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Abstract 

In the field of regenerative medicine, optimization of the parameters leading to a desirable outcome 

remains a huge challenge. Examples include protocols for the guided differentiation of pluripotent cells 

towards specialized and functional cell types, phenotypic maintenance of primary cells in cell culture, 

or engineering of materials for improved tissue interaction with medical implants. This challenge 

originates from the enormous design space for biomaterials, chemical and biochemical compounds, and 

incomplete knowledge of the guiding biological principles. To tackle this challenge, high-throughput 

platforms allow screening of multiple perturbations in one experimental setup. In this review, we provide 

an overview of screening platforms that are used in regenerative medicine. We discuss their fabrication 

techniques, and in silico tools to analyze the extensive data sets typically generated by these platforms. 

 



Introduction 

A challenge in regenerative medicine is to control the complexity of biological systems. 

Advances have been made to control cell behavior leading to clinical applications e.g., the differentiation 

of pluripotent cells towards primary cells 1 or the use of bioactive graft materials 2. Many opportunities 

and challenges remain, such as the high incidence of catheter implant infections 3, the foreign body 

response against biomaterials 4, and the standing challenge to engineer functional tissues and organs ex 

vivo. Progress in these and other fields of regenerative medicine can be expedited if we can overcome 

current limitations in material design and increase our knowledge of biomaterial-cell interactions. 

Materials need to meet some requirements, for example, durability is a crucial factor in determining the 

success of the implant when supporting or replacing tissues 5. At the same time, materials should not be 

cytotoxic or cause long-term harm in the body, as is often seen with breast implant ruptures or 

pathological encapsulation 6. Furthermore, cell-biomaterial interaction should favor matrix deposition 

that allows optimal implant integration. Both physical and chemical properties can affect cell behavior. 

For example, a promising approach for bone tissue regeneration is the use of calcium phosphate 

particles, of which both chemistry (calcium phosphate) and structural properties (surface roughness) 

activate transcriptional profiles associated with bone induction 7. This also reflects a challenge in finding 

the most optimal material design due to a large number of design parameters. For example, hundreds of 

different chemical compositions exist of the biocompatible and clinically applied material polyurethane 

8. 

To address the issues associated with incomplete information on both the biological and material 

side of the interface, methodologies that vary a large number of perturbations in one experimental setup 

can rapidly increase knowledge. Below, we highlight the potential of screening approaches where 

biology, material engineering, and computational science converge.  

Biomaterials for High-Throughput Applications 

During development and in the adult body, cells receive a wide variety of signals from their 

external environment. Therefore, much research focusses on appropriately controlling cell signaling in 

vitro for guiding cell behavior. This is not trivial because cells in standard culture conditions are exposed 

to different stimuli compared to physiological conditions. For example, standard culture media contains 

animal-derived serum, thus exposing cells to a-physiological cytokines and growth factors. In addition, 

flat tissue culture polystyrene has unique chemical and physical properties, which influence cell 

behavior. Therefore, it is not surprising that transferring cells from their native environment into cell 

culture often leads to substantial loss of in situ phenotypical identity. For example, chondrocytes that 

maintain cartilage homeostasis, quickly lose morphological characteristics and chondrogenic gene 

expression when cultured on tissue culture plastic 9. Although an undesirable result, this does indicate 



that the chemical and physical properties of the substrate on which cells grow has a profound effect on 

cell physiology and shows that we can use these properties to tweak cell behavior. In this section, we 

discuss different cell-biomaterial interfaces in a high-throughput setting in which large numbers of 

possibilities in chemical, biochemical, and structural biomaterial designs are used to control cells.  

Surface Structures 

Standard cell culture is carried out on flat surfaces. For cells, this is fundamentally different 

from their native 3D tissue environment. Therefore, physical cues in the form of surface structures are 

a promising tool for controlling cell behavior. However, a challenge is identifying the most optimal 

surface design that elicits a particular response. Surface structures can be constructed in variable height 

profiles, in a disordered or ordered manner, with different geometries, or by combining multiple profiles, 

thus creating hierarchical structures. Screening approaches can provide essential insight into this highly 

complex design space. In Figure 1, we provide the reader with a visualization of some high-throughput 

platforms, which we will be discussing in this section.   

 

 

Figure 1: Examples of different surface architectures. A) SEM images of a surface containing roughness levels of 68 +- 30 

nm. Scale bars: top image, 5 μm; middle image, 500 nm; bottom image, 100 nm. These hierarchical micro- and nanoroughness 

levels can promote ESC pluripotency. Adapted with permission from 15. Copyright (2015) American Chemical Society. B) 

AFM image of groove structures with a groove width of 350 nm (up) and 5 µm (down) known to modulate neuronal 

differentiation. Adapted with permission from 211. Copyright (2013) Elsevier. C) Upper image represents a SEM image of the 

TopoChip platform, a high-throughput platform containing 2176 unique micro-structural designs of 10 µm height and separated 

by walls of 30 µm. The bottom image represents the nanoTopoChip, a high-throughput platform containing 1246 unique nano-

structural designs separated by walls of 30 µm. Adapted with permission from 52. Copyright (2017) Elsevier.  



Roughness 

 Surface roughness can be regarded as topographies with randomly distributed height patterns in 

micro- or nanometer dimensions. This random feature distinguishes itself compared to other surface 

types, where the topographical dimensions are precisely controlled. Material roughness is mostly 

associated with bone tissue engineering and can be introduced to the surface by sandblasting and acid-

etching, resulting in superior osteo-integrative capabilities compared to smooth surface titanium 

implants 10,11. It is, therefore, not surprising that osteoblast-like cells and MSCs demonstrate improved 

osteogenic differentiation potential on rough surfaces 12,13. Also, calcium phosphate surfaces that closely 

mimic the bone microenvironment, both at a chemical and topographical level, improve the osteogenic 

potential of MSCs 14 and the osteogenic cell line MG63 7. Roughness is utilized for studying other types 

of cell-material interactions as well. Here, it is interesting to mention that for embryonic stem cells, 

materials with combined micro- and nanometer roughness 15 or nanometer roughness alone 16 promotes 

pluripotency. Also, proliferation capabilities can improve on nanorough materials, as shown for 

endothelial cells 17.  

For surface roughness, screening is limited to gradient formats due to their simple design. 

Through the use of gradients, increased roughness coincides with enhanced proliferation for osteoblasts, 

while showing the opposite effects for fibroblasts 18. For osteogenic differentiation, an optimal 

roughness niche was identified for MSCs 13.  

Curvature 

Curvature can exist as concave (inward curve) and convex shapes (outward curve). Curvature 

can influence MSC migration and differentiation 19 and is a useful tool for studying mechanobiology 

20,21, since similarities can be found between curvatures in vitro and in vivo 22. The effect of curvature 

on cell behavior is studied in a screening format through the use of wrinkles, for instance, by Zhou and 

colleagues, who used wrinkles in nanometer dimensions to optimize parameters for osteoblasts 

attachment 23. This concept can be expanded in micrometer dimensions and in a 96-well plate format 

allowing the possibility for combining curvature with different culture media combinations 24. 

Furthermore, combinations with other perturbations is achievable through coating wrinkles with, for 

example, inorganic biocompounds 25.  

Grooves 

 Grooves are continuous lines with variable dimensions across the material surface, which are 

mainly associated with contact-guidance of cells, i.e., they influence cell orientation. Besides 

orientation, other cell morphological characteristics such as cell area are affected depending on the 

proximity and depth of these grooves 26. In general, grooves can be build in micro- and nano dimensions 

with varying height profiles, of which both the grooves and ridge length are variable, and even in 



hierarchical format combining both dimensions 27. Grooves can also be placed in perpendicular 

orientations, which allows the construction of gratings that, depending on the dimensions, gives rise to 

more complex topographical surface structures. 

 Microgrooves influence cell behavior in very distinct ways. For example, an increase in global 

histone acetylation resulted in improving the reprogramming process of fibroblasts towards iPSCs 28. 

Grooves influence the differentiation potential of pluripotent cells, with nanogrooves guiding BMP4-

induced differentiation of iPSCs 29, the differentiation of ESCs into neurons 30, and the differentiation 

of astrocytes into glia-like cells 31. Furthermore, phenotypical characteristics of primary cells can 

improve on grooves. This is demonstrated by the increased expression of tendon-related genes in 

tenocytes when cultured on nanogrooves 32. A similar observation was found with microgrooves, which 

besides cellular alignment, also aligned collagen-I, the main protein component of the tendon 33. A 

similar concept was applied for neuronal cells, where axonal outgrowth orientates according to the 

grooves direction 34. Both examples can mimicking the in vivo tissue organization, a useful property for 

tissue-engineering applications.    

 Because the dimensionality of grooves is strongly variable, screening approaches have been 

implemented to determine which dimensions are best suited for obtaining a particular cell phenotype. 

This is illustrated by a screening platform containing 25 units with grooves and ridges in different 

micrometer dimensions, termed the polyimide (PI) chip. The PI chip was used to identify groove 

structures that stimulate adipogenic or osteogenic differentiation 26. The integrated mechanobiology 

platform (IMP) utilizes gratings and grids in a 96-well plate format, thus enabling the use of molecular 

biology analysis tools such as qPCR or ELISA. The pitch size of the gratings varies between 500 and 

3000 nm, while on the grid geometries the trench width can be varied between 100-300 nm. This 

platform was used to demonstrate that surface structures can influence IL-2 secretion in T cells, an 

important cytokine 35. A screening platform containing both variable micro- and nano grooves is the 

multi-architectural chip (MARC). It is noteworthy to mention that this platform contains only 18 surface 

structures, yet besides grooves also contains pillars and pits, thereby creating a broad surface diversity. 

Surfaces from the MARC were identified that promoted differentiation of neural progenitor cells 36 and 

ESCs 37 towards either adult neurons or glial cells. Differentiation towards dopaminergic neurons 38 was 

associated with anisotropic patterns (gratings), while isotropic patterns (pillars and wells) supported 

glial differentiation.  

Complex topographies 

 Topographies can be designed and produced in increasing complexity at both the micro- and 

nanometer scale. With complexity also comes larger numbers of potential designs. These designer 

topographies can, as roughness, curvature, and grooves do, profoundly influence cell behavior, as 

illustrated by the influence of disordered nano-topographies on MSC differentiation towards the 



osteogenic lineage 39. The height of topographies influences cell phenotype, as shown for nano-

topographies with high aspect ratios that support ESC differentiation towards the endoderm lineage in 

contrast to smaller topographies 40. Besides enhancing differentiation, pluripotency can also be 

supported by nano-topographies in honeycomb and hexagonal configurations 41. These examples 

demonstrate that a large variation exists in the topographical design space, emphasizing the need for 

high-throughput approaches to find the most optimal surface structure for a given application. 

 As a first example, the micro-topographical BioSurface Structure Array (BSSA) contains 504 

unique topographical designs with variable spacing between circles or squares, and with variable heights 

of 0.6, 1.6, and 2.4 µm. This platform has been used to explore the effect on osteogenic differentiation 

with positive results obtained for an osteoblastic cell line 42 and dental pulp MSCs 43. Also, topographies 

were identified that promoted the pluripotency of ESCs 44. Besides these studies, the BSSA platform 

found that topographies influence the proliferation of chondrocytes and fibroblasts 45,46. 

 

 

 

 

 

Figure 2: Multiplex ELISA applied in combination with the TopoWell Plate, a high-throughput platform. Applying 

a multiplex ELISA targeting 8 cytokines and growth factors on this platform allowed inferring if these micro-topographies 

influence the cell secretome.  A) The TopoWell Plate contains 87 unique surface topographies and 9 flat surfaces as a control. 

Seeding kidney derived perivascular stromal cells on these surfaces induces a large variety in morphological characteristics. 

B) Heat map visualization representing the influence of each topography on the expression of these cytokines and growth 

factors. Through clustering algorithms, micro-topographical surfaces can be grouped based on their secretome profile.  

Adapted with permission from 54. Copyright (2018) Nature Publishing Group. 



 A high-throughput platform designed by our group, known as the TopoChip, is a 2x2 cm2 

platform containing 2176 unique micro-topographies and 4 flat control surfaces 47. The in silico design 

of these topographies uses three primitives: circles, triangles, and squares. Combining these primitives 

while varying the number, size, and orientation leads to millions of potential designs. The platform has 

been used extensively for studying the behavior of cells on micro-topographies while enabling the 

identification of design parameters associated with a desired phenotype. We identified micro-

topographies that promote enhanced clonogenicity of pluripotent iPSCs 48, augment differentiation of 

tonsil-derived MSCs towards fibroblastic reticular cells 49, improving the osteogenic potential of MSCs 

50, or improve phenotypic maintenance of tenocytes 51. In addition to the TopoChip, a nano-topography 

version was created with 1246 unique designs 52. Furthermore, a 96-well platform was developed with 

each well containing a unique micro-topographical design, enabling other experimental techniques such 

as ELISA, qPCR or western blot 53. Combining this so-called TopoWell platform with multiplex ELISA 

allowed us to associate the secretion profile of mesenchymal and perivascular stromal cells with 

topographical design and cell shape 54  (Figure 2). 

Surface Biochemistry 

 Cells interact with their surrounding tissue matrix in vivo. Some of these interactions are 

mediated by cell adhesion molecules called integrins, which recognize and bind peptide motifs present 

in proteins of the surrounding matrix. The RGD sequence is such a well-known peptide motif and is 

found on multiple matrix proteins, including fibronectin and fibrinogen 55. Integrins are also capable of 

specifically recognizing the matrix proteins collagen-I 56 and laminin 57. Matrix proteins can be presented 

to cells as a coating and lead to different modes of attachment and signaling. For example, a combination 

of laminin and poly-L-lysine coating improves the differentiation of PC12 cells towards neuron-like 

cells 58. Also, a collagen-I or poly-D-Lysine coating supports pluripotency of ESCs, while laminin or 

fibronectin activates integrins and downstream pathways associated with differentiation 59.  

Besides uniform surface coating, it is possible to create patterned areas with the matrix protein 

of interest. One strategy is to produce a hydrophobic, cell-repellent surface with islands of matrix 

proteins, with cells adhering only to protein-containing areas and adjusting their morphology based on 

the pattern design. The effects of matrix compositions and morphology on cell phenotype can thus be 

investigated. One of the earliest attempts to utilize this system is from the mid-’90s and involved laminin 

islands with different surface areas. The authors demonstrated that pattern design influences cell 

spreading and proliferation 60. Later, it was shown that the differentiation potential of MSCs is altered 

when cultured on adhesive islands. Cells grown on smaller patterns had a stronger tendency for 

adipogenic differentiation, while a larger surface area favors osteogenesis 61. Besides MSCs, the 

differentiation potential of other stem cell types, such as epidermal stem cells, can be influenced by 

utilizing adhesive islands 62. 



Due to the large number of matrix components, their possible combinations, and the large 

pattern design options, high-throughput methods offer an ideal opportunity to find the most optimal 

biochemical environment. An interesting example is a study where the effects of 32 different 

combinations of collagen-I, collagen-III, collagen-IV, laminin, and fibronectin on hepatocyte phenotype 

and differentiation of ESCs towards hepatocyte progenitor cells was determined. The approach found 

that certain mixtures of ECM compounds had positive synergistic effects on hepatocyte phenotype and 

ESC differentiation 63. In Figure 3 A-C, we provide the reader with a visual representation of this ECM 

compound array. In another study, an array of 18 peptide-terminated SAM array elements, each with a 

unique laminin peptide sequence, allowed determining which sequence is responsible for promoting 

ESC pluripotency 64. Besides utilizing matrix proteins, extra complexity can be added by including 

signaling proteins such as growth factors. This was accomplished on an array platform with 44 different 

Figure 3: High-throughput screens involving ECM compounds. A) Life/Death assay on hepatocytes cultured on an array of 

32 different ECM compositions. Scale bar represents 1 mm. B) High-magnification phase-contrast and C) Fluorescent image of 

a single island. Green represents calcein AM and blue the nucleus through a DAPI counterstain. Scale bars represent 50 µm. 

Adapted with permission from 63. Copyright (2005) Nature Publishing Group. D) RGD islands in a high throughput platform in 

geometric shapes of varying parameters. The design is based on a mask for creating the TopoChip platform. Scale bar represents 

100 µm. E) CellPaint assay on BM-hMSCs grown on this substrate allows studying the influence of different densities of RGD 

islands on cell morphology in a high-throughput and high-content format (picture courtesy of Urandelger Tuvshindorj from the 

MERLN Institute, Maastricht University). 



combinations of signaling proteins, on which ESC neurogenic differentiation was investigated 65. In a 

similar study, an array of 25 different substrates was used to find that the effect of growth factors was 

modulated depending on the underlying matrix compositions 66. 

The examples above illustrate the usefulness of screening matrix compounds, especially in 

combination with soluble cues. Concerning the dimensions of these adhesive islands, we reason that 

varying this in a high-throughput matter can be of substantial biological importance, especially when 

including different matrix compounds are included. Research in this niche can easily be accomplished 

by utilizing the same lithographical masks for the fabrication of other high-throughput biomaterial 

technologies. We recently developed such a high-throughput design with RGD peptides based on the 

TopoChip design (Figure 3 D-E).  

Surface Chemistry 

 Surface chemistry has a strong effect on cell behavior and can be used to endow medical 

implants with specific bio-active properties. However, the relationship between surface chemistry and 

cell response is difficult to model. Therefore, high-throughput strategies to study the effect of surface 

chemistry on protein adsorption or cell function are of great interest. In cell culture, surface chemistry 

has a strong effect on cell behavior. Standard cell culture is carried out on tissue-culture plastic, which 

is an oxygen plasma-treated polystyrene material. Oxygen treatment changes the chemistry of the 

material by incorporating oxygen radicals, which hydrophilizes the surface, thus improving cell-

substrate attachment 67, cell-cell contacts 68, and proliferation 69. Through lithography, this concept can 

be implemented for creating shapes that facilitate cell attachment 70,71. Also, gradients can be produced 

to find the most optimal oxygen incorporation and roughness level for a particular phenotype 72. The 

link between surface chemistry and the response it elicits on cells may be through differential deposition 

of serum matrix proteins such as fibronectin that adsorb on the substrate 73. Surface chemistry can change 

the conformational structure of fibronectin, which in turn affects the binding affinity to integrins and 

thereby influences cell adhesion 74. Nevertheless, surface chemistry might affect cell behavior directly 

through new and unknown mechanisms or mimic the effect of biological molecules, similar as seen with 

small-molecule screens.  

 A large variety of monomers exists, the building blocks of polymers. These monomers can be 

combined through chemical reactions into various polymers with different chemical and physical 

properties. The amount of possible polymer variation is enormous, which is illustrated in a high-

throughput study where 576 novel polymers were created by different combinations of 25 monomers, 

each carrying the same chemical acrylate backbone 75. Besides acrylates, other polymers exist that are 

popular for biomedicine applications such as polyesters and polyurethanes (PU), which are 

biocompatible and biodegradable. For PU, a polyurethane library was created with 278 different glycol 

backbones for studying their effect on wettability 76. A similar approach was utilized with 44 different 



poly-acrylates for determining their affinity with fibrinogen 77. An overview regarding the different 

polymers used for biomedical applications and their advantages and disadvantages is excellently 

reviewed elsewhere 78. 

 The previously presented examples did not involve cell-based experiments. Cell behavior can 

give a more accurate representation of the in vivo properties of the surface chemistry on tissue 

engineering constructs and medical devices by measuring properties such as toxicity, adhesion, and 

matrix deposition. For example, by utilizing 60 different polymers based on different combinations of 

polyurethane, polyols, diisocyanates, and variable chain extenders, their compatibility with epithelial 

cell adhesion was determined 79. Also, in an extensive high-throughput manner involving 1152 different 

polymers, the adhesion properties of these polymers against MSCs, neuronal stem cells, and 

chondrocytes were studied 80. In this study, only 24 polymers were blended, including PGLA and PLA, 

which are frequently used in regenerative medicine. Cell adhesion of suspension cells can also be 

accomplished through polymer coatings, as demonstrated in a study utilizing a library of 210 different 

polyurethanes and 58 polyacrylates. Here, the authors identified polymers that promoted adhesion and 

proliferation 81.  

Polymer composition can be also be used to control specific cell behavior in vitro, e.g., to 

improve proliferation or stem cell differentiation 82. We mentioned before the construction of a library 

of 576 polymers based on 25 different acrylate monomers 75. The same library contained chemical 

compositions promoting endothelial differentiation of ESCs 83. Utilizing different blends of PDLA and 

PCL, both FDA approved biomaterials, it became possible to influence ALP levels of two osteogenic 

cell lines 84. In a library of 120 varieties of polyurethane, polymers were identified that enabled the 

preferential binding of an MSC subpopulation with increased osteogenic potential 8. Through a library 

of 141 homopolymers and 400 co-polymers, the effect of these substrates on dental pulp stem cell 

differentiation was assessed 85. Of interest, the authors managed to predict the behavior of these cells on 

the polymers tested through computation models. Polymers also allow the phenotypic maintenance of 

primary cells, as demonstrated by a screen utilizing a library of 380 different polyurethanes and acrylates 

86.  

Chemistry can influence the phenotypical maintenance of ESCs, as demonstrated in a study 

applying 496 polymer blends based on 22 different acrylate combinations 87. Through in-depth 

characterization of polymer properties, such as wettability, roughness, and elasticity, associations were 

made with cell phenotype. In Figure 4, we provide the reader with high-throughput data visualization 

from this study. Furthermore, they found that vitronectin from the culture media adsorbed to the 

polymers, and resulted in a specific integrin-binding, which initiated the cell signaling that promoted 

pluripotency. In parallel with the study, this research group studied embryoid body adhesion on the same 



polymer array. Of interest is that here both the pre-adsorbed fibronectin and the bare polymer were 

responsible for controlling cell adhesion 88. 

 Another clinically relevant application are polymers with properties that prevent implant 

infection. Based on the previous library for studying the behavior of ESCs and EB’s, structurally related 

polymers were identified that resist bacterial attachment, which was further validated by in vivo testing 

89. Follow-up studies demonstrated a clear relationship between the chemical composition of the 

polymers and antimicrobial properties 90. Also interesting to mention is that the same group applied a 

“multi-generation” screening, whereby first homopolymers from a library of 116 acrylate monomers 

were identified that resist antibacterial attachment 91. Afterwards, these hit monomers were mixed in 

polymer format to conduct a second screen, after which hit polymers were selected to make composite 

materials.    

Figure 4: Example of a visualization of a high-throughput platform mapping the biological response of ESCs against 

496 different polymers. Through measuring surface roughness, elasticity, and wettability, functional relationships between 

surface characteristics and cell phenotype can be measured. Here, a positive relationship between ESC colony formation 

and moderate wettability was established.  Adapted with permission from 87. Copyright (2010) Nature Publishing Group 



Until now, we focused on chemical characteristics that influence protein adsorption, cell 

behavior, and microbial attachment. However, in the context of medical implants, degradation, 

durability, and physiomechanical properties are relevant parameters for clinical performance as well. 

Assessing these characteristics in a high-throughput context is a challenging endeavor, which Kohn and 

co-workers achieved by simultaneously assessing the polymer structure of 144 polymers, their glass 

transition temperature, hydrophobicity, mechanical properties, and fibroblast proliferation 92.  

Hydrogels 

 Hydrogels are a popular tool for guiding cell behavior through the possibility to simultaneously 

control physical, chemical, and biochemical parameters. The main difference between the previous 

paragraphs is that hydrogels can provide a 3D environment, thereby more closely resembling the in vivo 

context of some tissue types. In hydrogels, molecules for cell signaling can be attached to a flexible 

backbone with dynamic physical properties. This allows regulating the stiffness of the gel, which is a 

crucial regulator of cell behavior, as demonstrated by the landmark paper of Disher and co-workers 93. 

In this study, hydrogels that match tissue elasticity drives MSC differentiation towards the matching cell 

types. Also, for pluripotency of stem cells, the stiffness of the surrounding environment can be a crucial 

factor 94.  

 Since parameters such as biodegradability, biomolecule presentation, growth factor release, and 

mechanical properties can be varied, high-throughput approaches help determine the most optimal 

parameters for controlling cell fate in hydrogels. This is demonstrated by a microwell platform with 

modular stiffness, where individual microwells can be functionalized with a different protein 

combination 95. Environmental niches promoting the differentiation of MSCs and the self-renewal of 

neuronal stem cells were discovered with this platform. This concept was further expanded by 

fluctuating stiffness levels, gel degradability, cell density, ECM compounds, soluble factors, and cell-

cell interaction components, thereby creating more than 1000 different niche environments that were 

assessed on their potential for controlling ESC pluripotency 96. Also, combinational arrays can be 

generated where polymer concentration, peptide presentations, and growth factor concentrations are 

varied. This allowed the identification of an optimal niche for myofibrogenesis in human mesenchymal 

stromal cells 97. The same group further demonstrated that also mechanical stimulation can be applied 

on hydrogels in an array format, whereby implemented sensors allowed monitoring the progress of 

hydrogel stiffness changes in real-time 98.  

Other material fabrication parameters that can be controlled in hydrogel synthesis are monomer 

blending, pH, and crosslinker concentration. In an array system, 80 different polymer blends where 

combined resulting in gels with different stiffness and elastic properties 99. Thermo-responsive 

properties are interesting for clinical applications because they can be used to release cells from the 

hydrogel, for example, after injection. A high-throughput screen for identifying thermoresponsive 



hydrogels was performed by Zhang and colleagues. The authors tested 2280 different polymer 

compositions and identified hydrogels with optimal properties for cell attachment and temperature 

controlled release 100.  

 An exciting opportunity for clinical application is the use of hydrogels in microbead format. 

Due to the small size of these beads, nutrient and gas exchange is facilitated, while cells are in direct 

contact with a physiologically relevant matrix. In this context, the optimal elasticity of agarose-based 

microbeads was identified using a high-throughput approach 101. Similarly, a high-throughput screen 

identified optimal parameters for an MSC and hepatocyte co-culture inside alginate-based microbeads 

102. This study further found improved liver enzyme levels after implanting these co-culture microbeads 

in rats, suggesting that the approach does have potential clinical applications in the future for restoring 

tissue and organ function. 

Micro-Fluidics and Droplet Technologies 

 Microfluidics is defined as the control of fluids in micrometer dimensions. By working in these 

dimensions, microfluidics enables the control of experimental parameters in the cell size range. Due to 

these small dimensions, microfluidics come hand in hand with lab-on-a-chip technology and hold the 

promise of influencing a large number of parameters on a small platform. The architecture of the 

microfluidic platform is modifiable and allows, for instance, dynamic control of growth factor or 

cytokine gradients 103. Furthermore, it is possible to apply different surface (bio)chemistries 104 and 

surface structures 105 inside the platform. Some platforms have included stretching as a biological signal 

mimicking in vivo conditions 106. An extra layer of complexity can be introduced through 

compartmentalization, in which different separate cell systems are connected, which moves the platform 

more towards an organ-on-a-chip concept. These examples demonstrate that the microfluidic lab-on-a-

chip concept is a highly versatile and attractive platform for high-throughput research in a regenerative 

medicine context 107.  

 Micro-fluidics research in a high-throughput setting often involves the use of compound 

gradients. For instance, drug screening was performed on cancer cells to asses their effect on migration 

kinetics 108. In a similar approach, Zhang and colleagues utilized 3120 microchambers to monitor 

migration in combination with anti-metastatic drugs 109. In a tissue-engineering context, micro-fluidic 

constructions also made it possible to generate growth factor gradients to study the differentiation of 

neural stem cells 110,111. In a 3D mesenchymal stem cell culture, growth factor gradients with the most 

optimal concentration of TGF-β1 to induce chondrogenesis were identified 112.  

 An emerging technological micro-fluidics application is the use of droplets that enable high-

throughput analysis at the single-cell level. The technology is compatible with single-cell omics, which 

is highlighted by a study with embryonic stem cells where the early onset of differentiation was studied 

in droplets containing lysis buffer, reaction mix, and barcoded primers 113. Other applications and 



techniques concerning droplet-based microfluidics for single-cell omics are excellently reviewed 

elsewhere 114.  

Small Molecule Screens in Regenerative Medicine 

Libraries of bio-active compounds are a useful high-throughput asset in the field of regenerative 

medicine to fine-tune growth and differentiation conditions of cultured cells. For instance, compounds 

targeting pluripotent stem cell viability were identified in a screen utilizing approximately 52,000 

compounds 115, which can be applied to eliminate undifferentiated stem cells before implantation. For 

directing cell fate, high-throughput screens are a useful tool to identify novel compounds for stem cell 

differentiation or phenotypical maintenance. For example, in a screen utilizing 4000 compounds, two 

small molecules were identified that allowed 80% of ESCs to differentiate towards the endoderm 

lineage, superior to the commonly used proteins Activin A or Nodal 116. Also, ESC neuronal 

differentiation is inducible through small molecules, as shown in a study employing over 100,000 

compounds 117. For MSCs, high-throughput compound screening can be useful to identify molecules 

that improve MSC differentiation potential. In a study with a library of 1280 small molecules, novel 

compounds were found that improved the osteogenic differentiation of MSCs with equal efficiency as 

reference osteogenic molecules such as dexamethasone, vitamin D3, and cAMP 118. In standard 

conditions, ESCs are cultured on a fibroblast feeder layer and in the presence of serum. The presence of 

xenogenic compounds limits clinical application due to potential immunological host reaction, which is 

why researchers try to define a chemically-defined media composition. In this context, a high-

throughput screen with 50,000 compounds resulted in a culture of pluripotent ESCs without a feeder 

layer, serum, and LIF 119.  

Besides directing cell fate, small molecules are also useful to improve matrix deposition.  

Through a screen of 1280 small molecules, compounds were identified that improved the development 

of a collagenous-rich matrix in the pre-hypertrophic chondrogenic cell line ATDC5 120. These small 

molecules offer translational perspectives for bone tissue engineering by utilizing them in allografts for 

promoting endochondral ossification. Through applying the same library, compounds were identified 

that mimic hypoxia, resulting in increased secretion of VEGF in MSCs 121. These compounds can have 

useful tissue engineering applications because VEGF secretion stimulates blood vessel formation.  

The Screening Toolbox 

 The use of materials to support missing or diseased tissues is not a novel concept. Evidence 

suggests that the ancient Mayans used nacre shells as a biomaterial to replace missing teeth 122. Similarly, 

archeologists found clues that inhabitants of the ancient Roman Empire applied iron as tooth 

replacement 123. Other evidence exists that in ancient Egypt inhabitants carried prostheses 124. In present 

times, biomaterials are very important for a large group of patients, where titanium hip replacements, 



stents for obstructed blood vessels, or hemodialysis devices for blood purification can be regarded as 

significant achievements in the field. In the previous section, we discussed how the properties of 

materials could be altered to control their bioactivity. Next, we will discuss the technologies needed to 

engineer these materials. 

Micro- and Nanofabrication of Surface Architectures 

Lithography and Hot Embossing 

Multiple methodologies exist to fabricate micro- and nanopatterns. In Figure 5, a schematic 

overview illustrates the methods we used to construct micro-topographies of the TopoChip platform 

47,125, which is a good example of the different steps to come from design to the final material. First, a 

mask is produced based on a design, which is subsequently used to produce a mold using the technique 

of lithography. It involves the use of a sturdy and hard substrate such as silicon or nickel, coating with 

a photoresist, and shining light through the mask. This mask design corresponds with the topographical 

pattern, with the passing of UV light subsequently dissolving the underlying photoresist. Next, acid 

etches the material while leaving the photoresist intact. The duration of the etching step determines the 

height of the surface structures. After the creation of the mold, the patterns are transferred to a new 

material that is either photo- or heat-curable. A commonly applied material is the heat-curable polymer 

polydimethylsiloxane (PDMS) that requires a chemical initiator to harden over time. Typically, PDMS 

with the initiator is poured over the master mold and fills the pattern cavities. After hardening, the PDMS 

is peeled off, containing the replica patterns. PDMS can be used directly for cell-based experiments 126 

and is a favorite tool in the microfluidics research field due to its high fidelity for pattern transfer and 

excellent optical properties. Nevertheless, PDMS is chemically very different from polystyrene, the 

golden standard for cell culture, which makes it difficult to compare research results  127. Therefore, 

patterns can further be transferred into secondary and even tertiary substrates, eventually also into 

polystyrene. 

Another popular method to transfer imprints into another material is through hot embossing. 

Here, the material temperature is increased beyond the glass transition temperature, causing it to soften. 

By applying pressure, patterns are transferred from the mold to the polymer. After cooling, the material 

is peeled off the mold. Hot embossing is not compatible with every polymer. For instance, direct 

embossing of polystyrene on a glass waver results in breaking or deforming either the waver or PS due 

to high demolding forces 125. It is possible to directly apply hot embossing on a PDMS substrate 128. 

However, the pressure might damage the PDMS imprints in the long term. Therefore, as shown in the 

scheme, we used an intermediate between PDMS and PS, called Ormamold, to transfer the imprints. 

Here, the Ormostamp is photo-cured through UV radiation, polymerizing the monomers into a hard 

substrate that carries the negative imprint. The same principles also allow the transfer of nano-patterns 

with high fidelity 52. Besides PS, many materials are compatible with hot embossing, making this a 



highly versatile method for fabricating surfaces, also in an industrial setting 129. The photo-curing 

concept to generate Ormostamps can also be applied in a wide variety of tissue-engineering applications. 

The technique can be harnessed for tooth replacement materials 130, and cell culture applications such as 

the generation of scaffolds 131. Also, for hydrogels, photocuring is very popular due to the possibility to 

regulate physical behavior dynamically. We refer the reader to a recent review that provides a detailed 

description of these applications 132.  

 

 

Figure 5: Schematic overview for micropatterning stiff and brittle polystyrene. Due to the high demolding forces required 

to remove PS from the Si waver, extra steps through a OrmaStamp intermediate facilitates the transfer of the micro-patterns. 

A) PDMS heat curing and demolding on a silicon waver. B) Ormostamp mold fabrication involving UV curing on the PDMS 

stamp. C) PS hot embossing on the Ormostamp. Adapted with permission from 125. Copyright (2017) Elsevier. 



Besides hot embossing, other specialized thermoforming techniques exist. For example, for 

creating COC microwells inside a screening plate, pressure through an inert gas is applied in 

combination with heating of the material 133. Another alternative is injection molding, whereby heated 

material is directly injected in a mold. This technique finds applications in creating biomaterials such as 

micro-fluidic platforms 134. A detailed review of the advantages of these methods are reviewed elsewhere 

135.  

Protein and Chemical Patterning 

Microcontact Printing 

Proteins or polymers can be printed onto surfaces in any desired pattern. A commonly applied 

method to accomplish this is through micro-contact printing. As we explained previously, through 

lithography techniques, a PDMS stamp with surface structures can be generated. Such a stamp is 

employed for transferring either matrix proteins or chemicals to a new substrate. Patterns are thus 

generated when only the elevated PDMS regions come into contact with the substrate. Pattern transfer 

can be accomplished directly, for example, by coating a PDMS substrate with laminin, after which the 

laminin is transferred to another substrate by bringing the substrate into contact with PDMS. Such an 

approach allowed the generation of adhesive islands and subsequent cell patterning in a microfluidic 

chamber 136. A more indirect, yet commonly applied strategy, is creating hydrophobic and hydrophilic 

regions that either allow or disallow protein adsorption. A chemical used to produce these regions can 

be alkanethiol, which forms self-assembled monolayers (SAMs) on gold 137. Alkanethiols transfer to the 

PDMS stamp when dipped into a solution. When the PDMS stamp containing dried alkanethiol comes 

into contact with a gold substrate, SAMs on this gold substrate will form according to the pattern present 

on the PDSM stamp. After exposure to a second type of alkanethiol, new SAMs will form between the 

first SAM patterns. Because end groups on the alkanethiols determine their protein adsorption affinity, 

patterns of adhesive and non-adhesive regions are created. For instance, methyl groups favor the 

attachment of proteins, while SAMs with ethylene glycol resist protein adsorption. We provide the 

reader with a schematic representation in Figure 6. Deviations in these chemistries are common, yet the 

same principle concerning the use of a stamp is applied. This is demonstrated in a study documenting 

improved keratinocyte differentiation through adhesive islands 62. A substantial advantage of the 

technique is that it allows creating polymer patterns at sub-100 nm resolution 138. Furthermore, 

considerable flexibility exists in the viscosity and type of ink chemistry used in the setup, which typically 

already contains polymers through a mixture of monomers and initiators. For example, light-emitting 

diodes can be created by stamping a conductive polymer solution 139. Even the construction of 

topographical structures is possible through a combination of polymers and inorganic chemistry 140,141. 

For a detailed documentation of the wide variety of micro-contact printing applications, we refer the 

reader to specialized reviews 142–144. 



 

Inkjet Printing 

A disadvantage of microcontact printing is that it requires the fabrication of a lithography mask 

to construct the patters of the stamp. This is time-consuming and also reduces flexibility if new patterns 

need to be generated. An attractive alternative in this regard is the use of inkjet printers.  Here, primary 

monomers are typically first printed, after which a second monomer or initiator is mixed with the first 

monomer, allowing in situ polymerization of the monomers 145. The technique, therefore, not only allows 

Figure 6: Schematic overview for micropatterning proteins. A) A stamp is inked with an alkanethiol and placed on a gold 

surface; the pattern on the stamp is transferred to the gold by the formation of an SAM on the regions that contacted the 

substrate. The bare areas of the gold are exposed to a different alkanethiol to generate a surface patterned with a SAM that 

presents different chemical functionalities in different regions. B) The PDMS stamp can also be used as a master to mold 

harder polymers and generate contoured surfaces. After evaporation of a layer of gold, these surfaces can be functionalized 

by μCP of one alkanethiol with a flat stamp. The grooves of the substrate can then be exposed to an alkanethiol presenting a 

different functional group to produce a contoured surface with patterned chemical reactivity. Adapted with permission from 
137. Copyright (1999) Elsevier. 



flexibility in pattern design, yet can also create a broad polymer diversity making this ideal for high-

throughput studies.  For example, inkjet printing allowed designing 2000 different hydrogels, of which 

their functionality was analyzed for cell adhesion and thermos-responsive release 100, and for screening 

380 different polyurethanes and acrylates for inducing a hepatocyte phenotype 86. Deviations usually 

exist by altering the surrounding environment during the printing process.  Polymerization reactions can 

be inhibited when oxygen is present, or slow down the polymerization reactions, causing the formation 

of irregular spots. These considerations were taken into account in studies utilizing the printing of 

hundreds of polymer spots for ESC differentiation 83 and antibacterial attachment 89 by utilizing an argon 

atmosphere and a UV lamp to increase the polymerization speed. A disadvantage compared to 

microcontact printing are restrictions in the physical parameters of the chemical, such as high viscosity 

levels 146.    

Photopatterning 

 Lithography can directly pattern polymer surfaces, a method that does not require etching of a 

mold. For example, exposure of surface-bound benzophenone to UV light enables stable binding with 

target molecules 147. Through this method, matrix proteins are covalently bound to the surface for cell 

adhesion experiments. Previously, we have shown that the use of photoresists is useful for micro-

patterning, and the same principle can also be utilized for protein patterning when the resist adsorbs 

proteins. Photomasks give precise control of the desired pattern and are also applicable for high-

throughput purposes without the need to fabricate a stamp such as in microcontact printing 148.  

Computational Techniques 

High-throughput experiments are characterized by generating massive amounts of data. To mine 

this wealth of data, know-how is needed to process data correctly. In this time of big data, the need to 

handle it increases, and fortunately, more and more user-friendly bioinformatics tools exist to process 

them. Computer languages such as R 149 and Python 150 are becoming more accessible, thanks to 

interfaces such as R Studio 151 and Spyder. Also, numerous online learning platforms such as Edx 

(https://www.edx.org), Coursera (https://www.coursera.org), and DataCamp 

(https://www.datacamp.com) offer basic and advanced bioinformatics courses. For high-throughput 

imaging experiments, which can quickly amount to thousands of images, user-friendly software such as 

Cellprofiler and Fuji exist for handling large quantities 152,153. Machine learning algorithms to correlate 

the experimental design variables to phenotypical outcomes can be handled by software such as 

Rapidminer 154. In this chapter, we provide the reader with an overview and description of how these 

computational techniques facilitate the analysis of high-throughput data.  

Batch Effects 

https://www.edx.org/
https://www.coursera.org/
https://www.datacamp.com/


Data derived from high-throughput technologies is prone to batch effects due to data retrieval 

from multiple time points or different experimental conditions. This leads to technical variations in the 

data, resulting in biases and misleading conclusions. Batch effects can occur through the performance 

of experiments by multiple operators, the use of different laboratory equipment, and variations in serum 

or growth factor batches and other reagents. Biological factors can also play a role. For example, the use 

of different stem cell donors can influence experimental outcomes, as illustrated by Siddappa et al., 

demonstrating that the differentiation potential of MSCs can vary between donors 155. Although batch 

effects can occur in any experimental setup, finding batch effects is easier for high-throughput and high-

dimensional data. Examples of the identification of batch effects in scientific studies are found in an 

interesting review by Leek et al., where methods are described to correctly handle data influenced by 

batch effects 156. An example of such a method is surrogate variable analysis, which demonstrated its 

usefulness for overcoming heterogeneity in gene expression studies 157. Also, batch effects in high-

throughput applications can be identified by machine learning techniques like clustering analysis and 

PCA, which will be discussed further. 

Image Processing 

 Imaging is a particularly suitable technique for obtaining high-throughput data and is facilitated 

by microscopes that can take thousands of images in a matter of hours. Our group applied this technique 

multiple times on the TopoChip platform that contains a total of 4352 topographical units on a 2 cm2 

surface 49,51,158. A limitation is that usually, only a few proteins are targeted due to the spectral overlap 

of the applied fluorochromes. However, for improving the information content of images, techniques 

such as CellPaint allow staining multiple cell organelles besides the classical nuclear or actin staining 

159. To analyze the large number of images that are typically generated, software scripts such as in Matlab 

can identify and quantify both cell morphology and intensity features of the images 47. However, also 

open access software such as CellProfiler allows image processing both in 2D and 3D while enabling 

the extraction of highly dimensional data 160. Examples of applications include the segmentation of 

nuclei and quantifying DNA content in an RNAi library screen 161, or measuring protein levels in both 

the cytoplasm and the nucleus during differentiation events 162. Also, in immunohistochemistry images, 

CellProfiler identified CD4+ and CD8+ T cells in human tissue samples 163 and quantified the amount 

of CD4+ cells in patients with chronic graft-versus-host disease for determining disease severity 164.  

 The algorithms that allow pattern recognition are continuously improved. A promising and 

emerging strategy in this regard is the use of deep learning algorithms. This machine learning approach 

allows superior nuclei segmentation across multiple image types 165,166. Furthermore, it can be applied 

in a high-throughput context for identifying cellular phenotypes 167. In the clinic, deep learning 

algorithms are beneficial for the automated detection of acute lymphoblastic leukemia cells 168, tumors 

169, and polyps 170. Since the creation of these scripts requires a specialist to develop them, the application 



by biologists and clinicians is typically performed through software such as U-Net 171. CellProfiler also 

offers modules for applying pre-trained neural network models for cell segmentation 172, assessing the 

quality of images 173, and tracking cells during live-cell imaging 174. In the future, more of these 

algorithms will become available, which, in combination with user-friendly software, will further 

increase the possibilities and quality of image-based studies. We further refer to two recent reviews that 

describe in detail the use of deep learning for cellular imaging 175 and medical image analysis 176. 

Machine learning 

Besides applying deep learning in imaging studies, also other machine learning algorithms are 

useful in a high-throughput context. For example, when we would like to understand which and how 

strong experimental variables contribute to an observed effect. This effect can be a phenotypic condition, 

with the input parameters being a wide variety of different materials or polymers. Through machine 

learning, meaningful relationships between input and output variables can be identified and visualized 

with the possibility to predict outcomes. Furthermore, machine learning approaches such as PCA allows 

dimensionality reduction, thereby enabling to filter out irrelevant data from datasets. In this section, we 

describe how machine learning algorithms benefit high-throughput data analysis. We also refer to a 

recent review from our group on the use of machine learning algorithms in a biomaterial context 177.  

Regression Analysis 

A classical machine learning approach for measuring cell-material interactions is through linear 

regression. This method employs a best-fit line whereby the distance between the actual and predicted 

measurements is minimized. This allows determining and quantifying significant correlations between 

the input (independent) and output (dependent) variables enabling the prediction of outcomes (Figure 

7A). More complex methodologies exist, such as multivariate linear regression with more than one 

independent variable. The following examples show how regression models are useful for regenerative 

medicine applications. A regression method was used for inferring if the output from magnetic 

resonance imaging correlates with glycosaminoglycan content of different engineered cartilage 

constructs 178. Through multivariate linear regression, optimal polyurethane compositions were 

identified against microbial attachment 179. Similarly, regression models allowed identifying the effect 

of antibacterial attachment of ions in a polymer array 89. 

Classifier Algorithms 

For some applications, it might be important to classify observations according to specific 

criteria. This is useful for determining if an email should be classified as spam, or for identifying plant 

species based on a picture alone 180. Here, classifier algorithms are trained for determining which 

characteristics correspond best with a specific category. Usually, two subsections of the data are taken, 

one for training the classifications and one for evaluating the performance of the classifier. Many 



classifier algorithms exist; these include k-nearest neighbors 181, random forests 182, support vector 

machines (SVM) 183, and the before mentioned deep learning 184. These algorithms are particularly well 

suited for high-throughput applications. For example, besides useful for image processing, deep learning 

classifiers allowed modeling and predicting which polymer characteristics are associated with embryoid 

body cell adhesion 185. In our group, we applied random forest algorithms for identifying which 

topographical features are associated with a particular phenotype (Figure 7B) 48,50,51.  

Cluster Methods and Dimensionality Reduction 

For understanding and visualizing complex data acquired from high-throughput experiments, 

clustering analysis is an essential computational approach. This method groups data points based on 

similarity and is therefore useful for identifying surface structures or polymers with similar or unique 

effects on cell behavior. An example of such a cluster method is called k-means clustering 186. k-means 

is a relatively simple algorithm adapted in many scientific disciplines. Applications include grouping 

differentially expressed genes together to allow visualizing and identifying genes associated with the 

different developmental stages of the kidney 187. Similarly, in embryonic stem cells and trophoblasts, 

genes associated with pluripotency and lineage specificity can be clustered and distinguished 188. 

However, k-means suffers from some drawbacks, since the user has to choose the number of clusters 

beforehand, leading towards potential biases. Furthermore, highly dimensional data is challenging to 

analyze through the k-means method as well as for similar clustering approaches such as fuzzy c-means 

189.  

An alternative is hierarchical clustering. Here, all data points are split into two clusters that share 

the least similarity based on Euclidian difference. This process is repeated until each data point is divided 

into a cluster, creating a tree-like graph. We previously mentioned the TopoWellPlate, where the 

influence of a large variety of surface structures on the secretome of MSCs was investigated 54. Through 

hierarchical clustering, we grouped surfaces from the TopoWell plate that exert similar or unique effects 

on the secretome profile of MSCs. In a similar approach, yet with polymers instead of surface structures, 

and microarray data instead of multiplex ELISA, the effect of different polymers on gene expression 

profiles in MSCs was assessed through clustering 190. Multiple variations in clustering algorithms exist, 

of which we refer the reader to a specialized review discussing their advantages and disadvantages 191.  

Datasets that are large in dimensionality can have adverse effects on cluster algorithms 192. This 

is illustrated in a study where miRNA levels were measured from multiple cancer cell lines. When 217 

miRNA targets (dimensionality of 217) were taken into account, hierarchical clustering allowed to 

cluster cell lines from the colon, liver, pancreas, and stomach origin together, reflecting their endodermic 

origin (Figure 7C) 193. However, this relationship was lost when 16000 mRNA’s were included in the 

analysis due to higher dimensionality. 



Not all variables that contribute to higher dimensionality levels are relevant and thereby create 

noise in cluster algorithms. A method to overcome this is through principal component analysis (PCA) 

194, which reduces data dimensionality. Besides a useful tool to enhance the accuracy of clustering 

methods, it is also frequently applied to assess visual similarities between data points. PCA simplifies 

dimensional complexity by geometrically projecting the data into a lower-dimensional space. This 

method was applied to demonstrate that a flat tissue culture surface, a flat polyimide surface, and a 

nanogrooved polyimide surface, induced distinct gene expression profiles independent of MSC donor 

variability 26. In research where the effect of micro-topographies on chondrogenesis was assessed, PCA 

distinguished surfaces based on the gene expression and morphological profiles they elicit 195. In a 

cytokine screening of multiple cancer cell lines cultured on different hydrogels, PCA allowed identifying 

biomaterials that induced similar or distinct cytokine profiles (Figure 7D) 196.  

 

Figure 7: Machine learning examples applied in regenerative medicine research. A) Simple linear regression 

example. The dependent variable (Y) is predicted using the independent variable (X). Here, the output (cell 

proliferation) is the dependent variable, and the input (grain size) is the independent variable. Adapted with permission 

from 177. Copyright (2017) Elsevier. B) Example of a Random Forest output. Each bar represents the importance of a 

surface feature characteristic associated with improved phenotypic characteristics in tenocytes. Data originates from a 

TopoChip screen containing 2176 different micro-topographies with Scleraxis, a tenogenic marker, as output. Adapted 

with permission from 51. Copyright (2019) Elsevier. C) Hierarchical clustering representation of miRNA profiles from 

218 tissue samples. Samples are in columns, miRNA expression in rows. Samples from the same tissue and lineage 

origin cluster together. Adapted with permission from 193. Copyright (2015) Springer Nature. D) PCA Dimensionality 

reduction performed on the secretion profile from 5 different cell lines cultured on 5 different biomaterials. PCA 

demonstrates that in this setup, alginate and PEG induce a similar secretion profile while being distinct from agarose, 

collagen, and matrigel. Between cell lines, agarose induces a distinct secretion profile compared to the other cell lines 

cultured on the same substrate. Adapted with permission from 196. Copyright (2017) American Chemical Society. 



PCA can, in some cases, experience computational limitations, which disallows a meaningful 

data visualization 197. An alternative technique that is gaining popularity for dimensionality reduction 

and visualization of high-dimensional datasets is t-distributed stochastic neighbor embedding (t-SNE) 

198. This method visualized different human tissues based on their respective gene expression levels 199. 

Similarly, dynamic developmental processes in the zebrafish embryo were visualized through single-

cell RNA sequencing of more than 92000 cells 200. In the future, this technique will likely gain traction 

in high-throughput applications with highly dimensional data-sets. All the previous examples 

demonstrate that machine learning algorithms are useful tools for a correct data interpretation of high-

throughput applications.  

Discussion 

Throughout this work, we presented multiple high-throughput approaches (Table 1).  A general 

disadvantage of these platforms is that the output only encompasses a few parameters, with ICC as the 

most prominent technique. This is attributed due to technical limitations. In the high-throughout 

examples we gave, there are usually insufficient cell numbers to detect meaningful RNA or protein 

concentrations. Nevertheless, techniques such as the aforementioned CellPaint assay can increase the 

screening information content 159. Furthermore, other techniques such as mass-spectrometric imaging 

Table 1: Summary of different high-throughput approaches. (1) Not applied in a high-throughput context. However, 

depending on the layout of the lithography mask, this can be accomplished. For example, by applying the lithography mask of the 

TopoChip platform. 



201, and single-cell RNA sequencing, might in the future find useful high-throughput applications. When 

reducing the total number of input variables towards a well-plate format, other techniques such as qPCR, 

ELISA, RNA sequencing, and proteomics become possible due to the presence of sufficient cell 

numbers 35,54. However, a strategy that is commonly employed is first to find positive hits through a 

high-throughput screen. Afterwards, the positive hits are fabricated in a larger format, enabling broader 

investigations into other markers or pathways through other techniques besides ICC 51. 

Screening technologies brought new culture environments that are useful for regenerative 

medicine, while in parallel provided us with novel biological insights. However, the enormous 

complexity that exists also illustrates the challenges the field faces. Although high-throughput platforms 

comprise many perturbations, these are usually focused on one aspect of the cell niche. For example, 

different roughness levels are rarely combined with various geometric shapes, surface chemistry, and 

culture media compositions. Likewise, high-throughput screens that investigate multiple matrix 

compositions do not include surface structures or apply stretch forces. This can result in the loss of 

valuable information. For example, mechanical stimulation can upregulate the presence of growth factor 

receptors in smooth muscle cells, sensitizing them against growth factor stimulation 202. Integrins that 

bind to specific matrix molecules influence growth factor activation by forming complexes with growth 

factor receptors 203,204. The consequence of this can be that high-throughput screens utilizing growth 

factors or small molecules in a collagen substrate environment can elicit different cell behavior 

compared to a laminin substrate. Also, surface structures can alter cellular sensitivity against growth 

factors 205, and the biological activity of matrix compounds 206. These are only a few examples of how 

combinatorial environments can further improve experimental outcomes and underlines the importance 

of employing this principle in high-throughput screens, which is still an underdeveloped concept. The 

main reasons for these sparse combinatorial approaches are either technical challenges or the lack of 

know-how.  

Another interesting viewpoint is the use of databases to supplement and support data derived 

from high-throughput applications. Techniques such as Cell Paint that produce a morphological 

fingerprint 159, can further be compared with databases of other fingerprints produced by gene alterations 

or small molecule treatment 207,208. In line with this are the possibilities that large scale gene expression 

profiling initiatives offer, such as the recent expansion of the Connectivity Map 209, which contains a 

million gene signatures of cell lines treated with small molecules, shRNA, and overexpression 

constructs. With the rise in automatization, omics technologies, and artificial intelligence, we foresee 

big opportunities to speed up scientific discoveries 210. In the future, cross-high-throughput platforms 

involving design, chemistry, and biochemistry combined with high-content technologies will open the 

road to novel biological insights and regenerative medicine applications. 
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