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Radio-responsive recA promoter significantly increases
TNF� production in recombinant clostridia after 2 Gy
irradiation
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Gasthuisberg, Leuven; 3DiaMed EuroGen, Tessenderlo, Belgium; and 4Department of Radiation Oncology, RTIL, Academic Hospital
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One of the major problems with gene therapy today is the
lack of tumour specificity. The use of anaerobic apathogenic
clostridia as a gene transfer system can target anoxic areas
within the tumour. These bacteria can be genetically modi-
fied to express therapeutic proteins such as TNF� locally in
the tumour. As shown in our results, ionising irradiation can
be used in clostridia to activate genes encoding cytotoxic
agents under control of a radiation-inducible promoter. A
44% significant increase (P � 0.05) in TNF� secretion was
seen 3.5 h after a single dose of 2 Gy. A second dose of 2
Gy was also capable of repeating gene activation and gave
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Introduction
Approximately 30% of cancer-related deaths are caused
by local tumour failure suggesting that improving local
control has the potential to improve the survival of one-
third of all cancer patients. Many strategies to improve
local tumour control are currently under investigation.
Promising strategies seem to be those that combine exist-
ing therapeutic modalities with new developments
including combining ionising irradiation with gene
therapy.1–9

This combination appears particularly promising as
therapeutic genes can be chosen which have a radiosensi-
tizing effect, thereby improving local tumour eradication.
An example of this is the gene encoding the cytokine
TNF�. This protein has direct cytotoxic effects on some
tumour cells,10 can activate a cellular immune response11

and can cause destruction of tumour microvasculature.12

Moreover, TNF� shows synergistic or additive cell killing
in combination with radiation.13

A major obstacle in gene therapy is the specific tar-
geting of therapeutic products to the tumour cell while
concurrently leaving normal tissue unaffected. Tumour-
specific gene expression can be achieved either by tar-
geting the delivery system (transductional targeting) or
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a significant increase of TNF� production of 42% (P � 0.05).
These results provide evidence that spatial and temporal
control of gene expression can be achieved using a radio-
inducible promoter. Repetitive gene activation was feasible
with a second dose of 2 Gy, indicating that fractionated
radiotherapy could lead to repeated gene induction resulting
in prolonged and enhanced protein expression. Gene tar-
geting by ionising radiation could thus provide a new means
of increasing the therapeutic ratio in cancer treatment. Gene
Therapy (2001) 8, 1197–1201.

by limiting expression of the gene to the tumour cells
(transcriptional targeting). One way to address the latter
strategy is the use of radiation-inducible promoters to
spatially and temporally target gene expression.1–9 For
example, when the radio-responsive Egr1 promoter was
used to regulate expression of TNF� in human xeno-
grafts, an increase in tumour cure was noted without
increasing normal tissue toxicity.2,3

The combination of gene therapy with radiotherapy
thus appears to be a promising approach to increase the
therapeutic ratio of cancer therapy. However, an
important limitation in this strategy remains the lack of
specificity of the vectors used to deliver the therapeutic
gene to the tumour.

In our laboratory, we use strictly anaerobic apatho-
genic Clostridium spp. to deliver the therapeutic proteins
to the tumour. When Clostridium spores are injected intra-
venously into a tumour-bearing animal, a selective colon-
isation of hypoxic/necrotic tissues, with more than 108

CFU/g tumour is obtained.14 Moreover, the bacteria can
be genetically modified to produce and secrete thera-
peutic proteins.14–18 To further increase the specificity of
cytotoxic protein delivery and to achieve temporal con-
trol of protein expression, we have investigated the use
of prokaryotic radio-induced promoters to control gene
expression in Clostridium.19,20 Via the use of a reporter
gene, we demonstrated that the recA gene, belonging
to the SOS-repair system in bacteria, is induced by
ionising irradiation.

In this report, we investigated whether ionising
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Figure 1 The shuttle vector pIMP contains mTNF� under regulation of
the recA promoter. Schematic representation of the pIMP-recA-mTNF�
shuttle vector. PrecA, promoter region of recA; SSeglA, signal sequence of
eglA. Restriction sites are indicated.

irradiation could increase the production of TNF� in Clo-
stridium in the case of TNF�-cDNA placed under the con-
trol of the recA promoter. We measured the amount of
TNF� production after single-dose irradiation and tested
if gene activation could be repeated with a second
radiation dose.

Results
ELISA analysis was used to quantify TNF� secretion by
recombinant clostridia containing mTNF�-cDNA on the
shuttle plasmid pIMP (Figure 1). Figure 2 shows the
induction of TNF� production in recombinant clostridia
containing the pIMP-recA-TNF� vector after a single dose
of 2 Gy. The data are expressed as fold increase in
secretion compared with unirradiated bacteria containing
the same plasmid (see Materials and methods).
A single dose of 2 Gy showed a 1.44 (± 0.15 s.d.) fold

increase of TNF� production compared with unir-
radiated bacteria (P � 0.05, Student’s t test, two-paired
samples for means). This maximum induction of 44% was
observed 3.5 h after irradiation and declined thereafter.
At earlier time intervals, no significant increase in TNF�

Figure 2 Induction of mTNF� in recombinant clostridia after a single
dose of 2 Gy. Fold increase of mTNF� secretion in Clostridium acetobutyl-
icum DSM792 pIMP-recA-mTNF� 15 min, 1 h, 2.5 h, 3 h, 3.5 h, 4 h
and 5 h after a single dose of 2 Gy. The bars represent data from three
independent experiments. Vertical bars represent standard deviation.
Induction factors and standard deviations are represented in the table.

secretion was seen, but there was a trend to increase
secretion reaching a significant level after 3.5 h. These
data demonstrate that the recA promoter can give a
significant increase of TNF� production by recombinant
clostridia after a single dose of 2 Gy.

In patient treatments, radiotherapy is typically given
in multiple fractionated doses. Therefore, we examined if
the radio-inducible promoter could be reactivated with a
second irradiation. The data presented in Figure 3A rep-
resent the induction of TNF� 3 h after a first dose of 2
Gy. A 1.33 to 1.36 (± 0.11–0.12 s.d.)-fold increase was
seen, which corresponds with the 37% increase in TNF�
production seen in Figure 2. TNF� induction 3 h after a
second dose of 2 Gy for sample [a] and a mock irradiation
for sample [b] is shown in Figure 3B. The higher level of
TNF� production seen after 2 × 2 Gy fractions in com-
parison to 1 × 2 Gy, indicated that the promoter can be
reactivated at a clinically relevant dose. Overall, two frac-
tions of 2 Gy resulted in a 1.59 (± 0.14 s.d.)-fold increase
in TNF� production which was significant, compared
with no irradiation (P � 0.02, Student’s t test) and with
a single dose of irradiation (1.17 (±0.18 s.d.)-fold
increase), (P � 0.05, Student’s t test). The 17% increase in
sample [b] (Figure 3B) is the remaining induction effect
from the first irradiation indicating that at this time inter-
val, an induction of TNF� secretion as a result of the first
irradiation remains. These data indicate that the recA pro-
moter in Clostridium can be reactivated by a second dose
of radiotherapy.

Discussion
Several previous studies have employed radiotherapy to
spatially and temporally control gene expression using
the Egr1 promoter in almost each case.1–9 However, in

Figure 3 Induction of mTNF� in recombinant clostridia after 2 × 2 Gy.
(A) Fold increase of mTNF� secreted by C. acetobutylicum 3 h after a
first dose of 2 Gy ([a] and [b]). (B) Fold increase of mTNF� secreted by
C. acetobutylicum after a second dose of 2 Gy ([a]) in comparison with
one dose of 2 Gy ([b]), 6 h after the first irradiation, 3 h after the second.
Vertical bars represent standard deviation. Induction factors and standard
deviations are represented in the table. All data are the result of three
independent experiments.
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using total doses of 20–50 Gy sometimes using fractions
up to 5 Gy.3,12 Since a dose of 5 Gy is not used in a cura-
tive treatment setting, this high dose to achieve induction
can be a limiting factor. Since the eukaryotic Egr1 pro-
moter is not functional in bacteria, we investigated the
use of a prokaryotic radio-inducible promoter. In our
study, significant induction of the recA promoter is achi-
eved at only 2 Gy, which makes it more relevant for clini-
cal use. A single dose of 2 Gy gives an increase of TNF�
secretion of 44% 3.5 h after radiotherapy (Figure 2).

However, patients are not treated with a single dose of
irradiation but with fractionated radiotherapy. This daily
repeated small irradiation dose results in better tumour
control for a given level of normal tissue toxicity than a
single large dose. If fractionated radiotherapy is used, the
first dose produces an increase of TNF� secretion of 33
to 36% 3 h after 2 Gy and an increase of 59% 3 h after
a second dose of 2 Gy. Both inductions are statistically
significant (P � 0.05 and P � 0.02, respectively). If we
look at sample [b] which received a first dose of 2 Gy but
did not receive a second irradiation, we see that at the
second sample point, 6 h after the first dose (Figure 3B)
there is still a 17% increase of extracellular TNF� activity,
although not significant. This implies that of the 59%
induction we measured after the second irradiation
(sample [a]), 42% is the actual result of repeated gene
activation and the residual 17% is still the effect of the
first irradiation. This 42% induction after a second dose
is in the range of induction values of 33–36% (± 11–12%)
obtained after the first dose.

These data provide the proof of principle that the recA
promoter in Clostridium can be efficiently reactivated by
a second dose of radiotherapy and that the degree of
induction remains more or less the same as compared
with single dose irradiation.

This will be important in achieving controlled high lev-
els of therapeutic gene expression in the clinical setting.
In patient treatments, daily radiation fractions would be
capable of activating the radio-inducible promoter lead-
ing to a daily increase of TNF� of 44% locally in the
tumour.

There is, however, a rapid decline in promoter activity.
A maximum level of induction is achieved after 3.5 h,
which drops back to half after 6 h. When we compared
these kinetics with those of the Egr1 promoter, the kin-
etics are quite similar.4 Joki et al4 measured a maximum
induction 1–3 h after a single dose of 20 Gy, and this
induction dropped to about 50% after 6 h, and to basal
level after 12 h. Notwithstanding these rapid promoter
kinetics, they proved a therapeutic benefit in vitro when
using their radio-induced promoter.

Unirradiated clostridia produce TNF� because of basal
activity of the recA promoter. Maximum levels of 6200
pg/ml TNF� were measured in untreated samples. This
basal activity can be reduced by inserting an additional
Cheo box in the promoter region.21 After irradiation of
the recombinant clostridia, concentrations of 8800 pg/ml
of mTNF� can be achieved (data not shown). Previous
studies have reported that doses of hTNF� ranging
between 10 and 1000 U/ml are cytotoxic to human
tumour cell lines.13 Since mTNF� has a specific activity
of about 108 U/mg (data not shown), the concentration of
8800 pg/ml corresponds to 880 U/ml. This concentration
should be sufficiently high enough to result in a cytotoxic
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effect on human tumour cells indicating that Clostridium
is capable of producing sufficient amounts of TNF� to
have an antitumoral effect.

In vitro and in vivo experiments are planned to prove
that an additional increase in TNF� of 44% can lead to
an increase in cell kill. However, when we look at some
dose–response curves for TNF�, we can expect that an
increase in TNF� concentration of 44% can lead to an
increase in cell kill.5

Spatial and temporal control of gene expression by
ionising irradiation is a relatively new and promising
concept. The system we describe exploits the benefits of a
tumour-specific vector in combination with radiotherapy
which triggers and increases gene expression. Since
therapeutic agents such as TNF� can be highly toxic, tem-
poral control of protein expression can be very beneficial.
In patient treatments, physicians will know from what
time-point TNF� will be present in the tumour. TNF�
will be expressed locally in the tumour, mainly in the
hypoxic regions. However, TNF� shows a reduced cyto-
toxicity to hypoxic cells, because the mechanism of direct
cytotoxicity may involve hydroxyl radical production.22
However, since TNF� is a small and compact molecule,
it will diffuse and will also reach the more oxygenated
cells. Moreover, in addition to a direct cytotoxic effect,
TNF� also has an indirect antitumour effect. In combi-
nation with irradiation, TNF� causes occlusion of tumour
microvessels, without significant normal tissue damage.12
TNF� gene therapy targeted by ionising radiation results
in an amplified bystander effect, resulting in extensive
necrosis distal to thrombosed tumour vessels.

Fractionated radiotherapy can provide a method to
repeat gene induction resulting in enhanced and pro-
longed gene expression. Since anaerobic bacteria like Clo-
stridium may colonise other hypoxic/necrotic tissues
besides tumoral, such as for instance abscesses and
infarcted tissues, spatial control of gene expression
would be advantageous. Further benefiting the treatment
plan, Clostridium can be completely eradicated by the
administration of antibiotics,23 suggesting that complete
control of gene expression can be obtained; radiation will
switch it on, and, if necessary, antibiotics can switch it off.

The use of a prokaryotic radio-induced promoter to
temporally and spatially control gene expression is not
only limited to Clostridium-mediated therapy for cancer.
Recently, genetically engineered Salmonella24,25 and
Bifidobacterium longum26 have shown that these bacteria
also have the desirable properties of an antitumour vec-
tor. Both strains provide selective colonisation of solid
tumours and can express proteins. Since the SOS-repair
system in bacteria is highly conserved, the recA promoter
can probably act as a radio-induced promoter in other
bacteria to control gene expression after radiotherapy.
The combination of radiotherapy, which preferentially
kills well-oxygenated cells, with Clostridium (or
analogous)-mediated protein delivery, which targets the
hypoxic cells, provides new possibilities for future
cancer therapy.

Materials and methods

Bacterial strains, media and culture conditions
Clostridium acetobutylicum DSM792 was grown in 2 × YT
medium27 at 37°C in an anaerobic incubator (model 1024;
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Forma Scientific, Marietta, OH, USA) with 90% N2 and
10% H2 and palladium as the catalyst.

For primary vector constructions, Escherichia coli TG128
was used. This strain was grown in Luria-Bertani broth
at 37°C. E. coli ER2275 was used for in vivo methylation
of plasmid DNA before electroporation of C. acetobutyl-
icum.29 The E. coli/C. acetobutylicum shuttle plasmid pIMP
was used as cloning vector.30 Media were supplemented,
when applicable, with erythromycin (25 �g/ml) or
ampicillin (50 �g/ml).

Plasmid construction, transformation procedures
The recA promoter was isolated as previously
described.20 The mTNF� cDNA was available on plasmid
pIG2mTNF (Innogenetics, Gent, Belgium). The signal
sequence of the eglA promoter was used to obtain
secretion of TNF�.15

The promoter and signal sequence were cloned
upstream of the mTNF� cDNA after introducing unique
NcoI and KasI restriction sites in the pIMP vector using
the ‘Quickchange Site-directed Mutagenesis kit’
(Stratagene, La Jolla, CA, USA) (Figure 1).

E. coli was transformed using chemically competent
cells obtained with the RbCl method. Transformation of
C. acetobutylicum DSM792 was carried out as recently
published.31

All general DNA manipulations in E. coli were carried
out as described by Sambrook et al.28

Irradiation
Bacteria were grown until early log phase (OD600nm = ±
0.3). At this time-point cultures were divided into two
sets, one of which was exposed to radiation while the
other was mock-irradiated and used as a control. Bacteria
were exposed to 2 Gy with a 60Cobalt unit at a dose rate
of 0.9 Gy/min. After irradiation, bacteria were incubated
anaerobically at 37°C and samples were taken at different
time intervals after exposure.

For repetitive gene activation, bacteria were grown to
early log phase. Cultures were then divided into three
flasks and exposed to 2 Gy (flasks [a] and [b]) or mock-
irradiated (flask [c]). Three hours after radiation, the cul-
ture was centrifuged (10 min, 10000 r.p.m., 4°C) and
supernatant was taken for analysis. An interval of 3 h
after irradiation was chosen because at this time-point the
highest degree of induction was seen. Because in batch
culture bacteria already reach stationary phase after ± 5
h, repetitive gene activation could not be tested at greater
time intervals. Therefore, we chose to resuspend the bac-
teria in fresh medium to have actively dividing bacteria.
Similarly, in the clinical setting, bacteria gain a continu-
ous supply of nutrients which will result in a continuous
growth of viable cells. The pellet was resuspended in
fresh 2 × YT medium and allowed to regrow for 40 min.
Flask [a] was irradiated a second time with 2 Gy, while
flasks [b] and [c] were mock-irradiated. Again, 3 h after
irradiation and incubation at 37°C, cultures were centri-
fuged and supernatant was sampled for analysis.

Each experiment was independently repeated three
times.

Analysis of mTNF� production
The amount of TNF� secreted by recombinant clostridia
was quantified using ELISA. Supernatant taken from
irradiated and non-irradiated cultures was diluted 10-

fold in phosphate-buffered saline plus 7.5% bovine serum
albumin and 100 �l aliquots were put in a 96-well
microtiter plate. Further manipulations were done
according to the manufacturer’s protocol (DiaMed Euro-
Gen, Tessenderlo, Belgium).

Concentrations of secreted mTNF� were calculated
and compared for the irradiated and non-irradiated cul-
tures. The level of radio-induced TNF� production was
expressed as fold increase in mTNF� concentration of
irradiated samples compared with the corresponding
non-irradiated samples.
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