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Atopic dermatitis and skin disease

Establishment of the intestinal microbiota and its role for
atopic dermatitis in early childhood

John Penders, PhD,a,b Kerstin Gerhold, MD, PhD,c Ellen E. Stobberingh, PhD,a Carel Thijs, MD, PhD,b

Kurt Zimmermann, PhD,d Susanne Lau, MD, PhD,c and Eckard Hamelmann, MD, PhDe Maastricht, The Netherlands, and

Berlin, Herborn, and Bochum, Germany
Background: Perturbations in the intestinal microbiota may
disrupt mechanisms involved in the development of
immunologic tolerance. The present study aimed to examine
the establishment of the infant microbiota and its association
to the development of atopic dermatitis (AD).
Methods: Within a randomized, placebo-controlled trial on the
prevention of AD by oral supplementation of a bacterial lysate
between week 5 and the end of month 7, feces was collected at
the ages of 5 weeks (n 5 571), 13 weeks (n 5 332), and 31 weeks
(n 5 499) and subjected to quantitative PCRs to detect
bifidobacteria, bacteroides, lactobacilli, Escherichia coli,
Clostridium difficile, and Clostridium cluster I.
Results: Birth mode, breast-feeding but also birth order had a
strong effect on the microbiota composition. With increasing
number of older siblings the colonization rates at age 5 weeks of
lactobacilli (P < .001) and bacteroides (P 5 .02) increased,
whereas rates of clostridia decreased (P <.001). Colonizationwith
clostridia, at the age of 5 and 13 weeks was also associatedwith an
increased risk of developing AD in the subsequent 6months of life
(odds ratioadjusted 5 2.35; 95% CI, 1.36-3.94 and 2.51; 1.30-4.86,
respectively). Mediation analyses demonstrated that there was a
statistically significant indirect effect via Clostridium cluster I
colonization for both birth mode and birth order in association
to AD.
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Conclusion: The results of this study are supportive for a role of
the microbiota in the development of AD. Moreover, the
‘‘beneficial’’ influence of older siblings on the microbiota
composition suggests that this microbiota may be one of the
biological mechanisms underlying the sibling effect. (J Allergy
Clin Immunol 2013;132:601-7.)

Key words: Microbiota, atopic dermatitis, birth mode, siblings,
mediation analysis

The intestinal microbiota is a key source of immune develop-
ment and regulation early in life. Deprivation of microbial
exposure is thought to predispose to immune dysregulation and
the development of atopic diseases.1 Animal studies have found
that oral tolerance is difficult to achieve in germ-free animals2

and that administration of lipopolysaccharides (constituents of
the outer membrane of gram-negative bacteria) together with
food antigens increases the tolerizing effect of feeding.3 In
addition, a complex intestinal microbiota, rather than coloniza-
tion with a single microorganism, seems to be required to support
oral tolerance development.4

Numerous epidemiologic studies showed indeed that the
microbiota of infants with allergies differs from the microbiota
of infants without allergies.5 Although most of these studies were
case–control studies, some, but not all, of the longitudinal studies
found that these differences in the composition and diversity
of the microbiota actually preceded the development of
allergic manifestations.5-7 Thus, the immune modulation by
gastrointestinal (GI) microbiota is still one of the key candidates
that may explain the increase of allergies (and other immune
disorders) in terms of the hygiene hypothesis.
The fetal intestine is sterile and bathed in swallowed amniotic

fluid. After delivery, the colonization of the intestines by a variety
of microorganisms begins.8 Intestinal colonization involves a
succession of bacterial populations waxing and waning as the
diet changes and the host develops.9

Factors that influence the intestinal microbiota composition
can be divided into host factors (such as pH, bile acids, pancreatic
enzymes, mucus composition, and transit time), nonhost factors
(such as diet, medication, and environmental factors), and bac-
terial factors (such as adhesion capacity, enzymes, and metabolic
capacities).10 Especially changes in nonhost factors due to
Western lifestyle (antibiotic use, diet, smaller family sizes,
increased hygiene) may result in perturbations in the GI micro-
biota composition and thus may interfere with the mechanisms
involved in the development of immunologic tolerance.11

In the present study, we investigated the influence of nonhost
factors on the establishment of the intestinal microbiota in
601

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:j.penders@maastrichtuniversity.nl
http://dx.doi.org/10.1016/j.jaci.2013.05.043


J ALLERGY CLIN IMMUNOL

SEPTEMBER 2013

602 PENDERS ET AL
Abbreviations used
AD: A
topic dermatitis
C-section: C
esarean section
GI: G
astrointestinal
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dds ratio
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olony-forming units
infancy, within a randomized, placebo-controlled trial of primary
prevention of atopic dermatitis (AD) by oral supplementation
of a bacterial lysate in very early infancy. Furthermore, we
prospectively examined the composition of the infant intestinal
microbiota in association to the subsequent development of AD
and sensitization to common food allergens.

METHODS

Study population
The present study was conducted within the context of a randomized,

placebo-controlled trial (registration no. ISRCTN60475069) on the primary

prevention of AD by an orally applied bacterial lysate that contained

heat-killed Escherichia coli Symbio DSM 17252 and Enterococcus faecalis

SymbioDSM16440 (Pro-Symbioflor). The studywas approved by the Charit�e
Ethics Committee in 2002, and all parents gave informed consent. The design

of this trial has been described in detail elsewhere.12

Briefly, 606 healthy newborns (at term and birth weight >_ 2500 g) with a

single or double heredity for atopy (AD, allergic rhinitis, and/or asthma) were

included in the study. Exclusion criteria were antibiotic treatment or other

medication directly after birth, lymphocytopenia or thrombocytopenia, inten-

sive care after birth, or parents lacking knowledge of the German language.

After an initial screening phase (age birth to 4weeks), enrolled infants were

randomly assigned at 4 to 5 weeks of age. From week 5 until the end of week

31 postpartum, infants were orally supplemented with the bacterial lysate or

placebo daily.

Parents were asked to sample the infant’s feces at the age of 5 weeks (start

of intervention; n5 571), at 13 weeks (in a random subgroup only; n5 332),

and at 31 weeks (end of intervention period; n 5 499). Participants were

provided with standard stool tubes with spoons attached to the lid (Sarstedt,

Hilden, Germany) and were instructed to collect the fecal sample before the

next visit during which times samples were handed to the researchers.

During the intervention period and thereafter until the age of 3 years,

children were clinically examined at a regular basis by a pediatrician for signs

of AD.
DNA purification from feces
At the laboratory 1 spatula of feces (approximately 200 mg) was diluted in

2 mL of Crowser-Medium (5 g of Lab Lemco [meat extract 3.0 g/L and Pepton

5 g/L]1 50 mL of Gycerol and 450 H2O;;pH 7.3) and stored at2808C until

further analysis.

For DNA isolation, 0.2 mL of the diluted feces was added to a 2-mL vial

that contained approximately 300 mg of glass beads (diameter, 0.1 mm) and

1.4 mL of ASL buffer from the QIAamp DNA stool minikit (Qiagen, Hilden,

Germany), and the sampleswere disrupted in amechanical bead beater at 5000

rpm for 3 minutes. Subsequently, the bacterial DNA was isolated from the

samples with the QIAamp DNA stool mini kit, according to the instructions

provided by the manufacturer. The DNA was eluted in a final volume of

200 mL. DNA yields (ng/mL) were measured with an Eppendorf Photometer.
Microbial analysis of fecal samples
DNA from the fecal samples was subjected to quantitative real-time PCR

assays for the quantification of bifidobacteria, E coli, Clostridium difficile,

Clostridium cluster I (Clostridium sensu stricto), Bacteroides fragilis group,

and lactobacilli targeting 16S rDNA gene sequences (see Table E1
for primer and probe sequences in this article’s Online Repository at

www.jacionline.org) as described previously.13

Counts of the bacterial groups and species were calculated for each stool

sample from the threshold cycle values by using constructed standard curves

and were expressed as the log10 colony-forming units (CFU) per milliliter of

diluted feces. The prevalence of colonization was expressed as the percentage

of infants colonized with a specific bacterial group or species.

Diagnosis of AD
Infants were clinically examined by a pediatrician during the intervention

phase at the ages of 13, 21, and 31weeks (end of the intervention phase). In the

follow-up phase, participants were seen for additional visits at 1, 2, and 3 years

of age. AD was clinically assessed.

Sensitization to food allergens
Sensitization to common food allergens (soy, peanut, cow’s milk, hen’s

egg, wheat, and cod fish) was tested by panel ImmunoCAP fx5 on blood

samples taken at 31 weeks, 1 year, and 2 years of age. Children who tested

positive to any of the food allergens (>0.35 IU/mL) at any time point were

labeled sensitized. Children were regarded nonsensitized when they were

tested at least at age 2 years and were found negative at this time point and

were negative at the other time points at which they were tested (31 weeks

and/or 1 year).

Statistical analysis
Effects of birth characteristics, environmental

factors, and intervention on gut microbiota. The following
potential determinants were examined in association to the GI microbiota at

the age of 5 and 13 weeks: sex (male/female), birth mode (spontaneous

vaginal, assisted vaginal [forceps/vacuum extraction], cesarean section

[C-section]), number of siblings (0, 1, 2 or more), atopy mother, or atopy

father. For GI microbiota at the age of 31 weeks, this list was complemented

with duration of breast-feeding (0-3 months, 3-6 months, or >6 months) and

day care attendance (group size >_3 children) during the first 6 months of life.

The Mann–Whitney rank sum test was used for the associations between

these determinants and the counts of the bacteria under study (including the

noncolonized infants with counts defined as zeros). The same method was

used to examine the influence of the intervention on the bacterial counts

in those infants who completed follow-up until the end of the treatment

(age 31 weeks).

GI microbiota composition in association with AD

and sensitization. Logistic regression analyses were used to test

for associations between colonization with gut bacteria (colonized or

noncolonized) under study and the development of AD or sensitization to

food allergens respectively.

The following covariates were taken into account in the logistic regression

models: sex, birth weight, maternal and paternal atopy, (duration of) breast-

feeding, number of siblings,mode of delivery, and treatment group (placebo vs

active group).

Logistic regression analyses were also used for associations between the

concentrations (counts) of the gut bacteria and AD. Here, we additionally

adjusted for the DNA concentrations of the samples to normalize the data. To

test for trend bacterial counts were categorized (noncolonized infants were

used as a reference category, and the remaining colonized infants were

accommodated in 3 equal groups). These analyses were all limited to the

completers group for the specific end points.

Survival analysis by Cox regression was used to examine the effects of the

GI microbial composition on AD-free survival time.

Follow-up time for subjects who developed AD was calculated as the

number of days between birth and the date of the visit at which AD was first

diagnosed. The follow-up time of children who had not developed AD (yet)

until theywere lost to follow-up during the follow-upwas the age in days at the

moment of the last performed study visits.

To check the potential effect-modifying role of the treatment groups

(placebo vs active group), we initially incorporated interaction terms between

http://www.jacionline.org


TABLE I. Baseline characteristics of both treatment groups in the entire study population and the present study population

Baseline characteristics

Total study population Present study population*

Active (n 5 303) Placebo (n 5 303) Active (n 5 285) Placebo (n 5 286)

Age of newborns (wk), median (25%-75% quartile) 5.1 (4.6-5.7) 5.1 (4.6-5.7) 5.1 (4.6-5.7) 5.1 (4.6-5.7)

Proportion males, no. (%) 161 (53.1) 152 (50.2) 155 (54.4) 140 (49.0)

Weight at birth (g), median (25%-75% quartile) 3480 (3140-3780) 3480 (3230-3800) 3480 (3140-3790) 3495 (3230-3800)

Gestational age (wk), median (25%-75% quartile) 40 (39-40) 40 (38-40) 40 (39-40) 40 (38-40)

Cesarean section, no. (%) 75 (24.8) 76 (25.1) 70 (24.6) 74 (26.0)

Breast-fed

Never, no. (%) 9 (3.0) 6 (2.0) 7 (2.5) 5 (1.7)

<3 mo, no. (%) 59 (19.5) 41 (13.5) 57 (20.0) 36 (12.6)

3-6 mo, no. (%) 38 (12.5) 38 (12.5) 34 (11.9) 36 (12.6)

6-9 mo, no. (%) 71 (23.4) 81 (26.7) 67 (23.5) 78 (27.3)

9-12 mo, no. (%) 63 (20.8) 60 (19.8) 60 (21.1) 58 (20.3)

>12 mo, no. (%) 63 (20.8) 77 (25.4) 60 (21.1) 73 (25.5)

No. of siblings, median (25%-75% quartile) 1 (1-1) 1 (1-1) 1 (1-1) 1 (1-1)

Frequency of siblings

1 sibling, no. 122 110 110 99

2 siblings, no. 22 28 21 22

3 siblings, no. 5 3 5 3

4 siblings, no. — — — —

5 siblings, no. — 1 — 1

Smoking mother

Before pregnancy, no. (%) 81 (26.7) 73 (24.1) 77 (27.0) 67 (23.4)

During pregnancy, no (%) 75 (24.8) 66 (21.8) 71 (24.9) 62 (21.7)

After pregnancy, no. (%) 71 (23.4) 74 (24.4) 69 (24.2) 70 (24.5)

Family history of atopy

Both parents, no. (%) 148 (49.2) 157 (52.5) 137 (48.1) 148 (51.7)

One of both parents, no. (%) 154 (50.5) 145 (47.2) 147 (51.6) 137 (47.9)

Mother, no. (%) 79 (25.7) 85 (27.4) 76 (26.7) 79 (27.6)

Father, no. (%) 75 (24.8) 60 (19.8) 71 (24.9) 58 (20.3)

Single mother 2 (0.6)� 1 (0.3)� 1 (0.4)� 1 (0.3)�
Underlying parental disease§

Mother

Atopic eczema 117 (38.7) 109 (36.1) 110 (38.6) 105 (36.7)

Allergic rhinitis 171 (56.6) 194 (64.2) 163 (57.2) 181 (63.3)

Allergic asthma 89 (29.5) 99 (32.8) 83 (29.1) 92 (32.2)

Father

Atopic eczema 55 (18.2) 65 (21.5) 52 (18.4) 64 (22.5)

Allergic rhinitis 204 (67.5) 189 (62.6) 189 (66.5) 179 (62.8)

Allergic asthma 70 (23.2) 67 (22.2) 63 (22.1) 64 (22.5)

*All children with fecal samples collected at age 5 weeks.

�Family history of atopy was unknown for 1 father but known for the second father.

�Family history of atopy was unknown for the father.

§Underlying diseases in parents ranged between 1 and 3.
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the variable ‘‘treatment group’’ and the variables for the different bacteria

under study in all statistical models. Because none of these interaction terms

appeared statistically significant, they were removed from the models, and

associations are reported for the entire study population without stratification

for treatment group.

Mediation analyses. To investigate whether Clostridium cluster I

mediated the associations between birth mode, respectively, birth order

and AD, we used the ab product-coefficient method.14 This entails estimat-

ing the product of 2 coefficients: that of the association between birth mode/

siblings and Clostridium cluster I (the a path) and that of the association

between Clostridium cluster I and AD (the b path). Standardized coefficients

and standard errors were obtained from these analyses. To test for statistical

significance of the ab-product coefficient, the Sobel test was used.

RESULTS
At the start of the intervention there were neither differences

between the intervention groups for baseline characteristics nor
differences between baseline characteristics of the entire study
population (n 5 303 in both the active and placebo groups) and
the study population that was included for the present study
(those children of whom fecal samples were collected at baseline;
n 5 285 and n 5 286 in the active and placebo group,
respectively; Table I).
Effects of birth characteristics, environmental

factors, and intervention on gut microbiota
A strong association between birth by C-section and the

GI microbiota composition was found: infants delivered by
C-section were less often colonized by bifidobacteria, bacteroi-
des, and E coli, but more frequently colonized by both
Clostridium cluster I and C difficile. If colonized, infants
delivered by C-section had also lower counts (CFU/mL diluted
feces) of bifidobacteria and bacteroides and a higher count of
clostridia than infants delivered spontaneously (Table II). At the
age of 13 weeks and even at the age of 31 weeks the effects of
C-section were still prominent, with a reduced prevalence of



TABLE II. Median counts and prevalence of colonization with selected gut bacteria in feces of infants at age 5 (n 5 571), 13, and 31

weeks (n 5 499)

No.

Bifidobacteria,

counts* (%)

Clostridium cluster I,

counts* (%)

C difficile,

counts* (%)

Lactobacilli,

counts* (%)

B fragilis group,

counts* (%)

E coli,

counts* (%)

Age 5 wk

Birth weight

<3000 g 78 8.46 (80.8)� 5.58 (50.0) 7.47 (25.6) 6.15 (19.2) 9.66 (41.0)� 8.72 (55.1)

3000-4000 g� 421 8.68 (90.7) 5.65 (42.5) 6.98 (24.0) 6.07 (19.7) 9.40 (57.0) 8.46 (61.5)
>_4000 g 72 8.82 (90.3) 5.44 (49.3) 5.06 (19.4) 6.28 (26.4) 9.44 (70.8) 8.50 (75.0)

Delivery

Spontaneous� 391 8.79 (90.5) 5.54 (37.2) 6.55 (19.4) 6.03 (22.0) 9.48 (65.0) 8.45 (67.3)

Assisted vaginal 34 8.38 (97.1) 6.28 (38.2) 6.88 (41.2)§ 6.89 (8.8) 9.80 (79.4) 8.69 (64.7)

C-section 144 8.33 (84.0)§ 5.62 (65.3)§ 7.48 (31.3)§ 6.28 (19.4) 7.01 (29.2)§ 8.63 (48.6)§

No. of siblings

0� 310 8.57 (85.8) 5.72 (52.3) 6.84 (26.1) 6.15 (15.8) 9.42 (53.9) 8.60 (59.0)

1 209 8.76 (95.2)§ 5.44 (37.0)§ 7.01 (22.0) 6.03 (24.9)� 9.44 (56.0) 8.17 (65.6)
>_2 52 8.80 (86.5) 5.41 (26.9)§ 5.18 (15.4) 7.11 (30.8)§ 9.34 (75.0)� 8.48 (69.2)

Pfor trend .001 .046 .001 .02

Age 13 wk

Birth weight

<3000 g 44 8.91 (86.4) 6.19 (65.9) 7.18 (36.4)� 7.11 (25.0) 10.21 (50.0) 9.00 (68.2)

3000-4000 g� 252 9.03 (89.7) 5.92 (51.0) 6.93 (20.9) 6.93 (26.5) 9.85 (54.5) 8.99 (76.6)
>_4000 g 35 9.20 (94.3) 5.52 (34.3)� 6.64 (20.0) 7.42 (37.1) 9.80 (62.9) 9.05 (82.9)

Pfor trend .001

Delivery

Spontaneous� 232 9.02 (90.1) 5.73 (46.8) 6.88 (19.3) 7.00 (26.2) 9.85 (60.1) 9.00 (80. 2)

Assisted vaginal 17 9.42 (88.2) 6.11 (52.9) 7.04 (29.4) 7.06 (35.3) 10.39 (64.7) 9.04 (64.7)

C-section 83 8.91 (89.2) 6.19 (63.9)§ 7.17 (32.5)� 6.88 (28.9) 10.05 (37.3)§ 8.98 (67.5)

No. of siblings

0� 198 8.99 (88.4) 6.03 (58.8) 7.04 (23.6) 7.04 (21.6) 9.87 (52.3) 9.03 (73.7)

1 102 9.03 (92.2) 5.75 (44.1)§ 6.89 (26.5) 6.91 (36.3)� 9.89 (54.9) 8.97 (81.4)
>_2 32 9.32 (90.6) 5.93 (28.1)§ 7.99 (9.4) 7.00 (34.4) 9.75 (68.8) 9.02 (75.0)

Pfor trend .001

Age 31 wk

Birth weight

<3000 g 66 8.91 (90.9) 5.33 (78.8) 7.31 (53.0)� 6.31 (43.9) 10.38 (56.1) 8.84 (90.9)

3000-4000 g 371 9.04 (94.6) 5.51 (74.1) 6.99 (39.1) 6.31 (46.1) 10.07 (68.7) 8.74 (88.9)
>_4000 g 62 9.22 (92.1) 5.36 (65.1) 6.03 (39.7) 6.35 (52.4) 10.04 (77.8) 8.77 (92.1)

Delivery

Spontaneous� 346 9.11 (93.6) 5.41 (72.5) 6.83 (39.9) 6.32 (49.1) 10.18 (74.0) 8.82 (91.0)

Assisted vaginal 32 9.11 (96.9) 5.16 (62.5) 7.32 (34.4) 6.27 (56.2) 10.29 (62.5) 9.09 (78.1)

C-section 119 8.87 (94.2) 5.60 (80.0)� 7.23 (45.8) 6.22 (37.5)� 9.80 (54.2)§ 8.71 (88.3)

Breast-feeding

0-3 mo� 55 8.75 (92.7) 5.42 (83.6) 7.03 (78.2) 6.00 (40.0) 10.31 (83.6) 8.59 (100.0)

3-6 mo 39 8.91 (92.3) 5.60 (82.1) 6.97 (64.1) 6.09 (35.9) 10.22 (84.6) 8.53 (97.4)
>_6 mo 405 9.11 (94.1)§ 5.42 (71.6) 6.75 (33.6)§ 6.38 (48.6)� 10.04 (64.4)§ 8.87 (87.4)

No. of siblings

0� 276 8.99 (94.9) 5.46 (74.4) 6.98 (40.4) 6.24 (40.4) 10.01 (61.7) 8.71 (87.7)

1 178 9.05 (93.3) 5.60 (72.5) 6.96 (43.3) 6.44 (51.7)� 10.19 (73.0)§ 8.90 (91.6)�
>_2 45 9.42 (88.9) 5.07 (73.3) 7.33 (35.6) 6.30 (64.4)§ 10.18 (88.9)§ 8.92 (93.3)

Pfor trend .001 .001

*Counts expressed as median (log10 CFU/mL feces). Counts were calculated from positive samples only.

�P < .05, as determined with the Mann–Whitney rank-sum test, calculated from all samples (the statistical significance refers to an overall difference incorporating counts,

including noncolonized infants with counts being zero).

�Reference category.

§P < .01, as determined with the Mann–Whitney rank-sum test, calculated from all samples (the statistical significance refers to an overall difference incorporating counts,

including noncolonized infants with counts being zero).
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colonization by bacteroides and a slightly higher prevalence
of colonization byClostridium cluster I. Furthermore, at 31weeks
of age approximately one-half of the children delivered spontane-
ously were colonized by lactobacilli, whereas this number was
significantly lower (37.5%) in children delivered by C-section.
Next to the mode of delivery, the number of older siblings
showed a strong association with the establishment of the GI
microbiota. With increasing number of siblings the colonization
rate of clostridia decreased (Pfor trend < .001) and lactobacilli
(Pfor trend < .001) and bacteroides (Pfor trend 5 .02) at the age of



TABLE III. Associations (adjusted) between colonization with

the gut bacteria at age 5 weeks and the development of AD

between age 5 and 31 weeks (n 5 497)

AD

Prevalence,

% (n/N) OR (95% CI)

ORadjusted

(95%CI)*

Bifidobacterium spp

No� 13.5 (7/52) 1.0 1.0

Yes 18.7 (83/445) 1.44 (0.63-3.31) 1.40 (0.56-3.47)

E coli

No� 16.2 (31/191) 1.0 1.0

Yes 19.3 (59/306) 1.24 (0.77-2.00) 1.12 (0.66-1.90)

C difficile

No� 17.2 (66/383) 1.0 1.0

Yes 21.1 (24/114) 1.28 (0.76-2.15) 1.24 (0.70-2.19)

B fragilis group

No� 18.4 (40/217) 1.0 1.0

Yes 17.9 (50/280) 0.97 (0.61-1.53) 0.99 (0.57-1.71)

Lactobacillus spp

No� 17.4 (68/390) 1.0 1.0

Yes 20.6 (22/107) 1.22 (0.71-2.09) 1.25 (0.69-2.25)

Clostridium cluster I

No� 14.5 (40/276) 1.0 1.0

Yes 22.7 (50/220) 1.74 (1.10-2.75)� 2.32 (1.36-3.94)�

OR, Odds ratio.

*Analyses were adjusted for sex, birth weight, maternal and paternal atopy, (duration

of) breast-feeding, number of siblings, mode of delivery, and treatment group.

�Reference category.

�P < .05.
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5 weeks increased. The influence of older siblings on the
microbiota composition persisted until the age of 31 weeks,
when increased prevalence of lactobacilli and bacteroides were
found in children with 1 or >_2 siblings compared with single
children (Table II).

Multivariable analyses found that the influence of older
siblings persisted after adjusting for mode of delivery and
vice versa (see Table E2 in this article’s Online Repository at
www.jacionline.org), clearly showing that birth mode and sibling
status both act independently on microbiota composition (also
visually depicted in Fig E1, A-F, in this article’s Online
Repository at www.jacionline.org).
Infants with relatively low birth weight (2500-3000 g) were

found to be less frequently colonized by bifidobacteria and
bacteroides at 5 weeks of age, and they more frequently harbored
C difficile at the ages of 13 and 31 weeks.
Although the high number of children who were initially

breast-fed (>97%) did not allow studying the effect of
breast-feeding on early infant microbiota, we were able to
examine the effect of duration of breast-feeding on the GI
microbiota at the age of 31 weeks. A longer duration of
breast-feeding was associated with a lower prevalence of
C difficile and bacteroides, whereas the prevalence of coloniza-
tion by lactobacilli and (to a lesser extent) bifidobacteria were
increased when breast-feeding was continued for 6 months or
longer. The microbiota composition was not associated with
sex, day care attendance, and maternal and paternal atopy at
any of the studied ages. The influence of all these factors on the
GImicrobiota at all ages is summarized in Table E3 (in the Online
Repository at www.jacionline.org).
A total of 526 infants completed the intervention to 31weeks of

age as per protocol. The intervention had no influence on the
microbiota composition because neither the prevalence nor the
abundance of the studied bacteria differed between the study
groups at the end of the intervention phase (see Table E4 in this
article’s Online Repository at www.jacionline.org).
GI microbiota composition in association to AD and

sensitization to food allergens
Colonization with Bifidobacterium spp, E coli, C difficile, B

fragilis group, and Lactobacillus spp at the ages of 5, 13, and 31
weeks was not associated with the development of AD.
However, colonization with members of Clostridium cluster I at
age 5 weeks was associated with an increased risk of developing
ADbefore the age of 31weeks (Table III). This association showed
a dose-response relationship (Pfor trend 5 .002). Moreover, this
association persisted for AD development up to the age of 2 years
(odds ratio [OR]adjusted, 1.67; 95% CI, 1.05-2.64; P 5 .03) and,
although no longer statistically significant, the age of 3 years
(OR, 1.52; 95% CI, 0.95-2.41; P5 .08).
When we stratified our analyses on the initial intervention arms

(data not shown), similar results were found in the placebo group
and the active group of the original intervention study.
In accordance, survival analysis also showed an increased risk

of Clostridium cluster I colonization on AD development
(adjusted hazard ratio 5 1.49; 95% CI 1.05-2.11; see Fig E2 in
this article’s Online Repository at www.jacionline.org).

Colonization with Clostridium cluster I at the age of 13 weeks
was still associated with an increased risk of developing
AD (ORadjusted, 2.51; 95% CI, 1.30-4.86; see Table E5 in this
article’s Online Repository at www.jacionline.org), whereas the
microbiota at the age of 31 weeks was no longer associated
with AD development.
Sensitivity analyses, excluding infants who were treated

with antibiotics (n 5 15) or who had experienced gastroenteritis
(n 5 13, of whom 2 were also treated with antibiotics) within
1 month before fecal sampling at age 31 weeks did not change
these results.
Sensitization to food allergens was not associated with any of

thebacteria under study at ages 5, 13, or 31weeks (data not shown).

Mediation analyses
Because both birth mode and birth order strongly influenced

Clostridium cluster I colonization, and this bacterial group was
also associated with the development of AD, colonization by
Clostridium cluster I might act as an intermediate factor in the
association between birth mode, respectively, and birth order
and AD. Although the direct effect of both birth mode and birth
order on AD appeared not to be statistically significant, mediation
analyses (Table IV) demonstrated that there was a significant
indirect effect viaClostridium cluster I colonization for both birth
mode and birth order as indicated by the statistically significant
ab cross-products.

DISCUSSION
Within the present study, we examined the influence of

environmental determinants on the establishment of the infant
microbiota composition and subsequently investigated the role of
this microbiota composition in association with the development
of AD.
This study was conducted within the context of a randomized,

placebo-controlled trial on the primary prevention of AD in

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


TABLE IV. Mediation by Clostridium cluster I colonization at age 5 weeks in the association between birth mode or older siblings

and AD

Dependent Independent

a Path* b Pathy Mediated effectz
Coefficient SE Coefficient SE ab P value

AD C-section§ 0.3167 0.052 0.1655 0.068 0.0165 .02

AD Older siblingsk 20.185 0.050 0.1634 0.065 20.0092 .04

*Standardized coefficient of the association between mode of delivery/older siblings and Clostridium Cluster I.

�Standardized coefficient of the association between Clostridium Cluster I and AD (note that the b path is also adjusted for mode of delivery/older siblings).

�Product of the standardized coefficients of the a and b paths (mediated effect) and P value derived from the Sobel test.

§Reference category: vaginal delivery.

kReference category: no older siblings.
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high-risk newborns by oral supplementation of a bacterial lysate
of E coli and E faecalis.12 The allocated intervention did not
influence the microbiota composition, which was as expected
because the intervention did not contain living bacteria.
Despite that almost all children in our study were breast-fed,

we found profound differences in the microbiome composition, at
the age of 31 weeks, of infants whowere breast-fed for >6 months
compared with infants whowere breast-fed for a shorter period. In
the past decades formulas have become supplemented with
compounds such as long-chain polyunsaturated fatty acids,
oligosaccharides, nucleotides, and lactoferrin to mimic human
milk as much as possible. Yet, numerous bioactive compounds in
breast milk, including immunoglobulins, cytokines, hormones,
enzymes, and microbes, are not present in infant formulas that
might contribute to the beneficial effect of breast-feeding on
microbiota development.
Cesarean delivery had a strong effect on the infant microbiota,

especially the decreased colonization rate of bacteroides and the
increased prevalence of clostridia, including C difficile, that
persisted over time. The findings are in agreement with several
previous studies on this subject.7,13,15 A recent study that used
next-generation sequencing to characterize the maternal and
infant microbiota indeed confirmed that vaginal-delivered infants
acquired bacterial communities resembling their own mothers’
vaginal microbiota. However, infants delivered by C-section
harbored bacterial communities that were most similar to those
found on the skin surface.16

A striking resemblance was observed between the colonization
pattern of firstborns and infants born by C-section with a higher
colonization rate of C difficile and other clostridia and lower
rates of lactobacilli, bifidobacteria, bacteroides, and E coli. The
profound effect of C-section on the newborn’s microbiota by
preventing initial colonization by maternal microorganisms has
been well established, whereas the strong effect of birth order
on the developing microbiota is far less recognized. A few
previous studies indicated that older siblings influence the
infants’ microbiota,7,13,17 yet effects were not as pronounced
as in our study. Furthermore, we report for the first time a
dose-response relationship between birth order and microbiota
composition, which lends further support to a causal relationship.
The only association between gut microbiota composition and

the risk of AD development was the positive association between
Clostridium cluster I prevalence (at ages 5 and 13weeks) and AD.

Although several previous studies also indicated clostridia to
be positively associated with AD and atopic sensitization
risk,18-20 the opposite21,22 or no association has been reported
as well.5 Large methodological differences both about the study
design as well as the microbiological techniques limit the
informative value of comparing results between these studies.
Most studies, including ours, only target a selected number of
bacterial groups or species. As a consequence, it cannot be ruled
out that reported associations merely reflect other unmeasured
shifts in the microbiota composition.
A major strength of our study is the significant mediation of

Clostridium cluster I in the association of both birth mode,
confirming our previous study,23 and birth order and AD. This
further supports a causal role for the microbiota and provides
evidence on the potential biological pathways by which birth
mode and birth order can affect AD risk.
The present study bears several limitations that should be

acknowledged. First, the study includes only children with
increased risk of AD (with a positive family history of atopy).
As such, the results may not be generalizable to the general
population. Second, numerous associations have been tested,
which can result in false-positive findings. The consistency of our
results when considering different follow-up periods for both
microbiota composition and AD development, but also the
consistency of effects in both treatment arms of the initial
intervention study (internal validation) and the supportive
findings of the mediation analyses, make it unlikely that the
main associations reported in this study are due to spurious
findings. Third, although all C-section deliveries in the present
study were preplanned, we had no information on the indication
for the C-section (eg, obstetric history, anthropometric measures).
The microbiota composition was not associated with sensiti-

zation in our study. This does, in our opinion, however, not rule
out that the mechanism by which the microbiota might influence
AD is IgE-mediated. A large proportion of sensitized children did
not show signs of AD in the present study, a finding that is
consistent with previous studies. It has previously been shown
that specific definitions of sensitization, such as persistent
sensitization over a longer period, polysensitization, or high-
level sensitization, correlate better with AD.24 As such, the lack of
association between fecal microbiota and sensitization in the
present study might be due to a large number of transient
‘‘sensitized’’ infants with temporary IgE production who will
not develop AD.
Targeted approaches, such as quantitative PCR-based methods,

might seem outdated, given the introduction of next-generation
sequencing approaches that enable characterization of the entire
microbiome in great depth. Yet, although such techniques have
instigated research in the field of the gut microbiome and have
already been successfully applied in studies that relate the
microbiome to numerous diseases, including allergies,6,22 the
relatively high costs of these techniques and the complex data
analyses still limit their application in large-scale longitudinal
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studies. Because such studies are a necessity to take numerous
determinants of the microbiota together with potential confound-
ing variables into account, molecular methods that target
indicator bacteria are still indispensable.
At present, feces is the only realistic sample in large non-

invasive epidemiologic studies on the gut microbiota. However, a
limitation of using fecal samples is that the bacterial composition
in the lumen does not necessarily reflect the composition of
bacteria adhering to the mucosal surfaces.
The strong association betweengutmicrobiota composition and

number of older siblings is of special interest, given the long-
recognized inverse association between birth order and the risk of
allergies.25 Identifying the mechanisms underlying this sibling or
birth order effect is of great value, because it could help to develop
novel tools or approaches to possibly prevent as much as 30% of
all atopy cases.26 Next to the original explanation of exposure to
pathogens from older siblings in the family, alternative explana-
tions such as in utero programming and endocrine effects have
been postulated. Our results are in favor of the gut microbiota
composition as an (additional) mechanism underlying this birth
order effect, becausewe found the microbiota to vary with sibship
size as well as to be associated with AD risk. In particular,
colonization by Clostridium cluster I appeared to be more
frequent in children with a lower birth order and to be associated
with an increased risk of developing AD, which resulted in
significant mediation of the association between birth order and
AD risk.
We conclude from our results that the indigenous microbiota

composition is likely to be one of the underlying mechanisms
explaining the birth order effect in the cause of allergies. Future
research is especially needed to understand how infants sample
their environment over time (eg, whether, when, and to what
extent exchange of microorganisms from older siblings to
newborns contributes to the establishment of their microbiome),
and if this relates to the risk of developing allergies and atopic
manifestations such as AD.

We thank all laboratory technicians who supported the collection,

processing, and analysis of the stool samples, especially Christine Seib,

Gabriele Fels, and Christel Driessen.

Key messages

d Clostridium cluster I colonization in neonates is associated
with an increased risk of atopic dermatitis.

d Next to birth mode and breast-feeding, birth order is a
strong determinant of the infant microbiota composition.
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FIG E1. Colonization pattern of gut bacteria during the first 31 weeks of life, presented as the proportion of

infants colonized at each time point according tomode of delivery and sibling status (dark gray solid line, no

siblings and C-section delivery; dark gray dashed line, no siblings and vaginal delivery; light gray solid line,
>_2 siblings and C-section delivery; light gray dashed line, >_2 siblings and vaginal delivery) for Clostridium
Cluster I (A), Bacteroides fragilis group (B), Lactobacillius spp (C), Clostridium difficile (D), Escherichia coli
(E), and Bifidobacterium spp (F).
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FIG E2. Survival plot for the development of AD in children colonized and

noncolonized by Clostridium cluster I at age 5 weeks. Derived from Cox re-

gression analyses adjusted for sex, birth weight, maternal and paternal at-

opy, (duration of) breast-feeding, number of siblings, birthmode, treatment

group, and prevalence of the other bacteria under study. Adjusted hazard

ratio 5 1.49; 95% CI, 1.05-2.11; P 5 .03.
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TABLE E1. Primers and probes used in this study

Target organisms Primer/probe Sequence (59-39) Tm (8C) Reference

Bifidobacterium spp Forward primer GCGTGCTTAACACATGCAAGTC 59 E1

Reverse primer CACCCGTTTCCAGGAGCTATT 59 E1

Probe TCACGCATTACTCACCCGTTCGCC 70 E1

E coli Forward primer CATGCCGCGTGTATGAAGAA 59 E2

Reverse primer CGGGTAACGTCAATGAGCAAA 59 E2

Probe TATTAACTTTACTCCCTTCCTCCCCGCTGAA 68 E2

C difficile Forward primer TTGAGCGATTTACTTCGGTAAAGA 58 E1

Reverse primer TGTACTGGCTCACCTTTGATATTCA 59 E1

Probe CCACGCGTTACTCACCCGTCCG 69 E1

B fragilis group Forward primer CGGAGGATCCGAGCGTTA 58 E1

Reverse primer CCGCAAACTTTCACAACTGACTTA 59 E3

Probe CGCTCCCTTTAAACCCAATAAATCCGG 68 E1

Lactobacillus spp Forward primer AGCAGTAGGGAATCTTCCA 59 E4,E5

Reverse primer CACCGCTACACATGGAG 59 E4,E6

Clostridium cluster I Forward primer TACCHRAGGAGGAAGCCAC 55 E7

Reverse primer GTTCTTCCTAATCTCTACGCAT 53 E7

Probe GTGCCAGCAGCCGCGGTAATACG 72 E7

Tm, Melting temperature.
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TABLE E2. Adjusted association for mode of delivery and sibship size in relation to the risk of colonization with the bacteria under

study at ages 5, 13, and 31 weeks

Mode of delivery* Number of siblings

Spontaneousy C-section 0y 1 >_ 2

Age 5 wk

Clostridium cluster I 1.0 3.05 (2.03-4.58)� 1.0 0.56 (0.38-0.81)� 0.33 (0.17-0.63)�
Bacteroides 1.0 0.22 (0.14-0.36)� 1.0 1.00 (0.68-1.46) 2.68 (1.32-5.43)�
Bifidobacteria 1.0 0.59 (0.33-1.05) 1.0 3.77 (1.78-7.93)� 1.08 (0.46-2.57)

C difficile 1.0 1.85 (1.20-2.86)� 1.0 0.90 (0.59-1.38) 0.55 (0.25-1.24)

E coli 1.0 0.47 (0.32-0.70)� 1.0 1.24 (0.85-1.80) 1.51 (0.80-2.85)

Lactobacilli 1.0 0.91 (0.56-1.39) 1.0 1.67 (1.07-2.60)� 2.26 (1.16-4.40)�
Age 13 wk

Clostridium cluster I 1.0 1.99 (1.17-3.36)� 1.0 0.54 (0.33-0.88)� 0.28 (0.12-0.64)�
Bacteroides 1.0 0.40 (0.24-0.68)� 1.0 1.15 (0.70-1.88) 1.96 (0.87-4.42)

Bifidobacteria 1.0 0.90 (0.40-2.05) 1.0 1.53 (0.65-3.57) 1.25 (0.35-4.45)

C difficile 1.0 1.97 (1.12-3.48)� 1.0 1.20 (0.69-2.11) 0.36 (0.10-1.23)

E coli 1.0 0.51 (0.29-0.90) 1.0 1.51 (0.83-2.75) 0.99 (0.41-2.36)

Lactobacilli 1.0 1.17 (0.66-2.07) 1.0 2.17 (1.27-3.71)� 1.99 (0.89-4.48)

Age 31 wk

Clostridium cluster I 1.0 1.56 (0.93-2.61) 1.0 0.90 (0.58-1.40) 0.95 (0.46-1.95)

Bacteroides 1.0 0.43 (0.28-0.68)� 1.0 1.58 (1.04-2.42)� 4.61 (1.75-12.16)�
Bifidobacteria 1.0 1.04 (0.43-2.51) 1.0 0.85 (0.37-1.93) 0.44 (0.15-1.30)

C difficile 1.0 1.26 (0.82-1.92) 1.0 1.11 (0.75-1.64) 0.82 (0.43-1.64)

E coli 1.0 0.77 (0.39-1.52) 1.0 1.36 (0.71-2.62) 1.81 (0.53-6.23)

Lactobacilli 1.0 0.68 (0.44-1.04) 1.0 1.65 (1.11-2.46)� 2.63 (1.36-5.10)�

*Values are odds ratios and 95% CIs from logistic regression analyses on mode of delivery and sibship size in association to colonization by the bacteria under study.

�Reference category.

�P < .05.
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TABLE E3. Effects of environment/diet on GI microbiota at the ages of 5, 13, and 31 weeks

Bifidobacteria Lactobacilli C difficile Clostridium cluster I Bacteroides E coli

Low birth weight

5 wk Decrease — — — Decrease —

13 wk — — Increase — — —

31 wk — — Increase — — —

Sex

5 wk — — — — — —

13 wk — — — — — —

31 wk — — — — — —

C-section

5 wk Decrease — Increase Increase Decrease Decrease

13 wk — — Increase Increase Decrease —

31 wk — Decrease — Increase Decrease —

Siblings

5 wk Increase Increase Decrease Decrease Increase —

13 wk — Increase — Decrease — —

31 wk — Increase — — Increase Increase

Duration of breast-feeding

31 wk Increase Increase Decrease — Decrease —

Day care

31 wk — — — — — —

Atopy father

5 wk — — — — — —

13 wk — — — — — —

31 wk — — — — — —

Atopy mother

5 wk — — — — — —

13 wk — — — — — —

31 wk — — — — — —

No effect was seen for sex, day care, atopy of father, and atopy of mother.

—, No effect seen.
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TABLE E4. Univariable associations between treatment group and median counts and prevalence of colonization of selected gut

bacteria in feces of children at age 31 weeks

Treatment

group No.

Bifidobacterium

spp, counts* (%)

Lactobacillus spp,

counts* (%)

C difficile,

counts* (%)

E coli,

counts* (%)

Clostridium

cluster I, counts* (%)

B fragilis group,

counts* (%)

Active 245 9.04 (93.9) 6.29 (48.2) 7.03 (41.6) 8.83 (89.4) 5.41 (74.7) 10.09 (70.2)

Placebo 254 9.04 (93.7) 6.32 (49.4) 6.77 (40.2) 8.72 (89.8) 5.52 (72.8) 10.14 (66.1)

P value� .59 .76 .58 .29 .55 .23

*Counts are presented as median values (log10 CFU/mL feces) calculated from positive samples only.

�Determined by Mann–Whitney rank sum test calculated from all samples (the statistical significance refers to on overall difference incorporating both counts and prevalence).
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TABLE E5. Adjusted associations between colonization with

the gut bacteria at age 13 weeks and the development of AD

between age 5 and 31 weeks (n 5 318)

Atopic dermatitis

OR

(95% CI)

ORadjusted

(95%CI)*

Bifidobacterium spp

No� 1.0 1.0

Yes 1.2 (0.47-3.04) 1.72 (1.64-4.63)

E coli

No� 1.0 1.0

Yes 1.24 (0.65-2.40) 0.93 (0.45-1.92)

C difficile

No� 1.0 1.0

Yes 1.12 (0.59-2.12) 1.13 (0.55-2.32)

B fragilis group

No� 1.0 1.0

Yes 0.72 (0.42-1.24) 0.67 (0.41-1.39)

Lactobacillus spp

No� 1.0 1.0

Yes 0.69 (0.37-1.31) 0.55 (0.27-1.14)

Clostridium cluster I

No� 1.0 1.0

Yes 1.67 (0.96-2.89) 2.51 (1.30-4.86)�

*Analyses were adjusted for sex, birth weight, maternal and paternal atopy, (duration

of) breast-feeding, number of siblings, mode of delivery, and treatment group.

�Reference category.

�P < .05.
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