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Abstract

Real-time functional magnetic resonance imaging (fMRI) enables one to monitor a subject’s brain activity during an ongoing session.
The availability of online information about brain activity is essential for developing and refining interactive fMRI paradigms in research
and clinical trials and for neurofeedback applications. Data analysis for real-time fMRI has traditionally been based on hypothesis-driven
processing methods. Off-line data analysis, conversely, may be usefully complemented by data-driven approaches, such as independent
component analysis (ICA), which can identify brain activity withouta priori temporal assumptions on brain activity. However, ICA is
commonly considered a time-consuming procedure and thus unsuitable to process the high flux of fMRI data while they are acquired. Here,
by specific choices regarding the implementation, we exported the ICA framework and implemented it into real-time fMRI data analysis.
We show that, reducing the ICA input to a few points within a time-series in a sliding-window approach, computational times become
compatible with real-time settings. Our technique produced accurate dynamic readouts of brain activity as well as a precise spatiotemporal
history of quasistationary patterns in the form of cumulative activation maps and time courses. Results from real and simulated motor
activation data show comparable performances for the proposed ICA implementation and standard linear regression analysis applied either
in a sliding-window or in a cumulative mode. Furthermore, we demonstrate the possibility of monitoring transient or unexpected neural
activities and suggest that real-time ICA may provide the fMRI researcher with a better understanding and control of subjects’ behaviors
and performances.
© 2003 Elsevier Inc. All rights reserved.
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Introduction

Real-time functional magnetic resonance imaging
(fMRI) is a promising tool for the noninvasive monitoring
of brain activity during an ongoing imaging session. In the

recent past, various efforts have been made to develop
favorable acquisition strategies (Yoo et al., 1999) and to
reformulate conventional off-line analysis techniques (Cox
et al., 1995; Gembris et al., 2000; Posse et al., 2001) to
permit the highly computationally demanding real-time ap-
plications.

In fact, one major issue of real-time methodology is to
find an optimized trade-off between the accuracy in esti-
mating neural activity and the ability of performing the
estimation within computational times compatible with the
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temporal rate at which fMRI time-series are acquired. Con-
ventional fMRI data analysis methods impose the collection
of a minimum batch of temporal observations in order to
generate a reliable activation map. For a given repetition
time (TR), the longer is the time window covered by the
input data set, the more data points will be collected that
will improve the statistical identification of activation phe-
nomena. On the other hand, extending the window of data
collection, the ability of conventional data analysis methods
to detect transient or temporally nonstationary dynamic ef-
fects in the time-series will be strongly sacrificed in favor of
repetitive and temporally stationary effects (Mitra and Pe-
saran, 1999).

Furthermore, the computational load of the current meth-
ods increases with the number of time points to be pro-
cessed, thus limiting feasibility and benefits of the real-time
processing setting. The main challenge for candidate real-
time analysis techniques is that the calculations are to be
completed within a specified fixed and short time (Cox et
al., 1995). This practically requires the ability to process
fMRI time-series within times comparable to those required
for ordinary image acquisition, reconstruction, and network
transmission. As the most demanding case, here we assume
that a real-time fMRI analysis needs to be able to generate
task-related activation maps within time spans in the order
of one TR of the acquisition sequence. So far, only standard
univariate statistics like correlation (Bandettini et al., 1993)
and multiple regression analyses (Friston et al., 1995a) have
been successfully employed for real-time analysis of fMRI
data. They utilized two different approaches: cumulative
(Cox et al., 1995) and sliding window (Gembris et al., 2000;
Posse et al., 2001).

In the cumulative approach, the correlation coefficients
between the partial time-series of a reference vector repre-
senting the expected hemodynamic response and the mea-
sured time-series in each voxel are computed in a cumula-
tive manner, whereas the same vectors are growing in length
with each newly acquired volume. In this approach, one
edge of the window of collection is fixed, whereas the other
moves during the acquisition of new data. The specificity of
this approach typically increases over time because the
number of false positives becomes smaller as more data
become available for averaging. On the other hand, the
sensitivity of the approach will be reduced, if, across re-
peated trials, all the responses are regarded as a sole statis-
tical ensemble and if significant trial-by-trial fluctuations
are neglected (Mitra and Pesaran, 1999).

In the sliding-window approach, the computation of cor-
relation statistics is restricted to the most recently acquired
functional data. This means that both edges of the window
of collection move during the acquisition. The accuracy of
this approach is, thus, constant over time and dynamic
changes in brain activity can be resolved in dynamically
varying activation patterns. On the other hand, due to the
limited signal-to-noise ratios, the overall specificity will be

strongly affected by the reduced observation and collection
times.

For both the approaches the accuracy can be improved
by using a real-time motion correction technique (Mathiak
and Posse, 2000) and an optimized modeling of the refer-
ence and trend signals (Gembris et al., 2000; Posse et al.,
2001). Further developments in real-time analysis and rep-
resentation of fMRI data may comply better with the com-
plexity of neural responses. This may extend far beyond the
strict predictability of task-related activities by using more
flexible processing methods.

The key limits of univariate hypothesis-driven methods
is that they rely solely on the temporal predictability of the
phenomenon to be detected, neglecting the information de-
riving from the covariance of the acquired voxels’ time-
series, even if univariate approaches may be formulated
independent of a temporal model.

On the contrary, multivariate analyses (Friston et al.,
1995b) depend strongly on the voxels’ covariance. These
methods, and in particular the Independent Component
Analysis (ICA) used in this article, are, in principle, more
flexible than univariate ones. In fact they provide extensive
information about a number of possible signals existing in
an image time-series, including those that would be difficult
to formalize by means of an a priori temporal model, even
if multivariate methods can also be formulated based on
temporal models. In fact, the multivariate approaches allow
to characterize those neural phenomena that generate a
nonzero mutual correlation among voxel time courses from
different interconnected areas and are often combined with
descriptive data-driven techniques (Sychra et al., 1994; Fris-
ton, 1995b; Bullmore et al., 1996) to provide more complex
and insightful representations of the data.

At present, multivariate and descriptive analysis tech-
niques have not been applied to real-time fMRI. Two major
drawbacks of these techniques that practically limit their use
within a real-time analysis framework are the computational
load (that is considerably higher than that of univariate
analysis techniques) and the difficulties in selecting and
interpreting the results arising from the large number of
different phenomena detected. Independent Component
Analysis (ICA) is one of the most promising approaches to
the off-line multivariate and data-driven analysis of fMRI
data (McKeown et al., 1998a; Brown et al., 2001). ICA
decomposes blindly the acquired voxels’ time-series into a
set of spatial maps and associated time courses. In its spatial
variant (McKeown et al., 1998a, 1998b; Calhoun et al.,
2001), it exhibits the fundamental property of finding data-
driven representations of functional measurements relying
mainly on the spatial features of neural activities rather than
the temporal features of the recorded signals.

As for principal component analysis (PCA) (Friston et
al., 1993; Andersen et al., 1999), another multivariate anal-
ysis technique, the first step of the analysis typically re-
quires the computation of the standard covariance matrix of
the voxels’ time courses included in the analysis. The ei-
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genstructure of the covariance matrix is, then, used to gen-
erate the orthogonal directions along which the input time-
courses are projected, resulting in the output maps. The
information content of the covariance matrix refers strictly
to the temporal window of observation; thus the method
relies on the number of collected time points. Nevertheless,
spatial ICA only models the spatial distributions of brain
activities (Everitt and Bullmore, 1999; Esposito et al., 2002)
and builds accordingly the temporal filters that produce the
statistically independent maps (the independent compo-
nents). Hence, even two time points of the volume of inter-
est may be sufficient to start the ICA algorithm and possibly
yield a reliable descriptive representation of the factors that
cause the measured signal changes (commonly referred to
as “sources” ). This suggests that, in contrast to conventional
approaches that improve in accuracy with time only if more
observations are available, spatial ICA bears the potential of
providing meaningful results even if starting from highly
reduced data sets, allowing a fast and automatic dynamic
analysis of fMRI time-series, possibly during the same
imaging session.

Furthermore, the computational load of a spatial ICA
algorithm’s iteration grows much more with the temporal
dimension than with the number of voxels included in the
analysis (Brown et al., 2001). This makes it rationale to
implement real-time ICA in a sliding-window approach.
Although the number of active brain sources does not de-
pend conceptually on the number of time points, this num-
ber conditions the maximum number of components that
can fit a complete ICA model. As a consequence, working
on short (moving) windows has the disadvantage of reduc-
ing correspondingly the number of sources that can be
represented but makes the display, the selection, and the
interpretation of the components easier and faster, which is
necessary in a real-time setting.

Recently, a fundamental connection existing between
ICA as a general theory and Exploratory Projection Pursuit
(EPP) (Friedman, 1986) has been pointed out in the context
of fMRI data analysis (Suzuki et al., 2002). In this study, a
direct search method, estimating the components one by one
with simple and tailored contrast functions, has been shown
to improve dramatically the computational efficiency of the
method, facilitating the off-line extraction of desired or
interesting components.

Here we applied spatial ICA and the direct search
method as a real-time processing tool for fMRI data analysis
in a sliding-window approach. We demonstrate that it is
possible with these methods to achieve dramatic reductions
in the time required to extract ICA components. We show
that at each time point, a one-by-one search of meaningful
spatially independent projections of short time courses can
be computed in tens or hundreds of milliseconds per pro-
jection and per slice. Moreover, cumulative maps and time
courses are easily constructed by serially averaging in real-
time selected patterns (see Materials and methods for details
about the selection process), which result from consecutive

runs of the sliding-window decompositions. In practice,
although the dynamically generated components are used to
monitor the occurrence of both expected and unexpected
functional events, the cumulative readouts keep track of the
temporal evolution of those activation phenomena that turn
out to be stationary across repeated trials (Fig. 1). Our
proposed technique is tested and compared with classical
regression analysis on real and simulated data. a threshold-
independent methodology (receiver operator characteristics,
ROC (Skudlarski et al., 1999; Esposito et al., 2002)) has
been used to quantify the performances.

Materials and methods

The ICA data model and the Direct Search algorithm

The basic definition of the spatial ICA model is that P
time-course vectors (each corresponding to one of P se-
lected voxels in a reference image) in a T-dimensional space
of time courses (T being the number of time points included
in a temporal window of collection) are linearly mapped to
P vectors in a K-dimensional space (i.e., the space of the
Independent Components or ICs), K being less or equal than
T as follows:

x� p� � A · s� p� p � 1, . . . , P (1)

where, the “ T ” denotes the transpose, x(p) � [x1(p), . . . ,
xT(p)]T is the observed time-course for voxel p and s(p) �
[s1(p), . . . , sK(p)]T is a K-fold set of statistically independent
variables, observed at each voxel p, defining the spatially
independent maps (ICs). By definition (Papoulis, 1991), this
means that:

f�s1, s2, . . . , sK� � �
i�1

K

fi�si� (2)

f and fi being, respectively, the joint probability density
function of s and the marginal probability density function
of the generic component si. The T�K unknown matrix A in
Eq. (1), called the mixing matrix, is assumed to be invert-
ible, and each of its columns, which correspond to a basis
vector of the new space of the ICs, represents a time course
of activation (TC).

A generic ICA algorithm addresses the problem of as-
sessing the model (1) by seeking for an unmixing K�T
matrix W so that the following vector:

y� p� � W · x� p� (3)

is an estimate of the hidden variables s(p), except for per-
mutations, signs, and amplitudes. Matrix A can be com-
puted as the pseudoinverse of W.

The ICA model estimation problem has been originally
approached by measuring the amount of statistical depen-
dence within a fixed number of estimated components and
minimizing it using an iterative (adaptive at a more or less
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degree) learning algorithm. Mutual information (MI) is the
fundamental theoretical function that has been introduced
by Comon (1994). In the first application of ICA to fMRI
time-series (McKeown et al., 1998a) the infomax approach
was used and the minimization of mutual information was
achieved according to the infomax principle (Bell and
Sejnowski, 1995). The fixed-point algorithm (Hyvärinen,
1999) pursues the same goal using the concept of normal-
ized differential entropy or negentropy, an earlier theoretical
function (Comon, 1994), usefully interpreted as a measure
of non-Gaussianity of a distribution.

We reviewed and compared the use in fMRI data anal-
ysis of the infomax algorithm and a correspondent symmet-
ric version of the fixed-point algorithm in Esposito et al.
(2002). Here we exploit the fact that the fixed-point algo-
rithm can be used to estimate not only a fixed number of
components in parallel (symmetric approach) but also a
varying number of components one by one (hierarchical
approach). The two different version of the fixed-point
algorithm are respectively obtained by employing the Ne-
gentropy as multiunit or a one-unit objective function (Hy-
värinen, 1999).

In the hierarchical approach, each single row of W, say
wT, is estimated one at a time in a way of exploratory
projection pursuit (EPP, (Friedman, 1986)). Thus, a single
scalar independent component (IC) is easily obtained as
follows:

y� p� � wT · x� p� (4)

In the fixed-point ICA algorithm (Hyvärinen, 1999),
Maximum Entropy Principle-(MEP) based approximations
of negentropy (Hyvärinen, 1998) lead to the following gen-
eral form of a one-unit contrast function JG as follows:

JG�w� � �E�G�wTx�� � E�G����	2, (5)

where E{ · } is the expectation operator, wT � [w1, . . . ,
wT]T is a weight vector (a row of the matrix W) under the
constraint E{(wTx)2}�1, G is nonquadratic function (see
below), and � is a zero-mean Gaussian variable with unit
standard deviation. The problem of finding a single IC is,
thus, solved by finding a local maximum of the form in Eq.
(5), after sphering the data by means of a standard principal
component analysis (PCA) as follows:

x̂� p� � B · x� p�. (6)

The T�T matrix B in Eq. (6) is called the sphering
matrix and is easily determined through the following for-
mula:

B � D
1 · E, (7)

where E is the T�T transposed matrix of the eigenvectors
and D the diagonal matrix of the eigenvalues of the covari-
ance matrix of the input data E{x xT}.

When using a one-to-one hierarchical estimation ap-
proach, the order in which the single projections are esti-
mated is highly important in a real-time fMRI application
because the first components to be extracted are also the first

Fig. 1. Basic diagram for real-time independent component analysis of functional MRI time-series. The gray shading indicates the width of the sliding
window. At the generic time point ti, only the frames sampled in this temporal interval are involved in real-time ICA calculations and readout updates. (a)
The cumulative map and time-course represent phenomena that pertain the measured time-series from tl to ti. (b) The sliding-window maps and time courses
represent phenomena that pertain the measured time-series from ti
L�1 to ti and do not cumulate over time.
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results that become available. Influencing this order can be
done optimally by choosing function G and posing favor-
able initial conditions, because any optimization algorithm
tends to first find the local maxima of the objective function
that have largest basins of attraction and that are closest to
the initial conditions.

This approach has been recently reviewed (Suzuki et al.,
2002) and has empirically driven the final choices for func-
tion G, leading to fast and precise off-line estimations of
fMRI activation components (Suzuki et al., 2002).

The main properties of function G are asymmetry and
sparsity from one side and the computational simplicity
from another side. A sufficiently general form of these
functions, proposed and discussed in Hyvarinen (1999), is
as follows:

Gn�u� �
un

n
n � 3, 5, . . . , any odd integer. (8)

The case n � 3 leads to a maximization of the third-order
cumulant or skewness of the target IC and is a fundamental
measure of the asymmetry of a statistical distribution.
Higher order odd functions preserve the property of asym-
metry and are more sensitive to the tail of the distributions
(sparsity) even if they lead to a poorer approximation of the
original negentropy. G1 and G5 have been used in our
implementation as in Suzuki et al. (2002).

The maximization of JG in Eq. (5) with the Newton’s
optimization method gives us the basic iteration steps of the
fixed-point algorithm in deflation mode (Hyvarinen, 1999)
as follows:

ŵ� � E�x̂ · G��ŵTx̂�� � E�G��ŵTx̂��ŵ

ŵ* � ŵ�/�ŵ��, (9)

where � · � denotes the euclidean vector norm and w* is the
updated value of w, the basis vector of the corresponding
independent component estimate y in Eq. (4) (Hyvarinen,
1999; Suzuki, 2002). For what concerns the initial condi-
tions, we either used random entries for the vector w or fully
followed the direct search procedure (Suzuki et al., 1999) in
that the vector w was to be first initialized according to the
following:

w � B · b, (10)

where b is a column T-vector representing a target zero-
mean (see below) signal change in the window.

Equation (9) is repeated until the mean square change in
vector w becomes less than a specified tolerance � (e.g., � 
10
6), within a maximum total number of iterations (e.g.,
100). Once convergence for one component is achieved, the
next component is searched after back-projecting and seri-
ally removing the last estimate from the whitened data
(Suzuki et al., 2002) as follows:

x̂new� p�4 x̂� p� � w1 · w1
T · x̂� p�, (11)

where w1 is the last estimated IC basis vector and the
subscript new indicates the data for the subsequent estimate.

Real-time ICA of fMRI time-series: dynamic and
cumulative effects

The real-time application of the ICA framework requires
the setting of the three independent parameters that define
the input space of the data vectors. These settings pertain the
temporal interval of data collection (i.e., the length of the
window), the repetition time of the scans involved in the
calculations (that corresponds to a decimation factor of the
time-series), and the desired step of the update process. All
these temporal parameters are to be expressed in units of
time or TR (i.e., time points of acquisition). Let us denote
by L (length of temporal window), D (decimation factor),
and S (step for the scenario update) these parameters.

The basic processing scheme operates in a way that, once
the window is filled up with new data, the one-unit fixed-
point algorithm is launched. The temporal dimension T of
our dynamic analysis equals the actual number of scans
included in the window as follows:

T � integer�L/D� (12)

and, after S newly acquired time points, a varying number of
IC maps are generated, ranging from 0 (in case no conver-
gence is achieved within the maximum number of itera-
tions) to a maximum number of T independent components.
To simplify we assume here that D � S � 1 and so L � T;
the extension to more general cases is straightforward. At
time point i, the voxel observation is, then, represented by
the L most recent time points as follows:

x�i�� p� � �xi
L�1� p�
· · ·

xi� p�
� . (13)

For each basis vector serially estimated by the algorithm in
Eq. (9), the corresponding spatial map can be immediately
displayed and represents one of a maximum of L detected
activation phenomena (see Results and Discussion). These
spatial maps are referred to as dynamic maps, because they
reflect phenomena occurring during only the most few re-
cent time points at the current position of the window and
cease to be representative when the new time point arrives.

In order to generate the dynamic map, the IC y(p) is
determined following Eq. (4), spatially normalized to unit
standard deviation and eventually thresholded and color-
coded. Before starting the entire process (acquisition and
calculations), and depending on the experimental design,
one or more spatial ICs can be targeted by using appropriate
initial entries for vector w in the initialization step [impos-
ing a temporal “a priori” through vector b in Eq. (10)] or
specifying an anatomical region of interest (ROI) within the
volume of acquisition (i.e. a spatial “a priori” , see below).
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The most natural choice for initial conditions may be de-
rived from a simple and classical reference vector r �
[r1, . . . , ri, . . .], restricted at each run to the current window
of collection. This may correspond to serially updating
vector b in Eq. (10) directly from task performance or
behavioral measures in parallel to the acquisition
(Voyvodic, 1999). Optionally, and depending on the tem-
poral setting, this vector incorporates typical hemodynamic
shaping and delays.

The temporal “a priori” clearly biases the search process
toward the ICs that mostly match the temporal change
expressed by the tentative reference vector and enable a
rapid estimation of those components that are expectable or
predictable at a certain degree. On the other hand, this bias
cancels out if unpredictable events, different from the phe-
nomenon that was temporally coded in vector b, strongly
affects the data structure in a way that heavily attracts the
point of convergence of the one-unit algorithm. Alterna-
tively, vector b can be initialized with just random entries;
this choice removes the temporal bias and none of the signal
sources are favored.

Targeting one IC opens the possibility for tracking the
cumulative history of the underlying activation phenome-
non. This is done practically by producing increasingly
accurate spatial maps over the entire time of the real-time
fMRI session. Suppose that, at the ith time point of work,
we have extracted, selected (see below), and stored a time-
series of ICs and associated TCs that are defined throughout
the series of L scans of the temporal window. We can denote
by ki the index of the selected component (intended as IC
and TC) as follows:

yk1

�1�� p�, . . . , yki
2

�i
2�� p�, yki
1

�i
1�� p�, yki

i � p�

� aL
�1�

· · ·
a1

�1�
� · · ·, �aL

�i
2�

· · ·
a1

�i
2�
� , �aL

�i
1�

· · ·
a1

�i
1�
� , �aL

�i�

· · ·
a1

�i�
� . (14)

In general, for a selected component, the uncertainty in the
sign of the maps and associated time courses can be easily
solved by back-projecting each estimated IC with the cor-
responding TC down to the underlying measured voxels
(Duann et al., 2002) and simply inverting the signs of the
ICs and TCs when the correlation coefficient of the posi-
tively active voxels (see below) and the TCs are negative.
Thereafter, a cumulative map is constructed by serially
averaging all the collected ICs as follows:

yi
cum� p� �

1

i
�
j�1

i

ykj
� j�� p� (15)

and a cumulative time course is constructed through a time-
by-time average of the estimated TCs as follows:

�
aL

�1�

aL
1
�1� aL

�2�

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·aL

�i
2�

· · · · · · · · · · · · · · ·aL
1
�i
2�aL

�i
1�

· · · · · ·· · · · · · · · ·aL
2
�i
2�aL
1

�i
1�aL
�i�

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
a1

�i
2�a2
�i
1�a3

�i�

a1
�i
1�a2

�i�

a1
�i�

� 3
�
aL

�i�

�aL
1
�1� � aL

�2��/ 2
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
�a1

�i
L
1� � . . . � aL
�i
2��/L

�a1
�i
L� � . . . � aL
1

�i
2� � aL
�i
1��/L

�a1
�i
L�1� � . . . � aL
2

�i
2� � aL
1
�i
1� � aL

�i��/L
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
�a1

�i
2� � a2
�i
1� � a3

�i��/3
�a1

�i
1� � a2
�i��/ 2

a1
�i�

�
� �

a1
cum

a2
cum

· · ·
ai
L
1

cum

ai
L
cum

ai
L�1
cum

· · ·
ai
2

cum

ai
1
cum

ai
cum

� . (16)

This forms preserves the number of estimates that have been
so far performed through the sliding-window mechanism
and gives back a cumulative read-out of the ongoing brain
activity.

Real-time ICA of fMRI time-series: display and
representation issues

Two preliminary choices are needed by the real-time
ICA application: (1) the maximum number of ICs that are to
be extracted and displayed as dynamic maps at each run [the
default case in our performance analysis was K � T � L (D
� 1)] and (2) the number of ICs that are to be used to
generate maps and time-courses in the cumulative output.

The first choice relates to the existing trade-off between
the effective computational load (directly dependent on the
window parameters L, D, and S and the acquisition TR) and
the number of distinct brain activities that is desired to
follow in the real-time update of the output scenario. The
second choice is substantially driven by the experimental
design. The final outcome of the accumulation will be
strictly related to the success of the dynamic selection pro-
cess. Reordering and selecting the components starting from
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the natural order of extraction is a general problem in the
ICA of fMRI data (Gu et al., 2001; Formisano et al., 2002)
and becomes crucial for the real-time extension of ICA.

The simplest way to select an IC would be to assess the
temporal linear correlation between each IC’s representative
time course and the windowed reference vector. This is
commonly done in off-line ICA as a trivial selection step.
Unfortunately, also in the presence of an adequate temporal
model of signal changes, this approach will not generally
provide a reliable criterion to select the target components,
because the use of short temporal windows (or, in general,
the use of few scans within a given temporal window),
although speeding the decomposition algorithm and im-
proving the real-time feasibility, will also dramatically de-
crease the power of this method. Moreover, it cannot be
used when the protocol is not easily coded in a reference
vector or even not known. On the other hand, various
ranking criteria have been proposed so far in the literature
(Gu et al. 2001; Formisano et al., 2002). These criteria,
which have been shown to be effective for ranking and
selection of ICA off-line estimates, generally rely on the
spatiotemporal structure of ICs and no temporal models of
the signal changes need to be applied to the basis vectors.

Although the cited selection strategies could be easily
implemented at variable computational costs, we finally
adopted a region of interest-(ROI) based selection criterion
for the real-time ICA. A region of interest is roughly spec-
ified by the user after a set of anatomical reference scans or
few training functional scans of the same experiment. Dur-
ing a preliminary session, one or more areas are localized
anatomically or functionally using standard methods (Cas-
telo-Branco et al., 2002) and labeled as areas of primary
interest. Thereafter, when the real experimental session
starts and the real-time ICA is launched, each IC generated
by the direct search process is assigned with a score accord-
ing to the numbers of active voxels that are adjacent to each
other in the selected ROIs. This score was used here for the
selection of the IC and the consequent update of the cumu-
lative maps. In any case it could also act as an additional
criterion for stopping the runs before the maximum number
of allowed ICs is reached.

Image acquisition and simulation

Three right-handed healthy volunteers (AA, FDS, FE;
ages 25–40 years) participated in three sessions of a dom-
inant-hand finger-tapping fMRI experiment. Images were
acquired on a 1.5-T super-conducting SIGNA MR scanner
(General Electric Medical Systems, Milwaukee, WI, USA)
using a standard circularly polarized head coil. T1-weighted
structural volumes served as anatomical reference in order
to position four slices parallel to the bicommissural plane
and to cover optimally the primary motor and supplemen-
tary motor areas. The functional scans were acquired using
a conventional gradient-echo echo-planar imaging sequence
(TR, 2 s; echo time TE, 60 ms; delay time, 2 s; flip angle

90°, field of view 210 mm, matrix 128�128, slice thickness
5 mm, slice gap 2 mm). The experimental paradigm con-
sisted of 10 blocks of five volumes during which a self-
paced finger-tapping task (sequential opposition of all fin-
gers of the right hand against the thumb) at a specified
frequency of 2 Hz was carried out and 10 blocks of five
volumes during resting. The alternation between task and
rest conditions was verbally triggered and the frequency and
quality of the task controlled by visual inspection.

Artificial fMRI time-series were created by adding acti-
vation patterns to a separate data set of 100 echo-planar
slices collected in one of the subjects during a constant rest
(null) condition. The spatial layouts of the simulated acti-
vation were obtained from the spatial layouts of the regions
found to be activated by the motor task (primary motor
cortex and supplementary motor area) and detected by con-
ventional linear correlation analysis (Fadili et al., 2000). At
each selected voxel within these regions, a simulated acti-
vation time course was injected in the null data set using an
additive model. Those signals have been parameterized in
terms of the maximum signal enhancement, �S, divided by
the average image intensity S (activation contrast level,
ACL � �S/S (Gu et al., 2001)), which typically ranges from
0.5 to 2%, at 1.5 T at a conventional voxel size (Bandettini
et al., 1992; Kwong et al., 1995).

Four simulated data sets were, thus, generated, each
having a different value for the activation contrast level
(ACL � 0.5, 1, 1.5, and 2%). The simulated fMRI re-
sponses consisted of a boxcar-shaped waveform convolved
with a gamma kernel having parameters � � 2.5 s and � �
1.5 s (Boynton et al., 1996). In addition, to simulate respec-
tively the typical spatial variations of the hemodynamic
response and the physiologic fluctuation of task perfor-
mance, a stochastic delay (mean 0 and standard deviation
2.5 s) was added to the gamma function prior to the con-
volution and a white gaussian noise (SD � 2% of estimated
baseline noise) was added to the signal prior to adding the
activation to a voxel (Gu et al., 2001).

Data analysis and accuracy evaluation

All experimental data were processed in a Matlab envi-
ronment. A graphic user interface has been developed to
make selecting the network folders, specifying the running
slice and the ROIs, setting appropriate protocols and pre-
and postprocessing parameters, and choosing ICA run and
display easier. Although the implemented program allows
multislice acquisition and processing, single-slice ICA runs
have been performed and compared to single-slice off-line
ICA runs (see below). Nevertheless, the running slice can be
dynamically changed during a run. Alternatively, the de-
composition of a multislice time-series can be performed:
this increases the number of voxels that undergo the anal-
ysis and has the potential to improve the decomposition at
the cost of a linear increase of the computational time.

2215F. Esposito et al. / NeuroImage 20 (2003) 2209–2224



Before entering the core statistical processing routines,
each image of the running slice time course was optionally
smoothed in space with bidimensional Gaussian kernels.
Then the voxels outside the brain were excluded by using a
simple intensity threshold masking procedure, whereas the
remaining voxels were used to fill the data matrix whose
columns corresponded to the observation vectors x in Eq.
(1). Such a matrix was finally given as input to the ICA
routine function, whose Matlab implementation has been
adapted from the basic source code downloaded from the
Internet (http://www.cis.hut.fi/projects/ica/fastica/) accord-
ing to the sliding-window direct search approach described
in the previous paragraph.

We repeated our tests for two different contrast functions
(G3 and G5). For each step, the maximum number of iter-
ations was set to 100 and a minimum root-mean-square
change of 0.0001 was allowed for the convergence of IC
estimates. The window length was set to 10 scans (i.e., an
interval that equals the period of the stimulation). No dec-
imation of the time courses was performed (D � 1). With
these indicative settings, the maximum elapsed times to
cover the 100 iterations for the extraction of the 10th inde-
pendent component of a one slice time course was always
limited to 4 s on a computer running Windows 2000 (Pen-
tium III 750 MHz, 512 MB RAM). As soon as the ICs set
was produced, the cumulative map and the cumulative time
course were automatically updated. If no independent com-
ponents could be extracted within the specified iterations,
all the displayed patterns remained unchanged in the sce-
nario.

Sliding-window and cumulative linear regression analy-
sis have been performed on the same data for comparison
and validation purposes. The underlying linear models op-
tionally included a first-order (linear) detrending (Cox et al.,
1995; Posse et al., 2001) within a general linear model
analysis (GLM; Friston, 1995a). As for the ICA analysis, no
motion-correction techniques were implemented. At each
time point, after each run, the natural ranking of the ICs of
interest as well as the elapsed times were recorded.

An ROC analysis (Skudlarski et al., 1999) of the results
on both simulated and real activation data sets was per-
formed for all the dynamic and cumulative maps as follows.
For each selected ICA map, a ROC curve was first deter-
mined by combining the false-positive fractions (FPFs) and
the false-negative fractions (FNFs) at a varying threshold.
Then, after curve fitting, the ROC power (i.e., the mean of
the ROC curve over he range of FPFs from 0 to 0.01) has
been utilized as a synthetic threshold-independent figure of
merit of the spatial accuracy. The resulting values were,
averaged across time for the dynamic maps and assembled
in a ROC time-course for the cumulative maps. For the real
activation time-series, the “off-line” activation maps (P 
0.01), produced respectively by the linear regression anal-
ysis and the independent component analysis, were used for
the definition of true positives and true negatives.

For the purpose of the off-line ICA, the infomax algo-

rithm has been used since both infomax and fixed-point
algorithms produce similar and accurate results in their
“off-line” application to fMRI data (Esposito et al., 2002).

On the contrary, the use of the infomax algorithm for the
real-time ICA is less convenient since it requires to specify
in advance the number of components to be extracted and
would not give any output in case not all these components
were estimated within the interval between two successive
scans.

In order to assess the impact of the initialization on the
measured performances of real-time ICA, multiple runs (n
� 10) of the “off-line” ICA on one representative data set
with randomized initial conditions were performed. This
yielded a mean standard deviation of about 1% (0.011 �
0.003) among the time points of the ROC power time-series.

Rectangular ROIs of 300–400 pixels were specified on
the reference scan for each experimental data set that in-
cluded the target areas as identified by the off-line methods.

Results and discussion

Computational times and general feasibility of real-time
ICA

Fig. 2 shows a comparison of computational times be-
tween the sliding-window and a cumulative application of
ICA on a simulated data set (ACL � 2%). Although the
number of iterations required for the extraction of a target
IC remains practically constant (Fig. 2a), the cumulative
ICA imposes elapsed times that, at a rough estimate, grow
linearly with the number of scans (Fig. 2b). On the contrary,
those times are short and constant for the sliding window
ICA (Fig. 2b). Nonetheless, ROC measures on the cumula-
tive maps generated by progressively averaging the output
of the sliding-window ICA according to Eq. (15) are com-
parable and convergent with ROC measures performed on
purely cumulative ICA maps (Fig. 2c). Elapsed times (mean
and standard deviations over 91 scans) for the extraction of
the target IC (here selected as the activity that is also
extracted by a conventional inferential approach) are re-
ported in Fig. 3.

It is important to note that further relevant reductions of
the elapsed times are observable by applying a decimation
factor (D � 1) to the temporal dimension of the analysis.
Although we generally dimensioned the sliding window on
the length of the blocks of activation and resting, the num-
ber of time points per window can be reduced to a subset of
the window length, yielding a further relevant reduction of
calculation time without affecting the quality of the decom-
position. Here the real-time ICA approach has been imple-
mented using Matlab routines and proved to be compatible
with a real-time application, the elapsed times being in the
order of hundreds of milliseconds per component.

Quantitative results for the accuracy of real-time ICA are
reported in Figs. 4, 5, and 6 and discussed below. The ROC
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power was computed for two different contrast function (G3

and G5) used in the ICA decompositions and with and
without linear trend signals adopted in the GLM analyses.
The accuracy of the real-time methods has been separately
assessed for different activation contrast levels and different
subjects. The capability of the proposed method in dynam-
ically detecting task-related changes and tracking a cumu-
lative spatiotemporal pattern of activation from a block-
designed motor experiments is quite evident.

A general observation concerns the optional use of a simple
bidimensional Gaussian smoothing filter (FWHM � 3 pixels)
to the images: its use on our experimental data always im-
proved the ROC power of the activation maps while not af-
fecting significantly the processing time (Fig. 3). On the other
hand, a spatial smoothing could also blur and filter out transient
and and subtle spatial activations that a real-time analysis can
detect better than an off-line analysis.

In our setting for the real-time ICA, we generically

considered as “ failures” all the frames where no accurate
task-related (see below) dynamic maps were successfully
selected within the the interval between two successive
scans. The method demonstrated a good reliability (�90%)
at ACI � 1%, because the failures ranged from 8 of 91
scans (reliability of 91.2%) at ACL � 1% to 2 of 91 scans
(reliability of 97.8%) at ACL � 2% in our tests. Notably,
the corresponding cumulative patterns were not signifi-
cantly affected by these failures.

Performances of real-time ICA on simulation data

Fig. 4 shows a comparison of the performances of the
ICA decompositions and the GLM on the simulated data
sets at the four investigated ACLs of the injected simulated
activation signal (ACL � 0.5, 1, 1.5, and 2%). The ROC
power ranging from the values of 0.3 and 0.5 corresponded

Fig. 2. Comparison between sliding-window ICA and cumulative ICA on a representative data set. (a) The number of iterations required to extract the target IC Is
reported as a function of the scan for the two alternative approaches to update the data matrix. (b) Corresponding times of extraction of the target IC. (c)
ROC-measured accuracy for the maps generated from a cumulative approach and for the dynamic and cumulative maps generated from the sliding-window approach.
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to noisy although readable activation maps; over a value of
0.5, the maps presented a remarkably good quality. ROC
powers ranging from 0.1 to 0.3 corresponded to inadequate
separation of the components.

Reported measures of spatial accuracy of the dynamic
maps (Fig. 4a) revealed acceptable performances of ICA
and GLM in the sliding-window mode at higher ACLs.
Considering only the dynamic maps, the detection power of
real-time methods falls at low ACLs but reaches acceptable
levels of accuracy at high ACLs (ACLs � 1%), thus cov-
ering a substantial part of the range of blood oxygen level-
dependent (BOLD) contrasts achievable with 1.5-T scan-
ners. ICA maps resulted slightly more accurate in terms of
the average ROC power than GLM maps at high ACLs.

Different indications (Fig. 4b) may be drawn from the
measure of spatial accuracy on the cumulative maps. In fact,
considering only the cumulative maps and compared to the
GLM applied in a cumulative mode, real-time ICA has
provided acceptable results even at ACLs of 0.5 and 1%.
Both at low and at high ACLs the ROC time course of ICA
was always comparable to, or even better than, that of the
GLM, with and without linear detrending.

Performances of real-time ICA on experimental data

Figs. 5 and 6 show ROC results on real activation data.
Preliminarily, we remark that the ROC power only mea-

sures how accurately the activation maps generated in real-
time reproduce the activity patterns resulting from the off-
line application of the same methods. We report ROC
performances separately for the three subjects without (Fig.
5) and with (Fig. 6) the smoothing filter applied to the image
time-series. In order to show the effects of different statis-
tical properties of the data, mainly related to differences
among individual signal and noise sources, these measures
were not averaged across subjects. The values and time
courses of the ROC power gave similar indications as those
observed for the simulated data sets. Some intersubject
differences were present, likely related to the variability of
responsiveness and behavior of the subjects when consid-
ered on a scan-by-scan and trial-by-trial basis.

Spatial smoothing improved the detection power and
reduced the intersubject differences of sliding-window real-
time ICA results. The performances became, thus, more
homogeneous across subjects (Fig. 6). Fig. 7 shows four
consecutive frames from real-time ICA results obtained in
slice 2 (of the four slices acquired). The visual inspection of
the maps generated dynamically by the real-time decompo-
sitions, revealed a quality confirming the ROC measures.
Specifically, both the dynamic and cumulative maps clearly
show two main clusters of cortical activity corresponding to
the main areas expected to be activated by the motor task:
the primary motor cortex (PMC) and the supplementary
motor area (SMA).

Fig. 3. Statistics on the elapsed times for the extraction of the task-related Independent Component in our case subjects (1 slice, TR � 4s, Window � 10,
Sampling Factor � 1, Step � 1). Two contrast functions (G3 and G5) have been used.
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Four sequential time points (41, 46, 51, 56), separated
from each other by a distance corresponding to the length of
the blocks, were chosen for display and analysis of the
dynamic decomposition. Specifically, the frames in Fig. 7
allow to appreciate the stability of the cumulative map and
the successful tracking of the cumulative time course. These
results are a direct consequence of the successful extraction
and selection of the pretargeted motor components. Here,
the simple ROI-based selection criterion was sufficient for
the purpose of accurately selecting the task-related compo-
nent. Consequently, the history of the task-related phenom-
ena across the scans was easily traced without the use of
temporal references, despite the dynamic target patterns
(highlighted in green in Fig. 7) showed a clear scan-by-scan

variability, particularly in the contribution of SMA and
pre-SMA areas. Those variations are likely to be associated
with the different amplitudes and delays of the responses of
those nonprimary areas (Lee et al., 1999), whose voxels’
contribution to the sliding-window covariance matrix varies
across successive scans.

Even if the ROC powers estimated on the dynamic pat-
terns in the quantitative analysis (Fig. 6) were dramatically
affected by this temporal variability, resulting in more false
positives and negatives, the cumulative maps progressively
gained accuracy in ROC power, with the final pattern re-
sembling more and more closely the off-line pattern,
adopted as benchmark for the analysis.

Fig. 8 shows four real-time ICA decompositions from the
four acquired slice time-series. Real-time ICA was run for
each slice time-series separately, with identical temporal
settings and highly similar elapsed times of extraction. The
reported frames are fairly representative of typically ob-
served features of real-time ICA readouts and shows qual-
itatively the capabilities of real-time ICA in representing
various types of signals and artifacts. These sources may be
grouped in task-related signals, non-task-related but func-
tion-related signal sources, motion-related artifacts, and
vascular artifacts (McKeown et al., 1998b; Calhoun et al.,
2003).

The task-related signals, were consistently detected with
the used window of 10 scans, corresponding to the cycle of
the paradigm. In our motor experiments, the ROI-based
selection of the single task-related component was easily
performed on the basis of the gyral anatomy because the
activation focus in the primary motor cortex was highly
stationary in space (see the maps highlighted in green in
Figs. 7 and 8).

Function-related signals were identified on the basis of
their spatial layout. These activities did not follow closely
the stimulation paradigm, but their morphology and spatial
locations were highly suggestive of brain functions not
required by the task but likely to accompany inconstantly
the main activity of the motor circuitry. The frontal and
parietal eye-fields are an example of these components.
They were recognizable as bilateral and symmetrical acti-
vation foci in the parietal and frontal cortices and were
associated to time-courses weakly related to task block
transition (Konishi et al., 2001). For instance, these compo-
nents are visible in slices 2 and 4 in Fig. 8 (respectively IC5
and IC3 in the blue boxes).

From a more general perspective, real-time ICA appears
to be capable of detecting and translating signals resulting
from different brain activities into readable activation maps.
The possibility of detecting neural activities with unpredict-
able temporal behavior has already proved crucial, in an
off-line setting, to elucidated complex, yet fundamental,
mechanisms of brain physiology (Seifritz et al., 2002). Be-
sides, the characterization of unpredictable phenomena, ac-
companying a task-related neural activity, may explain in-
teractions and influences between the two activities taking

Fig. 4. Accuracy evaluation of results on simulated data. Comparisons
between real-time ICA (with functions G3 and G5) and sliding-window
GLM [without (GLM0) and with (GLM1) first order detrending]. (a) ROC
statistics on dynamic readouts. (b) ROC time courses for the cumulative
maps.
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place at a cognitive level or at the level of local hemody-
namics. In those situations, real-time ICA would really
operate as a tool for a data-driven real-time control of
behavioral states and task performances. In other words, it

would provide not only the direct monitoring of the ex-
pected evoked signals, but even the additional insight of the
neural phenomena underlying possible unintended changes
in brain activity.

Fig. 5. Accuracy evaluation of results on real motor activation data (unsmoothed images). Comparisons between real-time ICA and sliding-window GLM
[without (GLM0) and with (GLM1) first-order detrending]. (a) ROC statistics on dynamic readouts. (b) ROC time courses for the cumulative maps.

Fig. 6. Accuracy evaluation of results on real motor activation data (smoothed images). Comparisons between real-time ICA and sliding-window GLM
[without (GLM0) and with (GLM1) first order detrending]. (a) ROC statistics on dynamic readouts. (b) ROC time-courses for the cumulative maps.
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In practice, during a typical fMRI session, the researcher
may be promptly advised of different activities or alterna-
tive cognitive strategies performed by the subject, by just
noting recurrent patterns in temporal coincidence with the
expected activity. Motion-related signals were also fre-
quent, causing dynamic components active at the edges of
images. In previous articles, it was empirically demon-
strated that spatial ICA applied to functional MRI time-
series is consistently able to separate, in one or more ring-
like activation components, phenomena that are
representative of head motion. Either long-term (slow) or
abrupt signal change caused by the subject’s head motion
are consistently isolated by typical ICA-based methods
(McKeown et al., 1998b). Apart from providing additional
information about the quality of the raw time-series, this
also results in partially motion-free task-related activation
maps provided by other components of the decomposition.

It is widely known and accepted that head motion cor-
rupts the signal changes induced by brain activation in

fMRI. A number of on-line (Mathiak and Posse, 2001) and
off-line (Friston et al., 1996b) image registration algorithms
have been proposed, which allow the automatic detection of
motion and the correction of its effects in the time-series
(realignment). These techniques require a particular trans-
formation of the images with some form of interpolation of
the pixel intensity. Although this allows to recover the
task-related activated areas, the pixel values are inevitably
modified in their time course by the interpolation-based
reslicing of the same images. It has been shown (Grootoonk
et al., 2000; Freire and Mangin, 2001) that this procedure
may affect the precision of fMRI analyses, producing some
false-positive results, if the interpolation scheme is not
adequately tailored to the acquired data. From this perspec-
tive, a method that estimates motion-related sources of
signal change in the acquired time-series may prove to be
advantageous in all those situations where conventional
model-based motion-compensation techniques do not work
properly. Off-line ICA detects gradual and sudden motion

Fig. 7. Example of output of real-time ICA: dynamic maps (yellow, red, and green boxes) and cumulative maps (white boxes) and time-courses from five
consecutive frames. The lower (z � 2) and upper (z � 8) thresholds of the maps are reported near the corresponding color scale. The maps in the green boxes
correspond to the selected (here task-related ICs). The maps in the red boxes correspond to motion-related ICs.
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without a preliminary correction of the data for the subjects’
confined head motion (McKeown et al., 1998b). Thus, al-
though the output patterns produced by the ICA decompo-
sition are not expected to be equivalent with or without a
compensation of the motion by a motion correction algo-
rithm, task-related components generated by ICA are con-
ceptually robust to motion effects.

Here we observe that, even in its real-time formulation,
ICA preserves the capability to recognize in one or more
components motion-related signal changes in the data and
provides, in the form of ringlike patterns, a real-time feed-
back of subjects’ movements during an ongoing session (in
Fig. 7 and 8 the motion-related components are showed in
the red boxes). Vascular artifacts (Dagli et al., 1999) are
BOLD-related components showing activation foci in the
regions of large blood vessels (Gu et al., 2001; Carroll et al.

2002). These components have often been extracted by
real-time ICA in our data. For instance, the patterns shown
in the white boxes of Fig. 8 (IC3 in slices 1, 2, and 3) belong
to this class, because a focal activity matches anatomically
a large vessel, as identified on the same raw EPI scan.

Conclusions

Our study demonstrates the feasibility and discusses the
potentialities of using ICA in monitoring brain activity in a
real-time setting. We have experimentally compared a
fixed-point ICA algorithm, applied in sliding-window fash-
ion, to standard linear regression-based real-time fMRI
analysis methods, in either sliding-window and cumulative
approach, with and without a first order (linear) trend re-

Fig. 8. Example of output of real-time ICA: dynamic maps from four different slices. The lower (z � 2) and upper (z � 8) of the maps are reported near
the corresponding color scale. The maps in the green boxes correspond to the task-related ICs. The maps in the red boxes correspond to motion-related ICs.
The maps in the blue boxes correspond to function-related ICs (parietal and frontal eye fields). The maps in the white boxes correspond to vascular artifacts.

2222 F. Esposito et al. / NeuroImage 20 (2003) 2209–2224



moval. The quantitative comparison was restricted to the
estimation of task-related signals, corresponding to one of
four categories of the signals and artifacts that we have
found to be regularly extracted by real-time ICA.

For the task-related signals, we present a standard ROC
analysis quantifying the performances of real-time ICA in
terms of accuracy and comparing them to sliding window
and cumulative linear regression analysis on simulated and
real activation time-series. Off-line generated patterns of
activation were used as benchmarks in this analysis. We
also exploited the potential of real-time ICA to detect and
separate non-task-related, and even unexpected and short-
lasting, changes in the data, as in the case of unexpected
neural activities or of vascular and motion artifacts (that
typically occurred in few successive positions of the sliding
window).

The possibility of monitoring any kind of neural activi-
ties, together with the task-related effects, offers enlarged
and intriguing opportunities for all those studies for which
real-time analysis has been wished and proposed (Weiskopf
et al., 2003).
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