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h i g h l i g h t s

• I study an asymmetric stochastic contest model.
• Players differ in their ability to make debt.
• The unique equilibrium outcome and payoffs are characterized in closed form.
• A higher debt level of a player changes the bankruptcy risk of both players.
• The similarity of the equilibrium to other contest models is explored.
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a b s t r a c t

I study the impact of asymmetric loss constraints on risk-taking behavior in the contest model of Seel and
Strack (2013). I derive the unique Nash equilibrium outcome, the equilibrium payoffs and comparative
statics about the bankruptcy risk.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A contest is a simple and widely used mechanism in which
each player’s payoff is determined by his rank in a peer group. The
main focus of the literature on contests has been on the trade-off
between a higher effort cost and a higher chance of winning; see,
e.g., Hillman and Samet (1987), Baye et al. (1996), or Siegel (2009,
2010). Applications of such contests include patent races, political
campaigns, litigation, rent seeking, procurement and so forth.

In many contests in the financial industry, however, risk-taking
is an important determinant of contest success. For example, think
about competitions between private equity funds or mutual funds
inwhich only the best performing funds receive substantial capital
inflow in the next period or bonus payments for fund managers or
CEO’s if they outperform their peers. In order to focus on the risk-
taking aspect, Seel and Strack (2013) proposed a contest model
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in which each player decides when to stop a privately observed
Brownian motion and the player who stops his process at the
highest value receives a prize. Thus, waiting longer entails the risk
that the value of the process decreases.

During the last years, different versions of the model have been
considered in the finance literature. For instance, Feng and Hob-
son (2015, in press-a,b) study the effects of regret-based agents,
bidding caps, a random initial value, and different stochastic pro-
cesses on the equilibrium outcome. In another interesting con-
tribution, Fang and Noe (2015) establish an equivalence result
between the stochastic contest model and a static model in which
players choose a cumulative distribution function subject to a ca-
pacity constraint on the expected value. Moreover, they introduce
multiple prizes and incomplete information and they analyze the
probability of selecting more able contestants with this contest.

This paper contributes to the recent literature by focusing on
another factor which influences risk-taking and which occurs in
many applications in finance: contestants differ in their credit
line, i.e., the maximal amount of money which they can lose.
This introduces additional technical difficulties, since there are
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no simple boundary conditions as in Seel and Strack (2013); the
equivalent model of Fang and Noe (2015) facilitates the analysis.

2. The model

I consider the following version of the model analyzed in Seel
and Strack (2013). Each of two agents i = 1, 2 privately observes
the realization of the stochastic process

X i
t = x0 + σBi

t ,

where x0 > 0 denotes the starting value and the random terms
σBi

t are independent Brownian motions scaled by σ ∈ R+.
Each player chooses a stopping time τ i. The agents’ stopping

decision until time t has to beF i
t -measurable, whereF i

t = σ({X i
s :

s < t}) is the sigma algebra induced by the possible observations
of the process X i

s before time t . Additionally, I restrict stopping
times in two ways: First, they should have finite expectation, i.e.,
E(τ i) < ∞. The second restriction is the loss constraint. Without
loss of generality, assume that player 2 has a tighter constraint and
that he has to stop once the process hits zero, i.e., τ i

≤ inf{t ∈ R+ :

X i
t = 0} a.s.. Player 1 can make higher losses and thus he faces the

weaker constraint τ i
≤ inf{t ∈ R+ : X i

t = x} a.s., where x < 0 is
the difference in the loss constraints.

Note that a stopping strategy induces a distribution over the
values of the process at the stopping time, which I denote by
Fi(x) = P(X i

τ i ≤ x). The player who stops his process at the
highest value wins a prize, which I normalize to one. Ties are
broken randomly. Formally, the payoff/winning probability is

πi = 1
{X i

τ i
>X j

τ j
}
+

1
2
1

{X i
τ i

=X j
τ j

}
.

Each player maximizes the above winning probability.
Fang and Noe (2015) show that the stochastic contest model

has the same Nash equilibrium distributions Fi as amodel in which
players choose their cumulative distribution functions subject to
the constraint that the expected value of the underlying random
variable is xi0. Including the loss constraints, player 2 thus faces
the choice of a cumulative distribution F2 on [0, ∞) subject to the
capacity constraint (expected value equals x0). Player 1 chooses
a cumulative distribution F1 on [x, ∞) subject to the capacity
constraint,where−x > 0 is the amount of additionalmoneywhich
player 2 can lose.

3. Equilibrium characterization

In this section, I determine the Nash equilibrium of the contest.
In equilibrium, player 1 must choose a cumulative distribution
function F1 which solves

max
dF1≥0


F2(x)dF1(x) s.t.


∞

x
xdF1(x) = x0

and F2 must solve

max
dF2≥0


F1(x)dF2(x) s.t.


∞

0
xdF2(x) = x0.

The constraint captures the available capacity (the expected value
should be x0). The following proposition characterizes the Nash
equilibrium of the game:

Proposition 1. In any Nash equilibrium, the cumulative distribution
functions are

F1(x) =


0 if x < x,
α if x ∈ [x, 0),

α + (1 − α)
x
x

if x ∈ [0, x],

1 if x > x,
and

F2(x) =


0 if x < 0,

β + (1 − β)
x
x

if x ∈ [0, x],

1 if x > x,

where

α =

x0 −


x20 − 2x0x

2x − x0 −


x20 − 2x0x

,

β =
−x

x0 +


x20 − 2x0x − x

,

and

x = x0 +


x20 − 2x0x.

Proof. The proof is split into four steps: verifying that both
functions are cumulative distributions, the capacity constraints,
the best-response properties and uniqueness.

Step 1 (CumulativeDistribution Function): To be a cumulative
distribution, F1 and F2 have to be non-decreasing, right-continuous
functions with limx→−∞ Fi = 0 and limx→∞ Fi = 1 for i = 1, 2.
Clearly, these conditions are satisfied if α ∈ (0, 1) and β ∈ (0, 1).
To see that α ∈ (0, 1), note that the numerator is negative since

x0 −


x20 − 2x0x < x0 −


x20 = 0. The denominator is also

negative and has a larger absolute value than the numerator since
2x − x0 < x0. Thus, we obtain α ∈ (0, 1). Since both the numer-
ator and denominator in the expression of β are positive with the
denominator being larger than the numerator, we have β ∈ (0, 1).

Step 2 (Capacity Constraint): To verify the capacity constraint,
I calculate the expected value and equate it to the constraint for
both F2 and F1 in order to see for which values the equality holds. x

0
xdF2(x) =

(1 − β)x
2

=


1 −


−x
x−x


x

2
=

x2

2(x − x)
= x0.

Since x > x0, this yields x = x0 +


x20 − 2x0x. Thus, β =

−x
x−x =

−x

x0+

x20−2x0x−x

, i.e., the equality holds for the parameters given in

the proposition.
For the first distribution, calculating the expected value setting

it equal to x0 yields x

x
xdF1(x) = αx +

(1 − α)x
2

= αx +

(1 − α)(x0 +


x20 − 2x0x)

2
= x0.

Thus, I obtain

α =

x0 −


x20 − 2x0x

2x − x0 −


x20 − 2x0x

.

Hence, for the parameter values in the proposition, both capacity
constraints are satisfied.

Step 3 (Existence): In the next step, I verify that two distribu-
tions are mutual best responses.

First of all, let me argue that the support of any best response
to F1 has to be a subset of [0, x]: towards a contradiction, for any
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distribution which places mass above x, consider the following de-
viation. Player 2 shifts all mass above x to x, which reduces the ex-
pected value, but keeps his winning probability unchanged, since
F1(x) = 1 for all x ≥ x. He then shifts all mass in [0, x) to the right
such that the expected value increases back to the original value.
Since F1(x) is strictly increasing on [0, x), the winning probability
of player 2 increases due to the shift, which violates the equilib-
rium assumption.

For any probability distribution F2 withmean x0 on [0, x], we get x

0
F1(x)dF2(x) =

 x

0
α + (1 − α)

x
x
dF2(x)

= α +
1 − α

x

 x

0
xdF2(x) = α + (1 − α)

x0
x

.

Thus, thewinning probability is constant, i.e., any distributionwith
mean x0 on [0, x] is a best response to F1. In particular, F2 is a best
response to F1.

By the same argument as for player 2, every best response to
player 2’s equilibrium distribution satisfies F1(x) = 1. Similarly,
let me argue that F1(x) = F1(x) for all x ∈ (x, 0): towards the con-
trary, assume that player 1 placesmass in the interval (x, 0)with an
expected value of x̃. Consider the deviation in which player 1 shifts
all of the mass in (x, 0) to x or x which keeps the expected value
constant, i.e., a =

x−x̃
x−x is the fraction placed at x and 1 − a is the

fraction placed at x. Since F2(x) = 0 for all x ∈ [x, 0) and F2(x) = 1,
player 1 gains from the upward shift, but does not lose from the
downward shift. Thus, there is a profitable deviation which con-
tradicts the equilibrium assumption. The standard continuity ar-
gument for thesemodels shows that against F2 (which jumps at 0),
player 1 does not place mass at zero. Summing up, the support of
any best response distribution has to be a subset of x ∪ (0, x].

Note that, as the mass point on x increases, player 2’s expected
value of the remaining probability mass also increases to satisfy
the capacity constraint. More precisely, depending on α, the con-
ditional expectation is given by E[x|x > 0, α] =

x0−αx
1−α

.
Thus, we can write the payoff of player 1 as x

0
F2(x)dF1(x) = (1 − α)


β +

1 − β

x
E(x|x > 0, α)


= (1 − α)


β +

1 − β

x
x0 − αx
1 − α


.

Rewriting, we obtain x

0
F2(x)dF1(x) = β +

(1 − β)x0
x

+ α

β

x
x

− 1


−
x
x


= β +

(1 − β)x0
x

,

since

α

β

x
x

− 1


−
x
x


= α


−x

x − x

x
x

− 1


−
x
x


= 0.

Hence, the winning probability is constant, i.e., any distribution
with a support x∪(0, x] such that

 x
x xdF1(x) = x0 is a best response

to F2. In particular, the distribution F1 is a best response.
Step 4 (Uniqueness): Since the game is a two-player constant-

sum game, F1 has to be a best response to any equilibrium distribu-
tion of player 2 and F2 has to be a best response to any equilibrium
distribution of player 1. By the arguments in Step 3, any equilib-
rium distribution has x as the right endpoint.

For any other candidate distribution F̃1 ≠ F1 with the same
mean, we have F̃1(x) > F1(x) for some x > 0. Without loss of gen-
erality, assume that F1 is continuous at x (if F1 places a mass point,
Fig. 1. Graph of the distributions for x0 = 10 and x = −15. The distribution F1 is
shown in the solid line and the distribution F2 in the dotted line.

there is an ϵ-neighborhood in which the above inequality holds). I
distinguish two cases:

If x > x0, player 2 chooses the two-point distribution which
only places mass at 0 and x. By the capacity constraint, the point
mass at x is x−x0

x and the point mass at 0 is x0
x . Thus, π2 ≥

x−x0
x F̃1(x) >

x−x0
x F1(x), where the last term is the payoff in the

equilibrium in the proposition (the minmax payoff of player 2).
If x < x0, the analogous argument holds with the points x and x.
Hence, player 2 can obtain a higher payoff against F̃1 than against
F1, which contradicts F̃1 being an equilibrium distribution. A simi-
lar argument rules out equilibrium distributions for player 2which
differ from F2. �

For an illustration, consider an example in which x0 = 10 and
x = −15 (see Fig. 1). In this case, the equilibrium distributions
simplify to

F1(x) =



0 if x < −15,
1
6

if x ∈ [−15, 0),

1
6

+
x
36

if x ∈ [0, 30],

1 if x > 30,

and

F2(x) =


0 if x < 0,
1
3

+
x
45

if x ∈ [0, 30],

1 if x > 30.

Intuitively, each player makes his rival indifferent between
choosing any distribution on the support which satisfies the
capacity constraint. The following payoff characterization relies on
the previous indifference intuition and follows immediately from
Step 3 in the proof of Proposition 1:

Corollary 1. The equilibriumpayoff of player 1 isπ1 = β+(1−β)
x0
x

and the payoff of player 2 is π2 = α + (1 − α)
x0
x , where α, β , and x

are defined in Proposition 1.

3.1. Comparative statics

The next proposition analyzes the effect of loosening the loss
constraint on the bankruptcy risk.

Proposition 2. In equilibrium, an increased maximal loss level of
player 1 leads to a higher chance of bankruptcy for player 2. Increasing
the maximal loss level of player 1 might increase or decrease his
chance of bankruptcy, depending on the parameters.
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Proof. Recall that the chance of bankruptcy for player 2 is

F2(0) = β =
−x

x0 +


x20 − 2x0x − x

.

The first derivative is

∂β

∂x
=

−x0 −


x20 − 2x0x − xx0(x20 − 2x0x)−

1
2

(x0 +


x20 − 2x0x − x)2

.

The denominator is positive and the numerator is negative, since

−


x20 − 2x0x − xx0(x20 − 2x0x)−

1
2 =

−x20 + x0x

(x20 − 2x0x)
1
2

< 0.

Thus, the bankruptcy risk decreases as themaximal loss decreases.
To prove the statement about player 1, observe that limx→0 α =

0 and limx→−∞ α = 0, while α > 0 for any negative value of x. �

There are two mitigating effects which induce the non-
monotonicity of player 1’s bankruptcy risk. As long as the differ-
ence in the constraints is small, an increase in the loss constraint
of player 1 will lead to an increase in his bankruptcy risk, since he
uses his additional leeway to gamble. However, for a large differ-
ence, already a low risk of bankruptcy allows the player to have a
high expected value of his remaining probability mass. Therefore,
at some point, the bankruptcy risk decreases as the player is al-
lowed to make more losses. The rival, on the other hand, has to
make up for the larger gap in the credit line by taking higher risks
and thereby going bankrupt with an increasing probability.

4. Discussion

The problem with relative performance compensation in the
presence of loss constraints and contest incentives is similar to
incentives induced by a value-at-risk regulation (see Basak and
Shapiro, 2001): it is rational for agents to use skewed gambleswith
a positive probability to lose themaximum. Below the threshold of
player 2, it is a dominant strategy for the first player to gamble until
he breaks even or he arrives at his maximal feasible loss level.

The intuition is similar to a manager who gambles for
resurrection (see, e.g., Downs and Rocke, 1994) for the chance to
prevent his firm frombankruptcy. In the present paper, it is rational
for a fund manager to gamble until he either loses the maximum
or has a chance to compete in the contest by breaking even.

Similar behavior, i.e., not stopping to gamble in the losses
domain in order to break even are frequently observed in gambling
data, even for experienced individuals such as regular poker
players (Smith et al., 2009). One explanation in the literature is
based on prospect theory combined with a lack of commitment;
see, e.g., Kahneman and Tversky (1979), Thaler and Johnson
(1990); Taleb (2004), or Barberis (2012). An evolutionary reason for
such behavior in line with the present paper might be that people
have learned incentives in contest situations and sometimes
continue to use them in individual choice problems.

Finally, the construction bears some similarity to all-pay
auctions with head starts (see, e.g., Konrad, 2002, Kirkegaard,
2012, Siegel, 2014, or Seel, 2014): one player places mass at the
lowest value and both players are randomizing uniformly over
a connected interval. Contrary to that setting, however, it is the
advantaged player here who places mass at the lowest point and
the size of the mass points differs.
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