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Modulation of Cell Death in the Tumor
Microenvironment
Bradly G. Wouters, Marianne Koritzinsky, Roland K. Chiu, Jan Theys,
Jeroen Buijsen, and Philippe Lambin

The microenvironment of solid human tumors is char-

acterized by heterogeneity in oxygenation. Hypoxia

arises early in the process of tumor development be-

cause rapidly proliferating tumor cells outgrow the ca-

pacity of the host vasculature. Formation of solid tu-

mors thus requires coordination of angiogenesis with

continued tumor cell proliferation. However, despite

such neovascularization, hypoxia is persistent and fre-

quently found in tumors at the time of diagnosis. Tu-

mors with low oxygenation have a poor prognosis, and

strong evidence suggests this is because of the effects

of hypoxia on malignant progression, angiogenesis,

metastasis, and therapy resistance. The presence of

viable hypoxic cells is likely a reflection of the develop-

ment of hypoxia tolerance resulting frommodulation of

cell death in the microenvironment. This acquired fea-

ture has been explained on the basis of clonal selec-

tion—the hypoxic microenvironment selects cells capa-

ble of surviving in the absence of normal oxygen

availability. However, the persistence and frequency of

hypoxia in solid tumors raises a second potential expla-

nation. We suggest that stable microregions of hypoxia

may play a positive role in tumor growth. Although

hypoxia inhibits cell proliferation and in tumor cells will

eventually induce cell death, hypoxia also provides an-

giogenic and metastatic signals. The development of

hypoxia tolerance will thus allow prolonged survival in

the absence of oxygen and generation of a persistent

angiogenic signal. We will discuss the concept of hyp-

oxia tolerance and review mechanisms used by cancer

cells to acquire this phenotype. The concept of hypoxia

tolerance has important implications for current and

future therapeutic approaches. Most therapeutic efforts

to combat hypoxia have focused on targeting the pres-

ence of hypoxia itself. Our hypothesis predicts that

targeting the biological responses to hypoxia and the

pathways leading to hypoxia tolerance may also be

attractive therapeutic strategies.

Copyright 2003, Elsevier Science (USA). All rights re-

served.

The Concept of Hypoxia Tolerance

Evidence implicating hypoxia in the pathogen-
esis of solid human tumors continues to ac-

cumulate. Tumor hypoxia was hypothesized ap-
proximately 50 years ago to be important in the
radiotherapeutic management of cancer because
hypoxic cells are intrinsically more resistant to
radiation than aerobic cells.1 This initial interest
in the radiobiological consequences of tumor hyp-
oxia formed the basis of decades of research that,
in recent years, has led to a close examination of
the biological phenotypes of hypoxic cells. A num-
ber of seminal discoveries has led to the realiza-
tion that hypoxia may be even more important
than originally believed, contributing not only to
therapy resistance but also to tumor malignancy.
A wealth of data has shown that hypoxia can
contribute to the malignant phenotype of tumors.

Hypoxia has been implicated in promoting me-
tastasis, angiogenesis, and the selection of cells
with a more malignant phenotype.2-8 The impor-
tance of hypoxia has been shown clinically when
it predicts for worse outcome in the treatment of
cancer of the head and neck, uterine cervix, and
soft-tissue sarcomas.9-11

In nonpathological tissue, a structurally and
functionally normal vasculature provides cells
with an adequate oxygen and nutrient supply.
However, the situation for aggressively growing
tumors is much different. Although deregulated
cell growth may be sustained by the host vascu-
lature for a short period of time, rapid cell pro-
liferation will eventually lead to excessive de-
mand for oxygen. The establishment of hypoxia is
thus believed to occur very early in the develop-
ment of a tumor, producing a microenvironment
that is hypoxic, acidic, and low in nutrients. The
response of cells to this environment is critical for
the continued growth of the tumor.

If the tumor mass is to maintain its growth, a
continuous supply of oxygen and nutrients is es-
sential. Hypoxia can stimulate the formation of
new blood vessels through various mechanisms
such as increased secretion of vascular endothe-
lial cell growth factor (VEGF).12 Although angio-
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genesis clearly occurs in solid tumors, clinical
data have shown that hypoxia remains a common
feature of tumors.9,10,13-15 Even in the case of
tumors that have developed throughout a period
of 30 years or more, hypoxia is persistent. This
implies that the vasculature that develops in tu-
mors is inadequate to provide normal levels of
oxygenation. Consistent with this idea is the ob-
servation that tumor vasculature is often abnor-
mal, characterized by sluggish or intermittent
blood flow, leakiness, and structural abnormali-
ties that further contribute to tumor hypoxia.16,17

We can thus conclude that hypoxia occurs early
and remains a common feature of tumors
throughout their development.

Cells can survive for only limited periods of
time at low oxygen. In normal cells, hypoxia leads
to the inhibition of cell growth and eventually to
cell death. These same effects are also observed
frequently in tumor cells but are generally less
severe and/or develop with slower kinetics. This
hypoxia tolerance is often explained as a result of
a selective pressure in tumors that are forced to
develop in an environment characterized by low
oxygen availability. However, one could also hy-
pothesize that the persistence of hypoxia in hu-
man tumors is a reflection of the fact that hyp-

oxia can act as a net positive factor in tumor
growth. Because hypoxia can stimulate angiogen-
esis, the presence of heterogeneous areas of hyp-
oxia may be beneficial to the overall growth of the
tumor. This hypothesis predicts that tumors con-
taining hypoxia tolerant cells will maintain a
growth advantage—a prediction supported by
many examples from both the laboratory and the
clinic.2-8,18-20 Not only will such cells be able to
survive limited exposures to hypoxia and perhaps
proliferate again when oxygen becomes available,
these cells can deliver a more prolonged angio-
genic signal ensuring coordinated angiogenesis
and cell growth. Thus, tumor cell growth, hyp-
oxia, and angiogenesis become intrinsically
linked. As tumor cells learn to tolerate hypoxia,
both tumor cell growth and angiogenesis will be
positively affected.

This leads us to an intriguing question. Is
tolerance to hypoxia in cancer a common, or even
necessary event in tumorigenesis? And if so, what
are the implications for current therapies? If we
can better understand the molecular mecha-
nisms that control the adaptive responses to hyp-
oxia in tumors, improved therapeutic approaches
to the treatment of malignancies may be devel-
oped (Fig 1).27

Figure 1. Hypoxia tolerance in the development of cancer. Hypoxia is hypothesized to arise early in the process
of tumor development. Deregulation of cell growth results in an excess demand for oxygen and leads to cellular
hypoxia. In normal and minimally transformed cells, hypoxia leads to cell death through activation of apoptosis or
through loss of ATP. To continue to proliferate, tumors need to induce angiogenesis. During tumor evolution, cells
become resistant to hypoxia-induced cell death. We hypothesize that this hypoxia tolerance arises such that a
persistent hypoxia-induced angiogenic signal can be produced. The continued presence of viable hypoxic cells
allows the coordination between angiogenesis and tumor expansion. This hypothesis implies that heterogeneity in
oxygenation is beneficial to overall tumor growth.

32 Wouters et al



Mechanisms of Hypoxia Tolerance

The formation and continued proliferation of
solid tumors requires persistent angiogenesis.
Reminiscent of many biological processes, angio-
genesis is the result of subtle and often complex
interactions balancing pro- and antiangiogenic
molecules. This equilibrium is upset in various
diseases, including cancer. Angiogenesis is virtu-
ally nonexistent in healthy adult tissue with the
exception of a few physiological processes such as
wound healing and the female menstrual cy-
cle.21,22 Stable regions of tumor hypoxia may up-
set this balance and provide the requisite proan-
giogenic signal. Viable hypoxic cells initiate
angiogenesis principally through HIF-1 depen-
dent upregulation of VEGF, although it also fa-
cilitates this process through a variety of other
mechanisms.23 We propose that development of
hypoxia tolerance through modulation of cell
death in the tumor microenvironment may be a
common pathway that allows the generation of a
persistent angiogenic signal. Whereas in normal
cells hypoxia will lead to cell death and thus
removal of the proangiogenic signal, hypoxia-tol-
erant cells maintain their survival and delivery of
the signal. Two principle mechanisms have
emerged that can explain how cell death in the
tumor microenvironment is altered. The first is
through suppression of intrinsic cell death path-
ways normally initiated by hypoxia and the sec-
ond is through adaptation to the hypoxic envi-
ronment through decreased energy use and
increased energy production.

Hypoxia Tolerance
Suppression of cell death pathways. Hypoxia

imposes a stress response that can lead to cell
death. In many cell types, hypoxia promotes ap-
optosis through the induction of genes such as
p53,4 bik,24 bnip3,25,26 and others. However, the
cellular decision of life or death is the result of
the net balance between proapoptotic and anti-
apoptotic (survival) signals. It is thought that the
very existence of cancer implies suppressed apo-
ptosis and deregulated dependence on survival
signals.27 Suppression of proapoptotic signals of-
ten occurs through mutations in apoptosis-trig-
gering tumor suppressor genes such as p53.
Similarly, antiapoptotic (survival)–signaling
pathways are often constitutively upregulated
through activation of oncogenes such as ras or

loss of tumor suppressors such as PTEN. Dereg-
ulated susceptibility to apoptosis may in itself
lead to increased resistance to death induced by
environmental stress such as hypoxia. The sup-
pression of apoptosis in cancer cells also may
contribute to genomic instability by failure to
eliminate damaged cells. This provides cancer
cells with an inherent adaptability to stress con-
ditions such as hypoxia and hence substantial
responsiveness to the selection pressure that it
evokes. Thus, the presence of hypoxic areas in
tumors may contribute to malignancy by promot-
ing the clonal expansion of cell variants with a
survival advantage in this microenvironment.

The relevance of hypoxia-induced selection
pressure has been shown experimentally in sev-
eral models. Graeber and colleagues4 showed
that a small number of transformed cells lacking
the apoptosis stimulating tumor suppressor p53
would overtake similar cells expressing p53 when
treated with hypoxia in vitro. Likewise, Kim et al5
showed that the exposure of cell cultures to hyp-
oxia greatly accelerated the selection for sub-
populations of cells with diminished apoptotic
potential. In vivo, hypoxic and apoptotic areas
coincided in transplanted tumors expressing
wild-type p53 but not in p53-deficient tumors.4
Furthermore, the conversion of well-vascularized
solid tumors to hypoxic ascites tumors favors the
selection of cell variants with mutant p53.28 The
selection of apoptosis-resistant cells by hypoxia
can also occur through p53-independent path-
ways. An example of this was shown in human
colorectal cancer cells that acquired sustained
resistance to apoptosis after hypoxia exposure in
spite of active p53.29

Increased Energy Production. As described
earlier, one of the means by which cells can become
hypoxia tolerant is through selection of cells with
mutations in genes that predispose them to hy-
poxia-induced cell death. However, tumor cells may
also become hypoxia tolerant through adaptation of
normal physiologic responses. The lack of oxygen
necessitates a switch from oxidative phosphoryla-
tion to anaerobic glycolysis for adenosine triphos-
phate (ATP) production, and this switch has been
shown to coincide with the oxygen gradient around
blood vessels.31 Increased glycolysis during hypoxia
is facilitated by increasing the activity and expres-
sion of proteins in the glycolytic pathway such as
glucose transporters (GLUTs),32 phosphoglycerate
kinase-1 (PGK-1),33 and pyruvate kinase M (PK-
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M).34 In fact, the hypoxia-induced transcription fac-
tor HIF-1 mediates transcriptional activation of the
entire glycolytic pathway from glucose uptake to
lactate production.8 Transcription of HIF-1–respon-
sive genes is stimulated through binding of HIF-1 to
a hypoxia response element (HRE) in the gene
promoter. The HIF-1 transcription factor itself is
regulated by a post-translational mechanism. HIF-1
is a heterodimer consisting of the 2 subunits,
HIF-1� and HIF-1�, which are both ubiquitously
expressed. HIF-1� protein is stable, whereas
HIF-1� is targeted for ubiquitination by the von
Hippel-Lindau tumor suppressor protein (VHL)
and rapidly degraded by the proteasome under
well-oxygenated conditions.35 VHL recognizes hy-
droxylized prolyl residues in the HIF-1� protein,
which remain unhydroxylated during hypoxic con-
ditions.36,37 Thus, HIF-1� is stabilized during hyp-
oxia and can dimerize with its partner HIF-1� to
induce transcription of HRE-responsive genes.

Evidence showing the significance of the HIF-1
pathway for tumor cell viability has accumulated
over the last few years. HIF-1�– or �–deficient
Chinese hamster ovary cells have been shown to
be sensitive to hypoglycaemia and altered redox
status by inhibition of cytochrome oxidase,38 and
mouse embryo fibroblasts lacking HIF-1� grow
more slowly under hypoxia than wild-type cells.39

Using genetically matched cell lines derived from
wild-type and HIF-1� knockout mice, a proteomic
analysis showed that HIF-1 was strictly required
for the upregulation of key enzymes in the glyco-
lytic pathway.39 The decreased glycolytic capacity
of HIF-deficient cells resulted in dramatically
lowered free ATP levels. These findings are in
support of a significant role for HIF-1 in the
protective adaptation to the tumor microenviron-
ment. This notion has been confirmed in vivo
because HIF-1–deficient transformed cells are
less tumorigenic than wild-type cells and that the
resulting xenografts show slower growth. The
slower tumor growth in these studies could not be
attributed to differences in tumor vasculariza-
tion, and the authors therefore concluded that it
was because of impaired upregulation of glycoly-
sis as observed in vitro.39,40

Constitutively upregulated HIF and enhanced
glycolosis even under aerobic conditions is a com-
mon characteristic of many tumors, suggesting
that this pathway may become deregulated as a
consequence of tumor progression.41 The ob-
served reduced growth rates of HIF-deficient tu-

mors provide an explanation for why this may be
beneficial for tumor development. Presumably, a
constitutively activated glycolytic pathway can
contribute to hypoxia tolerance by allowing tu-
mor cells to maintain their energy homeostasis
during periods of low-oxygen availability.

Decreased Energy Consumption
Another strategy for increasing survival under
conditions of limiting oxygen and energy is to
decrease ATP consumption. A well-characterized
consequence of hypoxic stress is a pronounced
repression in the rate of oxygen consumption and
energy turnover.42,43 The main ATP-demand
pathways in hypoxic cells are the Na�/K� ATPase
pump, protein synthesis, and degradation and
gluconeogenesis.44,45 It has been estimated that
under severe hypoxia, the ATP demand for pro-
tein synthesis drops to about 7% of that of nor-
moxic cells. This drop correlates with a substan-
tial and rapid drop in the rate of protein
synthesis.46 The rapid kinetics of this response
and the fact that it precedes ATP depletion ar-
gues for a tightly regulated mechanism that is
activated by low oxygen availability.47 The molec-
ular pathways responsible for the downregulation
of protein synthesis during hypoxia are not yet
completely understood. However, recent data
suggest the involvement of eukaryotic initiation
factors (eIFs) that modulate translation initia-
tion.48 The eIFs facilitate the correct assembly of
the messenger RNA (mRNA) template, the ribo-
somal 40S subunit and the aminoacylated initia-
tor transfer RNA (Met-tRNA). A rate-limiting
factor in this process is eIF2, which binds Met-
tRNA in its energized eIF2-guanosine triphos-
phate form, and thereby recruits Met-tRNA to
the ribosome. The activity of eIF2 is tightly reg-
ulated through phosphorylation of the elF2� sub-
unit, which inhibits the exchange of guanosine
triphosphate for guanosine diphosphate bound to
eIF2, and thereby the binding and recruitment of
Met-tRNA. Translation has previously been
shown to be downregulated through phosphory-
lation of eIF2� in response to stress such as virus
infection, unfolded proteins, serum starvation, or
amino acid deprivation. Recently it was shown in
several transformed cell lines that hypoxia in-
duces a rapid phosphorylation of the eIF2� sub-
unit, which results in reduced protein synthesis.49

The phosphorylation of eIF2� appears to be me-
diated by the endoplasmic reticulum kinase
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PERK, which previously has been known to be
activated in response to unfolded proteins in the
endoplasmic reticulum. This rapid inhibition in
protein translation in response to hypoxia
strongly suggests that this pathway is critical for
cells to survive during hypoxic exposure. It will be
interesting to test if disruption of this response
will sensitize cells to hypoxia-induced cell death.

Another rate-limiting eukaryotic initiation
factor is eIF4E, which recognizes and binds the
m7G cap-structure of the 5� mRNA. eIF4E facil-
itates the bridging of the mRNA to the 40S sub-
unit through participation in the scaffolding
eIF4F protein complex. eIF4E is mainly regulated
through a set of binding proteins (4E-BPs) that
bind eIF4E in their hypophosphorylated form and
thereby inhibit its participation in the eIF4F
complex. The 4E-BPs have previously been shown
to be phosphorylated in response to stimuli such
as hormones or growth factors, and dephospho-
rylated in response to stress such as heat shock,
virus infection, or serum starvation, leading to
stimulation and repression of translation, respec-
tively. We have recently found that hypoxia
disrupts the eIF4F complex through multiple
mechanisms including dephosphorylation of the
4E-BPs.50 Furthermore, we have also shown that
the eIF4E translocates to the cell nucleus and
thus becomes unavailable for translation during
hypoxic conditions.50

The regulation of eIF2� and eIF4E in response
to hypoxia appears to be significantly weaker in
human normal fibroblasts than in human tumor
cell lines (Wouters, unpublished data, 2002).
This finding supports the idea that regulatory
responsiveness to hypoxia is an adapted feature
of tumor cells that is beneficial for their survival.

Therapy Implications

The fact that hypoxia negatively impacts on ther-
apy is well established. Hypoxic cells are radia-
tion and chemoresistant for a variety of reasons,51

and thus effective therapy requires strategies to
overcome this resistance. Many attempts have
been made, most of these focused on trying to
restore normal oxygenation (or mimic it) to the
tumor. The concept that tumor cells become hy-
poxic tolerant, and furthermore that the pres-
ence of microregions of hypoxia may be advanta-
geous to overall tumor growth, has its own
therapeutic implications. New approaches aimed

specifically at exploiting or altering the mecha-
nisms that lead to hypoxia tolerance may provide
better efficacy in future therapies

Restore Oxygenation
In the past 40 years, numerous attempts have
been made to improve radiotherapy by restoring
(or mimicking with hypoxic radiosensitisers) the
oxygen supply to tumor cells. This includes such
treatments as hyperbaric oxygen breathing,
transfusions to improve the haemoglobin level,
and electron affinic radiosensitisers. Although
early studies showed mixed results, a large meta-
analysis of all oxygen-modifying head and neck
cancer trials did show a significant improvement
in local control and disease-specific survival.52,53

This is likely a reflection of the fact that hypoxic
cells are radiation resistant, and even modest
improvements in oxygenation should improve
outcome. More recently, the use of recombinant
erythropoietin (EPO) has become subject of
study. EPO is a HIF-1–regulated haematopoietic
growth factor produced by the kidneys in re-
sponse to hypoxia. It stimulates the erythrocyte
production in the bone marrow. Several trials
have been conducted to investigate the effect of
recombinant human EPO in patients with low
hemoglobin (Hb) levels. A relationship between
Hb levels and the response to radiation therapy
has been shown for carcinomas of the uterine
cervix,54-56 head and neck cancers,57-61 lung can-
cer,62-64 bladder cancer,65-68 and prostate carci-
noma.69 In these studies, patients with low Hb
levels achieved lower local control rates and sur-
vival.

The combination of accelerated radiotherapy
with carbogen and nicotinamide, known as the
ARCON protocol, is also being evaluated in the
clinic. Carbogen (95% O2 � 5% CO2) reduces
diffusion limited hypoxia and nicotinamide can
antagonize vasculature shutdown.14,70-74 A signif-
icant effect on both locoregional control and dis-
ease specific survival for stage T3-T4 SCC laryn-
geal tumors has been reported.75,76 In a recent
publication an overall local control rate of 80%
was reported for T3 and T4 larynx carcinomas,77

offering possibilities for organ preservation. A
phase II trial for bladder cancer also showed
better results using the ARCON protocol, com-
pared with historical data.78

Despite some success of these approaches, the
concept of improving tumor oxygenation ignores
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in part the biological effects of hypoxia that may
be important in malignancy and treatment re-
sponse outside of therapy resistance. In other
words intrinsic resistance to therapy is only one
of the mechanisms by which hypoxia impacts on
prognosis. Our increased understanding of the
biology of hypoxic cells has led to new ideas for
treating hypoxic tumors (Table 1).

Exploit Hypoxia
The concept that hypoxia tolerance in tumors is a
selected phenotype that supports angiogenesis
provides us with new problems and possibilities
for therapy. Instead of attempting to rid tumors
of hypoxia, which may be impossible because of
hypoxia tolerance and the nature of their vascu-
lature, we can instead attempt to exploit hypoxia
for therapeutic advantage. Stable regions of hyp-
oxia in human tumors provide the possibility of
directing therapy specifically against this unique
feature. Current attempts to exploit this feature
of tumors include both pharmaceutical and gene-
therapy approaches.

Bioreductive Drugs
Bioreductive drugs are compounds that are re-
duced by enzymes to their toxic, active metabo-
lites. They are designed such that this metabo-
lism occurs only or preferentially in the absence
of oxygen. The use of these drugs in combination
with traditional therapies has the potential to
greatly improve treatment outcome by increasing
cytotoxicity to the hypoxic tumor fraction. In the-
ory, such an approach can be superior to an al-
ternative therapy that would fully reoxygenate
the tumor.80 Tirapazamine is the leading com-
pound in this class of agents and has shown prom-
ising results in a number of clinical trials when
used in combination with cisplatin and/or radio-

therapy. A wide variety of cell lines are sensitive
to tirapazamine, regardless of their p53 status,
and require 50 to 150 times higher dose for the
same toxicity under aerobic conditions.81,82 For a
more detailed discussion of bioreductive agent
therapies, see the accompanying article by Strat-
ford et al in this issue.

Gene Therapy With Bacterial Vectors
The aim of gene therapy is to transfer genetic
material to the tumor cell or its microenviron-
ment in quantities sufficient to obtain a thera-
peutic level of expression. However, strategies
devised to date have limited efficiency, most no-
tably because of deficiencies in the delivery sys-
tems used. A recent approach to this problem
uses the concept of targeting anaerobic bacteria
to the hypoxic/necrotic areas of solid tumors.
Currently, both Clostridium spp and attenuated
Salmonella typhimurium auxotrophs are being in-
vestigated as systems to deliver antitumor com-
pounds specifically to the tumor site.83,84 The
latter strain grows under aerobic and anaerobic
conditions, with selectivity for tumors reported as
a consequence of its auxotrophic nature. The
specificity of clostridia for tumors resides in its
obligate requirement for anaerobic conditions.
Intravenously injected spores of a nonpathogenic
clostridial species have been shown to localize to,
and germinate in, the hypoxic/necrotic regions of
solid tumors. Although growth alone in the tumor
is not sufficient for therapeutic efficacy, the pos-
sibility now exists to engineer Clostridium spp to
produce a variety of therapeutic proteins with
anticancer properties. Clostridia can thus be
used as highly selective in situ cell factories able
to produce and secrete antitumor therapeutics
specifically at the tumor site. Moreover, it has
been shown that the immune response does not
hinder repeated administration of clostridial
spores, that colonization can be improved using
vascular targeting, and that gene expression can
be stopped at any time using suitable antibiotics.
We and others showed that it is possible to ex-
press therapeutic proteins, not only in vitro but
also in vivo after administration of the recombi-
nant clostridia to tumor-bearing animals.85,86

Target Biological Responses to Hypoxia
We have proposed that one of the principle rea-
sons that tumors contain hypoxic cells is the fact
that these cells can provide a prolonged angio-

Table 1. Targeting Treatment at Hypoxia

Hypoxia tolerance Restore cell death pathways

¢O
Target survival pathways
Block adaptation to ATP

preservation
Viable hypoxic cells Restore oxygenation

¢O

Bioreductive drugs
Gene therapy with anaerobic

bacteria
Biological response Block angiogenesis

Block metastasis
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genic signal. One can thus envisage a situation in
which non-proliferating or even non-clonogenic
hypoxic cells contribute in a positive way to tu-
mor growth. The concept that hypoxia tolerance
is critically important for tumor growth suggests
that interfering with either the mechanisms that
lead to hypoxia tolerance or the biological conse-
quences of the resulting hypoxic areas in tumors
(angiogenesis) may become new effective means
of treatment. Therapeutic interventions to coun-
teract these biological responses are possible at
different levels.

Block Angiogenesis
Perhaps the most important consequence of tu-
mor hypoxia is the induction of angiogenesis.
Progressive growth of solid tumors is largely de-
pendent on this process87 and thus antiangio-
genic therapy may relieve much of the impact of
hypoxia on prognosis. The complex process of
angiogenesis offers potential therapeutic targets
at different levels.88

VEGF is perhaps the most important factor in
tumors for promoting compensatory angiogenesis
in circumstances of oxygen shortage.89 It pro-
motes endothelial cell migration, modulates pro-
teases needed for basement degradation, and
stimulates plasminogen expression. Hypoxic up-
regulation of VEGF occurs as a result of both
increased transcription mediated by HIF-1 and
increased mRNA stability dependent on the 3�
untranslated region.90,91 VEGF receptors have
been shown to be upregulated in surrounding
endothelial cells.92 Therefore, VEGF, its recep-
tors (flt-1 and flk-1) and the signal transduction
pathway present realistic therapeutic targets.
Several therapeutic strategies aimed at targeting
the process of angiogenesis, including those
aimed at interfering with VEGF signaling path-
ways, are currently under active investigation
both in the laboratory and the clinic. This topic is
the subject of another article in the current issue
(Siemann and Shi, in this issue).

One interesting aspect of antiangiogenic ther-
apies possibly related to the concept of hypoxia
tolerance is that there are examples of gradual
loss of response, especially when drugs are ad-
ministered as monotherapies. Several recent re-
ports107,108 support this notion and provide a
possible explanation. Kerbel and colleagues108

showed that the genetic background of a tumor
cell (in particular the presence/absence of p53)

may be an important determinant of response to
antiangiogenic therapy. They concluded that loss
of p53 may allow tumor cells to survive the tem-
porary inhibition of angiogenesis as a conse-
quence of their reduced apoptotic potential dur-
ing hypoxia. Antiangiogenic therapy is expected
to result in increased tumor hypoxia, and thus
tumors that are better able to survive hypoxia
would be expected to maintain a growth advan-
tage. As discussed earlier, the reduced reliance
on vascular supply through modulation of cell
death during hypoxia can occur through many
mechanisms including changes in the HIF-1
pathway.109

Block Tolerance
The recent suggestion that even antiangiogenic
strategies have reduced efficacy against tumors
that have developed mechanisms of increased
hypoxia tolerance suggests it may be necessary to
target an even earlier step in this system. One
obvious strategy is to interfere with the mecha-
nisms that tumor cells have used to modulate
their sensitivity to cell death in response to hyp-
oxia. Some approaches are based on the knowl-
edge that several genes, when mutated, contrib-
ute not only to tumor progression but also to
survival under hypoxic conditions. Gain-of-func-
tion mutations in key oncogenes and/or loss-of-
function mutations in tumor suppressor genes
can prevent commitment of cells to apoptosis.
Perhaps the best-characterized survival signaling
pathway is mediated by PI3-kinase (PI3K-PTEN-
AKT-FRAP/MTOR pathway). This pathway has
been implicated in both the response of cells to
hypoxia and to angiogenesis.110 Pharmacologic
agents that inhibit PI3K (Wortmannin or
LY294002) or its downstream effectors FRAP/
MTOR (rapamycin) have been shown to have
some therapeutic efficacy.111 Altering the malig-
nant phenotype by blocking dominant negative
oncogenes that are implicated in the hypoxic re-
sponse (such as myc and ras) at transcriptional or
translational levels is also an attractive target
being evaluated in several clinical trials. Methods
involve the use of antisense oligonucleotides,112

ribozymes,113 and intracellular single-chain anti-
bodies.114 Antibodies to HER2/neu or the epider-
mal growth factor receptor, both of which can
provide survival and angiogenic signals, are also
attractive candidates as contributors to hypoxic
cell survival. These antibodies are being tested

Modulation of Cell Death in the Tumor Microenvironment 37



and have shown some significant efficacy against
angiogenesis in vivo.115,116 Based on the fact that
p53 induces apoptosis in response to hypoxia,
perhaps the most attractive method to restore
cell death is to restore p53 function. Many inves-
tigations using gene therapy with p53 are already
underway.117,118 Other attractive approaches in-
volve the conversion of anti-apoptotic or prolifer-
ative signals into signals that trigger apopto-
sis.119,120

Another important mechanism of hypoxia tol-
erance arises through the increased ability to
regulate ATP supply during hypoxic exposure. As
discussed earlier, hypoxic tumor cells are able to
decrease their requirements for ATP by shutting
down overall protein synthesis while at the same
time inducing a transition from oxidative phos-
phorylation to anaerobic glycolysis for the gener-
ation of ATP. Interfering with either of these 2
processes would be expected to selectively target
hypoxia tolerant cells. The process of translation
initiation is facilitated by the eukaryotic initia-
tion factors, and several of these factors are con-
trolled through upstream signaling pathways.
Thus, it may be possible to interfere with this
response indirectly with agents that influence
these upstream pathways. For example, transla-
tion initiation is increased in response to PI3
kinase signaling through FRAP/mTOR. Deregu-
lation of inhibited translation initiation during
hypoxia would be expected to result in increased
ATP consumption and thus make tumor cells less
able to survive prolonged periods of hypoxia.

Similarly, it may be possible to interfere with
ATP generation in hypoxic tumor cells. Tumors
in general have increased rates of glycolysis, a
fact that may be related to hypoxia tolerance.
Targeting of the enzymes or substrates involved
in this well understood pathway would thus also
be expected to specifically target hypoxic cells or
at least reduce the tolerance of tumor cells to
hypoxia. Recent results showing reduced tumor
growth in transformed cells that are unable to
induce anaerobic glycolysis as a result of loss of
HIF-1 support this idea.39
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