power is subject to a 
number of uncertainties related to spatial heterogeneity in the tumor 
and changes in the inflammatory microenvironment over time [13,14]. 
Specifically, small tissue samples might be susceptible to sampling errors 
and may not capture the full extent of a tumor’s heterogeneity. Repeated 
sampling over time in the same area is generally not feasible. 

Radiomics is an emerging new method for non-invasive quantitative 
analysis of medical images, that encompasses a whole tumor in situ with 
its microenvironment, to define important phenotypes that respond well 
to immunotherapy. Delta radiomics refers to the application of radio-
mics techniques in longitudinal studies (comparison of repeated images 
over time in the same patient) [15]. Radiomics uses computer algo-
rithms to extract a large number of intensity distribution, spatial het-
erogeneity (i.e. texture) and morphological object metrics (known as 
“features”) directly from a selected region of interest in a given medical 
image [16]. Radiomics is being actively studied within and outside of 
the immunotherapy sphere for prognostication and treatment outcome 
prediction [16–19]. 

Radiomic features are hypothesized to have close correlation at the 
molecular level with differences in the tumor immune microenviron-
ment, as shown in a number of studies for lung [20], skin [21], liver 
[22], brain [23] and breast [24] cancers. It is expected that radiomics 
could be correlated to gene expressions, the aforementioned immune 
response biomarkers and pathological tumor grade [20]. 

To date, the most commonly used radiological imaging modalities 
for radiomics investigation are computed tomography (CT), positron 
emission tomography (PET) and magnetic resonance imaging (MRI) 
[25]. A collection of individual image features that enables an 
adequately prognostic characterization of a tumor’s imaging phenotype 
is known as a radiomic signature. Eligible features for signatures might 
be selected based on its reproducibility, independence from other 

features or association to the outcome of interest [16]. Several potential 
pitfalls of radiomics signature development have been identified 
[26–28]. There have been several systematic reviews about radiomics 
feature stability [28], methodological quality of radiomics models [29] 
and cancer-specific performance [30,31]. Significant efforts have been 
made to standardize definitions of radiomics features, such as the Image 
Biomarker Standardization Initiative (IBSI), that supports reproducible 
research and wider generalizability of results [32]. To the authors’ 
knowledge, this is the first systematic review that focuses on radiomic 
biomarkers for immunotherapy across multiple cancers [18,33,34]. The 
common element among the cancers and interventions studies is the 
targeting of one or more specific checkpoint inhibitors expressed by 
these tumors. 

This review aims to summarize the current status of radiomics fea-
tures as potential predictors of response following immunotherapy 
treatment. A key motivation within this review is a critical assessment of 
methodological quality of the models that incorporate radiomic fea-
tures, since this helps to establish what level of confidence may be 
derived from the currently reported model performance statistics. By 
way of synthesis, we will explore what further steps could be taken to 
establish a high level of evidence that supports the use of radiomics as 
immunotherapy response markers. 

2. Method and materials 

2.1. Eligibility criteria 

In this study, we considered only the response to systemic treatments 
(alone or in combination with other therapies) that are based on im-
mune checkpoints inhibitors. Other types of immunotherapy (such as 
monoclonal antibodies, vaccines, immune system modulators or T-cell 
transfer therapy) are not within the scope of this review. For the present, 
we only considered those radiomics studies using features that had been 
extracted according to pre-defined mathematical formulae, including 
but not limited to specific features listed in the IBSI. Deep learning 
neural network features were presently neglected (see exclusion 
criteria). Only studies on volumetric radiological scans specifically CT, 
PET and MRI were required. Articles eligible for review were required to 
describe studies on human subjects, be published as full text in peer- 
reviewed journals in the English language, published between 1st 
January 2012 and 30th April 2020. 

2.2. Exclusion criteria 

Deep learning may be viewed as a subset of radiomics that utilizes 
multilayered networks of artificial neurons to derive spontaneous fea-
tures that associate with the desired outcome based on its training data. 
The body of published research and methodological development in 
regard to pre-defined radiomics features has arguably more maturity at 
the time of writing, compared to deep learning radiomics, with is an 
active and rapidly developing topic of the future. Studies on imaging 
modalities other than CT, PET or MRI were excluded. 

2.3. Search strategy 

The search for articles was executed in two phases. An early scoping 
search was attempted in October 2019 to see if there would be enough 
material to attempt a systematic review. This scoping review took into 
consideration the prior knowledge of immuno-oncology experts and 
provided some of the key search terms which could be used to locate 
articles in an electronic database. 

For the primary search in this review, we sought for eligible publi-
cations within the PubMed electronic database after it had been merged 
with EMBASE. The foundation search strategy was a sensitive search for 
diagnostic and prognostic studies, using a combination of the broad 
Haynes [35] and Ingui [36] filters, with the additional modification 

C. Zhang et al.                                                                                                                                                                                                                                   



Methods 188 (2021) 61–72

63

proposed by Geersing [37]. To this, we added the MeSH term “cancer”, 
and the following text words anywhere in the title or abstract: “immu-
notherapy*”, “immune checkpoint”, “radiomic*”, “textur*”, “imag*”, 
“computed tomography”, “CT”, “magnetic resonance”, “MR”, “positron 
emission tomography” and “PET”. The text words were first combined 
with the ‘OR’ operator, then integrated with the MeSH term and the 
diagnostic studies filter using the ‘AND’ operator. Neither specific can-
cer types nor specific outcome types were included as search terms. 

Finally, any articles referred to us by experts, known from the prior 
scoping search and/or found in the references section of the full-text 
articles we evaluated, were all counted as “prior knowledge”. 

2.4. Data management 

A document repository was created on a shared network folder. Full 
texts were obtained through electronic subscription services held by 
Maastricht University. Microsoft Office document templates were used 
for tracking the article collection and data extraction items. 

2.5. Selection process 

We followed the methodological conventions of Cochrane systematic 
reviews and reported our findings according to recommendations of the 
Preferred Reporting Items for Systematic Review and Meta-Analysis 
(PRISMA) checklist [38]. Three authors worked independently 
throughout the PubMed records screening process and then selections 
were combined. After screening by title and abstract alone, full texts 
were downloaded for the subset of potentially eligible articles for 
screening in detail. Lastly, articles unanimously deemed eligible were 
included for detailed review. Disagreements were resolved jointly 
through re-appraisal, and in case of deadlock, a fourth reviewer was 
available. 

2.6. Data extraction 

First, descriptive details of the radiomics studies of immunotherapy 
response were collected and summarized. These were: primary cancer 
type, imaging details, cohort description, sample size, immunotherapy 
target, primary clinical endpoint, software used for radiomics feature 
extraction, and whether multivariable models with combinations of 
radiomic and non-radiomic features had been evaluated. 

Key reported findings of the included studies were extracted and 
summarized. These were: clinical outcome(s) predicted by the model(s); 
number of events and sample sizes used to develop the model; number of 
radiomic and non-radiomic features initially considered versus retained 
in the final model; the type of statistical or machine learning models 
used; reported performance metrics, and whether model calibration was 
assessed. 

2.7. Objectives and prioritizations 

2.7.1. Primary objective 
The primary objective of interest is to determine the current per-

formance status of radiomic feature for non-invasively predicting 
response to immunotherapy treatments. The response may be a direct 
clinically-measurable outcome, overall survival, progression or adverse 
side effects, or it could be a biological surrogate for the patient’s immune 
system being activated, such as overexpression of known biomarkers. 
The predictive performance will be assessed primarily through an 
appropriate discrimination metric for the model in question, such as 
area under the receiver-operator curve (AUC) for binary predictions, or 
concordance index (c-index) for time-to-event predictions. 

2.7.2. Secondary objectives 
To understand what level of confidence may be assigned to the re-

ported predictive performance of a model of immunotherapy response, 

it is essential to delve deeper into the methodological robustness of the 
reviewed papers. Of key concern is whether the reported model per-
formance statistics might be at risk of bias, such that the given model 
performance might be less likely to be reproducible in new and future 
datasets. 

A further secondary objective that comes closely in hand with 
appraisal of methodological robustness is to explore whether there are 
certain aspects of the included immunotherapy radiomics studies that 
might be improved in future. Such critical consideration is needed in 
order to establish high-quality evidence that supports use of radiomic 
features as dependable markers of response to immunotherapy. 

2.7.3. Methodological quality of radiomics studies 
There have been a number of tools proposed to appraise methodo-

logical quality of prognostic and diagnostic studies in general, such as 
QUADAS [39]. Recently, several quality criteria were composed into a 
Radiomics Quality Score (RQS) by Sanduleanu et al. [29] in a systematic 
review of radiomics models not specifically related to immunotherapy. 
As has been found in another recent systematic review by Fornacon- 
Wood et al. [31], methodological quality in radiomics modelling is a 
complex question that is not readily reducible to a single meaningful 
number. We have thus based a methodological appraisal on the points 
raised by the RQS, but refrained from assigning a quality score. In its 
place, we included a brief note of what, in our view, might have 
compromised some part of the methodological robustness in the study. 
Each of the three reviewers worked independently on extracting the 
methodological information, which was afterwards cross-checked by 
another reviewer. The methodological aspects we sought to extract from 
the studies were:  

i. If the authors of the study had prospectively registered the 
intended methodology in a study database prior to 
commencement;  

ii. If there was information about the imaging protocol, such as 
whether it was public or sufficiently detailed (e.g., contrast, slice 
thickness, reconstruction kernel) that might support 
reproducibility;  

iii. Whether image pre-processing steps (e.g., digital filters, isotropic 
resampling) prior to radiomics extraction had been described;  

iv. Whether features had been assessed, prior to the primary study 
subjects, for its repeatability and reproducibility (e.g., using 
phantoms, inter-observer tests, or re-using features tested from 
other studies); 

v. If the authors had applied some form of appropriate feature se-
lection method to minimize the risk of overfitting;  

vi. Whether the correlation of radiomic features to biological and/or 
non-radiomic features had been evaluated;  

vii. If the authors had provided clear justification for defining risk 
groups (e.g. cut-off and operating point) rather than fine-tuning 
for optimal groups, since the latter might produce overly opti-
mistic results of discrimination;  

viii. Whether there was some form of model validation reported, and 
how likely was the validation likely to be a measure of perfor-
mance in new data;  

ix. Whether the radiomics model performance had been compared 
with alternative predictors, preferably current ‘gold standards’ if 
they exist (such as TNM staging);  

x. Whether the clinical utility of the model had been evaluated, 
through some form of cost-benefit or decision-curve analysis. 

3. Results 

3.1. Search results 

A PRISMA flowchart (see Fig. 1) illustrates the screening process for 
full-text articles to review. In addition to 399 records located through 
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PubMed, three publications were included based on prior knowledge 
and one because it was cited by an article. We evaluated 15 full-text 
articles for eligibility, out of which eight articles were eventually 
excluded (three articles did not involve any patients treated by immu-
notherapy, one was for a monoclonal antibody – EGFR, and four articles 
did not involve radiomic features). The final number of relevant publi-
cations to review in detail was seven [12,40–45]. 

3.2. Overall characteristics of included studies 

Characteristics of the articles reviewed in depth are given in Table 1. 
The majority of studies (4 out of 7) addressed primary non-small cell 
lung cancer (NSCLC) [12,40–42], including one study that examined 
both NSCLC and metastatic melanoma [12]. Only one study studied 
exclusively metastatic melanoma [45]. The remaining two studies 
[43,44] examined a diverse collection of advanced cancers. 

All studies in this review utilized volumetric CT imaging, and almost 
exclusively contrast-enhanced CT. One study [43] did not explicitly 
mention the use of a contrast agent. The majority of studies used CT 
scanners from two or more vendors, which could be important to ac-
count for inter-scanner heterogeneity. One study used only a single 
scanner [40] while another gave little information about the scanners 
used [43]. 

Three studies included prospectively enrolled patients from other 
clinical trials [41,44,45]; one re-used prospective trial data as their 
training cohort [44] and the other two split them between training and 
validation [41,45]. The remainder of the studies used retrospective and/ 
or single-institution cohorts. 

Patients were mostly in advanced stages (e.g. metastatic, deemed 
uncurable, or stage IIIA or higher) [12,42,44,45]. 

The total sample size (training and validation, if any) ranged from 32 
[43] to 491 [44]. The latter study [44] also had the biggest training set 
size of 135 patients, and included genome data from open access re-
positories for their external validation. Trebeschi et al. [12] used 
genomic data, but only to observe association, not for external 
validation. 

Various immunotherapy checkpoints were targeted by the inter-
vention, including CTLA-4 in two studies [41,45], either PD-1 or PD-L1 

in six studies, and a combination of both PD-1/PD-L1 with CTLA-4 in 
two studies [41,45]. The study by Colen et al. [43] included a number of 
different immune checkpoint targets. 

Overall survival was included as a clinical endpoint in three studies 
[40,44,45], and either short-term progression or hyper-progression in 
only one study [41]. One single study looked at adverse events, i.e. 
immunotherapy-induced pneumonitis [43]. 

Even among a small number of reviewed studies, four distinct 
radiomic feature extraction software packages are named and used. One 
of the studies used in-house code generated in Matlab [41], while two 
other studies [12,43] neglected to give any information about which 
software was used. 

In all except two of the studies [12,43], the predictive performance 
of radiomics features was combined with non-radiomics features in 
multivariable models. 

3.3. Details and results of radiomics-based models in included studies 

The results of radiomics-based models as described in the included 
studies have been summarized in Table 2, along with modelling details. 
It is worth noting that reported performances across studies should not 
be compared directly when referring to different outcomes or cancer 
types. 

The four studies with NSCLC patients reported performance indices 
in a wide range from 0.61 up to 0.87. The single survival analysis re-
ported a c-index of 0.72 in the validation cohort. For the remaining three 
studies, combining radiomic features with other predictors either 
improved the radiomics-model only slightly (AUC increased from 0.66 
to 0.67) or moderately (0.72 to 0.80), but none of these added values 
was demonstrated in external validation datasets. Neither of these re-
sults specifically demonstrated the added value of radiomics beyond 
biomarkers only. One study combining both NSCLC and metastatic 
melanoma reported overall AUC of 0.76 for both cancers in a validation 
set. 

A single survival analysis on exclusively metastatic melanoma 
returned a c-index of 0.72 in validation (reproducible from training set, 
also 0.72) for overall survival, but gave no result for treatment response. 

The two studies on various advanced cancers returned conflicting 
findings; one reported an AUC of 1.00 with perfect sensitivity and 
specificity [43] – but the finding needs to be called into question due to 
methodological deficiencies, that we shall discuss in the next section. 
The other reported AUCs in the range of 0.67–0.76 in external validation 
datasets, that appeared to be more plausible. The latter study by Sun et 
al. [44] estimated a hazard ratio of 0.58 (95% confidence interval: 
0.39–0.87) for the radiomic signature on overall survival. 

None of the studies examined model calibration, such as calibration- 
in-the-large (offset) or calibration slope. 

All survival models were based on Cox proportional hazards analysis. 
The majority of binary outcome models were logistic regression or 
regularized regression, though one study used random forests [12] and 
another used anomaly detection [43]. 

The number of radiomic features considered as candidate variables 
ranged from 8 up to over 5000. In all the studies, the number of 
considered features outstripped the patient cohort sizes and numbers of 
events, on occasion by orders of magnitude. This recapitulates the need 
to have careful feature selection, dimensionality reduction and model 
validation to be able to minimize the risk of overfitting. Event rates 
ranged from as low as 6% of the sample size, up to a maximum of 39%, 
but in two studies [40,45] the numbers of events were unreported. Only 
the study by Tunali et al. [41] reported using synthetic minority over-
sampling (SMOTE) as a means to address the highly unbalanced rate of 
events. 

3.4. Methodological quality of the included studies 

An overview of the methodological quality of the included studies, 

Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) flow diagram illustrating the numbers of records screened and 
excluded, to arrive at seven articles included in this review. 
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Table 1 
Summary of general study characteristics.  

Reference Primary cancer Imaging protocol 
details of relevance 
for radiomics 

Cohort description Sample size Immuno- 
therapy 
target(s) 

Primary clinical 
endpoint(s) 

Radiomics 
extraction 
software 

Combined 
with non- 
radiomics 
predictors 

Tang 
et al., 
2018 

NSCLC Pre-treatment 
contrast-enhanced 
CT scans. Only 
single scanner. No 
further scan 
acquisition details 
given in manuscript 
or suppl. materials. 

Retrospective 
institutional cohort of 
non-metastatic 
NSCLC treated by 
definitive surgery 
without induction 
therapy. (Training) 
Treated December 
2000 through 
February 2012. 
(Validation) Treated 
January 2006 to 
December 2009. 

114 (training) 
176 (validation) 

PD-L1 Overall survival IBEX, version 
not specified 

Yes; clinical 
risk factors 
and use of 
adjuvant 
therapy 

Tunali 
et al., 
2019 

NSCLC Contrast-enhanced 
CT within 30 days 
prior to initiation of 
immunotherapy. 
Details in suppl. 
materials. Scanners: 
GE/ 
Siemens0.80x0.80 
mm; 3 mm slices7 
convolution kernels, 
majority were B41f. 

Prospectively 
enrolled in industry- 
sponsored clinical 
trials of either anti- 
PD-1 or anti-PD-L1 as 
single agent, or in 
combination with 
CTLA4 as second 
agent. Treated June 
2011-June 2016. 

228 Either PD-1/ 
PD-L1, or in 
combination 
with CTLA4 

Progression or 
hyper- 
progression at 2 
months 

In-house, 
based on 
Matlab 
v2016b and 
C++

(detailed in 
suppl. 
materials) 

Yes: clinical 
and 
conventional 
biomarkers 

Yoon 
et al., 
2020 

NSCLC 
(adenocarcinoma 
only) 

Contrast-enhanced 
CT of chest. Multiple 
CT scanners In- 
plane spatial 
resolution not 
reported; 1–1.25 
mm slices (axial) 
and 2.5–3 mm slices 
(coronal) Soft 
tissue-optimized 
kernels. 

Retrospective 
institutional cohort of 
advanced stage 
(>IIIA) lung 
adenocarcinoma with 
primary lesion 
distinguishable in CT. 
Diagnosed between 
January 2016 to 
August 2018. 

153 PD-L1 PD-L1 expression AVIEW 
Research, 
version 
unknown 
(Coreline Soft 
Inc., Seoul, 
South Korea) 

Yes; clinical 
factors and 
EGFR status 

Trebeschi 
et al., 
2019 

NSCLC or 
melanoma 

(Radiomics 
biomarker) 
Contrast-enhanced 
CT before and 12 
weeks after start of 
treatment. Scanners: 
Toshiba/Siemens. 
0.75x0.75 mm; 1 
mm slices. (Genome 
association) 
Contrast-enhanced 
CT acquired within 
60 days of diagnosis, 
no further details 
found in article or 
suppl. materials. 
(Anti-association) 
Same settings as for 
radiomics 
biomarker cohort. 

(Radiomics) 
Retrospective 
institutional cohort of 
(stage unknown) 
NSCLC and metastatic 
melanoma receiving 
anti-PD-1 
immunotherapy 
between2014 and 
2016. (Genomic 
association only) 
Single institutional 
cohort from another 
country, surgically- 
treated NSCLC 
patients between 
2006 and 2009. (Anti- 
association with 
chemotherapy 
outcome) Stage IV 
NSCLC treated with 
cytotoxic 
chemotherapy 
treated between 2015 
and 2016. 

203 (training: 
133; testing: 70) 
262 (genomics) 
39 
(chemotherapy) 

PD-1 Radiologically- 
assessed 
(RECIST) 
immunotherapy 
response 

Not reported 
in either 
article or 
suppl. 
materials. 

No 

Schraag 
et al., 
2019 

Melanoma Contrast-enhanced 
whole-body CT 
prior to 
immunotherapy and 
within 2 months of 
clinical data 
registration. CT 
image quality 
visually pre- 
screened before use. 
No details of 

Prospectively 
registered patients 
between June 2006 to 
June 2016 with 
metastatic melanoma 
treated with anti-PD- 
1, anti-CTLA4 or a 
combination of both, 
with available 
baseline 
demographics and 

69 (training) 34 
(validation) 

PD-1 and/or 
CTLA 4 

Overall survival 
and 
radiologically- 
assessed 
(RECIST) 
immunotherapy 
response 

Mint 
Lesion™ 
v3.0 (Mint 
Medical, 
Dossenheim, 
Germany) 

Yes, with 
conventional 
biomarkers 
(LDH/S100B) 
and tumor 
burden 

(continued on next page) 
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with brief explanatory comments, has been provided in Table 3. None of 
the studies had been prospectively registered in a study database, and 
none of the studies provided an evaluation of potential clinical utility by 
way of a cost-benefits or decision curve analysis. 

Methodological quality across the included studies was found to be 
highly heterogeneous with respect to risk of biased estimates for 
discriminative performance. The studies that included NSCLC subjects, 
viewed as a whole, were qualitatively of higher methodological quality 
compared to the rest, in part due to clarity of imaging protocols, in-
clusion of appropriate pre-processing, and tests of feature repeatability 
or reproducibility apart from the main study. Among the non-NSCLC 

work, the report of Sun et al. [44] were subjectively rated good or 
moderate on more of the methodological aspects. 

Sufficient detail of imaging protocol to support reproducibility and 
validation were rated moderate or good in five studies, and poor in two 
studies [40,45] that only used a single CT scanner in the institution and/ 
or did not provide details of image acquisition settings. The better 
studies on this aspect utilized multiple vendors’ scanners during model 
development and provided information for others to attempt to repro-
duce their scans. 

Image pre-processing steps prior to radiomics extraction, such as 
isotropic voxel resampling and intensity normalization, are important 

Table 1 (continued ) 

Reference Primary cancer Imaging protocol 
details of relevance 
for radiomics 

Cohort description Sample size Immuno- 
therapy 
target(s) 

Primary clinical 
endpoint(s) 

Radiomics 
extraction 
software 

Combined 
with non- 
radiomics 
predictors 

scanner(s) and 
acquisition protocol 
(s) in article. 

biomarkers (LDH and 
S100B). 

Colen 
et al., 
2018 

Multiple types of 
advanced cancers 

Unspecified chest 
CT according to 
institution protocol. 
Scanners: GE/ 
Philips/Siemens 
0.78x0.78 mm, 
2–2.5 mm slices 
Unspecified kernel. 

Retrospective 
institutional cohort of 
patients treated on 
early phase 
immunotherapy 
clinical trials with at 
least one 
immunotherapeutic 
agent (including, 
among others 
immune checkpoint 
inhibitors). Treated 
between January 
2010 and July 2015. 

Case-control 
design (2 
positive cases; 
30 controls) 

Multiple 
targets 
including 
immune 
checkpoint 
(s) 

Immunotherapy- 
induced 
pneumonitis 

Not reported 
in either 
article or 
suppl. 
materials 

No 

Sun et al., 
2018 

Multiple types of 
advanced solid 
tumors 

(Radiomics 
development) 
Contrast enhanced 
CT from 4 different 
scanners 
(predominantly GE) 
and various tube 
potentials (mainly 
120kVp). Axial 
resolution 
0.67–0.82 mm; slice 
thickness 1.25–2 
mm. Additional 
details of image 
acquisition settings 
(also for validation 
cohorts) were 
provided in suppl. 
materials. 

(Training) Re-use of 
prospective clinical 
trial of patients with 
various types of 
uncurable or 
metastatic solid 
tumors. Enrolled 
between May 2012 
and March 2016. 
(Validation) Open 
access data of The 
Cancer Genome Atlas 
(TCGA) comprising 
lung, liver, bladder 
and head-and-neck 
tumors. Archive 
accessed until June 
30, 2017. (Immune 
phenotype) 
Retrospective 
institutional cohort 
with most extreme 
tumor immune 
phenotypes. Treated 
between Aug 2005 
and November 2015. 
(Treatment outcome) 
Re-use of data from 
five distinct Phase I 
clinical trials of either 
anti-PD-1 or anti-PD- 
L1 monotherapy 
against advanced 
solid tumors. Patients 
enrolled between 
December 2011 and 
January 2014. 

135 (training) 
119 (validation) 
100 (immune 
phenotype) 137 
(treatment 
outcome) 

PD1/PD-L1 (1) Presence of 
tumor-infiltrating 
CD8 + cells, (2) 
association with 
immune 
phenotype, and 
(3) overall 
survival after 
immunotherapy 

LIFEx, v3.44 Yes; with 
region of 
interest 
location as 
variable. 

Abbreviations used in the table – NSCLC: non-small-cell lung carcinoma; HCC: hepatocellular carcinoma; CT: computed tomography; MRI: magnetic resonance im-
aging; PD-L1: programmed death-ligand 1; PD-1: programmed cell death protein; ; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; EGFR: epidermal growth 
factor receptor; LDH: lactate dehydrogenase; RECIST: response evaluation criteria in solid tumors; ADC: apparent diffusion coefficient; DCE: dynamic contrast 
enhanced; suppl.: supplementary; approx.: approximately 
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for improving feature standardization, particularly textural radiomic 
features. This aspect has been rated as good for four studies that docu-
mented appropriate pre-processing, but three studies[42,43,45] were 
devoid of such information. 

Generally, a priori feature selection on the basis of repeatability (e.g., 
test–retest) and reproducibility (e.g., inter-observer study) were more 
commonly performed in the NSCLC studies. Three studies used some 
degree of feature pre-selection [40–42], but four did not report any test 
of feature stability. 

Overall, methods reported by all seven studies for feature selection or 

dimensionality reduction, which is one of the key steps to reduce risk of 
overfitting, were rated as suboptimal for a variety of reasons. Most 
studies failed to assess the internal validity of the feature selection by 
adding cross-validation or bootstrap resampling. Three studies used 
exclusively univariate association with an outcome to select features for 
the model [41,42,45] without adjustment for multiple-testing; this leads 
to a high risk of biased model results. In one of these, risk of overfitting 
was partly ameliorated by regularization with repeated cross-validation 
[42] and another study used backwards stepwise regression but then did 
not use either resampling and cross-validation [41] to check for 

Table 2 
Summary of radiomics-based prediction model characteristics described in included studies.  

Reference Predicted outcome(s) Number of events 
(Number of samples) 

Number of features: considered (radiomics)/in 
final model (radiomics) 

Type of model Reported performance Model 
calibration 

Tang et al., 
2018 

OS ‡, clustering † NR (114) (12)/(4)  

Intensity histogram features - mean, standard 
deviation, uniformity; Textural feature - GLCM 
homogeneity. 

k-nearest 
neighbors 
Cox proportional 
hazards  

Clustering: p = 0.002 
OS: C-index: 0.72 

No 

Tunali et al., 
2019 

TTP < 2 months †

HPD †

TTP: 54 (228)  

HPD: 15 (172) 

625 (600)/8 (4)  

Texture features in TTP model - Radial gradient 
border SD-2D, 3D Laws E5L5E5, border 3D Laws 
E5E5L5 and border quartile coefficient of 
dispersion. 
Texture features in HPD model – NGTDM strength.  

Logistic 
regression 

TTP: 
AUC: 0.717 
(radiomics only) 
AUC: 0.804 
(combined model) 
Sen: 67.91%; Spe: 
74.44% (combined 
model)  

HPD: 
AUC: 0.865 
(combined model) 
Sen: 91.34%; Spe: 
66.14% (combined 
model)  

No 

Yoon et al., 
2020 

PD-L1 expression 
(positive/negative) †

53 (153) 63 (58)/8 (4)  

Texture only - GLCM_ASM, GLRLM_RV, 
GLRLM_RE and GLRLM_SRHGE 

Logistic 
regression 

AUC: 0.661 (95% CI 
0.580–0.735) 
(radiomics) 
AUC: 0.667 (95% CI 
0.575–0.760) 
(combined) 
Sen: 52.8%, Spe: 
76.0% (radiomics 
only) ¶  

No 

Trebeschi 
et al., 2019 

Treatment response† NSCLC: 135 (266) 
Melanoma:77 (274) 

5865/68  

Radiomic features appearing in the final model 
were not individually listed. 

Random forest  AUC: 0.76 (p < 0.001) 
for both cancers.  

No 

Schraag 
et al., 2019 

OS ‡

Treatment response†

OS: NR (69)  

TR: 27 (42) 

8 (5)/OS: 3(2)/TR: 0 #  

Intensity histogram - kurtosis; classical image 
measure – tumor burden. 

Cox proportional 
hazards,  

Logistic 
regression  

OS: 
C-index: 0.720 
(training) 0.716 
(validation) 
Response: - # 

No 

Colen et al., 
2018 

Immunotherapy- 
induced pneumonitis†

2 (32) 1860/2  

Intensity histogram features only – skewness & 
angular variance of sum of squares 

Anomaly 
detection 
algorithm  

AUC, Sen, Spe: 1.00 
(LOOCV)  

No 

Sun et al., 
2018 

CD8 cells (high vs 
low)†
OS ‡

Training: 135  

Validation*: 119/ 
100/53(137) 

84 (78)/8 (5)  

Intensity histogram – tumour minimum; textural 
GLRLM features - SRLGE, SRHGE, LGRE and 
LRLGE.  

Linear elastic net  CD8*:  

AUC: 0.74 (95% CI 
0.66–0.82)/ 
AUC: 0.67 (95% CI 
0.57–0.77)/ 
AUC: 0.76 (95% CI 
0.66–0.86) 
Sen: 36%, Spe: 90% ¶ 
OS: HR 0.58, 95% CI 
0.39–0.87; p = 0.0081 

No 

Abbreviations - AUC: Area under the curve; CI: confidence interval; HR: Hazard ratio; HPD: Hyperprogressive disease; LOOCV: Leave-one-out cross-validation; NR: Not 
reported; OR: Odds ratio; OS: overall survival; Sen: sensitivity; Spe: specificity; TR: treatment response; TTP: time to progression; GLCM : grey-level co-occurrence 
matrix; GLRLM : grey-level run-length matrix; NGTDM : neighbouring grey-tone difference matrix. Symbols - *multiple validation datasets; #: no radiomic feature 
predicted TR, no performance reported; ¶ based on optimal cutoff point; †: Binary Classification ‡: Time-to-event 
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Table 3 
Assessment of methodological quality of included studies.  

Reference Study pre 
registered 

Imaging 
protocol 

Image pre- 
processing 

Feature 
reproducibility 

Dimensionality 
reduction 

Correlations 
with non- 
radiomic 
biomarkers 

Justification 
of risk 
groupings 

Independent 
validation 

Compared 
radiomics to 
alternatives 

Clinical 
utility 
evaluated 

Tang et al, 
2018 

No Poor: only 
single 
scanner, 
details neither 
in article nor 
suppl. 

Good: details 
provided in 
suppl. 

Good: multi- 
user 
delineations and 
selected model 
with only 
reproducible 
features. 

Moderate: re- 
used 12 features 
from another 
study then 
hierarchical 
clustering to 
select model; 
however, no 
correction for 
multiple testing. 

Good: 
clusters 
correlated 
with PD-L1 
and CD3 +
from 
pathology 
analysis. 

Poor: risk 
groups 
defined only 
by clustering. 

Moderate: 
validation set 
in same center 
but split by 
time. 

Good: 
tested 
against 
immune- 
pathology 
features 

Not 
evaluated 

Tunali et 
al, 2019 

No Good: two 
scanners, 
main details 
provided in 
suppl. 

Good: details 
provided in 
suppl. 

Good: Test- 
retest (RIDER 
set) used to 
select 
repeatable 
features. 

Poor: Univariate 
selection to 
choose features 
for multivariable 
modelling 
without multiple- 
testing correction; 
pairwise and 
volume- 
correlation 
elimination; but 
then backwards 
stepwise selection 
without either 
resampling or 
cross-validation. 

Poor: Only 
combined 
clinical and 
radiomic 
models but 
did not test 
their 
correlation. 

Moderate: 
median cut- 
offs were used 
for clinical 
model, but 
then optimal 
cutoffs for the 
rest. 

Poor: lacking 
an 
independent 
test or 
validation 
cohort. 

Good: 
tested 
against 
clinical 
variables. 

Not 
evaluated 

Yoon et al, 
2020 

No Moderate: 
scanners from 
3 vendors, 
details in 
article but did 
not specify 
pixel spacing. 

Poor: nothing 
stated for 
image pre- 
processing 
steps. 

Good: 
Interobserver 
reproducibility 
test to initially 
select features 

Moderate: 
Univariate 
selection of 
reproducible 
features using the 
outcome but no 
correction for 
multiple testing, 
final lasso 
regularization 
step was 
appropriate using 
repeated cross- 
validation. 

Poor: no 
correlation 
testing 
against non- 
radiomics 
features. 

Poor: 
optimized cut- 
off used to 
select 
operating 
point for 
classification. 

Moderate: 
Internal 
validation by 
bootstrapped 
optimism 
correction. 

Good: 
tested 
against 
clinical 
variables. 

Not 
evaluated 

Trebeschi 
et al, 
2019 

No Good: Two 
scanners, 
main details 
provided in 
suppl. 

Good: Details 
provided in the 
suppl. 

Poor: no check 
of either 
repeatability or 
reproducibility 
of features. 

Moderate: 
Random forest 
with wrapper- 
type feature 
elimination, but 
no detailed 
information 
provided. 

Good: tested 
against 
genetic 
profile for 
significant 
associations 

Poor: No 
details about 
cut-off used 
for survival 
risk groups. 

Good: two 
unique cohorts 
for validation. 

No Not 
evaluated 

Schraag et 
al, 2019 

No Poor: image 
quality 
visually 
screened but 
no further 
details of 
scanner(s) or 
acquisition. 

Poor: nothing 
stated for 
image pre- 
processing 
steps. 

Poor: no check 
of either 
repeatability or 
reproducibility 
of features. 

Poor: exclusively 
univariate Cox 
regression against 
the outcome was 
used to select 
individual 
features for 
modelling. 

Poor: no 
correlation 
analyses with 
non-radiomic 
biomarkers. 

Poor: optimal 
threshold 
tuning used to 
define risk 
groups. 

Poor: 
validation set 
exists: not 
stated if the 
cohort was 
split in a non- 
random 
manner. 

Good: 
tested 
against 
clinical 
factors and 
tumor 
burden. 

Not 
evaluated 

Colen et 
al, 2018 

No Moderate: no 
details about 
scanners, 
some settings 
given in 
detail. 

Poor: no 
details on 
digital filters 
or resampling, 
intensity 
discretization 
reported. 

Poor: no check 
of either 
repeatability or 
reproducibility 
of features. 

Poor: MRMR 
method used to 
select two 
radiomics 
features for two 
events, no 
justification for 
effect of patient 
sampling or gross 
imbalance in 
number of events. 

Poor: no 
correlation 
analyses with 
non-radiomic 
biomarkers. 

Poor: no risk 
group 
analysis. 

Poor: internal 
cross- 
validation 
only without 
accounting for 
unbalanced 
sample. 

No Not 
evaluated 

Sun et al, 
2018 

No Good: 
multiple 
independent 
scanners, 

Good: 
isotropic voxel 
resampling 
described: no 

Poor: no prior 
test of 
repeatability or 

Moderate: 
appropriate use of 
elastic-net 
regularized 

Good: 
assessed 
association 
between 

Good: median 
used as group 
cut-offs for 

Good: three 
cohorts (one 
external) used 

No Not 
evaluated 

(continued on next page) 
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robustness. Tang et al. [40] only started out with a relatively small set of 
twelve pre-selected radiomic features taken from a previous study. Two 
studies used wrapper-type feature elimination with either random for-
ests [12] or elastic-net regularization [44], but lacked details about 
resampling and cross-validation during the process. In one study [43], 
the number of radiomic features retained equaled the number of events 
in the small dataset, with no procedure used to address imbalance in 
outcomes; this almost certainly ensured that model overfitting would 
occur. 

Associative or correlation studies of image-derived features against 
known biological markers are very helpful to provide a sound rationale 
and explainable basis for radiomics. However, only three studies 
[12,40,44] assessed the correlation between radiomic and non-radiomic 
features, such as pre-existing genetic or immune-response biomarker. 
Tang et al. [40] reported significant correlations between radiomics- 
based clusters with PD-L1 and CD3+ expressions. Sun et al. [44] re-
ported that their radiomic signature was correlated with levels of tumor- 
infiltrating lymphocytes and genetic features. Trebeschi et al. [12] re-
ported that top-ranking genes with significant association to the radio-
mic signature were involved in mitosis and cell-cycle progression. 

Justifications of risk groups were generally poorly executed among 
the reviewed papers. Reporting of model performance based on 
optimally-tuned risk group cutoffs present a high risk of overly- 
optimistic results and irreproducible performance. Sun et al. [44] and 
Tunali et al. [41] were the only two that used an unbiased cut-off for 
dichotomizing risk scores, such as the median. However, Tunali et al. 
[41] only did this for the clinical model, but used tuning-optimized cut- 
offs for the radiomics models. Sun et al. [44] also used optimal cutoff 
tuning to select an operating point for sensitivity and specificity, instead 
of a clinically-relevant justification. Other studies only used clustering to 
define risk groups [40], or exclusively used optimally-tuned cutoffs 
[42,45], or did not report [12,43]. 

Model validation on non-randomly sampled cohorts, preferably on 
multiple datasets derived by fully independent institutions and unre-
lated investigators, remains the benchmark test of robust model per-
formance. Such validation was only performed by Trebeschi et al. [12] 
and Sun et al. [44]. Tang et al. [40] and Yoon et al. [42] were rated as 
moderate, because the former used a non-random (temporally) split 
cohort from the same institution for validation, and Yoon et al. [42] used 
a repeated bootstrapping method test for over-optimism. Independent 
validation was absent from Tunali et al. [41], and insufficient detail 
about the validation cohort was given by Schraag et al. [45]. The perfect 
results reported by Colen et al. [43] had been derived by internal cross- 
validation on 32 patients (of which there were only 2 pneumonitis 
events) without accounting for the low rate event rate and extremely 
unbalanced sample. 

In regards to attempting to estimate the added value of radiomic 
features for predicting immunotherapy treatment response, four studies 
[40–42,45] compared radiomic predictors against alternative predictors 
such as clinical risk factors. 

4. Discussion 

The objective of this systematic review was to determine the current 
status of radiomics models (including clinical models that incorporate 
radiomic features) for predicting response to systemic treatment with an 
immune checkpoint-targeting agent. Given the potential toxicity and the 
foreseeable cost of immunotherapy, the availability of robust prediction 
models would allow personalizing immunotherapy towards patients 
who are most likely to derive net positive benefit from it. 

This review was conducted in the Cochrane style, as closely as 
pragmatically possible, and we have reported these findings according 
to PRISMA guidelines (a completed PRISMA checklist is provided in our 
Supplementary Materials). 

We selected seven full-length articles to review after a careful 
screening and selection process, resulting in a total pool of 1648 subjects 
from a variety of advanced, late stage or incurable solid tumors. A 
pooled statistical metanalysis was not possible given the very low 
number of studies as well as heterogeneity in population characteristics, 
modelling methodology and clinical endpoints used. The risks of irre-
producibility and various pitfalls concerning radiomics models have 
been highlighted by previous articles. Thus, a valuable and informative 
part of our review is a deeply detailed analysis of the methodological 
quality of the included studies, specifically in the direction of potential 
for over-optimism in the reported results and the risk that published 
discriminative metrics might not be reproducible in future studies. 
Following a qualitative synthesis of our overall findings, we propose a 
number of recommendations that could help future investigations of 
immunotherapy radiomics obtain more robust estimates of prediction 
performance. 

4.1. Qualitative synthesis 

The included studies can be grossly divided into NSCLC, metastatic 
melanoma and a diverse group of advanced solid tumors. Methodolog-
ical robustness was overall higher in studies with a major proportion of 
NSCLC patients compared to the rest, most noticeably in the reporting of 
imaging protocol, appropriate use (and documentation of) digital image 
pre-processing, use of external datasets (such as the RIDER Test-Retest 
[46], and inter-observer delineation studies) to partially pre-select 
radiomic features, and comparing radiomics predictors against other 
(clinical or biomarker) predictors to estimate the added value of 
radiomics. 

Tang et al. [40] has reported a c-index of 0.72 for the prediction of 
overall survival in NSCLC with reasonably good methodology, but this 
estimate is significantly weakened by being a single-institution study 
employing only a single CT scanner, with clinical risk groups defined 
purely by optimal cluster separation. The random forest model by Tre-
beschi et al. [12] reported an AUC of 0.76 for NSCLC and metastatic 
melanoma patients, from a reasonably robust study with good external 
validation, but leaving 68 radiomic features in the final model presents 

Table 3 (continued ) 

Reference Study pre 
registered 

Imaging 
protocol 

Image pre- 
processing 

Feature 
reproducibility 

Dimensionality 
reduction 

Correlations 
with non- 
radiomic 
biomarkers 

Justification 
of risk 
groupings 

Independent 
validation 

Compared 
radiomics to 
alternatives 

Clinical 
utility 
evaluated 

summary of 
imaging 
settings, only 
missing 
contrast 
infusion 
detail. 

enhancement 
filters used. 

reproducibility 
of features. 

regression, but no 
details of cross- 
validation during 
feature selection. 

radiomic 
signature and 
genomic 
signature, and 
tumor- 
infiltrating 
lymphocytes 

CD8 and 
radiomic score 

for testing and 
validation.  
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some questions about model robustness. Yoon et al. [42] and Tunali et al. 
[41] were comparable in methodological quality, and we detected 
different methodological flaws in each. These studies reported con-
flicting results about the added value of radiomics. The higher discrim-
ination and greater added value of radiomics appeared to be for clinical 
progression endpoints, but given that no independent validation was 
conducted, reported performance estimates are likely to be over- 
optimistic. 

A discriminative metric (either AUC or c-index) around the 0.7 value, 
therefore, seems to be the likely current status of performance of 
radiomics models for predicting overall survival or treatment response, 
with the caveat that the number of studies is too small to be conclusive. 

The performance of radiomics models for immunotherapy in mela-
noma is not presently possible to judge. We located only two radiomic 
studies including metastatic melanoma, and the analysis in one of these 
was combined with NSCLC patients. We detected several methodolog-
ical flaws in the one melanoma-only study [45], which then reported 
AUC in a validation set randomly sampled from the same cohort as the 
training set. This has been repeatedly pointed out by statisticians as the 
weakest method of estimating of out-of-sample predictive performance, 
since the validation and training sets are almost always guaranteed to 
have the same distribution of factors. 

Among two studies comprising multiple solid tumors, the results by 
Sun et al. [44] appear to be dependable due to reasonably robust 
methodology. In multiple independent validation sets, their radiomics 
model had AUCs in the range 0.67–0.76, and they estimated a hazard 
ratio for overall survival of 0.58 for their radiomics signature. The 
perfect discrimination result reported in the only other multiple-tumors 
study is difficult to take seriously, due to the use of a case-control study 
design and multiple major flaws in modelling methodology. 

As above, we propose that a discriminative index in the vicinity of 
0.7 might also be valid for the current status of radiomics- 
immunotherapy studies on multiple tumors, with the same caveat of 
there being too few studies presently to be conclusive. 

4.2. Limitations of the present review 

The present study is an early systematic review in an emerging “hot 
topic” and clinically impactful question; could radiomics play a role in 
immunotherapy response prediction? Systemic therapies targeting one 
or more immune checkpoint inhibitors were approved for use in humans 
not so long ago, and we clearly need more time for high-quality evidence 
to emerge. Applying strict criteria to answer our selected question, we 
only reviewed a total of seven eligible peer-reviewed full-text articles. 
This is clearly not enough to make any conclusive statements, but we 
have attempted to summarize a robust state-of-present-art of radiomics 
for discriminating immunotherapy response based around a detailed 
analysis of methodological quality. Due to the low number of studies, 
methodological heterogeneity and variation of clinical endpoints, we 
have not attempted a statistical meta-analysis. 

Additionally, though this review was conducted by a dedicated team, 
we did not have the resources to exhaustively sift the grey literature (e.g. 
unpublished reports, conference abstracts, non-peer reviewed publica-
tions) to locate everything on this topic. We only searched a single 
electronic database, though large, that does not include all possible 
journals of interest, and is known to have a time lag from publication to 
indexation. We elected to skip hand-searching of printed indices or 
manual search of journal tables of content, as these required resources 
we did not presently have. We also acknowledge that our automated 
search needs further refinement in future, but we presently made use of 
clinical experts and prior knowledge to supplement our search. At the 
end, we successfully found a few focused studies on this question, pre-
senting robust modelling results, with moderate and/or good method-
ology overall. 

Activity in deep learning analysis of medical images for prognosis or 
prediction, i.e. “deep radiomics”, is likely to grow exponentially in the 

next few years. We recognize this will be a future hot topic for review, 
and also acknowledge that deep learning has potential to push bound-
aries much further in immunotherapy response prediction. As 
mentioned in the exclusion criteria, we left out the deep learning studies 
for the present review, because the radiomics community needs more 
time to mature with rapidly evolving deep learning techniques, while a 
better understanding of methodological robustness already exists for 
modelling with hand-crafted features. We foresee that methodological 
pitfalls in deep radiomics will be not any less troublesome with regards 
to risk of biased model performance and loss of external validity. Deep 
learning may likely exacerbate the severity of the aforementioned 
methodological flaws, and potentially render model performance 
interpretation even more difficult than it already is. 

Lastly, we have not performed a careful analysis of selective 
reporting within studies, nor of publication bias across all studies. We 
can only note that all reviewed articles, irrespective of methodological 
quality, reported “positive” findings for their models, i.e. all discrimi-
native indices (AUC or c-index) were reported to be greater than 0.5. 
There were no articles reporting “negative” results of modelling among 
the eligible studies to review. 

4.3. Current challenges and recommendations for future studies 

The majority of studies we reviewed made pragmatic use of retro-
spective patient data, and most consisted of institutional cohorts. These 
were generally limited in terms of the number of patients, unbalanced in 
terms of outcomes, and model validation cohorts were likely to be ho-
mogenous with the model development cohort. The latter implies that 
little useful knowledge about future performance in unseen data would 
be derived by randomly sampling a hold-out subset for validation. 

The majority of the reviewed studies lacked adequate (non-randomly 
assigned) external validation and therefore their reported model per-
formance would be difficult to widely generalize. Furthermore, all of the 
studies had focused exclusively on model discrimination performance, 
but had neglected to report on model calibration, calibration-in-the- 
large or other estimates of “goodness” of model fit. 

In retrospective studies, investigators have no choice other than to 
use the radiological images “as is”; it is not possible to re-image the 
patient nor is it simple to assure for standardization of image acquisition 
protocols. A further notable methodological deficiency in the present 
studies pertains to feature selection, dimensionality reduction and 
safeguards against overfitting. The radiomics community, on the whole, 
concedes that parsimonious models, using as few standardized robust 
radiomic features as needed, is preferable to a complex but potentially 
over-fitted model. However, only the minority of reviewed studies 
appeared to keep this in mind. 

Our recommendations for future studies into the potential of radio-
mics for predicting immunotherapy treatment response are as follows. 

First, the model development protocol should be prospectively 
registered and/or made openly accessible on a study registry. This could 
be used to support (a) constructive engagement with other radiomics 
researchers towards improving modelling methodology, and (b) trans-
parency of study outcomes by way of reporting all results (both positive 
and negative). 

Second, studies should explicitly state where a radiomics- 
empowered model might fit in the immunotherapy workflow and 
what would be its anticipated impact on the clinical decision. Since an 
obvious role for radiomics might be to identify patients that would 
maximally benefit from immunotherapy, a decision-analysis curve or an 
estimate of cost-effectiveness would be especially informative. 

Third, investigators and reviewers should be cognizant of good 
practices regarding methodology, and particularly to watch for well- 
known pitfalls when modelling with very large numbers of candidate 
features relative to either event rate or sample size. Mature knowledge is 
readily available in the epidemiological and biostatistical community, 
and guidance already exists for diagnostic/prognostic modelling in 
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general [39], and for radiomics in particular [29]. 
Lastly, data sharing and data re-usability should be strongly 

encouraged among immunotherapy-radiomics investigators, since this is 
expected to enhance standardization, methods harmonization and, 
perhaps most importantly, robust external validation. Imaging data 
should be either openly or privately shared through major repositories 
such as The Cancer Imaging Archive [47], and compliance with 
Findable-Accessible-Interoperable-Reusable (FAIR) data principles [48] 
is relatively straightforward. 

5. Conclusion 

New developments in immunotherapy with checkpoint inhibitor 
agents have shown impressive results in the long-running battle against 
advanced cancer and metastatic disease. However, this comes with a 
heavy financial cost and a risk of treatment-related adverse events. 
Radiomics has the potential to assume a highly significant role in clinical 
decision-making by identifying non-invasive image-based biomarkers 
for either clinical response or immune response to such systemic ther-
apy, or otherwise determining indicators for high risk of treatment- 
induced injury. This systematic review has examined the small volume 
of literature available to date, and reports that the present state-of-the- 
art discriminative performance of radiomics for immunotherapy 
response is around 0.7 (for either AUC or c-index). The extremely low 
number of high-quality studies to date prevents any conclusive state-
ments to be made. We have made some recommendations, pertaining to 
improving the overall methodological quality and to advocate for data 
sharing, that we hope will accelerate developments on this important 
question and push beyond our present level. 
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