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ABSTRACT

Machine learning is quickly becoming an important tool in modern materials design. Where many of its successes are rooted in huge
datasets, the most common applications in academic and industrial materials design deal with datasets of at best a few tens of data points.
Harnessing the power of machine learning in this context is, therefore, of considerable importance. In this work, we investigate the
intricacies introduced by these small datasets. We show that individual data points introduce a significant chance factor in both model
training and quality measurement. This chance factor can be mitigated by the introduction of an ensemble-averaged model. This model
presents the highest accuracy, while at the same time, it is robust with regard to changing the dataset size. Furthermore, as only a single
model instance needs to be stored and evaluated, it provides a highly efficient model for prediction purposes, ideally suited for the practical
materials scientist.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012285

I. INTRODUCTION

Modern day materials design is becoming ever more reliant on
computational modeling and simulations.1–4 Both of these are used
for the elucidation of observations as well as the prediction of new
material properties.5,6 The associated computational methods such as
molecular modeling and quantum-mechanical atomistic simulations
are well-established7,8 and have recently been expanded to include
artificial intelligence (AI) and machine learning (ML).3,4,9–16

In the last decade, AI an ML have acquired a pervasive pres-
ence in all branches of science, going from natural languages to
fluid dynamics.17,18 With a steady pace, new achievements are
being reported in the field of materials research.3,9,19–25 In general,
these achievements are rooted in the access to suitable large data-
sets, both theoretically and experimentally.14–16,26–28

However, even though such big datasets (and access to them)
are becoming common place,3,27,29–32 they do not represent the

datasets most materials researchers work with on a day-to-day
basis. Within general experimental material research projects,
researchers generally produce no more than a hand full of data
points (c.q. samples) when optimizing a production method, syn-
thesizing a new material or tuning an existing one for a specific
application. This stands in stark contrast to the phase-space
spanned by the variable parameters of the experiment. The reason
for the small number of samples generally originates in their cost;
either in time for creating the samples or the monetary cost of the
base materials and used machinery.25 On the other hand, in com-
putational materials science, one also finds small datasets to be
more common, specifically when the research is aimed at corrobo-
rating and elucidating experimental results. There may also be a
cost factor involved. For example, the computational cost of high-
quality quantum-mechanical material simulations rises steeply with
the system size and model accuracy.33,34
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Given the success of ML in computational materials design
within the context of large data sets,28–31 there is a natural desire to
also apply these methods on the small datasets produced in materi-
als research and reap their benefits. The use of AI and ML in such
cases is often aimed at the improvement of design of experiments
for materials optimization, quite often in combination with robotic
or other automation.22,25,26,35–39

In this context, active learning deserves mentioning.26,39,40

Although it is not necessarily aimed at small datasets itself, active
learning methods build a model by gradually learning the data.
Starting from a small (randomly) selected dataset, the initial model
is trained. Subsequently, this model is used to select—this is the
active component—which additional data points should be added
to the training set from the master pool. The model is then trained
anew on this extended training set. The loop of selecting additional
data points and retraining is repeated until a predefined target is
reached or a calculation budget is spent. Two interesting examples
are given by the work of Gubaev et al.,26 who used active learning
to predict the molecular properties in benchmark chemical data-
sets, and De Grave et al.,39 who implemented an active k-
optimization which searches for the k best performing instances
instead of only the single best instance.

Within the context of materials physics and chemistry, several
authors have applied ML to relatively small datasets. Ghafari et al.
successfully predicted the properties of ultrahigh-performance con-
crete by applying a backpropagated neural network on a dataset of
53 points.9 Houben et al. studied the co-polymerization of styrene
and butyl acrylate within the context of a closed loop approach.35

Using the MOAL framework,41 which combines Gaussian pro-
cesses (GPs) and evolutionary algorithms, they performed in silico
experiments that gave rise to several successful theoretical recipes.
The validation of these models showed not all of them to be as suc-
cessful in the lab; however, it highlights the potential as a pre-
screening method. In contrast, working with lab experiments, they
showed that starting from a mere five training experiments, a suc-
cessful multi-target goal was reached within only 17 iterations.35

Schweidtmann et al. used automated selection to extend an experi-
mental dataset of only 20 points to a densely populated Pareto
front with only 50 additional experiments.42 They later successfully

applied this method on the Sonogashira reaction and the Claisen–
Schmidt condensation reaction.37 Zhang and Ling proposed a strat-
egy to improve ML on small datasets (�100 data points), which
they called “crude estimation of property.”38 In this strategy, a
crude guess for the target property of interest, obtained from
simple empirical models or computationally cheap(er) simulations,
is added as an additional feature for the ML model to train on.
This lead to a clear improvement for their presented examples. An
automated polymer synthesis platform using ML was developed by
Junkers and co-workers.43 Combined with in-line characterization
using a benchtop NMR, their machine-assisted synthesis setup
allows for polymer synthesis with predefined conversion rates.36

Such a combination of AI and robotics is quickly gaining impor-
tance in the field of flow chemistry. However, it often results in a very
data hungry setup. Coley et al. presented how a combination of
neural networks, binary classifiers, and tree-searches can enhance a
robotically controlled flow chemistry reactor.44 This approach requires
large amounts of human created and expert refined chemical recipe
files to train the neural network in linking molecular fingerprints
(e.g., SMILES) to reaction rules. Also, Wang et al. used a neural
network trained on molecular fingerprints to predict the octanol–
water partitioning coefficients while screening for green solvents.45

Also here, training of the neural net required more than 10 000 data
points. A behavior also observed by Cendagorta et al. in their perfor-
mance study of ML models for high-dimensional free energy sur-
faces.28 In contrast, Menon et al. presented a Hierarchical Machine
Learning (HML) model, which provides useful predictions on the
mechanical properties of elastomers or predict novel dispersants using
only a handful of experiments.46,47

Although these examples show that, even in the context of small
datasets, the use of AI and ML can be successful for materials research,
the quality of the obtained models is often defined in an ad hoc
fashion and their dependence on the used dataset is not discussed.

In this work, we critically investigate the role of the small
dataset itself (, 25 data points), within the context of ML based
regression analysis. An important limitation of ML on small data-
sets is highlighted: the strong dependence on the data points is
considered for the training of the trained model instance and its
quality [cf. Fig. 1(a)]. This behavior is demonstrated using both a

FIG. 1. (a) Schematic representation of model instances for different training sets created from a small dataset. (b) and (c) Heat map of 1000 model instances generated by
1000 random train-validation splits (80/20%) of an n ¼ 20 point dataset. The datasets Lin20 and Sin20, as well as the underlying theoretical model instance, are indicated (cf.
Sec. III A). For the Lin20 dataset, the model instances are obtained using a linear regression, while a sixth order polynomial regression is used for the Sin20 dataset.
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synthetic and an experimental dataset. We show that for these
small data sets, model averaging (or an ensemble model) provides a
simple and elegant solution that produces consistent models of the
highest quality.

II. LIMITATION OF SMALL DATASETS FOR MACHINE
LEARNING BASED REGRESSION

In regression analysis, the goal is to predict a continuous
target value from a set of input descriptors (also called features).
Within the context of ML, it is common practice not to fit or train
the regression on the entire dataset but instead to split this dataset
into a training and test set.27,48 The training set is used to fit the
regression, and the quality of the resulting model (i.e., generaliza-
tion error) is then assessed by quantifying the performance of this
model instance, using the mean-absolute-error (MAE) or
root-mean-squared-error (RMSE), on the test set. Furthermore, in
more complex (regression) models, one is required to have an addi-
tional “test set”—the validation set—at hand to fit the hyper
parameters of the model. From this, it quickly becomes clear why
ML approaches are considered data hungry, and why their rise
coincides with that of big data.4,12,15,16,28

For a sufficiently large dataset, the performance measures will
not be influenced much by the details of how the data were split,
assuming a random splitting.4938 However, for very small datasets,
this is not the case. Figure 1 shows a schematic example of a
dataset containing six data points. Three possible training sets of
four data points are indicated as well as their associated hypotheti-
cal model realizations. The three model realizations are clearly dif-
ferent, and although they provide a good fit for their respective
training set, they do not provide a good model realization for the
full six-point dataset. This simple example highlights a significant
caveat of ML models in the limit for small datasets, which goes
beyond the deterioration of the quality with decreasing the system
size.28,38

To avoid possible confusion, let us briefly define some specific
terms and show how they are used in this work. We use the term
“model” to refer to the abstract representation of a functional rela-
tion (e.g., y ¼ ax þ b), while a realization of such a model (e.g.,
y ¼ 5x þ 3) is indicated as a “model instance.” The test set used to
compare the quality of individual model instances is referred to as
the “validation set” (as the role of the model coefficients is akin to
that of hyperparameters in big data ML applications). Alternately,
the term “test set” is used to refer to the test set used to compare
the quality of different models (or specifically highlighted model
instances).

III. RESULTS

Because the number of possible train-validation splits of a
dataset is given by the binomial nk ¼ n!

k!(n�k)!, with n the size of the
full dataset and k the size of the validation set,50 an exhaustive sam-
pling becomes quickly impractical, even for small datasets of 20–40
points. Therefore, we choose to use a Monte Carlo approach to
randomly generate samples of 1000 train-validation splits through-
out this work.

A. Datasets

We consider two types of datasets: (a) synthetic datasets and
(b) small experimental datasets.

1. Synthetic data

Because the small size of the experimental datasets limits the
possibility of showing trends upon increasing the dataset size, we
consider two simple synthetic datasets for this specific purpose.
These sets are aimed at simplicity and clarity, therefore, they are
limited to one-dimensional models.

The first type of n data point dataset (Linn) is generated by
the linear model instance,

y ¼ 3x þ 0:5þN (0, 0:75) x [ [0:::1], (1)

in which y represents the target property, x is the input descriptor,
and a normal-distributed noise, N , is added to emulate experimen-
tal spread of the data.

In addition to this linear data, also a non-linear synthetic
dataset (Sinn) is used, generated by the following model instance:

y ¼ sin 6x þ 0:5þN (0, 0:10) x [ [0::1]: (2)

Using these two model instances, datasets of arbitrary size n are
generated using a sample of n uniform randomly distributed x. For
practical purposes, two n ¼ 1000 sets are generated. One set is
used exclusively for testing purposes, while the other is used to
create the train-validation datasets. To emulate the expansion of an
experimental dataset through the addition of new experiments, we
grow the synthetic train-validation datasets of size m by taking
incrementally larger fractions (c.q. the first m points) of the n ¼
1000 dataset (cf. Fig. 2).

2. Experimental dataset: A pressure-sensitive adhesive
coating

The experimental dataset is gathered from a pressure-sensitive
adhesive coating (Ref. 51). This specific coating is produced as a
mixture of three components: 2-ethylhexyl acrylate (2EHA), acrylic

FIG. 2. Schematic representation of the partitioning of the experimental dataset.
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acid (AA), and n-vinyl caprolactam (VCL). As such, the fractions
of the compounds in the mixture are considered the initial descrip-
tors. Although measurement data are provided for nine different
target properties, we only consider two in the current work since
not all target properties are provided for all data points. Only for a
small subset of 25 data points, S25, the set of target properties is
complete.

The target property for which most data points are available
(i.e., 45) is selected: the 90� peel strength on steel (PSS). The second
selected target property is the elongation at break (EB), which
shows the highest correlation with the input parameters (cf. corre-
lation matrix Fig. 3) and for which 31 data points are available.
The PSS data are expressed in N/in., while the EB data are
expressed in % of elongation.

B. Linear regression models

For the sake of simplicity, we first consider linear regression
models.

1. Synthetic data

The synthetic datasets provide an ideal starting point for the
investigation of the impact of the train-validation set splitting of a
small dataset. In the following, we model the linear datasets, Linn—
generated using Eq. (1)—using a linear regression model. The non-
linear datasets, Sinn—generated using Eq. (2)—are modeled using a
6th order polynomial regression.52

The heat maps in Figs. 1(b) and 1(c) show a wide spread of
model instances obtained for the synthetic datasets. More interest-
ingly, this spread appears not to be uniform. Instead, it seems cen-
tered on an “average,” which shows reasonable agreement with the
(noiseless) underlying theoretical model instance of the synthetic
data. Increasing the size of the dataset results in a narrowing of this
distribution, as well as a convergence toward the underlying model,
as is shown in Fig. 4.

2. Experimental data

In the case of the experimental datasets, the same behavior is
observed. Let us start by considering a multiple linear regression
model (MLRM), which predicts a property Y (either PSS or BE)
from the three descriptors xi ¼2EHA, VCL, AA. Training a
MLRM on 1000 train-validation splits of the PSS data, using dif-
ferent dataset sizes n ¼ 10, 15, 20, 25, 40, a distribution of the
four fitting coefficients is obtained (cf. Fig. 5). In the case of n ¼
10 data points, this distribution is very wide and narrows slowly
with increasing dataset size n. More interestingly, the distributions
also become much smoother with the increasing dataset size. The
latter is a consequence of the growing number of possible combi-
nations to select the training set from the dataset.53 The same
behavior is found for the EB dataset, as is shown in Fig. S.4 in the
supplementary material.

A second interesting observation is that the mean value of the
distributions converges to different values for the subsets of the S25

and S40 PSS datasets. This may seem strange as S25 is a subset of S40.

FIG. 3. Correlation matrix obtained for the S25 dataset.
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However, one needs to consider that the 20 point subsets (cf. green
curves in Fig. 5) are randomly selected from the S25 and S40 sets. As
such, it is possible for these 20 point sets not to have a single data
point in common. The impact on the position of the distribution is
furthermore amplified by the use of a standard scaler. Due to the
small size of the datasets, the transformation performed by the stan-
dard scaler strongly depends on the data available. The resulting var-
iations of the transformed data, in turn, significantly impacts the
coefficients of the model instances (cf. the supplementary material
for more details).

C. Different data–different results: Repetition of the
computer experiments

The dependence of the model parametrization on the specifics
of the data used (e.g., variances and errors of property data) is an

important challenge in machine learning.14 From the above, it is
clear that this challenge is significantly amplified within the context
of small datasets. To gain further insight into the impact of the
dataset on the (mean) value of the coefficient distributions, we
perform 100 repetitions for various dataset sizes n, each giving rise
to a distribution of 1000 model instances.

1. Synthetic data

For the synthetic Linn datasets, each repetition made use of a
new independently drawn set of random data points. For each repe-
tition, we collect information on three model instances: (1) the
instance with the Best RMSE validation score, (2) the instance with
the Worst RMSE validation score, and (3) the model instance of
which the model coefficients are constructed as the Average of the
model coefficients of the ensemble of 1000 model instances. The
quality of the three models is quantified by the MAE on a test set
of 1000 (new) data points.

The resulting mean of the 100 repetitions is presented in
Fig. 6. The 95% confidence intervals (CIs) are obtained using the
bias-corrected and accelerated (BCa) bootstrap method, with the
acceleration coefficient estimated from a jackknife resampling of
2000 bootstrap replications.54,55

As expected, for sufficiently large datasets (in this case
n . 100), the linear model converges to the underlying theoretical
model, with the CI becoming narrower. It is interesting to note that
the results for the Best and Average model instances are nearly
identical. Furthermore, they present a smooth evolution of the
mean model coefficients. In contrast, the Worst model instance
shows strong oscillations of the mean model coefficients and a
much wider CI for small dataset sizes. For large dataset sizes (c.q.,
several hundred data points), the three model instances show
similar results, reminding the need for big data in successful ML
approaches.

The calculated MAE shows a consistent improvement of all
models with increasing dataset sizes, following a power law behav-
ior and reaching the theoretical limit for dataset sizes approaches
1000 data points. For all dataset sizes, the Best and Average model
instances appear to provide nearly identical quality. More impor-
tantly, for small dataset sizes, they clearly outperform the Worst
model instance. This indicates that for a given small dataset, the

FIG. 4. Similar to Figs. 1(b) and 1(c), using an n ¼ 1000
point dataset.

FIG. 5. Distribution of the intercept and coefficients of a linear regression per-
formed on the PSS data.
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performance of a random model instance can vary quite strongly.
However, it also shows that a significant improvement is obtained
if an ensemble average is used.

2. An approximate test set for experimental data and
work-flow of repetition computer experiments

In contrast to the synthetic data above, the experimental
dataset available is limited to a small and finite number of data
points (45 for PSS and 31 for EB). Selecting a small subset (e.g.,
5–10 points) to serve as test set will significantly limit (a) the vari-
ability of repetition sets and (b) the range of dataset sizes to con-
sider. Furthermore, such a small test set would give rise to a
calculated RMSE or MAE, which is very sensitive to the specific
data points in the test set (cf. Fig. S.1 in the supplementary
material).

In contrast, for a test set of 50 points, the behavior of the
RMSE and MAE is expected to be less volatile (cf. the vertical
dotted line in Fig. S.1 in the supplementary material).

We, therefore, opted to use the full set of 45 and 31 experi-
mental data points for PSS and EB, respectively, as test set. This
approximation has some obvious limitations when it comes to pre-
dicting the generalization error and should, therefore, be avoided in
practical ML studies. For example, calculated MAE and RMSE
values for the larger dataset sizes are lower bounds as they converge
to the quality of the training data. However, this approach has
some very relevant benefits for our purposes: (1) the obtained
RMSE/MAE is much better converged than what could be obtained
with merely 5–10 data points, (2) the impact of this approximation
is sufficiently small for small dataset sizes (n , 20), and (3) it
allows for the observation of trends over larger dataset size inter-
vals, making it easier to compare to the synthetic data.

The limited size of our pool of experimental data points also
has an impact on the possible variation when performing repetition
experiments. We, therefore, expect the repetition experiments on
the experimental data to present narrower distributions, than
would be the case if truly distinct datasets are used.

The work-flow of the repetition experiments is similar as for
the synthetic data. A copy of the entire experimental dataset is set
aside as a test set for the reasons we just discussed (this in contrast
to the synthetic data, in which case the test set is an independently
generated dataset). For each of the 100 repetitions, a copy of the
entire experimental dataset is randomly shuffled and datasets of
sizes ranging from 10 to 31 (EB) or 45 (PSS) are generated accord-
ing to the incremental size dataset scheme shown in Fig. 2. This
initial shuffling of the data points ensures the independence of the
smaller dataset sizes between repetitions. For each dataset size in
each repetition, an ensemble of 1000 train-validation splits (80/20)
is generated. This gives rise to an ensemble of 1000 trained model
instances for each dataset size in each repetition. For each ensem-
ble, the Best and Worst model instance is selected based on the
RMSE of the validation dataset associated with the model instance.
In addition, an Average model instance is generated—as will be dis-
cussed later—for each ensemble. The predictive quality of these
three model instances is then estimated by calculating their MAE
on the test set. As such, for each dataset size, we obtain 100 values
(1 per repetition). The mean of these values is presented, and the
95% CI is estimated using BCa bootstrapping as before.

3. Experimental data

The mean values and the 95% CI for the model coefficients of
a linear regression model on the PSS and EB dataset are shown in
Figs. 7 and S.5 in the supplementary material, respectively. In con-
trast to the synthetic data, there is a distinct difference between the
model coefficients for the Worst model instance and the Best and
Average model instances, the latter presenting very similar coeffi-
cient values. This indicates that the model-coefficient distributions
are asymmetric, but more importantly, that better quality model
instances are clustered around the average of the ensemble of
models. Furthermore, note that the CIs are significantly larger in
the case of the Worst model instance.

Similar to the synthetic data, the MAE of the Best and Average
model instances roughly coincide (cf. Figs. 8 and S.6 in the

FIG. 6. Mean values and 95% confi-
dence intervals, based on 100 repeti-
tions, of the intercept (left) and
coefficient (middle) predicted for the
Linn synthetic data, using the Best,
Worst, and Average model instances.
The MAE (right) results of the true
linear model instance y ¼ 3x þ 0:5
are shown for comparison. The vertical
dotted line indicates the size of the
largest experimental dataset consid-
ered in this work.
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supplementary material) following a power law behavior (cf.
Table S.III in the supplementary material). The MAE of the Worst
model instance, on the other hand, shows a significant deteriora-
tion of the model quality. This highlights the capricious nature of
small data sets, while at the same time providing a simple escape
route. By creating an ensemble of subsets and constructing an
Average model instance, the predictive quality can be markedly
improved and stabilized (c.q. no strong fluctuations upon addition
of one or a few extra data points).

D. Elastic net regression models

One might question if the behavior presented in
Secs. III B–III C is merely an artifact of the simplicity of the used
models. In this section, an Elastic Net Regression (ENR) model is
considered an example of a more complex regression model.56,57

An ENR is itself a linear combination of two regularized regression
methods, indicated as LASSO or l1 regression58,59 and Ridge or l2
regression.60 The regularization of the ENR is performed using the
cost term,48

C(θ) ¼ rα
X

i

jθij þ (1� r)
α

2

X

i

θ2i , (3)

with θi being the descriptor weights and the hyperparameters α
and r being the regularization strength and the mixing term,
respectively. As a result, if r ¼ 1, the ENR becomes a LASSO
regression, while for r ¼ 0, it becomes a Ridge regression.

Because the value of the two hyperparameters strongly influ-
ences the resulting model, it is necessary to tune them.61

1. Synthetic data

To investigate the behavior of the ENR, we focus on synthetic
data generated by the non-linear model (Sinn). For a small dataset
(n ¼ 20), we compare three ENR polynomial models of order 5, 6,
and 10, respectively. These models are trained on 1000 random
subsets (i.e., 80/20 train-validation splits) of the small dataset. The
distribution of the two hyperparameters is presented in Fig. 9

Similar to the model coefficients, the hyperparameters do not
give rise to a single solution but rather a distribution of solutions.
In the case of the mixing parameter r, a large majority of the ENR
model instances (93 and 85%) ends up with (almost) pure LASSO
regularization for the fifth and tenth order polynomial. Alternately,
for the sixth order polynomial, only 23% of the model instances

FIG. 8. The estimated MAE values for the Best, Worst, and Average model
instances for the PSS and EB dataset.

FIG. 9. Distribution of the two hyperparameters of the ENR model for a non-
linear synthetic dataset of 20 data points.

FIG. 7. Mean values and 95% confidence intervals, based on 100 repetitions,
of the four fitting coefficients of a linear regression model of the PSS data,
using the Best, Worst, and Average model instances.
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have pure LASSO regularization, while the bulk has a regularization
in between Ridge and LASSO. This shows that even though the
same dataset is being considered, the subsets do not give rise to a
universal regularization. This behavior is even more pronounced in
the experimental data, as will be shown later (cf. Table S.I in the
supplementary material). This highlights the sensitivity of the
model parametrization with regard to the actual data used. It shows
that rather different model instances are obtained using the same
data set but with a different train-validation split of this data.

The regularization strength α presents a distribution with a
clear preference for small regularization, even in the case of the
tenth order polynomial. This regularization results in a modest
reduction in the number of retained polynomial terms (cf. Fig. S.11
in the supplementary material). Within this context, it is interesting
to note that for the different train-validation splits, the regulariza-
tion prunes away a different number of polynomial terms. More
importantly, the removed terms may differ between model
instances (cf. Fig. S.11 in the supplementary material). In the case
of the tenth order polynomial, about 30% of the model instances
retain 7 or 8 terms, while 9 terms are retained by slightly less than
20%. Furthermore, the eighth and ninth power terms are removed
in 79:1 and 75:0% of the model instances, while the quadratic term
is always retained (cf. Fig. S.11 in the supplementary material). In
this type of ensemble learning, akin to pasting,62 this behavior can
be used for dimensionality reduction. Terms are removed if a suffi-
ciently high fraction of the coefficients in the model ensemble are
(near) zero. Note, however, that the use of a standard scaler may
significantly alter the proposed model instance outcome with little
or no loss in model quality (cf. Sec. S.2 in the supplementary
material).

2. Experimental data

A third order polynomial ENR model is trained on the S25

dataset of the experimental PSS and EB data. Because the experi-
mental data has three descriptors, a third order polynomial model
gives rise to 19 polynomial terms. With only 25 data points avail-
able, there is a serious risk of overfitting. As such, a significant reg-
ularization of the model is desired. As before, we create an
ensemble of 1000 random train-validation splits, and for each
subset, the hyperparameters of the ENR are optimized.

In this case, the mixing hyperparameter seems to be roughly
independent of the standard scaler and more interestingly, also the
distribution of the MAE’s on the training and validation data
shows no sensitivity with regard to how the standard scaler is used
(cf. Fig. S.7 in the supplementary material). In contrast, using a
denser r-grid during hyperparameter tuning seems to benefit
convergence toward either LASSO or Ridge regularization (cf.
Table S.I in the supplementary material). The distribution of the
hyperparameters over the entire ensemble is shown in Fig. S.8 in
the supplementary material and presents a strong dependence of
the hyperparameters on the specific points included in the dataset.
Furthermore, it also shows that hyperparameters are not transfer-
able between different targets for the same descriptor sets.

As we are interested in finding a strongly regularized model,
the ensemble of model instances is split in three sets: r � 0:1
(Ridge), 0:1 , r , 0:9 (Mix), and r � 0:9 (LASSO). Highlighting

these three sets in the MAE correlation plot in Fig. S.9 in the
supplementary material shows that the Ridge and Mix sets present
generally a slightly lower MAE on the training data than the
LASSO set. Alternately, the LASSO set appears to present slightly
higher presence in the lower MAE values for the validation set;
however, upon closer investigation the three sets give comparable
distributions. This shows that the three sets give rise to qualitatively
similar accuracy.

This similar accuracy stands in stark contrast to the model
regularization. Where the Ridge model instances retain all polyno-
mial terms, the Lasso model instances reduce this number to 2–3
and 3–11 for PSS and EB, respectively. Comparison of Figs. S.12
and S.13 in the supplementary material, furthermore, shows that
the EB model is much harder to regularize than the PSS model.

As expected, the polynomial models provide a significant
improvement over the linear models (compare Figs. 8 and 10).
More interestingly, the same typical behavior for the MAE of the
Best, Worst, and Average models is observed. A broad spread in
quality is seen for the model instances making up the ensembles,
while the Average model brings forward a model instance competi-
tive with the best available model instances.

Our choice of the ENR model is motivated by the need to reg-
ularize the polynomial model. Although some regularization is
observed, it is also observed to decrease with increasing dataset
size. Furthermore, the Average model instance is by construction
even less regularized, as the mean of the coefficient ensembles
rarely presents a zero value. We, therefore, compare these results to
the results of a pure LASSO regression with the regularization
strength α ¼ 1:0. In contrast to the ENR model instances, all
LASSO model instances show a significant regularization. Even
more, the regularization is sufficiently strong to lead to a regular-
ized Average model instance in the case of the PSS data.

FIG. 10. The estimated MAE values for the Best, Worst, and Average polyno-
mial model instances for the PSS and EB dataset. Elastic Net Regularization
(ENR) is compared to LASSO Regularization.
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Comparison of the model quality shows the LASSO models to
present a much narrower spread, with a notably better quality for
the Worst model instance. The Best and Average model instances
are of a similar quality as obtained for the ENR model.63

Furthermore, the evolution of the model coefficients is much more
well-behaved for the explicit LASSO model than it is for the ENR
model.

IV. DISCUSSION

A. Model variation in small datasets

The impact of the (small) dataset size on the parametrization
of the trained regression models clearly cannot be neglected. Even
for datasets which are quite large—from the experimental perspec-
tive (e.g., 40 data points)—we show that within an ensemble of ran-
domly drawn subsets the coefficients of the model instances show a
wide spread (cf. Fig. 5 and S.4 in the supplementary material). It is
important to understand that this spread is not due to the model
trained—although under- and overfitting may contribute to it—but
instead, it originates from the inherent uncertainty of experimental
measurements: e.g., due to variation of environmental conditions,
slight differences in actual preparation and synthesis. When model-
ing experimental systems, the goal is to discover the underlying
abstract and perfect model, such as the noiseless versions of
Eqs. (1) and (2) in the synthetic data examples. However, the
uncertainty in the experimental results leads to a variation of the
coefficients in a numerical regression when data points are added
or if a different set of data points is used (cf. Fig. 1). Furthermore,
adding a single data point to a set of ten gives rise to a stronger
perturbation than adding it to a data set of 10 000 points. In the
latter case, the low relative weight of a single point makes its contri-
bution nearly negligible. In the former case, the high relative weight
not only results in the observed distribution of the model coeffi-
cients, but it also leads to different distributions for different
dataset drawings (c.q., repeating the set of experiments to obtain a
new data set). This latter aspect is visualized by the presence of a
non-zero spread of the ensemble averages upon 100 repetitions
(e.g., Figs. 6 and 7).

When considering an ensemble of subsets, the resulting
ensemble of trained model instances shows a wide variation in
quality as well. Therefore, if only a single model instance is trained
on a single subset of the data, one may get lucky and end up with a
well performing model instance, or not. This behavior is typical for
small datasets and disappears with increasing dataset size, as the
distribution of the quality (i.e., MAE or RMSE’s of the ensemble
instances) becomes narrower. As a result, one might consider using
the entire data set for training and dispense with any validation or
test sets. This, however, does not resolve the intrinsic problem. The
observation above, with regard to the subsets, is also valid for the
full dataset under consideration, as this dataset itself is a subset of
any dataset produced by adding extra data points. This creates an
interesting conundrum: How lucky is your available dataset?

For example, an 80=20 splitting of a dataset of 20 data points
provides 16 points for training model instances. Investigation of
the MAE data of 100 repetitions with ensembles of 1000 subsets
shows something very intriguing in Figs. 8 and 10. The best case
model instance trained on 16 points outperforms the worst case

model instance trained on 20 points. This highlights the impact the
individual data points have, as the 16 and 20 data point sets share
16 data points.

B. Measuring quality

The ability to associate a level of trustworthiness to different
models (instances) is of high importance in model development.64

The easiest way is via a numeric quality measure. The quality of a
model can be measured by testing how well it predicts (preferably)
unseen test data. For large datasets, this presents few problems as
there is sufficient data to go around. In contrast, small datasets
have only few data points and, therefore, even less to spare for
quality control. Since quality measures like RMSE and MAE
average a penalty over the data points tested, they present large var-
iations if only very few points are used for testing (cf. Fig. S.1 in
the supplementary material).

Given this knowledge, direct comparison of the quality of
individual model instances becomes tenuous. Even though the dif-
ference between the best and worst model instances may be clear
cut, defining the Best and Worst model instance in absolute terms
is not.65

To sidestep the uncertainty of the validation quality of the
model instances, we take a closer look at the Average model instance.
The coefficients of this model instance are calculated as the mean of
the specific coefficient in the ensemble of model instances trained on
the subsets. (In the case of linear and polynomial models one can
prove this model instance to present identical prediction results as
taking the ensemble average but using only a fraction of the compu-
tational resources, cf. Sec. S.7 in the supplementary material.)

As can be seen in Figs. 8 and 10, the Average model instance
shows a very good quality measure, comparable or even better than
the best model instances. This behavior can be understood within
the context of the Kullbach–Leibler divergence and the model
information available in the dataset.66 As some information in a
dataset may be superfluous, any subset may contain up to the same
amount of relevant model information. Accordingly, the best
model instance may not have access to all model information avail-
able in the dataset. In contrast, the Average model instance has
access to the information available to each of the contributing
model instances and as such to at least as much information as the
best model instance. Therefore, we expect the Average model
instance to perform as well or better than the best model instance,
as is seen in Figs. 8 and 10.

From the above, it becomes clear that the usual quality mea-
sures lose most of their potency due to the use of small datasets.
There are, however, some ways to deal with this. As it may have
become clear to the more expert reader; our Average model
instance is equivalent to an ensemble average, and our construction
used to investigate the model coefficient distributions strongly
resembles ensemble learning, more specifically pasting.62 The
context of ensemble learning comes with its own nomenclature
where the most important concept is in-bag and out-of-bag
samples, which replace the concept of training and validation
samples. Within the area of ensemble learning, the quality of the
ensemble model (i.e., our Average model instance) is often taken as
the mean of the out-of-bag quality measures (i.e., the mean of the
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quality measures of all the validation sets of the ensemble). Thus,
model averaging may provide a means to obtain the best possible
model instance for a certain model, while the mean out-of-bag
quality estimate provides a possible metric to compare different
(ensemble) models. In addition, there are also other possible
metrics, which do not require additional datasets, such as the
Akaike information criterion (AIC) and the Bayesian information
criterion (BIC) that may be of interest.67–69 Note that although the
AIC quality estimate is only valid in the limit of large sample sizes,
corrections can (and should) be made for small datasets.70,71

C. The average model

A somewhat surprising aspect of the Average model instance
is the fact that the mean of the coefficients seems to coincide with
the coefficient value of the Best model instances.

Figure 11 provides an elucidating example of the correlation
between a coefficient value (here the intercept) and the RMSE of
the model instance on the validation set. The spread of the coeffi-
cient value clearly narrows toward the mean coefficient value with
increasing model instance quality. This exemplifies how by con-
struction, the coefficients of the Average model instance will coin-
cide with those of the best possible model instance, even if this
model instance in not present in the generating ensemble. Our
examples in Sec. III show this is the case for linear and polynomial
regression. Furthermore, it is interesting to note that for an ensem-
ble of M model instances with N fitting coefficients, the Average
model instance only contains N fitted coefficients. This is signifi-
cantly less than the equivalent ensemble model.

D. Comparison to other ensemble methods

The presented Average model is by construction equivalent to
model averaging, i.e., an ensemble learning method. More specifi-
cally, it can be considered a special case of what is called “pasting”

and related to “bagging.”62,72 In contrast to standard ensemble
learning methods, our approach requires it to be possible to con-
struct an average of the base model. This excludes some base
models (e.g., decision trees) but in return provides a single powerful
model instance for predictive purposes, instead of an ensemble of
instances. This makes it computationally very efficient both in
terms of memory storage and numerical evaluation, ideally suited
as a generator in, for example, a Monte Carlo algorithm. It is,
however, interesting to note at this point that the same ensemble
benefits and behavior presented in this work are expected for base
models that cannot be averaged, but then without the computa-
tional efficiency benefit.

A typical example is Random forests, for which the base
model is a single decision tree.73 In this method, an ensemble of
decision trees is trained on an ensemble of data subsets, i.e., the
decision trees take up the role of our linear or polynomial regressor
function. In contrast, however, defining a single averaged model
instance (i.e., a decision tree) for a random forest is not as straight-
forward, and as such ensemble averages have to be calculated upon
prediction of new data.

Gaussian processes (GPs) are another ensemble type method
in ML which presents similarities to the current work.74 The differ-
ence between the two is located in both the construction of the
ensemble and the resulting predictor. Where the current approach
is limited to a single model (e.g., linear or third order polynomial),
the model instances comprising the ensemble of a GP are drawn
from an infinite set of possible models. In addition, the resulting
predictor of the current approach only contains the same number
of fitting parameters as a single model instance, which is quite dif-
ferent from the case of a GP. Although GP provide a very powerful
modeling tool, their interpretability is significantly more complex—
as the “model” has become a black-box superposition of infinite
possible models. This latter aspect can be partially mitigated by the
smart selection of the employed kernel.75 In contrast, our approach
draws all model instances from the same base model, leading to a
general similarity between instances which simplifies interpretation.
This gives access to an explicit relation between the experimental
inputs (descriptors) and goals (targets). For ML models which are
harder to interpret one can always turn to explanatory methods
such as Shapley values or an implementation of the SHAP
method.76,77 In these, a game-theoretical approach is used to
decompose the difference from the mean into contributions from
the data features.

V. CONCLUSION

We elucidate the intricacies of using ML within the context of
small experimental datasets. Using both synthetic and experimental
data, we highlight the trends and illustrate how small datasets influ-
ence individual model instances. It is shown that the quality of
model instances can vary wildly for the same dataset, highlighting
the presence of a significant chance factor. This behavior is pre-
sented explicitly for linear and elastic net regularized regression
models and is expected to be present for other ML regression
models as well. We show that this far-reaching impact of the spe-
cific data points in a small dataset can be mitigated through the
construction and use of ensemble-averaged model instances. Such

FIG. 11. Correlation plot of the RMSE of the validation set and the intercept
value for linear model instances trained on 1000 subsets of a 25 point PSS
dataset. The distribution of the correlation data is indicated by the black curve.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 054901 (2020); doi: 10.1063/5.0012285 128, 054901-10

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


model instances are constructed by averaging the model coefficients
over an ensemble of subset trained model instances. The resulting
Average model instances are shown to be of very good quality as
well as consistent over dataset sizes. Furthermore, we show that the
model coefficient values converge toward those of the best model
instances. Predictions by the Average model instance are equivalent
to taking an ensemble average but more efficient by construction.

The use of small datasets also restricts quality measures of
individual model instances. We discuss why their values should not
be considered in terms of absolutes, but rather as indications (i.e.,
“comparable quality” instead of “quality A better than B”).

As a result of our findings, we, therefore, propose the prefer-
ential use of ensemble-averaged model instances (or—if the base
model does not allow for averaging—ensemble models) for model-
ing very small datasets. Such model instances reduce the detrimen-
tal chance factor and are robust with regard to varying dataset size,
while presenting the best quality predictions. Although the results
reported in this work are applied to linear and polynomial regres-
sion models, we expect them to extend to other regression models
as well. Moving beyond the realm of small datasets, these insights
may also be beneficial for ML schemes, which partition the training
data into small datasets such as active learning approaches, leading
to faster convergence and less data hungry ML.

SUPPLEMENTARY MATERIAL

See the supplementary material for the implementation and
used hardware, discussion on the impact of the standard scaler, dis-
tribution of the model coefficients for the EB model, selected
powers by the ENR model, coefficients and quality obtained by the
LASSO method, and derivation of the equivalence between the
average model and ensemble average.
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