
 

 

 

Stochastic switching in delay-coupled oscillators

Citation for published version (APA):

D'Huys, O., Jüngling, T., & Kinzel, W. (2014). Stochastic switching in delay-coupled oscillators. Physical
Review E, 90(3), Article 032918. https://doi.org/10.1103/PhysRevE.90.032918

Document status and date:
Published: 01/09/2014

DOI:
10.1103/PhysRevE.90.032918

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 29 Mar. 2024

https://doi.org/10.1103/PhysRevE.90.032918
https://doi.org/10.1103/PhysRevE.90.032918
https://cris.maastrichtuniversity.nl/en/publications/6181947e-9d8d-4a74-a75b-174b2bd57483


ar
X

iv
:1

40
9.

04
79

v1
  [

nl
in

.A
O

] 
 1

 S
ep

 2
01

4

Stochastic switching in delay-coupled oscillators
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Abstract

A delay is known to induce multistability in periodic systems. Under influence of noise, coupled

oscillators can switch between coexistent orbits with different frequencies and different oscillation

patterns. For coupled phase oscillators we reduce the delay system to a non-delayed Langevin

equation, which allows us to analytically compute the distribution of frequencies, and their cor-

responding residence times. The number of stable periodic orbits scales with the roundtrip delay

time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales

with the square root of the delay time and is independent of the coupling strength. In contrast,

the residence time in the different orbits is mainly determined by the coupling strength and the

number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate

the effect of a detuning between the oscillators. We demonstrate the generality of our results with

delay-coupled FitzHugh-Nagumo oscillators.

PACS numbers: 05.45.Xt, 89.75.Hc, 02.30.Ks

1

http://arxiv.org/abs/1409.0479v1


I. INTRODUCTION

In recent years dynamical systems with delays have evolved as a major topic in nonlinear

sciences [1, 2]. Time delays arise naturally, and might play a role in many areas of physics,

biology and technology, such as nonlinear optics [3, 4], gene regulatory circuits [5], population

dynamics [6, 7], traffic flows [8, 9], neuroscience [10], and social or communication networks

[11, 12].

A well established effect of a delay in the dynamics is the possibility to induce mul-

tistability [13, 14]. In oscillatory systems a delay gives rise to coexistent periodic orbits

with different frequencies [15–17] and possibly different oscillation patterns [18–22]. Such

coexistent patterns could be related to memory storage and temporal pattern recognition,

especially in neural networks [23–25]. However, noise, which is unavoidable in real networks,

can place important limitations to the capacity of a memory element, as it can induce mode

hoppings between coexistent attractors.

We study the statistical properties of such mode hoppings in small networks of oscillators.

We consider a single oscillator with delayed feedback, two delay-coupled oscillators and a

unidirectional ring, and we briefly discuss globally coupled elements. The number of possible

frequencies scales with the roundtrip delay time, but the noisy system visits only a fraction

of these frequencies, which scales with the square root of the delay time. While without

noise the range of frequencies also scales with the coupling strength, we find that in the

stochastic system it does not depend on the coupling strength. In contrast, the robustness

of the orbits to noise, measured by the average residence time, is mainly determined by

the coupling strength, while the delay has a minor effect. Complementary to local stability

analysis, the study of coupled systems subject to noise also provides information about the

robustness of certain oscillation patterns. We find that depending on network topology,

an oscillation pattern might dominate: in unidirectional rings the oscillators spend equally

much time in all the possible phase configurations, a globally coupled network shows a clear

preference to in-phase synchrony.

This paper is organized as follows. In section II we discuss stochastic switching for a

single phase oscillator. We compare our numerical results to those obtained by a potential

model [26], and discuss the model in the limit of strong coupling and large delay. We

discuss stochastic switching of two coupled phase oscillators in section III, and extend the
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potential model. In section IV we extend our results to a unidirectional ring of delay-

coupled oscillators. Finally, we demonstrate the generality of our results with delay-coupled

FitzHugh-Nagumo oscillators in section V. We discuss our results in section VI.

II. STOCHASTIC SWITCHING IN A SINGLE PHASE OSCILLATOR WITH

FEEDBACK

The most basic delay network is a single oscillator with delayed feedback. We consider

a Kuramoto oscillator, which describes the oscillating dynamics by a single phase variable.

It is a universal model, as many oscillators can be reduced to phase oscillators in the weak

coupling regime [27–29]. Thanks to its simplicity, the Kuramoto model allows for analyt-

ical insights while still capturing many essential features of synchronization. A Kuramoto

oscillator with delayed feedback and noise is modelled by

φ̇(t) = ω0 + κ sin(φ(t− τ)− φ(t) + θ) + ξ(t) . (1)

The oscillator has a natural frequency ω0, the other parameters are the coupling delay τ ,

the coupling strength κ > 0 and the coupling phase θ. The system is subject to additive

Gaussian white noise ξ(t), with 〈ξ(t)ξ(t0)〉 = 2Dδ(t − t0). As the dynamics is invariant

under a transformation φ(t) → φ(t)+ ω̃t, ω0 → ω0+ ω̃, θ → θ− ω̃τ , we can omit the coupling

phase θ without loss of generality.

We first briefly discuss the deterministic dynamics of this system [30, 31]. Without noise,

the oscillator resides in one of the frequencies φ̇ = ωk given by

ωk = ω0 − κ sin(ωkτ) . (2)

A graphical determination of the frequencies ωk is shown in Fig. 1. The orbits for which

κτ cos(ωkτ) > 1 holds, are stable. For large coupling or long feedback delay κτ ≫ 1, the

stable frequencies close to ω0 are approximated as ωkτ ≈ 2kπ, whereas the spacing is given

by ωk+1 − ωk ≈ 2π/τ . As all solutions of Eq. (2) are limited by ω0 − κ ≤ ωk ≤ ω0 + κ, the

number of coexistent stable orbits is estimated as κτ/π.

If we add noise to the system, the oscillator switches between these coexistent orbits. We

simulated a Kuramoto oscillator with delayed feedback, using a Heun algorithm adapted to

delayed interactions, with a timestep of h = 0.01. For our choice of parameters (κ = 2,
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FIG. 1: Graphical determination of the different coexisting frequencies of a single oscillator with

delayed feedback (Eq. (2)). The intersections with the thick decreasing slopes of the sine function

correspond to stable orbits, and are marked with a circle. The coloring of the circles relates to the

probability distribution p(ω(t)) of the corresponding stochastic oscillator (shown in Fig. 3): the

probability that the oscillator has a frequency ω(t) ≈ ωk is large for the most central frequencies

ωk ≈ ω0, marked with a black circle, while the probability to find the system’s frequency ω(t) close

to the outer frequencies ωk ≈ ω0 ± κ, marked with an empty circle, is negligible. Parameters are

ω0 = 6, κ = 2, τ = 10 and D = 0.5

ω0 = 6, τ = 10), without noise, the oscillator has six stable periodic orbits, with respective

frequencies ω1 ≈ 4.48, ω2 ≈ 5.07, ω3 ≈ 5.67, ω4 ≈ 6.27, ω5 ≈ 6.87 and ω6 ≈ 7.46,

shown in Fig. 1. A typical timetrace of the phase evolution, with multiple mode hoppings

between ω3 and ω4, is shown in Fig. 2(a). As an indicator for mode hoppings we use the

frequency measure ω(t) = (φ(t)−φ(t−τ))/τ , which is the driving term of the dynamics, and

corresponds to the average of the instantaneous frequency φ̇(t) over the past delay interval.

Moreover, this definition of ω(t) respects the origin of the frequency locking, which lies in

the auto-phase locking of the instantaneous phase φ(t) onto the delayed phase φ(t− τ). The

time evolution of ω(t) is shown in Fig. 2(b), exhibiting clear jumps between the deterministic

frequencies ωk.

The distribution of frequencies p(ω(t)), with ω(t) defined as above, is shown in Fig. 3(a).

One can clearly distinghuish multiple maxima, corresponding to the deterministic frequencies

ω2, ω3, ω4 and ω5 . The frequencies closest to the eigenfrequency ω0 of the oscillator, i.e.
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FIG. 2: (a) Phase evolution φ(t)−ω0t of a Kuramoto oscillator with delayed feedback and noise. We

subtracted the natural frequency ω0t for better visibility of the mode hoppings. (b) The frequency

measure ω(t) = (φ(t) − φ(t − τ))/τ is a good indicator for the mode hoppings. Parameters are

ω0 = 6, κ = 2, τ = 10 and D = 0.5

ω3 and ω4, are most often visited, while the oscillator spends a negligible amount of time in

the orbits with frequencies ω1,6 ≈ ω0 ∓ κ.

To calculate the residence times of the orbits, we apply the following procedure: at the

starting point t0 the oscillator is considered to reside in the orbit with a frequency ωk for

which the distance |ω(t0) − ωk| is minimal, and it stays there as long as |ω(t) − ωk| < ǫ.

After a transition, we determine the new locking frequency again as the frequency at minimal

distance. We chose ǫ = 2/3(ωk−ωk−1); for weak noise ω(t) does not show large fluctuations

around the locking frequency ωk and the choice of ǫ does not largely affect the residence

times of the orbits. In our simulations we obtained around 106 transitions. The residence

time distributions of two of the orbits (ω2 and ω3) are shown in Fig. 4(a). The distribution

is exponential. Upon the exponential decay there are signatures of the delay time; these

are shown in the inset. The peaks can be understood as delay echoes which result from a

known stochastic resonance effect in delay systems [13, 32, 33]: A mode hopping causes a

perturbation, which increases the probability for a mode hopping at multiples of the feedback

delay. Moreover, the average residences times, shown in Fig. 4(b), are largest for orbits ω3

and ω4 with a frequency close to the natural frequency ω0.

In order to interpret the mode hopping dynamics, we approximate the delay system by

an undelayed system. It is then possible to define a Langevin equation and to compute

5



the frequency distributions and average residence times of the different periodic orbits.

Such an approach is possible thanks to the simplicity of the Kuramoto oscillator, as the

dynamics of the oscillator is only characterized by a frequency. A similar method has been

suggested in the context of mode hopping between external cavity modes in a single laser

with delayed feedback [26, 34]. Using this approximation, we show analytically how the

frequency distribution and average residence times scale with the feedback strength, delay,

and frequency of the orbit. Thereby we focus on the regime κτ ≫ 1, in which a multitude

of orbits coexists.

In order to simplify the system, we first rewrite the dynamics in terms of the delay phase

difference x(t) = φ(t)− φ(t− τ).

ẋ(t) = ω0 − κ sin x(t)− φ̇(t− τ) + ξ(t) . (3)

The main step is the following: We approximate the instantaneous frequency φ̇(t − τ) by

5 6 7
ω

5 6 7
ω

p(
ω

)

5 6 7
ω

(c)(b)(a)

FIG. 3: (Color online) The frequency distributions (grey) for (a) an oscillator with feedback,

(b) two coupled identical identical oscillators and (c) two detuned oscillators. The analytical

approximations (Eq. (6) and Eq. (12)) are plotted in black, the (blue) dashdotted lines show the

respective Gaussian envelopes. The parameters are κ = 2, τ = 10, ω0 = 6, D = 0.5 , and (c)

∆ = 0.8.
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FIG. 4: (Color online)(a) Logarithm of the residence time distribution ln(p(T )), for a Kuramoto

oscillator with delayed feedback, for the orbits with frequencies ω2 and ω3. (b) Mean residence time

of the orbits ω2,3,4,5 versus their frequency for a single oscillator (upper black dots) together the

theoretical approximation (Eq. (7)) (upper dashed pink curve). The lower pink dots and the lower

blue dashed curve represent the mean average residence times of the orbits and their theoretical

approximation (Eq. (14)) respectively for two identical coupled systems. The parameters are

κ = 3, τ = 10, ω0 = 6 and D = 0.5.

the frequency averaged over the future delay interval plus its noise source

φ̇(t− τ) ≈ 1

τ

∫ t

t−τ

φ̇(t′)dt′ + ξ(t− τ) =
x(t)

τ
+ ξ(t− τ) . (4)

Such assumption is justified for weak noise, when the oscillator resides in one of the periodic

orbits during a delay interval. But also in case of a random walk (κ = 0) it leads to the

correct stationary distribution. In this way we obtain a closed equation without delay for

the phase difference x(t), that can be written in terms of a potential [26],

ẋ(t) = −dV (x)

dx
+ ξ̃(t) with

V (x) =
1

2τ
(x− x0)

2 − κ cosx , (5)

with x0 = ω0τ and ξ̃(t) = ξ(t) − ξ(t − τ). As the noise sources ξ(t) and ξ(t − τ) are

uncorrelated, the simplified oscillator is effectively subject to a magnified noise strength of

〈ξ̃2(t)〉 = 4D. The approximation by white noise in Eq. (5) does not preserve correlations

7



around multiples of τ , like those shown in Fig. 4(a). The potential V (x) is shown in Fig.

5. It is a parabolic potential modulated by a cosine function. The local minima xk = ωkτ

correspond to the frequencies in the noise-free case D = 0. Our reduction procedure does

not affect them and their calculation by the potential extrema reveals Eq. (2). The local

maxima xm correspond to unstable solutions of the deterministic system.
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FIG. 5: Potential for a Kuramoto oscillator with feedback (Eq. (5)). Parameters are ω0 = 6, κ = 2,

τ = 10.

The phase difference x(t) relates in a simple way to the frequency measure x(t)/τ = ω(t).

Hence, the stationary distribution of frequencies p(ω) is given by a Boltzmann factor [35]

p(ω) ∝ e−
V (ωτ)
2D = e−

τ
4D

(ω−ω0)2e
κ cos ωτ

2D . (6)

We recognize a Gaussian envelope with mean ω0 and variance σ2 = 2D/τ . This envelope

corresponds to the probability distribution of a random walk. Thus, while the total frequency

range is given by 2κ, the range of visited frequencies scales with
√

D/τ . As the spacing

between the orbits scales inversely with the feedback delay, the number of attended orbits

grows as
√
Dτ .

The coupling function, which appears in the second factor of Eq. (6), determines the

location and the shape of the different peaks. As the feedback strength increases, the peaks

in the distribution become more pronounced. In Fig. 3 we compare our analytical result

for the simplified system (Eq. (6)) with numerical simulations of the original delay system

(Eq. (1)). We find that our theoretical results provide an excellent approximation for the

distribution of frequencies and thus prove the validity of the applied reduction method.
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Also the average residence times can be approximated by the potential model (5): In

the limit of low noise, the escape rates from an orbit with frequency ωk are given by the

Kramers rate [36, 37]

r±(ωk) =

√

−V ′′(ωkτ)V ′′(xm)

2π
e−

∆V
2D ,

where the suffix denotes whether the oscillator hops to a mode with a higher or a lower

frequency. The average residence time T0(ωk) reads then

T0(ωk) ≈
1

r+(ωk) + r−(ωk)
.

For strong coupling and large feedback delay κτ ≫ 1, a multitude of orbits are stable, with

ωkτ ≈ 2nπ and xm = (2n + 1)π. The average residence time is then further approximated

as

T0(ωk) ≈
π

κ

e
κ
D
+ π2

4τD

cosh
(

π(ωk−ω0)
2D

) . (7)

We compared the average residence time of the different periodic orbits with our theoretical

result (Eq. (7)) in Fig. 4, and the approximation gives good results. Consequently, the

average residence time T0(ωk) increases with the feedback strength κ, which determines the

depth of the potential wells, and decreases with the noise strength D. For a fixed frequency

ωk the feedback delay τ has a limited influence on the residence times, for long delays the

delay dependency even vanishes.

Only the orbits with a frequency close to the natural frequency have a considerable

average residence time, and are in this sense robust to noise. This range of these frequencies

scales with D, and does not depend on the delay time or the coupling strength. Due to the

frequency difference of 2π/τ , the number of orbits that is robust to noise scales approximately

as Dτ . Moreover, there is a difference in the mode hopping behavior at long and short delay

times: For long delays, the
√

D/τ -range of attended orbits is much smaller than the range

of robust frequencies, so that all visited orbits have a similar average residence time. If the

delay is shorter, as it is the case for our choice of parameters, significant differences in the

residence times of the orbits are observed.
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III. TWO MUTUALLY COUPLED PHASE OSCILLATORS

More common than a single oscillator driven by its own delayed feedback are coupled

oscillators. We consider here the simple case of two mutually delay-coupled oscillators with

independent noise sources. This system is modelled by

φ̇1(t) = ω01 + κ sin(φ2(t− τ)− φ1(t)) + ξ1(t)

φ̇2(t) = ω02 + κ sin(φ1(t− τ)− φ2(t)) + ξ2(t) , (8)

with ω01,02 = ω0 ∓∆/2, and ∆ being the detuning between the oscillators. We repeat first

the case of identical oscillators (ω01 = ω02 ≡ ω0) without noise (D = 0) [18, 31]. The

system does not only have in-phase synchronized oscillations φ1(t) = φ2(t) = ωkt, but also

anti-phase synchronized orbits φ1(t) = φ2(t) + π = ωkt. The frequencies of the in-phase

orbits are identical to the single feedback system; they are given by ωk = ω0 − κ sin(ωkτ).

For the anti-phase orbits the frequencies can be found by solving ωk = ω0 + κ sin(ωkτ).

The coupled system thus has twice as many coexisting periodic orbits as the single system.

In-phase orbits are stable for cos(ωkτ) > 0 and anti-phase orbits for cos(ωkτ) < 0. A

graphical determination of the frequencies is shown in Fig. 6(a): stable in-phase and anti-

phase frequencies alternate each other. For large κτ ≫ 1 the frequencies ωk close to the

natural frequency ω0 are approximated as ωkτ ≈ nπ, so that the separation between the

frequencies approaches π/τ .

Without noise, nonidentical oscillators still synchronize to a common frequency if the

coupling is strong enough |∆| < 2κ [15]. Detuned oscillators, however, are no longer exactly

in-phase or anti-phase with each other, but they exhibit a phase difference δ depending

on the locking frequency and the detuning. We find for the frequencies ωk and the phase

difference δ

ωk = ω0 − κ sin(ωkτ) cos δ

sin δ =
∆

2κ cos(ωkτ)
, (9)

if the conditions cos(ωkτ+δ) > 0 and cos(ωkτ−δ) > 0 hold, an orbit is stable. We solve Eq.

(9) graphically in Fig. 6(b). For nonidentical oscillators the frequency range is reduced to

2κ−∆; for large κτ however neither the locking frequencies ωk nor their stability is largely

affected by the detuning.
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FIG. 6: (Color online) Graphical determination of the locking frequencies of two (a) identical

and (b) nonidentical delay-coupled phase oscillators. Intersection with the thick full (dashed) line

correspond stable in-phase (anti-phase) orbits. The filling of the black (magenta) circles relates

to the relative probability that the in-phase (anti-phase) orbit is visited by the corresponding

stochastic system, darker labeling corresponds to a higher probability to find a frequency ω(t) ≈ ωk.

The corresponding probability distributions are shown in Fig. 3 (b,c). In panel (b) a stable

orbit is labeled as in-phase if −π/2 < δ < π/2. Just like for a single feedback oscillator, the

frequencies ωk ≈ ω0 are most often visited, the width of the frequency distribution is however

smaller. Parameters are ω0 = 6, κ = 2, τ = 10 and (b) ∆ = 0.8.

We show the phase evolution of two identical delay-coupled oscillators in Fig. 7. Mode

hopping happens in two stages: if one oscillator, the leader, changes its frequency, the

other oscillator, the laggard, follows a delay time later. Looking at the evolution of the

driving terms φ1,2(t) − φ2,1(t − τ), shown in Fig. 7(b), it is clear that during a transition

the driving term of the leader changes with 2π, while the laggard changes its frequency

without a phase jump in its drive. As a frequency measure for the coupled system we

use the mean frequency of the two oscillators averaged over the past delay interval ω(t) =

(φ1(t) + φ2(t)− φ1(t− τ)− φ2(t− τ))/(2τ); we thus capture the frequency transition of the

leading oscillator. The two oscillators initiate equally many transitions, hence the role of

leader and laggard changes randomly. For nonidentical oscillators, however, if the system

speeds up, the fast oscillator is more often the leader, while if the oscillators slow down, the

slow oscillator is leading the dynamics.

Also for mutually coupled oscillators it is possible to define a delay-free Langevin formal-
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FIG. 7: (Color online)(a) The phase evolutions φ1 − ω0t (pink) and φ2 − ω0t (black) of two

identical noisy Kuramoto oscillators coupled with delay. We subtracted the natural frequency

ω0 for better visibility of the mode hoppings. (b) The time evolution of the frequency ω(t) =

(φ1(t) + φ2(t) − φ1(t − τ) − φ2(t − τ))/(2τ) for two coupled oscillators (black), together with the

phase differences x1(t)/τ = (φ1(t)−φ2(t−τ))/τ (upper pink curve) and x2(t)/τ = φ2(t)−φ1(t−τ)

(lower blue curve). The dashed lines indicate the mode hoppings. Parameters are ω0 = 6, κ = 3,

τ = 10 and D = 0.5.

ism. We rewrite the system as a function of the driving terms x1(t) and x2(t), defined as

x1,2(t) = (φ1,2(t)− φ2,1(t− τ)). We then assume that the oscillators are locked to the same

fixed frequency over the delay interval, and as such, that φ̇1(t− τ) and φ̇2(t− τ) only differ

in the contribution of the noise. This leads to the main reduction

φ̇1,2(t− τ) ≈ (x1(t) + x2(t))/(2τ) + ξ1,2(t− τ) . (10)

In this way we can rewrite the system as a function of a twodimensional potential:

ẋ1,2(t) = −∂V1,2

∂x1,2
+ ξ̃1,2(t) with

V (x1, x2) =
1

4τ
(2x0 − x1 − x2)

2 +
∆

2
(x1 − x2)

−κ (cosx1 + cosx2) , (11)

with x0 = ω0τ and ξ̃1,2(t) = ξ1,2(t)− ξ2,1(t− τ). This potential is shown in Fig. 8. The wells

are located at (x1, x2) = (ωkτ + 2nπ − δ, ωkτ − 2nπ + δ). The frequency of the system is

then given by the average frequency ω = (x1 + x2)/(2τ). As the phase difference between

12
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FIG. 8: Twodimensional potential for two coupled Kuramoto oscillators, without (a) and with (b)

detuning. The arrows indicate the two pathways for a transition between two frequencies, thicker

arrows correspond to more probable pathways. Parameters are ω0 = 6, κ = 2, τ = 10 and (b)

∆ = 0.8

the oscillators is only determined upon a multiple of 2π, the potential is 4π-periodic with

respect to x1 − x2 = xA. For identical oscillators there are thus two equally probable

pathways for a transition: x1 changes with almost 2π, while x2 remains almost constant,

and φ1(t) leads the dynamics, and vice versa. These pathways are indicated by arrows in

Fig. 8. Transitions typically take place between orbits with a minimal frequency difference,

and therefore with a different oscillation pattern. If the oscillators are identical, we obtain

the frequency distribution p(ω) by integrating over the phase difference xA. We find

p(ω) ∝
∫ 4π

0

dxAe
−

V (ωτ,xA)

2D

∝ e−
τ
2D

(ω−ω0)2I0(κ cosωτ/D) , (12)

with I0(y) being the modified Bessel function of the first kind, I0(y) =
∑

y2n

22n(n!)2
.

Like for the single oscillator, the frequency distribution can be written as a Gaussian

envelope multiplied with a factor determining the separate peaks. However, the variance

of the envelope decreases with a factor 1/2 compared to the single feedback system. The

Bessel function I0(y) is symmetric: we find alternating peaks corresponding to in-phase and

anti-phase orbits, their height only depends on their respective frequencies ωk and not on

the oscillation pattern. We compare our numerical and theoretical results for the frequency
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distribution in Fig. 3(b). The agreement is excellent. The oscillators are thus always

synchronized (except during the delay interval following a transition), but they spend a

proportion of time in in-phase as well as in anti-phase orbits. As a result, for long enough

delays, the overall correlation between the oscillators vanishes at zero lag, but shows maxima

at odd multiples of the coupling delay.

For nonzero detuning ∆ > 0, the potential (Eq. (11)) is tilted, as is shown in Fig.

8(b). Consequently the phase difference xA(t) between the oscillators preferentially increases

during a mode hopping. The most probable, and the least probable transition pathway

between two frequencies are also sketched on Fig. 8(b). The ratio between the transition

rates is approximated by exp(−pi ∗Delta/2D), so that for large detunings it is reasonable

to assume that all the transitions to a higher frequency are induced by the faster oscillator

x2, and the transitions to a lower frequency by the slower one x1. For κτ sufficiently large,

we can approximate the envelope by assuming detailed balance

p(ωk)r+(ωk) = p(ωk+1)r−(ωk+1) ⇔
p(ωk+1)

p(ωk)
≈ e−

∆V (ωk+1→ωk)−∆V (ωk→ωk+1)

2D

≈ e−
τ
2D((ωk+1−ω0)2−(ωk−ω0)2+

2δ
τ
(2ω0−ωk+1−ωk))

≈ e−
τ
2D(1−

2δ
π )((ωk+1−ω0)2−(ωk−ω0)2) . (13)

This corresponds to a Gaussian envelope of the frequency distribution with mean ω0 =

(ω1+ω2)/2 and variance σ2 = D/(τ(1−ǫ)), with ǫ = 2 arcsin(∆/2κ)/π > 0. The distribution

of frequencies thus becomes broader due to the detuning, in agreement with the numerical

results for the full delay system. In Fig. 3(c) we show the approximated Gaussian envelope

together with the simulated distribution of frequencies.

For identical oscillators, we approximate the residence times of the orbits by assuming

all the transitions take place via the two optimal pathways. We obtain then for the mean

residence time

T0(ωk) =
1

2r+(k) + 2r−(k)
≈ π

2κ

e
κ
D
+ π2

8τD

cosh
(

π(ωk−ω0)
2D

) . (14)

This corresponds to half of the lifetime of the orbits of a single oscillator with the a roundtrip

delay 2τ . We compare numerical and theoretical results in Fig. 4(b).
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IV. EXTENSION TO A RING OF KURAMOTO OSCILLATORS

It is possible to extend these results to a unidirectional ring of N oscillators. Such system

is then modelled by

φ̇n(t) = ω0 +∆n + κ sin(φn+1(t− τ)− φn(t)) + ξn(t) , (15)

with N + 1 ≡ 1. Without detuning, the coupling topology allows for in-phase oscillations

φn(t) = ωkt and several out-of-phase oscillation patterns φn(t) = ωkt + n∆φ, with ∆φ =

2mπ/N . The corresponding frequencies are given by ωk = ω0−κ sin(ωkτ−∆φ), and they are

stable if cos(ωkτ−∆φ) > 0 [18]. This results in alternating orbits with a different oscillation

pattern. For strong coupling and long delay, the frequencies are separated by 2π/(Nτ).

Defining xn = φn(t) − φn+1(t − τ), and assuming that the instantaneous frequencies of

the oscillators can be approximated by the mean frequency averaged over the delay interval

and their noise source,

φ̇n(t− τ) ≈ 1

Nτ

N
∑

l=1

xl + ξn(t− τ) ,

we find an N-dimensional potential

V (x1, . . . , xN ) =
N

2τ
(x0 − xS)

2 +

N
∑

l=1

∆nxn + κ

N
∑

l=1

cosxl , (16)

with xS = 1
N

N
∑

l=1

xl. The frequency of the system is then measured by ω(t) = xS(t)/τ . It is

no longer possible to compute the frequency distribution p(ω) in terms of simple analytical

expressions as above. However, for identical oscillators (Deltan = 0) it is straighforward

to see that the parabolic term in Eq. (16) leads to a Gaussian envelope. The variance of

this envelope is given by σ2 = 2D/(Nτ), and thus scales inversely with the total roundtrip

delay Nτ . As the frequency difference between the orbits is approximated by 2π/(Nτ), the

number of attended orbits scales as
√
Nτ . Moreover, the potential is symmetric with respect

to the different oscillation patterns, so that each pattern is equally often visited in the long

delay limit.

For low noise, zero detuning and large κτ , we find that the average residence times scale

inversely with the number of oscillators in the ring, and depend weakly on the total roundtrip

15



delay. They are approximated by

T0(ωk) =
1

Nr+(ωk) +Nr−(ωk)
≈ π

Nκ

e
κ
D
+ π2

4NτD

cosh
(

π(ωk−ω0)
2D

) . (17)

We compared the frequency distributions and residences times of the simplified non-delay

system with simulations of three, four and five delay-coupled oscillators, and the agreement

is excellent (not shown).

V. GENERAL PERIODIC SYSTEMS WITH DELAYED COUPLING

In order to investigate whether our results are valid in a broader context, we compare

the switching behavior of other nonlinear delay-coupled oscillators to our results for phase

oscillators. The Kuramoto model is a weak-coupling limit, which only describes the phase

dynamics, and does not take any influence on the amplitude into account; therefore we

expect that our results mainly apply for weak coupling.

First, we sketch the deterministic periodic solutions in a general delay system. For a

single oscillator, it is known that a feedback delay induces coexisting periodic orbits, with

a frequency separation of 2π/τ [16]. We show here briefly that in a unidirectional ring of

identical oscillators, a delay gives rise to alternating in-phase and out-of-phase orbits, in

a similar way as for phase oscillators. For general limit cycle systems, unlike for phase

oscillators, it is not so straightforward to determine the respective orbits and their stability

properties.

Extending the approach of Yanchuk and Perlikowski for a single feedback system [16], we

consider a set of N identical nonlinear systems coupled in a unidirectional ring with delay

ẋn(t) = f(x(t), xn+1(t− τ)) . (18)

where xN+1 ≡ x1. For the following we assume, that this network allows for an in-phase

synchronized periodic solution xn(t) = xn−1(t) = xn(t + T ) at a coupling delay τ = τ0.

Shifting the delay to τ1 = τ0 + T/N , the same periodic orbit is a solution of the system, the

oscillators however exhibit a phase difference xn(t) = xn+1(t−T/N) = xn(t+T ). Similarly,

we find the same waveform appearing with all the other out-of-phase patterns that are

allowed in the ring: a pattern corresponding to xn(t) = xn−1(t− kT/N) = xn(t+ T ) can be
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found at a delay τk = τ0 + kT/N . An orbit with a period T thus reappears when shifting

the delay by an amount T/N .

The periodic solutions are organized in branches: as the delay increases, the period T of

an orbit varies continuously between a minimal period Tmin and a maximal period Tmax. For

a fixed delay τ , the number of coexistent orbits resulting from a single branch can then be

estimated in the following way: we have τ ≈ nTmax/N ≈ mTmin/N . The number of periodic

states is then estimated as m− n = Nτ(T−1
min − T−1

max), with in-phase and out-of-phase orbits

alternating each other. The frequency difference between two orbits is approximated by

2π/(Nτ), just like for phase oscillators. It is possible to show that the stability of these

orbits depends on their period, but not on the oscillation pattern. In the long delay limit

the stability no longer depends on the number of oscillators in the ring, or the coupling

delay.

As an examplary system, we investigate numerically stochastic switching between such

coexistent orbits in FitzHugh-Nagumo oscillators. We simulated a single oscillator (N = 1)

with delayed feedback, and two identical mutually delay-coupled oscillators (N = 2). Our

oscillator is modelled by

ǫv̇n(t) = v(t)− vn
3(t)

3
− wn(t) + k(vn+1(t− τ)− vn(t))

ẇn(t) = vn(t) + a + ξn(t) , (19)

with (vN+1, uN+1) ≡ (v1, u1), and ξn(t) being Gaussian white noise with a variance given

by 〈ξ2(t)〉 = 2D̃. We choose our parameters so that without delayed coupling and without

noise the oscillator(s) show periodic spiking dynamics. A typical timetrace of an oscillator

with noise and feedback, which performs a mode hopping, is shown in Fig. 9(a).

We analyze the mode hopping in a similar way as for phase oscillators. We define the phase

of the oscillators by the Hilbert-transform of the fast variable, φn(t) = arg(H(vn(t)), but

similar results were obtained by using the alternative definition φn(t) = arctan(vn(t)/wn(t)).

In both cases the waveform is very different from sinusoidal, so the frequency shows large

fluctuations within a period even without noise. The frequency measure is given by ω(t) =
∑

(φn(t)− φn(t − τ))/(Nτ), similar as for Kuramoto oscillators. We show the evolution of

the frequency ω(t) in Fig. 9(b). Although the mode hopping event is hard to detect in the

timetrace (Fig. 9(a)), it is clearly visible in the frequency. Comparing Figs. 9(b) and 2(b),

we find that the irregular waveform of the FitzHugh-Nagumo oscillator results in larger and
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FIG. 9: (a) Time trace and (b) frequency evolution of a FitzHugh-Nagumo oscillator with feedback.

Parameters are ǫ = 0.01, a = 0.9, k = 0.2, τ = 20 and D̃ = 0.0145.

asymmetric excursions from the deterministic frequency.

Fig. 10 (a,b) compares the frequency distributions p(ω) of a single oscillator with feed-

back, and two mutually coupled oscillators. For the single oscillator, shown in Fig. 10(a),

we find five different peaks, separated by a frequency difference of 2π/τ . The shape of the

different peaks is asymmetric; this feature results from the asymmetric waveform of the

spikes. The frequency distribution p(ω) for two mutually coupled oscillators is shown in Fig.

10(b): we find the peaks at the same frequency as for the single element; they correspond

to in-phase orbits. Between the in-phase peaks we find maxima that can be associated to

anti-phase orbits. Just like for phase oscillators, the frequency distribution for the coupled

system has the same mean, and half of the variance as the single system. The corresponding

average residence times of each orbit are shown in Fig. 10(c). The average residence times

of the single oscillator (black dots) are larger than those of the coupled system (pink dots).

Moreover, the average residence times show the same trend as for coupled phase oscillators:

the orbits with a central frequency are most robust against noise.

The agreement with the Kuramoto oscillators is even quantitative: In Fig. 10(a,b) we

compared the frequency distributions with Gaussians (blue dashed lines), which have the

same mean and variance as the original distributions; the maxima of the peaks approximately

lie on this Gaussian curve, both for the single feedback oscillator and the two delay-coupled
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FIG. 10: (Color online) Frequency distribution p(ω) for one (a) and two (b) coupled FitzHugh-

Nagumo oscillators with delay, with ǫ = 0.01, a = 0.9, k = 0.2, τ = 40 and D̃ = 0.0145. The

blue dashed curve shows the Gaussian envelope for the corresponding Kuramoto oscillator(s) with

ω0 = 2.55, D = 0.2 and τ = 40. In panel (c) the corresponding average residence times are shown

for one (upper black dots) and two (lower pink dots) oscillators, the dashed curves represent the

Kuramoto approximation for one (Eq. (7), upper pink curve) and two ((14), lower blue curve)

elements for ω0 = 2.55, D = 0.2, τ = 40 and κ = 0.815

oscillators. From the mean and variance, we identify the natural frequency ω0 and the noise

strength D of the corresponding Kuramoto model with the same delay τ . The coupling

phase can be found by the position of the in-phase peaks θ ≈ ωkτ .

We also compared in Fig. 10(c) the Kuramoto residence times for a single oscillator (Eq.

(7), pink dashed curve) and for two coupled oscillators (Eq. (14), blue dashed curve) to the

residence times for FitzHugh-Nagumo elements. We thereby used the parameters D and ω0

determined from the frequency distributions, the coupling strength κ can then be estimated

from the average residence times. We find that, for the same coupling strength κ for the

single and the coupled system, the residence times are well approximated by the phase

model. Moreover, we find a single parameter set (ω0, κ,D, θ) which models the frequency

distribution and the average residence times for both a single feedback and two coupled

oscillators. Hence, the scaling properties of the stochastic periodic dynamics with the delay

time and the oscillator number are reproduced.
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VI. SUMMARY AND DISCUSSION

We have studied the influence of additive noise on one, two and a ring of phase oscillators

coupled with delay. In such systems multiple periodic orbits coexist, and under influence

of noise the oscillators hop from one orbit to another. We approximated the system as a

noisy particle in potential well; both for the distribution of frequencies as for residence times

the approximation is excellent. Although our approximation only applies for weak noise, we

obtain a good agreement for the distribution of frequencies for all noise strenghts.

However, it should be remarked that in the simplified model some dynamical phenomena

are not reproduced. The most prominent example are the delay stochastic resonance peaks

in the residence time distribution, shown in Fig. 4(a). Also frequency oscillations with a

periodicity of a roundtrip delay time, which are typically present in the system, are no longer

visible. Transient behavior is different as well: in the delay system a transient decays at a

rate proportional to the inverse delay time, while in the reduced system the decay happens

much faster.

We found that the oscillators only visit a fraction of the deterministic stable orbits:

whereas the number of deterministic orbits scales with oscillator number N , delay time τ

and coupling strength κ, the number of visited orbits scales as
√
DNτ , and does not depend

on the coupling strength κ. The orbit with a frequency closest to the natural frequency is

the most probable, irrespective of its oscillation pattern.

Our results on the average residence times indicate the robustness of the orbits against

weak noise. The most robust orbits are those with a frequency close to the natural frequency,

also irrespective of the oscillation pattern. The sensitivity of an orbit against noise depends

strongly on the coupling strength, the coupling delay plays only a minor role. The number

of robust orbits scales as DNτ .

For two delay-coupled oscillators, and for unidirectional rings the systems does not show

any preference for a particular oscillation pattern. The different oscillation patterns are

equally often attended, in the long delay limit. However, this symmetry between in-phase

and out-phase patterns depends on the coupling topology. We also simulated three, four and

five delay-coupled Kuramoto oscillators in an all-to-all configuration. In this case however a

description as a noisy particle in a potential is not accurate, as not only periodic dynamics

is observed. The distribution of frequencies looks different: the peaks associated to in-phase
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orbits are considerably higher than those corresponding to out-of-phase dynamics. For long

delays even only in-phase periodic orbits are visible in the frequency distributions. We find

that the frequency distributions narrows with the number of oscillators: the variance of the

frequency distribution scales as 1/(N − 1).

The Kuramoto model is a weak coupling approximation for limit cycle oscillators. There-

fore we expect our results to apply for delay-coupled nonlinear systems showing stable peri-

odic dynamics. In particular, the Kuramoto approximation applies when the coupling mainly

influences the oscillation phase, while the waveform or oscillation amplitude is hardly af-

fected. We found indeed a good correspondence between Kuramoto and FitzHugh-Nagumo

oscillators in this case. However, we expect the approximation to break down as the coupling

strength increases and amplitude instabilities play a role in the dynamics.

Not only in stable oscillatory systems, but also in a chaotic attractor a delay has the

effect of inducing multiple periodic orbits. Hence, the chaotic attractor of two delay-coupled

chaotic systems contains in-phase as well as anti-phase orbits, and they have similar stability

properties (for long enough delay). Therefore, it is not surprising that we find the same

correlation pattern, with a high correlation at the delay time, but no correlation at zero

lag, for coupled noisy oscillators and chaotic systems with delay [38]. However, chaotic and

stochastic systems show different scaling behavior with the delay time and the number of

coupled elements.

It is worth noting that the envelopes of the frequency distributions are the same as those

for a random walk. The delayed feedback only imposes restrictions on the distribution of

the two point distribution of x(t) = φ(t)− φ(t− τ), but it does not affect the envelope. On

timescales much shorter than the delay t0 ≪ τ , the influence of the feedback is even not

visible: the two point distribution of φ(t)−φ(t− t0) is identical to the one of a random walk.

A possible explanation of this surprising phenomenon lies in the fact, that the equations

of motion do not impose any restrictions on this phase difference, as long as t0 is differ-

ent enough from τ . Hence, the random-walk can explore the possible range. However, on

timescales equal or larger than the delay, the dynamics (i.e. the timetrace) of an oscillator

with delayed feedback differs significantly from a random walk. Also the two point distri-

butions show a clear fingerprint of the delay time, and for t0 > τ , a larger variance than a

random walk. We believe that the issue of two-/N -point distributions in delay systems is

worth being studied in more detail.
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