
 

 

 

Cyclic Markov equilibria in stochastic games

Citation for published version (APA):

Flesch, J., Thuijsman, F., & Vrieze, K. (1997). Cyclic Markov equilibria in stochastic games. International
Journal of Game Theory, 26(3), 303-314. https://doi.org/10.1007/BF01263273

Document status and date:
Published: 01/01/1997

DOI:
10.1007/BF01263273

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 11 Apr. 2024

https://doi.org/10.1007/BF01263273
https://doi.org/10.1007/BF01263273
https://cris.maastrichtuniversity.nl/en/publications/59a94a9d-f7fd-489d-9657-e8d254a74263


International Journal of Game Theory (1997) 26:303-314 

Cyclic Markov Equilibria in Stochastic 
Games  1 

Game 
Theory 

JANOS FLESCH, F R A N K  THUIJSMAN AND K o o s  VRIEZE 

Depar tment  of Mathematics,  University of Limburg, P.O. Box 616, 6200 M D  Maastricht,  The 
Netherlands 

Abstract." We examine a three-person stochastic game where the only existing equilibria consist of 
cyclic Markov strategies. Unlike in two-person games of a similar type, stationary c-equilibria (c > 0) 
do not  exist for this game. Besides we characterize the set of feasible equilibrium rewards. 

1 Introduction 

A two-person stochastic game can be described by a state space S :=  {1 . . . . .  z}, 
and a corresponding collection {M 1 . . . . .  Mz} of bimatrices, where entry (i,j) of 
M~ consists of rl(s,i , j),  r 2 ( s , i , j ) ~  and a probabil i ty vector (p(lls, i,j) . . . . .  
p(zls, i,j)). The stochastic game is to be played in the following way. At each stage 
n~ N the play is in precisely one of the states. If  the play is in state s at stage n then, 
simultaneously and independently,  both  players are to choose an action: player 
1 chooses a row i of M s, while player 2 chooses a column j of M~. These choices 
induce an immediate  payoffr l (s ,  i,j) to player 1 and r2(s, i,j) to  player 2. Next, the 
play moves with probabil i ty Ntls ,  i,j) to state t, where new actions are to be 
chosen at stage n + 1. The description of n-person stochastic games, with n _> 3, is 
analogous.  

The players are assumed to have complete information and perfect recall. 
A player's strategy is a specification of  a probabil i ty distribution, at each stage 
and state, over the available actions, condit ional  on the history of  the play up to 
that  stage. Strategies are generally denoted by ~z for player 1 and a for player 2. 
A strategy is called s ta t ionary if, for each state, it specifies a mixed action to be 
used whenever this state is being visited. Stat ionary strategies are denoted by 
x and y. A s ta t ionary strategy is called purc, if for each state, it specifies one action 
to be chosen. 

A pair  of strategies (~,a) with an initial state s~S  determines a stochastic 
process on the payoffs. The sequences of payoffs are evaluated by the limiting 

1 We wish to thank anonymous  referees for their valuable remarks and suggestions concerning the 
organization of this paper. 
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average reward, given for player k ~ { 1, 2} by 

~k(s, ~, a ) =  Es~( l im inf 1 ~ Rk ) 
I'xT~ rn= 1 

where R~ are random variables for the payoffs of player k at stage ne N. 
A pair of strategies (g, a) is a limiting average e-equilibrium (e > 0), if neither 

player can gain more than e by unilateral deviation, i.e. if for all s, ~, 6: 

~;I (S, 7"C, ~) "~ ~;I(s, ~, O') - -  g and 72(s, ~,  (~) > 72(s,  rc, 6)  - ~. 

A 0-equilibrium is simply called an equilibrium. 
Generally in stochastic games, e-equilibria do not always exist in terms of 

stationary strategies, and the question of existence among history dependent 
strategies is the most challenging open problem in stochastic game theory these 
days. This question has been affirmatively answered for many classes of two- 
person stochastic games. Due to special features in those classes, equilibria have 
often been achieved using techniques that do not apply for general n-person 
stochastic games. Many of these techniques are based on sequences of stationary 
equilibria in games, where either the strategy spaces are specifically restricted or 
the reward function is approximated by a continuous function (for example 
discounted rewards), that approach the original game in a certain sense. In many 
cases, one of the crucial properties of these sequences is that if one of the players, 
say player 1, plays his equilibrium strategy close to the limit and player 2 plays his 
limit strategy, then the reward of player 2 is individually rational, which enables 
player 1 to punish player 2's possible deviations. 

In this paper we show that n-person stochastic games, with n _> 3, require an 
analysis that is substantionally different from any analysis used for two-person 
games. This is done by examining a specific three-person stochastic game. To our 
knowledge, this is the first three-person stochastic game studied in detail. In this 
game, the gap between two-person and three-person stochastic games also 
appears in the nature of equilibria. This game is a recursive repeated game with 
absorbing states. A state is absorbing if any play that reaches this state will remain 
there permanently. A stochastic game is called recursive if all payoffs in the 
non-absorbing states are equal to zero. A repeated game with absorbing states is 
a stochastic game with only one non-absorbing state. Thus, a recursive repeated 
game with absorbing states is a repeated game with absorbing states where all the 
payoffs in the non-absorbing state are equal to zero. For two-person recursive 
repeated games with absorbing states Flesch et al. [1995] showed the existence of 
stationary e-equilibria. 

In the game presented below, no stationary e-equilibria exist, so the two-person 
result does not extend to the n-person case. By the nature of this game, the players 
have only Markov strategies at their disposal. We show that the only equilibria in 
this game consist of Markov strategies that have a cyclic nature. As far as we 
know this is the first stochastic game where (cyclic) Markov strategies are 
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indispensable. So far Markov strategies mainly turned out to be important in 
finite horizon problems. This game also demonstrates that the class of stationary 
strategies, even by using threats in behavioral strategies, is too narrow to tackle 
the equilibrium existence problem for stochastic games with more than two 
players. Whether or not this class is rich enough for two-person stochastic games 
is not yet known. A thorough study of the potential possibilities of the use of 
(cyclic or non-cyclic) Markov strategies for infinite horizon stochastic games is 
needed. 

In attempts to solve the existence problem of equilibria in stochastic games, 
a lot of attention has been devoted to special classes of stochastic games. For 
many of these classes the existence of stationary e-equilibria could be derived (cf. 
Rogers [1969], Sobel [1971], Stern [1975], Filar [1984], Parthasarathy et al. 
[1984], Thuijsman & Vrieze [1991], Evangelista et al. [1994], Flesch et al. 
[ 1995]) or the existence of equilibria could be obtained using specifically selected 
stationary strategies and threats (cf. Vrieze & Thuijsman [1989], Thuijsman 
& Raghavan [1994], Thuijsman & Vrieze [1994]). These threats are often based 
on properties of solutions for two-person zero-sum stochastic games. Mertens 
& Neyman [1981] showed the existence of an undiscounted value by developing 
behavioral strategies where players use stationary strategies for history depend- 
ent periods of time. 

To establish equilibria in two-person games one can often use that one player is 
securing a good reward for the other player while remaining above his own 
individually rational level. Such however is not possible in a three-person game 
since an increase of one players's reward may simultaneously be a decrease for 
another player, and with three players this may yield cyclic situations. 

2 A Three-Person Example 

We consider the game/ ' :  

F 
N 

L R 3,0,1 1,1,0 

T 0,1,I 0,0,0 

In this cubic three-person game each player has two actions. The actions of the 
players are the following: player 1: Top, Bottom; player 2: Left, Right; player 3: 
Near, Far. The game is represented by taking separately the two layers of the cube 
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that belong to the two actions of player 3 (N and F). Absorbing entries are 
indicated by ,'s, to be interpreted as: once such an entry is selected, the play 
moves to an absorbing state with these payoffs. 

Note that all entries but one are absorbing, so the play absorbs as soon as one 
of the players chooses his second action, and also that the payoffs and the 
absorbing entries are cyclicly symmetric (r 1(il, i2, i3) = r2(i3, i 1, i2) = r3(i2, i 3, il) for 
each entry (i 1, i2, i3))" However we wish to emphasize that we have only introduc- 
ed this cyclic symmetry to make the analysis of this game clearer. Existence of 
cyclic Markov equilibria and non-existence of stationary a-equilibria, can also be 
obtained in non-symmetric games with the very same absorption structure. 

In the game F, each probability distribution can be represented by the 
probability assigned to the second action, which lets the stationary strategy 
spaces equal [0, 1] for each player. For stationary strategies of player 1, player 
2 and player 3 we use the notations x, y and z respectively. The spaces of Markov 
strategies equal [0, 1] ~ for each player. Markov strategies are denoted by ~c for 
player 1, by ;t for player 2, and by p for player 3. 

For this game the only history up to stage ne N if no absorption has occurred is 
the trivial one where each player has chosen his first action at all previous stages. 
Therefore all history dependent strategies are only Markov strategies. For 
a strategy triple 0 = (~c, 2, #), let qo(i) denote the overall probability of absorption 
in entry i = (il, i 2, i3)- Then the reward function is of the form 

7k(o) = ~ qo(i) rk" 
i 

Notice that this expression holds irrespective whether Ziq0(i) is equal to or 
smaller than 1. 

3 Analysis 

Now we investigate the game F in detail. First we show that no stationary 
e-equilibrium exists in F. For this purpose we shall use the well-known result that 
against fixed stationary strategies there always exists a pure stationary best reply 
(cf. Blackwell [-1962], Hordijk et al. [1983]). 

Vy, z~xe  {0, 1 }V~cEyl(x, y, z) >_ 7 a(tc, y, z)]. 

Obviously a similar statement is valid with respect to player 2 and player 3. 

Lemma 3.1: There is no stationary equilibrium in F. 

Proof: Suppose the opposite: let (x, y, z) be a stationary equilibrium. Recall that 
x , y , z  are the probabilities on B,R  and F respectively. First we prove that 
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0 < x, y, z < 1. I f x  = 0 then,  b e c a u s e  of  a bes t  r ep ly  a r g u m e n t ,  y = 1 a n d  the re fo re  
z = 0, wh ich  c o n t r a d i c t s  x = 0. O n  the  o t h e r  h a n d  x = 1 w o u l d  i m p l y  y = 0, hence  
z = 1, wh ich  c o n t r a d i c t s  x = 1. So 0 < x < 1, a n d  b y  s y m m e t r y  we a l so  have  
0 < y, z < 1. Since  0 < x < 1 we have  

3(1 - y)z + yz  _ ~ 1 (0, y, z) = 7 l(1, y, z) = 1 - z, 
1 - (1 - y)(1 - z) 

t hus  

z 2 + 2z 
Y =  Z 2 A r  > Z '  

By s y m m e t r y  z > x a n d  x > y. H e n c e  y > z > x > y, c o n t r a d i c t i o n .  [ ]  

Theorem 3.2: There  is no s tat ionary e-equilibrium in F.  

Proof :  S u p p o s e  (x~,y~,zO is a s t a t i o n a r y  e -equ i l ib r ium.  W e  t ake  a d i sc re te  
s equence  of  e's c o n v e r g i n g  to  0. T h e n  by  t a k i n g  s u b s e q u e n c e s  we can  a s s u m e  the  
sequence  (x~,y~,z ~) to  be  c o n v e r g e n t  in the  c o m p a c t  space  [-0,1] 3. L e t  
(~, y, 5 ) :=  l im~  o (x ~, y~, z 0. W e  d i s t i ngu i sh  t w o  cases.  

Case I: (2, ~, ~) is a b s o r b i n g ,  i.e. 2 > 0 or  ~ > 0 or  5 > 0. 
S u p p o s e  ~ > 0. T h e n  (x, y, D is a l so  a b s o r b i n g  for  all  x. Because  (x ~, y~, z 9 is an  
e - e qu i l i b r i um  we have  

71(x~, y~,z9 + e > 71(x, y~,zO Vx. 

Since 

q(~,~,~)(i) = l im q(x~,/,zo(i), q(x,~,~)(i) = l im q(x,y~,z~)(i) 
e$O e,[0 

for  each  e n t r y  i, we  o b t a i n  

71(X, y, Z) = l im yl  (x~, y~, z ~) _> l ira (7~(x, y~, z 9 - e) = 71(x, ~, ~)Vx. 
e$O ~$0 

Simi l a r l y  for  p l a y e r  2 

7~(2, y, ~) _> 72(~Z, y, 5)Vy. 

If  2 > 0 o r  )~ > 0 t hen  s imi l a r l y  for  p l a y e r  3 as well  

~(x, y, ~) _> ~3(~, y, z)Vz, 
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otherwise  

73(2,y, i f )=  1 _> 7t(2 ,y ,  z)Vz. 

Hence  (2,)~, ~) is a s t a t iona ry  equi l ibr ium,  which  cont rad ic t s  L e m m a  3.1. 

Case 2: (2, f4 z) is recurrent ,  i.e. 2 = y = ~ = 0. 
By subsequence  a rgumen t s  and  by  s y m m e t r y  we can assume wi t hou t  loss of  
general i ty  tha t  

q(x,,y,:~,)(T, L, F) >_ m a x  { q(x~,y~:,~,,) (T, R, N), q(~,;,y,:,~,:)(B, L, N)} Ve. 

We  have  

q(x,:,y,:,z.)(T, L, F) = 
( 1  - -  x ~ ) ( 1  - y~)z ~ 

1 - (1 --  x~)(1 -- y~)(1 - z~) ' 

x"(1 - if)(1 --  z ~) 
q(~y~,~,)(B, L, N) = 

1 - (1 - x~)(1 - y~)(1 -- z~) ' 

( 1  - y~)z  ~ 
q(o,y~,~)(T, L, F) = 1 - (1 - y~)(1 - z~)" 

T h e n  

lim q(~,:,y,,,~,,)(B, L, N) > 0 

would  imply  

lim 7l(x~, y~, z ~) = lim [3q(x,,y,,,~,:)(T, L, F) + qt~,y~,~)(B, L, N)J  
~$0 e,[O 

< l i m  [ 3  q(~:'Y"'z~)(r'g'F) 

= lim [-3(1 - x~)q(o,y~,z~)(T, L, F)]  
e~0 

= lim [3q(0,y~,z,:)(T, L, F ) l  
e$0 

= lim 71 (0, y~, z~), 
~$0 

so (x ~, y~, z ~) wou ld  no t  be an  e-equi l ibr ium for small  e. Hence,  

lim q(:e,y,:,~:)(B, L, N) = O. 
~0 
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lim'/Z(x%y%z~)=limq(xo,y,~,z~)(T,R,N)<l=lim72(x',l,z'). [] 
e~O e$O ~0 

Now we turn to the class of Markov  strategies. First we present a Markov  
equilibrium, which has a cyclic nature. 

Theorem 3.3: Let Markov strategies to, 2, #for players 1,2,3 respectively be 9iven 
by: 

1 1 ~c = (~, 0, 0,~, 0, 0, 1 

2 = ( o , l , o , o , � 8 9  . . . .  1, 

# = ( 0 , 0 , 1  1 ~ ,0 ,0 ,~ ,0  . . . .  ). 

Then (~c, 2, #) is a Markov equilibrium in F with 7(~c, 2, #) = (1, 2, 1). 

Proof: First notice that  

t• 1, 3) + (�89 1)]- ~ (1)3t = (1, 2, 1). ~(~,2,#) = [ �89 , 2 , , ,  
t=O 

We prove that  tc is a best reply of player 1 against (2, #): 

7~(K, L #) >- 71(~, 2, # ) w .  

Similarly, neither player 2 nor  player 3 has profitable deviations. 
By way of contradiction suppose that  a best reply ~ = (2,),~ ~ of player 

1 against (2, #) is profitable, i.e. 7~(E, 2, #) > y~(~c, 2, #) and ya(E, 2, #) > ?~(ff, 2, #) V~ 
(a Markov  best reply must  exist because, due to the cyclic nature of 2 and # with 
periodicity three, the best replies are precisely the optimal solutions of a Markov  
decision problem with three non-absorbing states). We show that  we need to have 

= (0, 0, 0 . . . .  ). Let ~;:= 02,),~;, and let ~h := (x,),~; for all l~ N. Let 2z, #z be 
defined analogously. We have 

7~(ff, 2, #) > ~(tr 2, #) = 1. 

So 2~ = 0, which implies 

71(~2, 22, #2) = 71(/~, 2, #) > 1 = 71(/s 22, #2), 

therefore )~2 = 0. Using the equality 

= 1 .1,~ 2 ])1(~2' 22' #2) 2-'~ t 3' 3 '#3) 
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we obtain  

71(~3, 23, #3) > 2 = ~I(K3, 23, #3), 

so 23 = 0. N o w  using 

i ~ ~ 1 i i ~ 

(~3,~3,#3) =i 3 +iV (~4,)~4,#4) 

we have 

71(~4, 24, #4) > 1 = ~)1(/s 24, #4), 

which yields 24 = 0 .  This a rgument  can be 
-- (0, 0, 0 . . . .  ). But then we get a contradict ion:  

71(/~, ~, #)  =-- 1 ~- 71(/s #). [ ]  

J. Flesch et al. 

repeated this way, so indeed 

oo . o o  . Observe  that  for all le N the strategies to; := (x,),  = ;, 2~.- (y,), = ;, # v =  (z,), =; form 
cyclic M a r k o v  equilibria as well. Also, if for x e  [0, 1] and n~ N the no ta t ion  x(n) 
represents playing x for n subsequent  stages, then 

~. = (~(n), 0(n), 0(n), ~(n), 0(n), 0(n), c~(n) . . . .  ) 

~.  = (0(n), c~(n), 0(n), 0(n), ~(n), 0(n), 0(n) . . . .  ) 

~. = (0(n), 0(n), ~(n), 0(n), 0(n), ~(n), 0(n) , . . .  ) 

form an equil ibrium for each n, where ( 1 -  c~)" = 1 .  The  equality ( 1 -  ~)" = �89  
makes  that  in any period of n stages the play absorbs  with probabi l i ty  �89 

The  next Theo rem says that  all M a r k o v  equilibria are of the same type as 
presented in  Theo rem 3.3. Let (~,2,#) be an equilibrium. Not ice  that  we can 
assume that  at any stage at least one player  plays his second act ion with posit ive 
probabil i ty,  otherwise this stage could be skipped wi thout  loosing that  (~c, 2, #) is 
an equilibrium. Formal ly  therefore, we suppose x,  + y,  + z, > 0 Vn~ N. 

Theorem 3.4: Let (~c, 2, #) be an equilibrium in iF. Then, at each stage exactly one of 
the players plays his second action with positive probability, and these players 
appear cyclically in the order 1,2, 3. 

Proof: In this p roof  we use the following notat ion:  

(u., v., % ) : =  ~(~c., 2. ,  # . )Vn~  N. 

Step 1: x,, y,,  z, < 1 and (K,, 2,, #,) is an equil ibrium Vne N. 
t> If  xl  = 1 or  Yl = 1 or zl = 1, then (x~, y~, z~) would be a s ta t ionary  equil ibrium, 
which would contradict  L e m m a  3.1. Hence  stage 2 is reached with positive 
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probab i l i t y ,  so (~c 2, 2 2,/~2) is a n  equ i l ib r ium.  Therefore  x2, Y2, z2 < 1 again .  This  
a r g u m e n t  c an  be r epa t ed  this way,  so the  p r o o f  is comple te .  

Step 2: 3nEN for wh ich  x ,  = 0 or  y,  = 0 or  z, = 0. 
I> Suppose  the opposi te :  0 < x , ,  y,,, z,  < 1 Vn~ N. T h e n  for s tage 1 we have  

/21 : ~ )1 ( (0 ,  X 2 ,  X 3 . . . .  ) , ,~ ,  ~/) : ~ 1 ( ( 1 ,  X2, X3,...), ~, 11), 

hence  

u 1 = 3 ( 1 - y l ) z l  + y l z l  + ( 1 - y l ) ( 1 - z l ) u  2 = 1 - z  1. 

By express ing  u 2 

1 - 4z I + 2ylz  1 
u2 = (1 - y l ) ( 1  - z 0 '  

Simi la r  e q u a t i o n s  ho ld  c o n c e r n i n g  the  o the r  two players .  D u e  to s y m m e t r y  we 
can  a s sume  for s tage 1 t ha t  u l  < m i n  {vl, wl  }. T h e n  by  the e q u a t i o n s  u 1 = 1 - z l ,  

v 1 = 1 - x  1, w 1 = 1 - Y l  we o b t a i n  z 1 _> m a x  {x 1, Yl}. This  impl ies  

Z 1 

u 2 < 1 --  1 --  z ~ - ~ '  

a n d  t h e n  

Z 1 
Z 1 > Z 2 . 

U 1 - -  U 2 ~ ] - -  Z 1 

So we have  

m i n  {u2, v2, w 2 } < u 2 < u 1 - z~ = m i n  {u 1, vl ,  w 1 } - (max {xl ,  Yl, zl  })2 

< m i n  {ul ,  vl ,  Wl}. 

F o r  s tage 2 we have  u 2 = 1 - z2, v 2 = 1 - Xa, w 2 = 1 - Y2, which  yields 

max{x2,Y2,Z2}  > m a x { x l , y l , z l } .  

T h e n  a n a l o g o u s l y  

m i n  {u 3, v3, w3 } < m i n  {u2, v2, w2} - -  (max {x2, Y2, z2 })2 

< m i n { u l , v l , w l }  - ( ( m a x { x l , y l , z l } )  2 + (max{xz,yz ,Z2})2) ,  

a n d  

m a x  {x3, Y3, z3 } > m a x  {x2, Y2, z2 }. 
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U s ing  this i nduc t ive ly  we f ind t ha t  as n increases  the n u m b e r  m i n  {u n, v., w.} goes 
be low zero, which  is a con t r ad i c t i on .  

Step 3: If z n = 0, t hen  ei ther  x .  = 0 or  Yn = 0. 

t> A s s u m e  by  way  of c o n t r a d i c t i o n  tha t  0 < x . ,  y .  < 1. T h e n  we have  

/A n 
= - - > 1  

un= l'un+ l 1 -- Yn 

V n -- 3X n 
l ) n =  1 - - X n ,  l)n+ 1 - - - -  < 1. 

i - -  I n 

Since u.  + 1 > 1 we o b t a i n  x .+  1 = 0. But  t hen  v. + 1 > 1, con t r ad i c t i on .  

Step 4: If x.  > 0 ,y .  = z. = 0 then  e i ther  x .+  1 > 0, Y.+I = Z .+l  = 0 or  Y.+I > 0, 

Xn+ 1 = 2 n +  1 = 0 .  

t> Since 1 < w n = (1 - Xn)Wn+ 1 we have  % +  1 > 1. The  second  ac t ion  of a n y  p layer  
c a n n o t  give h imse l f  m o r e  t h a n  1, so z .+ 1 = 0, a n d  by  step 3 ei ther  x .+  1 = 0 or  

Yn+I = 0 .  

Step 5: If x .  > 0 a n d  y.  = z. = 0 t hen  ra in  {u., v n, Wn} = 1. 
Obv ious ly ,  we have  u n = 1 a n d  w n _> 1. Suppose  ~ is the  first s tage after state 

n wi th  Yn > 0 (there m u s t  be  such a stage, o therwise  by  step 4 we w o u l d  o b t a i n  

z n = z .+ 1 . . . . .  0, a n d  hence  730% 2., # .)  = 0 < 1 = 73(ten.  'J'n. 1) w o u l d  ho ld  con-  
t r ad ic t ing  the  fact tha t  0c, 2, #) is a n  equi l ib r ium) .  T h u s  72(~c,, 2~, #.)  = 1. By step 
4 we have  z. = . . . .  Zn- i = 0. There fore  

Vn = 3(x. + (1 -- x . ) x .+  1 + " "  + (1 -- x . ) ' "  (1 -- x , _  2 )x , -  1) 

+ (1 -- Xn)" "(1 - -  X._ 1)~2(tCn. .~, .  # , ) .  

a n d  by  step 1 we o b t a i n  (1 - Xn)'"  (1 --  Xn_ 1) > 0, SO V. > 1. 

Step 6: x l = 0 o r y l = 0 o r z  1 = 0 .  
t> Suppose  t ha t  n is the first s tage w h e n  x.  = 0 or  y.  = 0 or  z. = 0. I f n  = 1 t hen  we 
are done .  O the rwise  a s sume  by  wa y  of c o n t r a d i c t i o n  tha t  n >  1. T h e n  

0 < x 1, Yl ,  z l  . . . . .  x . _  1, Yn- 1, Z._ 1 < 1, a n d  ul  = 1 -- z 1 < 1, a n d  therefore  j u s t  l ike 
above  we have  ra in  {u.,  v., Wn} < m i n  {ul ,  v~, wl } --< u l  < 1, which  con t r ad i c t s  the  

fact tha t  ra in  {Un, Vn, Wn} = 1 (cf. s tep 5). 
D u e  to  s y m m e t r y  a n d  step 6 we m a y  suppose  w i t h o u t  loss of genera l i ty  tha t  

z 1 = 0. T h e n  by  s tep 3 we have  x I = 0 or  Yl = 0. A s s u m e  Yl = 0, so x 1 > 0. By step 

4 ei ther  x 2 > 0, Yz = z2 = 0 or  Y2 > 0 .  X 2 = Z 2 = 0. NOW us ing  step 4 induc t ive ly  we 
o b t a i n  tha t  at  a n y  s tage exact ly  one  of the  p layers  p lays  his second  ac t ion  wi th  
pos i t ive  p robab i l i t y .  A n d  finally, the second  s t a t em en t  of the  t h e o r e m  is an  
i m m e d i a t e  c o n s e q u e n c e  of s tep 4, so the  p ro o f  is complete .  [ ]  

Theorem 3.5: The  set of  feasible e q u i l i b r i u m  rewards  for F is 

7~:= { ( u , v , w ) ~ 3 l u ,  v , w >  1 , u + v + w = 4 ,  u =  1 o r v =  1 o r w =  1}. 
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Proof: Let (~c,2,#) be a M a r k o v  equilibrium for F with rewards 
(u, v, w) = 7(t~, 2, #). We show that  (u, v, w)e ~. Suppose x I > 0. Then by Theorem 
3.4 we have Yl, z~ = 0. Hence u = 1, w > 1. Let n be the first stage when y, > 0. This 
implies that  ~2(~c,, 2,, #,) = 1 and z~ . . . . .  z ,_ a = 0. Thus 

v = 3(x 1 + (1 - x i ) x  2 -t- - . -  -~  (1 - x l ) . . . (1  - x,_z)x,_l) 
+ (1 - xl)---(1 - x ,_  1)72(~,, 2,, #,), 

and since x l , . . . ,  x,  1 < 1 (cf. p roof  of 3.4) we have (1 - xl)---(1 - x ,_ i) > 0, so 
v > 1. The equality u + v + w = 4 is trivial. 

N o w  we show that  if (u, v, w)e ~Pthen there exists a M a r k o v  equilibrium with 
these rewards. By symmetry  it suffices to find a M a r k o v  equilibrium with rewards 
(1, 1 + c~, 2 -  c 0, where ~ [ 0 ,  1]. Let 

( c~ 001 1 ) 
. . . .  

(only the mixed action for stage 1 is s-dependent),  and let 2 and # as defined in 
Theorem 3.3. N o w  7(if, 2, #) = (1, 1 + ~, 2 - c 0, and it can be verified similarly to 
the p roof  of Theorem 3.3 that  (~, 2, #) is a Markov  equilibrium indeed. [ ]  

Finally, we wish to remark that  a similar analysis can be succesfully employed 
to show the existence ore-equilibria in any 2 x 2 x 2 recursive repeated game with 
absorbing states which, like the example, has only one non-absorb ing  entry. 
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