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We theoretically study chaos synchronization of two lasers which are delay-coupled via an active
or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser
with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active
relay. Depending on the coupling parameters the system exhibits bubbling, i. e., noise-induced
desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the
coherence collapse and low frequency fluctuation regimes with the transverse instability of some of
the compound cavity’s antimodes. Finally, we demonstrate how, by using an active relay, bubbling
can be suppressed.

Synchronization phenomena of coupled nonlinear os-
cillators are omnipresent and play an important role in
physical, chemical and biological systems [1, 2]. Under-
standing the synchronization mechanisms is crucial for
many practical applications. One of the most interest-
ing and challenging phenomena when coupling nonlinear
systems is the synchronization of chaotic dynamics [3].
In order to characterize the synchronization effects, sta-
bility properties are a key issue. Noise can, for instance,
cause intermittent desynchronization. This behavior is
called bubbling [4] and has been observed for example in
optical [5, 6] and electrical [7] systems.

Semiconductor lasers are of particular interest in
the study of chaos synchronization. The synchroniza-
tion properties may facilitate new secure communication
schemes. However, if two identical semiconductor lasers
are optically coupled over a finite distance, it has been
observed that the coupling delay leads to spontaneous
symmetry breaking, and only generalized synchroniza-
tion of leader-laggard type occurs [8]. A passive relay
in form of a semitransparent mirror or an active relay
in form of a third laser in between the two lasers have
been shown to stabilize the isochronous synchronization
solution [9–12], rendering such configurations attractive
for chaos based applications, like, e. g., bidirectional en-
crypted communication, or chaos-based key exchange, as
detailed in ref. [13].

In this work we show theoretically that bubbling and
on-off intermittency occur in both relay setups. In the
coherence collapse (CC) and in the low frequency fluc-
tuation (LFF) regime, we find that bubbling is caused
by transversally unstable external cavity modes (ECMs).
In the LFF regime the localization of the transversally
unstable modes in the synchronization manifold (SM) re-
sults in desynchronization during power dropouts, which
has also been observed in unidirectionally coupled lasers
[14]. For the active relay we find that bubbling can be
suppressed by stronger pumping of the relay laser.

We consider two identical systems which are delay-
coupled via a relay (Fig. 1). The relay may be an active
element or a passive element which merely distributes
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Figure 1: Schematic setup.

the arriving signals between the systems. Each system
receives a delayed signal from the relay

Ẋj = f(Xj) +KY(t− τ/2) (j = 1, 2). (1)

Here Xj ,Y ∈ Rn are the state vectors of the system
j and the relay, respectively, f is a nonlinear function,
K is the relay-to-system coupling matrix, and τ is the
propagation delay between system 1 and system 2. The
overdot denotes the derivative with respect to time t.

For the active relay we consider the equation

Ẏ = g(Y) + 1
2LX1(t− τ/2) + 1

2LX2(t− τ/2), (2)

where L is the system-to-relay coupling matrix and the
function g describes the internal dynamics of the relay.
For the passive relay we consider the algebraic equation

Y(t) = 1
2 [X1(t− τ/2) + X2(t− τ/2)]. (3)

Equation (1) together with the relay equation (2) or (3)
allow for an isochronous (or zero-lag) solution X1(t) =
X2(t), respectively. The SM is thus invariant. To analyse
the stability of this solution we introduce a symmetric
variable S = 1

2 (X1 + X2) and an antisymmetric variable
A = 1

2 (X1 −X2). Equation (1) can then be rewritten in
the new variables

Ṡ = 1
2 [f(S + A) + f(S−A)] +KY(t− τ/2), (4)

Ȧ = 1
2 [f(S + A)− f(S−A)] . (5)

Note that due to the symmetric coupling the delay terms
and all the coupling parameters in Eq. (5) vanish. Equa-
tion (5) taken at Ȧ = 0 has a solution A = 0 which
represents the isochronously synchronized state. Its sta-
bility is determined by linearizing Eqs. (4) and (5) in the
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variable A around A = 0, i. e., we linearize orthogonal
to the SM:

Ṡ = f(S) +KY(t− τ/2), (6)

Ȧ = Df(S)A. (7)

Here, Df(S) denotes the Jacobian of f evaluated at the
position S. Since S depends on time, Eq. (7) constitutes
a time-dependent variational equation.

For both relay types the dynamics within the SM re-
sembles the dynamics of a single system with either self-
feedback (passive relay)

Ṡ = f(S) +KS(t− τ) (8)

or coupling to the active relay

Ṡ = f(S) +KY(t− τ/2), (9)

Ẏ = g(Y) + LS(t− τ/2). (10)

In both cases the stability of the synchronized solution
is governed by Eq. (7). However, the trajectory S(t) will
be different and the synchronized state may thus have
different stability properties.

Bubbling occurs [4, 15] when an invariant set I, for ex-
ample a periodic orbit, in the SM is transversally unsta-
ble, while the chaotic attractor in the SM is still transver-
sally stable, i. e. the largest transversal Lyapunov expo-
nent of the attractor is negative, λ⊥ < 0. In this situa-
tion the trajectory can be pushed towards the unstable
set by noise and leave the SM. If there is no other at-
tractor present, the trajectory will eventually come back
to the SM and the systems will synchronize again. The
point where the invariant set I loses its transverse stabil-
ity is called bubbling bifurcation, while the point where
the attractor itself becomes unstable is called blow-out
bifurcation.

For semiconductor lasers the dynamics of each system
is governed by the dimensionless Lang-Kobayashi rate
equations [16, 17]

Ėj = 1
2 (1 + iα)nj Ej +KeiϕEY(t− τ/2) + Fj(t)

T ṅj = p− nj − (1 + nj) |Ej |2. (11)

Here, Ej and EY are the complex electric field ampli-
tudes of the jth system and the relay, respectively, nj
is the excess carrier density, α is the linewidth enhance-
ment factor, p is the pump current, and the timescale
parameter T = τc/τp is the ratio of the carrier (τc) and
the photon (τp) lifetime. For simplicity we choose the
feedback phase ϕ = 0. Note that in general one could
also include coupling phases in Eq. (3). This leads to
interference conditions of all phases which have to be
satisfied for isochronous synchronization. In our simula-
tions we consider the spontaneous emission noise via a
complex Gaussian white random variable Fj(t) with the
covariance 〈Fj(t)Fi(t

′)∗〉 = β(n + n0)δijδ(t − t′), where

n0 = 10 is the carrier density at threshold and β = 10−5

is the spontaneous emission factor. Carrier noise has not
been taken into account at this level.

If the relay is realized through a semitransparent mir-
ror (passive relay), the dynamics within the SM is given
by Eqs. (11) with EY(t − τ/2) = Ej(t − τ), i. e., an
effectively decoupled laser. For this configuration we
calculate the maximum parallel Lyapunov exponents λ||
(within the SM) as well as the maximum transversal Lya-
punov exponents λ⊥ by simulating the dynamics in the
SM without noise and applying the method developed
in [18]. Figure 2a displays the Lyapunov exponents as
a function of the feedback strength K. There are two
blow-out bifurcations [19] at K ≈ 0.008 (B1) and at
K ≈ 0.09 (B2), where λ⊥ changes sign and the chaotic
attractor loses its transversal stability. Similar behav-
ior is found for an active relay (Fig. 2b). Over a wide
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Figure 2: (Color online) Maximum transversal Lyapunov ex-
ponent λ⊥ (red dashed) and maximum parallel Lyapunov ex-
ponent λ|| (blue solid) as a function of the feedback strength
K for a) passive relay b) active relay (prelay = 4.0). At the
two blow-out bifurcations B1 and B2 the maximum transver-
sal Lyapunov exponent of the chaotic attractor changes sign.
Other parameters: T = 200, p = 1.0, τ = 1000, α = 4, ϕ = 0

range of K (Fig. 2a) in which the attractor is stable and
the dynamics is chaotic, we observe bubbling induced by
spontaneous emission noise. In these regimes, when the
noise is switched off in the simulations, the two lasers
stay perfectly synchronized. In the regime with λ⊥ > 0
we observe desynchronization bursts even without noise,
i. e., the system exhibits on-off intermittency. Figure 3a
depicts the bubbling behavior for values of K above B2
where the laser operates in the CC regime. Figure 3b
corresponds to a lower pump current, where the synchro-
nized lasers operate in the LFF regime. In this regime
bubbling only takes place during the power dropouts. In
both cases, when the noise amplitude is decreased, the
desynchronization peaks occur less frequently, the maxi-
mum height, however, does not decrease.

We now relate the desynchronization dynamics to the
transverse stability of the ECMs in the SM. These modes
organize the dynamics in the SM in the CC and the LFF
regime. The ECMs are rotating wave solutions of the
form E(t) = A exp(iωt) and n(t) = n with constant val-
ues A, ω and n. They are well studied [20] solutions of
the Lang-Kobayashi equations and are located on an el-
lipse in the (ω, n)-plane (see inset of Fig. 4a). The modes
on the top and bottom half of the ellipse are called modes



and antimodes, respectively.

�0.4�0.20.0
0.2

n
S

0.0 0.5 1.0 1.5 2.0 2.5

t/104
0.0
0.5
1.0

|I 1

�I 2|�I 1+I 2�
(a)

�0.4�0.2
0.0

n
S

0 2 4 6 8 10

t/104
0.0
0.5
1.0

|I 1

�I 2|�I 1+I 2�
(b)

Figure 3: Carrier density of the symmetric variable
nS = 1

2
(n1 + n2) and intensity difference |I1 − I2|/〈I1 + I2〉

(normalized by the mean intensity) representing the devia-
tion from the synchronized state vs. time. a): Bubbling in
the coherence collapse regime (p = 1.0). b): Bubbling in
the low frequency fluctuation regime during power dropouts
(p = 0.1). Other parameters: T = 200, K = 0.12, τ = 1000,
α = 4.

The transverse stability of an ECM is governed by the
variational equation (7) where S(t) is the ECM solution.
To determine the stability, we transform the laser equa-
tions into a rotating frame [21] E0 = E exp(−iωt). In
these coordinates, an ECM E = A exp(iωt+ iψ) is trans-
formed into a family of fixed points E0 = A exp(iψ).
Splitting the complex electric field E0j = xj + i yj and
using the vector Xj = (xj , yj , nj) Eqs. (11) can be writ-
ten in the form of Eq. (1) and the above analysis applies.
The eigenvalues of the Jacobian in the rotating frame
then determine the ECM’s transverse stability. Figure
4a displays the position of the ECMs in the (ω, n)-plane
and their stability for a choice of parameters. The black
trajectory displays the projection of the symmetric vari-
able nS.

The bubbling behavior in the CC regime and the corre-
lation of the desynchronization with the power dropouts
in the LFF regime can be understood as follows. In
the CC regime the dynamics comprises chaotic itiner-
ancy among the modes and global antimode dynamics
[22] (see Fig. 4a). The modes involved in the chaotic
itinerancy are transversally stable (blue circles). The an-
timodes on the other hand are transversally unstable (red
squares). Thus, when the trajectory approaches the anti-
mode, noise can lead to desynchronization and bubbling
occurs. The yellow diamonds in Fig. 4a mark the on-
set of desynchronization, showing that bubbling always
occurs in the vicinity of the antimodes (independent of
the power). Please note that due to the role of noise
not every approach to an antimode results in a bubbling
excursion.
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Figure 4: (color online) Projection of the dynamics of the
symmetrized solution nS, ES = AS exp(iφS) (black trajec-
tory) onto the (ω, n)-plane for a) passive relay (p = 1.0),
b) active relay (p = 1.0, prelay = 4.0). Transversally stable
(blue circles) and transversally unstable (red squares) ECMs
are also shown. a) The competition between chaotic itiner-
ancy and antimodes leads to bubbling during global antimode
dynamics. Yellow diamonds mark the onset of desynchroniza-
tion. Solid and dashed parts of the trajectory correspond to
synchronized and desynchronized periods, respectively. The
inset in a) shows the ECM ellipse and bubbling dynamics in a
larger range. b) The system evolves around the transversally
stable compound laser modes and bubbling is suppressed. Pa-
rameters as in Fig. 3.

In the LFF regime [23] the dynamics is similar. The
intensity buildup process in between power dropouts is
characterized by chaotic switching between different at-
tractor ruins (ghosts) of unstable ECMs with a drift to-
wards the ECM with minimal n. All ECMs involved in
the buildup process are transversally stable and we ob-
serve no desynchronization. After a transient time, a
power dropout takes place. During the dropout the tra-
jectory collides with an antimode in a crisis. Again, the
vicinity to transversally unstable antimodes - rather than
the drop in power - leads to bubbling behavior.

The transverse stability of the ECMs depends on the
laser and coupling parameters as well as on the param-
eters of the particular ECM. Note that modes and an-
timodes are not necessarily transversally stable or un-
stable, respectively. The modes on the lower right-hand
side in Fig. 4a, for instance, are transversally unstable.
With decreasing coupling strength K, more modes be-
come transversally unstable until the whole chaotic at-
tractor loses its transversal stability. This leads to the
blowout bifurcation B2 in Fig. 2.

With increasing feedback strength the bubbling occurs
less frequently and the average synchronization interval
∆ increases; however, we did not find a transition to a
bubbling-free state in a physically reasonable range of
K. Note that neither K nor the other parameters of our
model are normal parameters in the sense of Ref. [5].
Thus we do not observe power-law scaling of ∆ as in
[6, 15]. The parallel Lyapunov exponent λ|| approaches



zero with increasingK and the chaoticity decreases, mak-
ing this situation less interesting for chaos-based appli-
cations.

If the elements are coupled via an active relay, the
synchronized lasers behave like two delay-coupled lasers
(see Eq. (9)). If we choose f = g and K = L, we ob-
tain a system of two identical mutually coupled semicon-
ductor lasers, which has been studied before [8, 24, 25].
Such a system has rotating wave solutions of the form
ES(t) = AS exp(iωt), EY(t) = AY exp(iωt+iψ), nS(t) =
nS, nY(t) = nY, called compound laser modes (CLMs).
Their spectrum is more complex than for the ECMs:
besides the synchronized solutions (which correspond to
ECMs), there exist antisymmetric modes, for which the
relay and the synchronized solution are in anti-phase
(ψ = π), as well as asymmetric modes where the relay
has a different intensity than the outer lasers.

The positions of the transversally unstable modes are
close to those of the ECMs of a single laser in the (ω, n)
parameter space. Also the dynamics of three identical
coupled lasers is similar to the behavior in the presence
of a passive relay. Indeed, we find bubbling in both the
LFF and CC regime.

In the experiments reported in [12] all the coupling pa-
rameters in the setup are chosen identical, i. e., L = 2K
in Eqs. (1) and (2). But also in this case we observe
qualitatively similar laser dynamics, with a trajectory in
parameter space coming close to the transversally unsta-
ble CLMs.

To suppress the bubbling while maintaining strong
chaos, we apply a sufficiently higher pump current to
the relay laser (prelay = 4.0) than to the outer lasers
(p = 1.0). For this configuration we have calculated
λ|| ≈ 0.026, λ⊥ ≈ −0.032, confirming that the system
is in the chaotic regime (cf. Fig. 2b). The system still
itinerates among the compound laser modes, but there
is no global antimode dynamics. Moreover, in contrast
to the behavior for the symmetric case prelay = 1.0, the
active relay now suppresses the bubbling and there is no
desynchronization (see Fig. 4b). Inspecting Fig. 4b, we
can conclude that the CLMs involved in the dynamics are
indeed transversally stable. If the middle laser is pumped
less strongly than the outer ones, the opposite effect is
observed.

In conclusion, we have demonstrated a mechanism for
desynchronization by bubbling in a very general setting
of two delay-coupled lasers with either passive or active
relay. We have shown that in the CC and LFF regimes
the occurrence of bubbling is related to the transverse
instability of some of the compound cavity’s antimodes,
and that, by tuning of the active relay, it is possible to
suppress the bubbling. These synchronization properties
are decisive for the setup of chaos-synchronization based
applications and provide a strategy how to achieve stable
synchronization.
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