
 

 

 

Leveraging Multi-Omics Technologies for Studying the
Effects of Endocrine Disrupting Chemicals on Thyroid
In Vitro Models
Citation for published version (APA):

Nazzari, M. (2024). Leveraging Multi-Omics Technologies for Studying the Effects of Endocrine Disrupting
Chemicals on Thyroid In Vitro Models. [Doctoral Thesis, Maastricht University]. Maastricht University.
https://doi.org/10.26481/dis.20240410mn

Document status and date:
Published: 01/01/2024

DOI:
10.26481/dis.20240410mn

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 27 Apr. 2024

https://doi.org/10.26481/dis.20240410mn
https://doi.org/10.26481/dis.20240410mn
https://cris.maastrichtuniversity.nl/en/publications/3527a880-b98e-444f-9bde-309ff5d5a45c


 

Leveraging Multi-Omics 
Technologies for Studying the 
Effects of Endocrine Disrupting 
Chemicals on Thyroid In Vitro 

Models 
 

Marta Nazzari 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Marta Nazzari, Maastricht, the Netherlands 2024 

Cover design and layout by Marta Nazzari 

Printed by Gildeprint  

ISBN: 978-94-6469-870-1 

All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system, 
distributed, or transmitted in any form or by any means, without the prior written permission 
of the copyright holder. 



Leveraging Multi-Omics 
Technologies for Studying the 
Effects of Endocrine Disrupting 
Chemicals on Thyroid In Vitro 

Models 
 
 

DISSERTATION 
 
 

to obtain the degree of Doctor at Maastricht University, 
on the authority of the Rector Magnificus Prof. Dr. Pamela Habibović 

in accordance with the decision of the Board of Deans 
 

to be defended in public  
on Wednesday 10th April 2024 at 10:00 hours 

 
by 
 

Marta Nazzari 
born on 2nd January 1994 in Venice, Italy 

  



  



 

Het Gebruik van Multi-Omics 
Technologieën voor het 

Bestuderen van de Effecten van 
Hormoonverstorende 

Chemicaliën op In Vitro Cel 
Modellen van de Schildklier 
 

Marta Nazzari 

  



Supervisor  

Dr. Florian Caiment 

Co-supervisor 

Dr. Twan van den Beucken 

Assessment Committee  

Prof. Dr. Maarten Honing, Professor of Analytics in Systems Imaging, Maastricht University 

Prof. Dr. Ir. Juliette Legler, Professor of Toxicology, Utrecht University 

Prof. Karine Audouze, full Professor in Bioinformatics, Université Paris Cité 

Dr. Susan L. M. Steinbusch-Coort, Department of Bioinformatics, Maastricht University 

The research presented in this thesis was conducted at GROW School for Oncology and 
Reproduction of Maastricht University.  



Table of Contents 
Summary of the Thesis ........................................................................................................... 8 

Samenvatting van het Proefschrift ......................................................................................... 10 

Impact of the Thesis ............................................................................................................. 12 

Chapter 1: Introduction ....................................................................................................... 14 

Chapter 2: CODA: a Combo-Seq Data Analysis Workflow .................................................. 38 

Chapter 3: Investigation of the Effects of Phthalates on In Vitro Thyroid Models with RNA-Seq 

and ATAC-Seq ....................................................................................................... 82 

Chapter 4: Multiomics Analysis of the Effects of Endocrine Disrupting Chemicals on Mouse 

Embryonic Stem Cell-Derived Thyroid Organoids ............................................... 126 

Chapter 5: Impact of Endocrine Disrupting Chemicals and Sex Hormones on Human ESC-

Derived Thyroid Follicles Using Single Cell Transcriptomics ................................ 202 

Chapter 6: Discussion ........................................................................................................ 250 

Curriculum Vitae ................................................................................................................ 264 

Scientific output ................................................................................................................. 265 

Acknowledgements ............................................................................................................. 267 



Summary of the Thesis 
This thesis contains work performed in the context of SCREENED, a European 

Union's Horizon 2020 project part of the EURION cluster, aimed at developing new test and 
screening methods to identify endocrine disrupting chemicals (EDCs). SCREENED focused on 
the thyroid, an essential endocrine organ understudied within the field of toxicology. Other 
partners within the project developed a protocol for differentiating thyroid organoids from 
human and mouse embryonic stem cells (ESC) which were used as an in vitro model to test the 
response to EDCs. Some of these exposure experiments performed during the project are 
reported in this thesis. 

For the bulk transcriptome analyses in Chapters 2 and 3, we employed a relatively new 
method able to assess simultaneously the mRNA and miRNA expression in a sample called 
“Combo-Seq”. In Chapter 2, we evaluated the robustness of this method and compared it to 
conventional separate poly(A) and small RNA libraries. Since we observed some limitations and 
inaccuracies with the pipeline recommended by the kit manufacturer for the analysis of Combo-
Seq data, we developed a new one, better adapted to this purpose. In the Chapter, we compared 
the two pipelines at several steps of data analysis, from data processing to differential expression 
analysis. 

In Chapter 3, we exposed mouse ESC-derived thyroid follicles to five incremental, 
biologically relevant doses of four phthalates for 24 hours and analyzed the changes in the 
transcriptome via RNA-Sequencing. Gene Set Enrichment Analysis showed a common 
upregulation of genes involved in fatty acid metabolism by all four phthalates, as well as 
downregulation of genes involved in signaling by GTPases, tyrosine kinases and TGFB family 
members and extracellular matrix organization. In all treatments we observed an upregulation of 
Ing5, whose protein product is involved in histone acetylation. We then exposed a thyroid cell 
line for 5 days to a selection of two phthalates to identify any treatment effect on chromatin 
accessibility, but we did not observe any changes. 

In Chapter 4, we analyzed the effects of 16 EDCs belonging to four different classes 
on mouse thyroid organoids by way of transcriptomics and proteomics. We observed dose-
response curves for several genes and a few miRNAs and, for some, doses that could represent 
potential points of departure. We used transcriptomics data to perform differential expression 
analysis grouping EDCs by class to identify possible class effects and proteomics data to identify 
proteins differentially expressed after EDC treatment. We combined the two datasets to identify 
if changes in genes or miRNA expression could be predictive of the protein levels of target 
proteins and to derive Random Forest classification models to determine whether a sample 
belongs to any of the EDC classes analyzed.  
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In Chapter 5, we studied if different sex hormones contexts would affect the thyroid 
model response to EDCs. To this end, we exposed human ESC-derived thyroid follicles to two 
mixtures of estrogen, progesterone and dihydrotestosterone that would resemble the serum levels 
of human females and males of reproductive age for three days. Afterwards, we added BAP and 
PCB153 for 24 hours, and at the end of the exposure period, we performed 10x Genomics single 
cell RNA-Sequencing. PCB153 had very limited effects on the transcriptome. We observed 
synergies between BAP and the two hormonal mixes, especially the “male” cocktail, affecting 
ribosomal genes as well as genes involved in promoting inflammation, lipid transport and 
metabolism and oxidative phosphorylation. Additionally, the presence of the “female” mixture 
increased the expression of aryl hydrocarbon receptor targets. 
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Samenvatting van het 
Proefschrift 

Dit proefschrift bevat werk dat is uitgevoerd in het kader van SCREENED, een 
Horizon 2020-project van de Europese Unie dat deel van het EURION-cluster uitmaakt, gericht 
op de ontwikkeling van nieuwe test- en screeningsmethoden om hormoonverstorende stoffen (in 
het Engels “endocrine disrupting chemicals” (EDCs) genaamd) te identificeren. SCREENED 
richtte zich op de schildklier, een essentieel endocrien orgaan dat binnen de toxicologie zeer 
beperkt bestudeerd is. Andere project partners hebben een protocol ontwikkeld voor de 
differentiatie van schildklierorganoïden uit menselijke en muizenembryonale stamcellen (ESC). 
Hiermee kan een in vitro cel model gemaakt worden voor het testen van de effecten van EDCs. 
De resultaten van de blootstellingsexperimenten die tijdens dit project werden uitgevoerd, 
worden in dit proefschrift gerapporteerd. 

Voor de bulk transcriptoom analyses in Hoofdstukken 2 en 3 gebruikten we een relatief 
nieuwe methode die in staat is om tegelijkertijd de mRNA en miRNA expressie in een monster 
te bepalen, genaamd "Combo-Seq". In Hoofdstuk 2 hebben we de robuustheid van deze 
methode geëvalueerd en vergeleken met conventionele afzonderlijke poly(A) en kleine RNA-
bibliotheken. Voor de analyze van deze RNAseq data hebben wij een nieuwe en verbeterde 
pijplijn gemaakt, omdat de analyse pijplijn van de fabrikant een aantal beperkingen en 
onnauwkeurigheden vertoonde. In dit hoofdstuk vergeleken we de twee pijplijnen in 
verschillende stappen van de gegevensanalyse, van gegevensverwerking tot differentiële 
expressieanalyse. 

In Hoofdstuk 3 stelden we ESC-afgeleide schildklierfollikels van muizen bloot aan vijf 
oplopende, biologisch relevante doses van vier ftalaten gedurende 24 uur en analyseerden we de 
veranderingen in het transcriptoom met behulp van RNA-Sequencing. Gene Set Enrichment 
Analysis toonde een gemeenschappelijke inductie van genen betrokken bij vetzuurmetabolisme 
door alle vier ftalaten, evenals repressie van genen betrokken bij signalering door GTPases, 
tyrosinekinases en TGFB familieleden en extracellulaire matrixorganisatie. Bij alle 
blootstellingen zagen we een toename van Ing5, waarvan het eiwitproduct betrokken is bij 
histonacetylering. Vervolgens stelden we een schildkliercellijn gedurende 5 dagen bloot aan een 
selectie van twee ftalaten om het effect van de behandeling op de chromatinetoegankelijkheid 
vast te stellen, maar we namen geen veranderingen waar. 

In Hoofdstuk 4 analyseerden we de effecten van 16 EDCs uit vier verschillende klassen 
op organoïden van de schildklier bij muizen door middel van transcriptomics en proteomics. We 
observeerden dosis-respons curves voor verschillende genen en een paar miRNAs, en voor 
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sommige EDCs konden we een dosis vaststellen die als potentiële point of departure kon dienen. 
We gebruikten transcriptomics gegevens om een differentiële expressieanalyse uit te voeren 
waarbij EDCs per klasse werden gegroepeerd om mogelijke klasse-effecten te identificeren en 
proteomics gegevens om eiwitten te identificeren die differentieel tot expressie kwamen na een 
blootstelling met EDCs. We combineerden de twee datasets om vast te stellen of veranderingen 
in genen of miRNA expressie voorspellend zouden kunnen zijn voor de eiwitniveaus van 
doeleiwitten. Daarnaast hebben deze data gebruikt om Random Forest classificatiemodellen af 
te leiden die gebruikt kunnen worden om EDCs te classificeren. 

In Hoofdstuk 5 onderzochten we of verschillende omgevingscontexten van 
geslachtshormonen de respons van het schildkliermodel op EDCs zouden beïnvloeden. Hiertoe 
stelden we menselijke ESC-afgeleide schildklierfollikels gedurende drie dagen bloot aan twee 
mengsels van oestrogeen, progesteron en dihydrotestosteron die de serumniveaus van menselijke 
vrouwen en mannen in de reproductieve leeftijd simuleren. Vervolgens voegden we gedurende 
24 uur BAP en PCB153 toe, en aan het eind van de blootstellingsperiode voerden we 10x 
Genomics single cell RNA-Sequencing uit. PCB153 had zeer beperkte effecten op het 
transcriptoom. We zagen synergieën tussen BAP en de twee hormoonmengsels, vooral de 
"mannelijke" cocktail, die invloed hadden op ribosomale genen en genen die betrokken zijn bij 
de bevordering van ontsteking, lipidentransport en -metabolisme en oxidatieve fosforylering. 
Bovendien verhoogde de aanwezigheid van het "vrouwelijke" mengsel de expressie van 
arylkoolwaterstofreceptordoelwitten.  
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Impact of the Thesis 
Endocrine disrupting chemicals (EDCs) are a large group of compounds comprising 

many manmade substances that pollute the environment and can interfere with the normal 
functioning of the endocrine system, including the thyroid, and as such they constitute an 
important environmental concern. They are found in common everyday products (like food 
packaging, medical plastic material, wire and cable sheathing, paints and coatings, textiles, fuel), 
and daily exposure of the general population occurs via the diet, air, skin, and water. My PhD, 
as part of the SCREENED (SCREENing for Endocrine Disruptors) project, focused on the 
thyroid, an essential endocrine organ understudied within the field of toxicology. SCREENED 
aimed at answering the following questions: can we develop 3-dimensional in vitro models of 
thyroid for studying the effects of EDCs? And are these compounds having a deleterious effect 
directly on the thyroid? 

To this end, our partners at the Université Libre De Bruxelles in Belgium developed a 
protocol for differentiating thyroid organoids from human and mouse embryonic stem cells 
which we used for our experiments together with thyroid cell lines. We focused on four EDCs 
classes named organophosphate flame retardants (OPFRs), phthalates, polycyclic aromatic 
hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) and performed several screenings 
during the project using a relevant dose range that would be relevant to human daily exposure, 
testing the difference between static and organ-on-a-chip culture conditions, as well as evaluating 
the response over a short- or long-term exposure. We used several omics techniques, which allow 
to perform an exhaustive profiling of several biological molecules, to study how EDCs can affect 
the transcriptome, proteome and epigenetic status of cells. 

To provide some examples, we observed that our in vitro thyroid models can respond 
to aryl hydrocarbon receptor (AHR) agonists such as PAHs or some PCBs with the induction of 
the cytochrome P450 (the main detoxifying enzymes of the human body) genes CYP1A1 and 
CYP1B1, to our knowledge a phenomenon to date only described in a handful of thyroid cancer 
cell lines. We also observed that phthalates can induce fatty acid metabolism and downregulate 
the transduction of important signaling proteins and extracellular matrix organization. 
Combining gene, miRNA and protein expression data, we built a machine learning classification 
model that could help us identify if an unknown sample was exposed to one of the EDCs classes 
we studied. 

We showcased how omics approaches can be used in toxicology experiments to 
elucidate the cell response to harmful chemicals and provided hypotheses to be further tested 
with targeted experiments. Together with our other SCREENED partners, we started developing 
a model and tested it, laying the basis for a future use of in vitro models for endocrine disruption 
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testing. We generated a wealth of omics data derived from thyroid models exposed to EDCs that 
we deposited (or will deposit) in repositories, making it publicly available. Compared to the 
greater focus that other organs, like liver and intestine, receive, the field of thyroid toxicology is 
relatively understudied, and we started to fill a gap that we believe can be of use to other 
researchers. 

Our work has led us to publish two of the chapters included in this thesis and, at the 
date of writing, having one under review. Striving to make our research FAIR (Findable, 
Accessible, Interoperable and Reusable), we always opted for open access journals, making our 
findings discoverable to anyone who is interested, and shared the data and scripts used for the 
analyses. 
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1. The Endocrine System
In mammals, the endocrine system comprises several hormone-producing organs: the 

hypothalamus, the pituitary gland, the thyroid gland, the parathyroid glands, the adrenal glands, 
the beta-cells in the pancreas, the ovaries (in females) and the testes (in males). Hormones 
regulate body growth, development, metabolism and homeostasis, and reproduction (1). 
Hormonal regulation in endocrine organs is regulated by the hypothalamus, which releases 
hormones that target the pituitary gland. In turn, the pituitary releases other tropic hormones 
that induce hormone production and release in the thyroid, gonads, and adrenal glands. These 
connections are termed hypothalamic-pituitary-thyroid (HPT)/gonadal/adrenal axes (2). 

There are three types of hormones, based on the way they are synthesized: the first type 
is protein and polypeptide hormones, which are constituted by an amino acid chain. They 
usually derive from longer polypeptide chains, named prohormones, which are then cleaved to 
their active form. In turn, the prohormones often derive from a preprohormone, which can be 
processed in different parts of the body into different types of prohormones. Peptide hormones 
are stored into intracellular granules, to prevent their degradation by proteases, and include, 
among others, the thyrotropin release hormone (TRH) and the thyroid stimulating hormone 
(TSH). The second type of hormones is the steroid hormones, derived from cholesterol. Steroid 
hormones are generally not stored intracellularly but synthesized and released upon cell 
stimulation by diffusion. Their release is limited by the rate-limiting of final enzyme in the 
synthesis pathway. The third type of hormones is amino acid derivatives, which include the 
thyroid hormones (THs) and catecholamines (derived from tyrosine), and indolamines (derived 
from tryptophan) .The third type of hormones is amino acid derivatives, which include the 
thyroid hormones (THs) and catecholamines (derived from tyrosine), and indolamines (derived 
from tryptophan) (2, 3). 

1.1 The Thyroid and the Synthesis of the Thyroid 
Hormone 
The thyroid is an endocrine gland positioned in the lower part of the anterior neck and 

is responsible for the production of the THs, whose receptors are expressed throughout the body 
(4). It plays a central role in metabolism regulation, homeostasis and growth (1). TSH is the 
main regulator of TH production and is secreted by the adenohypophysis. In turn, TSH 
production is regulated both by circulating TH levels and TRH, synthesized in the 
hypothalamus. In a feedback loop mechanism, TH negatively regulates the production of TRH. 
The system that comprises the thyroid, the adenohypophysis and the hypothalamus is collectively 
termed hypothalamic-pituitary-thyroid (HPT) axis (5).  

Introduction
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Normal thyroid functioning relies on a negative-feedback loop that involves signaling 
between the hypothalamus, adenohypophysis, and thyroid, collectively referred to as 
hypothalamic-pituitary-thyroid (HPT) axis: the hypothalamus is responsible for the synthesis of 
the TRH and the hypothalamic axonal projections from the paraventricular nucleus release TRH 
in the portal capillaries, which is transported via the hypophysial portal system to the 
adenohypophysis. TRH binds to its receptor (TRHR1) and induces the synthesis and release of 
the TSH by the adenohypophysis (5). TSH is in turn released in the bloodstream, through which 
it reaches the thyroid, binding to the TSH receptors (TSHR) on the thyrocytes surface, finally 
inducing the synthesis of the TH. 

Anatomically, the thyroid is composed of two symmetrical lobes connected by an 
isthmus. The main cell type of the thyroid is constituted by thyrocytes, which organize in small 
hollow spheres called follicles, composed of 20 to 40 cells. Thyrocytes are responsible for 
synthesizing the TH, whose precursor is stored in the center of the follicle (the lumen) in a dense 
matrix termed colloid. The other cell type in the thyroid are the C-cells, which make up for 
around 0.1% of the thyroid cell population and are dispersed among the thyrocytes (6). They 
synthesize calcitonin, an hormone necessary for calcium regulation (7). The synthesis of the TH 
starts with the active transport of iodine inside the thyrocyte via the sodium iodide symporter 
(NIS in human) from the basal side and moves via passive diffusion to the apical side. In the 
follicle lumen, it is covalently bound via oxidation to the tyrosyl (Tyr) residues of the protein 
thyroglobulin (TG) via the action of the membrane-bound enzyme thyroid peroxidase (TPO) 
(6, 8). Hydrogen peroxide (H2O2) is necessary for this oxidative reaction to occur and is produced 
by the transmembrane glycoproteins dual oxidase 1 (DUOX1) and 2 (DUOX2) (9). Proper 
maturation and localization of the DUOX proteins requires the interaction with auxiliary 
proteins called dual oxidase maturation factor 1 and 2 (DUOXA1, DUOXA2), which interact 
with DUOX1 and DUOX2, respectively (10). One or two iodine atoms can be bound to a Tyr 
residue, generating 3-iodotyrosine (MIT) and 3,5-diiodotyrosine (DIT) (9). TPO also catalyzes 
the subsequent phenolic coupling of these two iodotyrosyls, mostly generating the precursors of 
the TH 3,5,3’-triiodothyronine (T3) and 3,5,3’,5’-tetraiodothyronine (T4), still covalently 
bound to TG. Coupling of one MIT and one DIT generates a T3 molecule, while coupling of 
two DIT molecules produces T4 (6, 11). Other iodothyronines can be produced, namely 3,5-
diiodothyronine (T2) and 3,3’,5’-triiodothyronine (reverse T3 or rT3), but they account for a 
very small fraction of the total TH production (6). Following TSH stimulation, TG is 
phagocyted from the colloid into the cytoplasm and degraded in the lysosomes, freeing TH, that 
can be transported outside the thyrocyte mainly by the SLC16A2 monocarboxylate transporter 
8 (MCT8) (8). 

Chapter 1
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1.2 Distribution, Metabolism and Excretion of the Thyroid 
Hormone  

1.2.1 Distribution to the Target Organs and Target Genes 
Expression 
The thyroid mostly produces T4 (around 80% T4 and 20% T3 (12)), reflected in the 

very different total plasma concentration of the two types of TH (1.8 nM for T3, 100 nM for 
T4). After synthesis, the TH is released in the bloodstream, where most of it is bound by, in 
order of affinity, thyroxine hormone-binding globulin (TBG), transthyretin (TTG) and serum 
albumin to prevent degradation. Thus, the serum concentration of free TH is very low (5 pM 
for T3 and 20 pM for T4) (13). In the target organs, the TH binds to the thyroid hormone 
receptor (THR), which in its activated for can function as a monomer, a homodimer but 
preferentially as heterodimer with the retinoid X receptor (RXR). The THR is coded by two 
different genes: THRA, coding for TRa and THRB, coding for TRb. Several isoforms of the 
THR exist, but the functional ones known to date are TRa1, TRb1 and TRb2 (14). The 
activated THR  can (mostly) induce but also repress gene expression (14) and the target genes 
vary depending on the tissue and developmental stage (15). 

 

1.2.2 Metabolism and Excretion  
Once T4 reaches the target organs, it is converted to T3 via removal of one iodine atom 

by deiodinases (DIO). In human, type 1 deiodinases (DIO1) are located on the plasma 
membrane and is expressed in the liver, kidney, thyroid and hypophysis, while type 2 deiodinases 
(DIO2) are located on the endoplasmic reticulum membrane and have a more widespread (but 
variable in its level) expression in thyroid, heart, brain, spinal cord, skeletal muscle, placenta, 
skin, retina, cochlea, kidney, brown adipose tissue and pancreas (5, 16-19). DIO1 can deiodinate 
both the outer and inner ring of T4, converting it to T3 and rT3 (an inactive form of the TH), 
respectively (20) however, DIO1 preferred substrate is rT3, sulfated T3 (T3S) and T4 (T4S) 
(21). DIO2 preferred substrate is T4 and can only perform outer ring deiodination, generating 
T3 (20). An additional type 3 deiodinase (DIO3) exists, which removes an iodine atom from the 
inner T4 and T3 ring, generating rT3 and T2 (another inactive form), respectively. DIO3 is 
important during embryonic development to prevent exposure to too high TH levels, and is 
primarily expressed in the fetus, placenta, and pregnant uterus. In the adult, it is only expressed 
in the central nervous system (22) and skin (19, 23). In addition to deiodination, the TH can be 
inactivated by sulfonation, which facilitates deiodination by DIO1, and increases its solubility, 
facilitating the excretion via the bile and urine. The TH can also be the substrate for 
glucuronidation in the liver, kidney, and intestine. This process facilitates the excretion via the 
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bile and feces. Overall, however, the sulfonation and glucuronidation seem to mostly have to 
role of creating a pool of inactive TH reservoir, as these reactions are reversible and only a small 
proportion of the TH is actually excreted (20).  

 

2. Endocrine Disrupting Chemicals 
The term “endocrine disrupting chemical” (EDC) refers to a broad class of 

environmental pollutants that can negatively interfere with the endocrine system and as 
consequence cause adverse effects in an intact organism, its progeny, populations or 
subpopulations. They are found in many everyday products, and daily exposure for the general 
population occurs via the diet, air, skin, and water (24).  

In Figure 1, we report the 10 key characteristics (KCs) recently published by the US 
National Institute of Environmental Health Sciences (NIEHS) that can be used when evaluating 
chemicals as EDCs (25), and that can we therefore refer to for defining which the characteristics 
of EDCs are. 

 

 
Figure 1. Key characteristics (KC) of endocrine disrupting chemicals as defined by the US National 
Institute of Environmental Health Sciences (NIEHS). 

In the work presented in this thesis, we focused on four EDC classes: organophosphate 
flame retardants (OPFRs), phthalates, polycyclic aromatic hydrocarbons (PAHs) and 
polychlorinated biphenyls (PCBs) (Table 1). They have been recognized as able to interfere with 
the hormones systems including the TH system, either directly affecting the thyroid, or indirectly 
affecting any of the steps involved in TH action after its release in the bloodstream. 
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Table 1. Endocrine disrupting chemicals studied in this thesis grouped by class.  

Organophosphate flame retardants (OPFRs) 
BADP DMMP TDCPP TPP 

Bisphenol A bis(diphenyl 
phosphate) 

Dimethyl 
methylphosphonate 

Tris(1,3-dichloro-2-
propyl) phosphate 

Triphenyl phosphate  

  
  

 
Phthalates 

DEHP DIDP DINP DnOP 
Bis(2-ethylhexyl) 

phthalate 
Di-iso-decyl phthalate Di-iso-nonyl phthalate Di-n-octyl phthalate 

 
   
 

Polycyclic aromatic hydrocarbons (PAHs) 
BAA BAP BKF DAHA 

Benz[a]anthracene Benzo[a]pyrene Benzo[k]fluoranthene Dibenzo[a,h]anthracene 

   
 

 
Polychlorinated biphenyls (PCBs) 

PCB118 

 

PCB126 

 

PCB138 

 

PCB153 

 
 

2.1 Organophosphate Flame Retardants (OPFRs) 
Organophosphate Flame Retardants (OPFRs) include a wide range of halogenated and 

non-halogenated compounds containing phosphorus. The most common OPFRs include three 
classes: phosphate esters, phosphonates and phosphinates. They are found in engineering plastics, 
coatings, polyurethane foams and textiles (26) and there is evidence of their association with 
thyroid disruption. Tris(1-chloro-2-propyl) phosphate (TCPP) has been shown to increase Dio1 
expression and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) to negatively affect serum T4 
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levels in the developing chicken embryo (27). In human, a negative association has been found 
between TDCPP concentration in house dust and serum T4 levels in adult men (28). In vitro, 
TPP upregulated tshβ, trα, and trβ in the TH-responsive GH3 cell line (a hypophysis cell line) 
showing how TPP can have opposite effects of T3 treatment. In FRTL-5 cells (a thyroid-derived 
cell line), TPP treatment increased the expression of genes related to TH synthesis (29). In 
zebrafish, TDCPP and TPP have been shown to alter TH serum levels and affect key regulatory 
genes in the hypothalamic-pituitary-thyroid (HPT) axis in a sex-specific manner (30).  

 

2.2 Phthalates  
Phthalates are a class of manmade compounds used in the manufacturing industry as 

solvents or added as plasticizers, mainly to polyvinyl chloride (PVC) or other polymers, to confer 
flexibility and softness (31, 32). Phthalates are alkyl or dialkyl esters of phthalic acid and their 
functional groups can be linear, branched, or circular (33). Depending on their size, phthalates 
are classified into low and high molecular weight (MW) (34, 35). Low MW phthalates include 
benzyl butyl phthalate (BBP), diethyl phthalate (DEP), di-iso-butyl phthalate (DiBP), dimethyl 
phthalate (DMP) and di-n-butyl phthalate (DnBP), while high MW ones comprise bis(2-
ethylhexyl) phthalate (DEHP), di(2-propylheptyl) phthalate (DPHP), di-iso-decylphthalate 
(DIDP), di-iso-nonylphthalate (DINP), and di-n-octylphthalate (DnOP) (36). They are found 
in common household items, medical devices, construction material and consumer products 
(36). As they are not covalently bound to the matrix they are added into, they can leave the 
material by direct release, evaporation leaching or abrasion (36). As a result, human exposure to 
phthalates can occur via ingestion, inhalation or dermal absorption (36), with ingestion via 
foodstuff being the most prominent via of exposure in the general population (37). Human 
biomonitoring studies conducted on the general population in Asia, Europe and North America 
show a widespread exposure of the general population to phthalates (36, 38-41). Once ingested, 
they are rapidly metabolized in the digestive tract to their monoester form, which are the species 
responsible for the phthalates’ toxicity. Low MW phthalates metabolites are then excreted 
through the urine, while high MW metabolites are excreted both via the urine and feces (31). 
While they do not bioaccumulate, the persistent exposure of the population is cause for concern. 
Short and medium chain phthalates have been associated with higher toxicity than long chain 
ones which has led to their banning or restriction in children’s toys or teething products (42, 
43). Some phthalates have been associated with negatively impacting male fertility and altered 
development of the male reproductive tract (36), as well as female fertility, impacting 
folliculogenesis and steroidogenesis (44). They have been shown to interfere with prenatal and 
postnatal development in animal models (45). In the thyroid, phthalate treatment has been 
shown to have an effect in vitro and in vivo, causing histological changes, such as reduced follicle 
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size and colloid density, hypertrophy of the Golgi apparatus, increase in number and size of 
lysosomes and alteration of the TH levels (32, 46-49). In vivo and in vitro studies show how 
DEHP, one of the most diffused phthalates, can interfere with Tsh/TshR signaling and alter 
thyrocyte morphology (50, 51), and can compete with T3 for TR binding (49). In human 
studies, altered serum levels of T3 and T4 have been correlated with plasticizers metabolites in 
urine (47, 52).  

2.3 Polycyclic Aromatic Hydrocarbons (PAHs) 
Polycyclic Aromatic Hydrocarbons (PAHs) comprise a large group of organic 

compounds composed of two or more benzene rings and containing only carbon and hydrogen. 
They are poorly soluble in water but highly lipophilic and soluble in organic solvents (53). They 
are formed during the incomplete combustion of organic material, including materials employed 
in energy production at the industrial or household level, and tobacco smoke. The greatest source 
of exposure in the general population is thought to be contaminated or burnt food (54). Due to 
their poor water solubility, PAHs bind to soil particles or occur as a separate phase (55). The US 
Environmental Protection Agency (EPA) has classified seven PAHs (benz[a]anthracene (BAA), 
benzo[a]pyrene (BAP), benzo[b]fluoranthene, benzo[k]fluoranthene (BKF), chrysene, 
dibenz[a,h]anthracene (DAHA), and indeno[1,2,3-cd]pyrene) as Group B2, “probable human 
carcinogens” (56). In THR-transfected HepG2 cells, 1-naphthol and 2-naphthol showed 
antagonistic activity against the THR (57). In vitro, PAHs derivatives (hydroxides, ketones and 
quinones) can act as aryl hydrocarbon receptor (AHR) agonists and antagonists, have THR-
potentiation activity and TTR-binding activity (58). AHR activation leads to the induction of 
cytochrome P450 enzymes, which can metabolize PAHs into toxic compounds with carcinogenic 
activity (59). Treatment with the AhR inducer b-naphthoflavone has been shown to lead to a 
decrease in plasma levels of T4 in fish (60) and both T4 and T3 in rat (61), and the authors 
suggest this is probably due to the induction of CYP1A and other hepatic microsomal enzymes, 
with consequent increased hepatic clearance by glucuronidation of TH. In an in vitro human 
recombinant TPO reporter assay, Song and colleagues showed that BKF and DAHA are able to, 
respectively, disrupt and induce TPO activity (62). 

2.4 Polychlorinated Biphenyls (PCBs) 
Polychlorinated Biphenyls (PCBs) are organic synthetic compounds that were 

produced and used until the 1970s as coolants and lubricants in many types of electrical 
equipment, both in industrial and consumer contexts. Contamination of the environment can 
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occur via burning, leaking, spilling, or breaking down of the material they are contained in. Due 
to their high chemical stability, they break down slowly and remain in the environment for a 
very long time, and due to their volatility, they can be carried via the atmosphere also very far 
away from where they were released. In consequence, PCBs are found all over the world. In 
human, PCB contamination mainly occurs via contaminated food and air. When ingested, they 
bioaccumulate due to their lipophilicity (63).  

The base structure of PCBs is two phenyl rings connected by a carbon-carbon bond. 
Hundreds of PCBs exists which differ for the number and position of chlorine atom 
substitutions. Congeners with no chlorine substitutions in the ortho position (Figure 2) are 
termed coplanar PCBs and include number 77, 81, 126, and 169. They are also termed “dioxin 
like” because of their resemblance in structure to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin or 
2,3,7,8-TCDD), and are potent AHR agonists. As such, they are recognized as the most toxic 
PCBs. Congeners with one or more ortho substitution are not planar due to the steric hindrance 
of the bulk Cl atoms and have lower toxicity but can nonetheless have deleterious effects for 
example on the TH system. 

 

 
Figure 2. Basic structure of a polychlorinated biphenyl reporting the nomenclature of the functional groups 
position. 

In fact, compounded evidence shows that PCBs can interfere with the production and 
transformation of TH in the thyroid and peripheral tissues, with the transport of TH in the 
blood, and increase the TH clearance in peripheral tissues (64). For example, PCBs can affect 
TH action by increasing T4 hepatic clearance (65, 66) and inhibiting T3 binding to the THR 
or by causing the dissociation of the THR to the thyroid response element (TRE). Hydroxylated 
PCBs, which derive from PCB hepatic metabolism, can compete with the TH for TTR binding 
in the blood (67). Hepatic UDP-glucuronosyltransferase (UDP-GT) was induced in a dose-
dependent way in rats fed with the PCB mixture Aroclor 1254, also showing a decrease in serum 
T4, an increase in rT3 and thyroid hypertrophy and hyperactivity. No alterations in Tsh or serum 
T3 were observed (68). Similar results were obtained by Hood and Klaassen, who showed that 
Aroclor 1254 is able to decrease serum T4 but not T3 or Tsh levels in rat due to an increase in 
activity in the hepatic UDP-GT toward T4 but not T3 (69).  
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2.5 Regulatory Testing for the Disruption of the Thyroid 
System 
In 2018 the Organization for Economic Co-operation and Development (OECD) 

published test guidelines (TG) for screening and testing of chemicals for potential endocrine 
disrupting activity (70). Currently, only in vivo tests are approved for evaluating the effects on 
the thyroid activity. Three others are reported but have only been approved by the US 
Environmental Protection Agency (EPA) (Table 2).  

 
Table 2. Tests approved by the Organization for Economic Co-operation and Development (OECD) for 
endocrine disruption testing that include endpoints to evaluate thyroid disruption. 

Test name Status 
Mandatory endpoints 

for thyroid-related 
activity 

Optional endpoints 
for thyroid-related 

activity 
OECD TG 231 
(Amphibian 
Metamorphosis Assay) 

Approved by OECD Thyroid development. 
Histopathologic 
changes in thyroid 
gland. 

 

OECD TG 241 
(Larval Amphibian 
Growth and 
Development Assay 
(LAGDA) 

Approved by OECD Changes in: 
- thyroid 

histopathology 
- time to 

metamorphosis 

 

OECD TG 407 
(Repeated Dose 28-
Day Oral Toxicity 
Study in Rodents) 

Approved by OECD Histopathologic 
changes in thyroid 
(follicular cell height 
increase and colloid 
area decrease). 

Serum T3 and T4 
decreased, TSH 
increased.  
Thyroid weight. 

OECD TG 408 
(Repeated Dose 90-
Day Oral Toxicity 
Study in Rodents) 

Approved by OECD Serum T4, T3 
decreased, TSH 
increased.  
Histopathologic 
changes in thyroid 
gland. 
Thyroid weight. 

 

OECD TG 409 
(Repeated Dose 90-
Day Oral Toxicity 
Study in Non-rodents) 

Approved by OECD Increased thyroid 
weight. 
Histopathologic 
changes in thyroid 
gland. 

 

OECD TG 411 
(Subchronic Dermal 
Toxicity: 90-Day 
Study) 

Approved by OECD Histopathologic 
changes in thyroid 
gland. 
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Test name Status 
Mandatory endpoints 

for thyroid-related 
activity 

Optional endpoints 
for thyroid-related 

activity 
OECD TG 412 (28-
Day (Subacute) 
Inhalation Toxicity 
Study) 

Approved by OECD Increased thyroid 
weight. 
Histopathologic 
changes in thyroid 
gland. 

 

OECD TG 413 
(Subchronic Inhalation 
Toxicity: 90-Day 
Study) 

Approved by OECD Increased thyroid 
weight. 
Histopathologic 
changes in thyroid 
gland. 

 

OECD TG 414 
(Prenatal 
Developmental 
Toxicity Study) 

Approved by OECD Increased thyroid 
weight. 
Histopathologic 
changes in thyroid 
gland. 
Serum T4, decreased, 
TSH increased. 

 

OECD TG 416 
(Two-Generation 
Reproduction Toxicity 
Study) 

Approved by OECD Increased thyroid 
weight. 
Histopathologic 
changes in thyroid 
gland. 

 

OECD TG 421 
(Reproduction/Develo
pmental Toxicity 
Screening Test) 

Approved by OECD Increased thyroid 
weight (“when 
necessary”). 
Histopathologic 
changes in thyroid 
gland. 
Serum T4 decreased, 
TSH increased (“if 
relevant”). 

 

OECD TG 422 
(Combined Repeated 
Dose Toxicity Study 
with the 
Reproduction/Develop
mental Toxicity 
Screening Test) 

Approved by OECD Increased thyroid 
weight (“when 
necessary”). 
Histopathologic 
changes in thyroid 
gland. 
Serum T4 decreased, 
TSH increased (“if 
relevant”). 

 

OECD TG 441 
(Hershberger Bioassay 
– Adult Male after 
Castration) 

Approved by OECD  Reduction in serum 
T4 and T3 
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Test name Status 
Mandatory endpoints 

for thyroid-related 
activity 

Optional endpoints 
for thyroid-related 

activity 
OECD TG 443 
(Extended One-
Generation 
Reproductive Toxicity 
Study) 

Approved by OECD Increased thyroid 
weight. 
Histopathologic 
changes in thyroid 
gland. 

 

OECD TG 451-3 
(Combined Chronic 
Toxicity/Carcinogenici
ty Studies) 

Approved by OECD Increased thyroid 
weight. 
Histopathologic 
changes in thyroid 
gland. 

 

Xenopus Embryonic 
Thyroid Signaling 
Assay (XETA) 

Under validation THbZIP-GFP 
construct (TH-
sensitive promoter). 
Fluorescence is 
measured as effect of 
TH activation 

 

US EPA OPPTS 
890.1450 (Pubertal 
Development and 
Thyroid Function 
Assay in Peripubertal 
Female Rats) 

Approved by EPA Increased thyroid 
weight. 
Histopathologic 
changes in thyroid 
(follicular cell weight 
increase and colloid 
area decrease). 
Serum T4 decreased, 
TSH increased. 

 

US EPA OPPTS 
890.1500 (Pubertal 
Development and 
Thyroid Function 
Assay in Peripubertal 
Male Rats) 

Approved by EPA Increased thyroid 
weight. 
Histopathologic 
changes in thyroid 
(follicular cell weight 
increase and colloid 
area decrease). 
Serum T4 decreased, 
TSH increased. 

 

US EPA OCSPP 
890.2100/740-C-15-
003 ATGT (Avian 
Two-Generation 
Toxicity Test in the 
Japanese Quail) 

Approved by EPA T3, T4  

GFP: Green Fluorescent Protein; THR: Thyroid Hormone Receptor 
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These tests use mammalian and non-mammalian model organisms at various stages of 
development to study various endpoints of thyroid disruption, such as T3, T4 and TSH serum 
levels, direct effects on thyroid histology as well as alterations in development and maturation.  

In vitro tests have been described but as of 2018 no guidance has been written since 
they are still at the research stage, and none have yet been validated and standardized at the 
international level. Moreover, they can test thyroid agonists and antagonists, but thyroid 
disruption can occur at other points in the thyroid system that these tests cannot evaluate. 

Despite the number of testing options, the OECD itself states in the document several 
limitations presented by these assays. For example, when toxicity is observed, it may not be due 
to endocrine disruption. As such, possibly confounding effects of systemic toxicity on endocrine 
endpoints need to be considered. Sometimes, positive (i.e. toxic) effects may not affect 
development and reproduction further in life.  

On the opposite end, absence of acute toxicity or effects does not mean absence of 
endocrine disrupting activity. There could be confounding factors, for example the test duration 
was not long enough to observe effects since the compound needs to bioaccumulate to a certain 
level before displaying toxicity, or it is not an EDC in amphibians, or the life stage used for 
testing is not relevant. In other cases, some indirect thyroid effects (e.g. CYP450 induction) are 
difficult to interpret in the context of endocrine disruption.  

A retrospective review of 124 reproductive screening studies on mice performed using 
some of the OECD-approved tests mentioned above (OECD TG 408, 414, 421, 422, 443) 
concluded that including TH measurements does not provide specific information needed to 
assess endocrine disruption, as TH alterations are recorded but conclusions on the underlying 
causes cannot be drawn. Instead of adding additional endpoints to the in vivo studies, the authors 
recommend investing on the development and validation of in vitro assays, as they can be more 
functional in elucidating the mode of action in humans (71). 

Since the Registration, Evaluation, Authorization and Restriction of Chemicals 
(REACH) Regulation was established by the EU in 2006 to manage the risk of chemical 
substances with an import or production of 1 ton/year or more, companies have been required 
to perform and report the results of toxicity evaluations. As of December 2022, the combined 
amount of laboratory animals used or planned to be used for a subset of test categories 
(reproductive toxicity tests, developmental toxicity tests, and repeated-dose toxicity tests for 
human health) has been estimated to be 4.2 million, not including the pups or the progeny in 
the case of multi-generational studies. Questions have been raised about the advantages posed by 
the use of in vivo testing beside the fulfilment of legal requirements and whether equivalent 
information could be gained by new approach methodologies (NAMs) (72, 73). 
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3. Omics Technologies in Regulatory Risk 
Assessment 

One of the challenges related to the use of omics technologies in a regulatory setting 
lies in the desired outcome of toxicological in vivo testing, that is a positive or negative apical 
endpoint, namely an observable pathological alteration at the cell or organ level. Often, to define 
a substance as hazardous, it is not necessary to uncover the molecular mechanism underlying the 
alteration. In this context, the added value of omics technologies lies in the ability to predict, 
rather than observe, a pathological alteration, for example in the identification of a Molecular 
Initiating Event (MIE) and Key Event Relationships (KERs) in the context of Adverse Outcome 
Pathway (AOP), or identifying the point of departure (POD), which is a dose at which a 
biological response that can be predictive of a disease state rises above background levels (74). 
MIE refers to the direct interaction of a chemical with a biological target, which causes a 
succession of measurable Key Events (KEs) connected by causal KERs. Eventually, the sequence 
of KEs leads to an Adverse Outcome (AO) at the organism or population level. The whole 
succession of events, from MIE to AO, is termed AOP (75). Additionally, they could provide 
evidence for a successful read-across (an approach that uses relevant information from analogous 
chemicals to predict the properties of ones for which data is lacking (76)), which has proven 
unsuccessful with current in vitro testing methodologies, with 75% of studies being rejected due 
to of lack of compliance and causing companies being asked to perform standard tests (77).  

Currently, omics technologies have a limited role in formal regulatory testing. The 
OECD approved in June 2022 the first in vitro test for skin sensitization (OECD TG 442E) 
that addresses the Key Event “Activation of dendritic cells” belonging to the AOP 40 “Covalent 
Protein binding leading to Skin Sensitization” (Figure 3). These guidelines collect four tests, 
including an assay that evaluates the expression of 196 genes associated with the process of 
activation of monocytes and dendritic cells following exposure to sensitizers (“Genomic Allergen 
Rapid Detection (GARD™) for assessment of skin sensitizers (GARD™skin)”). The outcome of 
the test is a binary hazard identification of skin sensitizers (78). 

 

 
Figure 3. Schematic representation of the Adverse Outcome Pathway 40 “Covalent Protein binding leading 
to Skin Sensitization”. According to the Molecular Initiating Event (MIE) 396 “Covalent Binding, 
Protein”, a chemical binds covalently to the skin proteins. The causal relationships between the MIE, the 
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three Key Events (KE) “Activation, Keratinocytes” (KE 826), “Activation, Dendritic Cells” (KE 398) and 
“Activation/Proliferation, T-cells” (KE 272) and the eventual Adverse Outcome (AO) “Sensitization, skin” 
(AO 827) are depicted with black arrows. 

Additionally, initiatives at the European and North American level have brought to the 
development of the Omics Data Analysis Framework for Regulatory Application (R-ODAF) (79, 
80) and the National Toxicology Program's (NTP) Approach to Genomic Dose-Response 
Modeling (81), which provide guidelines for the analysis of toxicological transcriptomic data.  

At present, there is no formal reporting scheme that includes all steps essential for 
performing analyses and promoting transparency and reproducibility. However, a framework for 
using omics technologies has been outlined by the OECD called the “OECD reporting 
framework” (82) to provide guidance to  define a way of standardizing the report of omics and 
non-omics toxicological data and results for the application in regulatory toxicology and is 
currently undergoing trialing and evaluation. It is composed of both general and specific modules 
that have been developed for specific technologies (i.e. microarray, targeted and untargeted 
RNA-Seq and qPCR arrays for transcriptomics, mass spectrometry and nuclear magnetic 
resonance (NMR) spectroscopy for metabolomics). This framework will be extended with new 
modules to incorporate novel technologies in the future. It includes reporting the experimental 
details that led to data collection, the omics assay, the data acquisition and analysis including the 
statistical analysis used for identifying differentially abundant transcripts or metabolites (Figure 
4).  

 
 

 
Figure 4. Schematic representation of the OECD reporting framework for transcriptomics and 
metabolomics. (Reproduced from Harrill et al. 2021). 
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In this context, this thesis aims at identifying endocrine disruption and elucidating the 
direct effects of four EDC classes in the thyroid using in vitro embryonic stem cell (ESC)-derived 
models from both human and mouse using omics technologies. For the bulk RNA-Seq analyses, 
we selected the Combo-Seq kit, allowing us to profile both mRNA and miRNAs from the same 
sample, and in Chapter 2 we compared it to conventional, separated, poly(A) and small RNA 
libraries and developed a custom pipeline for the data processing. In Chapter 3, we performed 
an in-depth study of the effect of phthalates on the mouse model. We exposed the organoids to 
5 increasing doses of four compounds for 24 hours and observed a consistent upregulation of 
Ing5, whose product is a member of histone H3 and H4 acetylase complexes. Suspecting a 
potential effect on chromatin rearrangement, we further investigated the effects of a 5 days of 
treatment on chromatin accessibility via ATAC-Seq. In Chapter 4, we broadened the focus, using 
the full panel of EDCs selected for SCREENED, plus two compounds with a known direct 
(deleterious) effect on TH production. We combined transcriptomic and proteomic dataset to 
investigate common changes, concomitant miRNAs and target proteins dysregulation, and to 
construct random forest classification models. In Chapter 5, we used the human model to study 
the influence of sex hormones on the response to the two compounds BAP and PCB153 using 
single cell RNA-Seq. In Chapter 6, we discuss the overall results and draw conclusions on the 
general, recurrent topics touched in this thesis.  
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Abstract 
The analysis of the combined mRNA and miRNA content of a biological sample can 

be of interest for answering several research questions, like biomarkers discovery, or mRNA-
miRNA interactions. However, the process is costly and time-consuming, separate libraries need 
to be prepared and sequenced on different flowcells. Combo-Seq is a library prep kit that allows 
to prepare combined mRNA-miRNA libraries starting from very low total RNA. To date, no 
dedicated bioinformatics method exists for the processing of Combo-Seq data. In this paper, we 
describe CODA (Combo-seq Data Analysis), a workflow specifically developed for the 
processing of Combo-Seq data that employs existing free-to-use tools. We compare CODA to 
exceRpt, the pipeline suggested by the kit manufacturer for this purpose. We also evaluate how 
Combo-Seq libraries analyzed with CODA perform compared to conventional poly(A) and small 
RNA libraries prepared from the same samples. We show that using CODA more successfully 
trimmed reads are recovered compared to exceRpt, and the difference is more dramatic with 
short sequencing reads. We demonstrate how Combo-Seq identifies as many genes and fewer 
miRNAs compared to the standard libraries, and how miRNA validation favours conventional 
small RNA libraries over Combo-Seq. The CODA code is available at https://github.com/marta-
nazzari/CODA. 
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1. Introduction 
The analysis of the RNA content of a biological sample, referred to as transcriptomics, 

has become a routine practice for many fields of biology. The transcriptome comprises several 
types of RNA, called biotypes (1), whose composition varies depending on the type of sample or 
cell model (2-5). Some of the most frequently studied biotypes are messenger RNAs (mRNA) 
and micro RNAs (miRNAs) due to their link with protein expression levels or for their biomarker 
potential (6-11). mRNAs generally possess a 3’ poly(A) tail and are usually 1 kilobase or longer 
(12-14), while miRNAs are short (20-22 nucleotides) long non-coding RNAs (15).  

Currently, simultaneous mRNA and miRNA analysis from the same sample is often 
performed by preparing separate sequencing libraries for the two RNA species. These libraries 
follow two very different protocols for selecting the desired RNA: mRNA libraries protocols 
either perform positive poly(A) selection, capturing all RNA species that possess a 3’ poly(A) tail 
(so called “poly(A) libraries”), or perform a negative rRNA selection, by using baits targeting the 
ribosomal RNA (rRNA) to deplete these species from the total RNA (termed “ribodepleted 
libraries”). To sequence the miRNA content of a sample, a small RNA library needs to be 
prepared, which selects small RNAs by performing a size-selection. The separate preparation of 
two libraries can pose a problem for samples that have very low starting material or RNA content. 
Moreover, mRNA and miRNA sequencing libraries need to be sequenced on separate flowcells, 
due to the different number of cycles required (since the insert sizes differ greatly), and by the 
type of reads generated. In fact, mRNA reads are sequenced paired-end, while short RNA 
libraries single-end. If longer and shorter fragments were mixed in the same flowcell, the short 
fragments would tend to outcompete the longer fragments, which would result in the former 
being overrepresented and latter being undersequenced. When sequencing continues through 
the full fragment, there can be a sharp decline in base quality and the sequencing run could be 
potentially aborted (16). Lastly, when different library prep kits are used, barcodes and barcode 
collision must be considered to confirm compatibility for multiplexing. 

One commercially available library prep kit that aims to overcome these limitations is 
the NEXTFLEX® Combo-Seq™ library prep kit that allows to prepare combined mRNA/miRNA 
libraries starting from very little input total RNA (between 5 ng and 100 ng) (17). In this 
method, poly(A) RNAs are first selectively retrotranscribed; RNA-DNA hybrids are then 
digested by RNase H into small fragments; the sample then contains mRNA-derived fragments 
and short RNAs of comparable length, that are further processed in the same way. As such, 
miRNAs but also other similarly short RNA species, like small nucleolar RNAs (snoRNAs), can 
be captured. The final library contains sequences of homogeneous size, that can be then 
sequenced in a single flowcell. 

Recently, Illumina commercialized the v1.5 S4 35 cycle kit (18) for the NovaSeq6000 
sequencer, which generates short reads. As the average insert length of a Combo-Seq library is 
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21-22 nt, it possesses a very suitable length for being sequenced on a 35-cycles flowcell, further 
reducing the price per sample to study the full transcriptome at very high throughput.  

To date, no dedicated pipeline exists to process Combo-Seq generated datasets, and the 
manufacturer of Combo-Seq recommends using exceRpt (19). This toolkit was developed for 
the analysis of extracellular RNAs but can be adapted to the analysis of WGS/exome and long 
RNA-seq data according to the authors (20). The published works we could find using Combo-
Seq libraries employ exceRpt for their bioinformatics analysis (17, 21, 22). As it was not 
originally developed for Combo-Seq, it presents some problems when used on this type of data: 
the references use custom gene annotations that group together gene counts based on the biotype, 
making it a hybrid between a gene and transcript level analysis. They are custom-made by the 
developers and available only for human (hg19 and hg38) and mouse (mm10). The user is thus 
bound to using them and they cannot be changed or updated, as it is not possible to prepare a 
reference using a genome version downloaded from common repositories such as Ensembl and 
Gencode. In consequence, the applicability of Combo-Seq libraries is reduced to only two species 
with an outdated reference. 

To our knowledge, no independent evaluation of Combo-Seq has been performed, and 
users could wonder if it provides results comparable to using a combination of poly(A) and 
miRNA libraries. For example, mRNA is fragmented in a different way (enzymatically in the 
Combo-Seq protocol or chemically in most poly(A) libraries), and mRNA fragments undergo a 
different size selection, since Combo-Seq retains short poly(A)-derived fragments, while standard 
poly(A) libraries usually include 300 nt-long inserts and longer (and thus exclude the shorter 
mRNA fragments from the pool). 

In this work, we developed a custom-tailored workflow for the processing of Combo-
Seq data which uses existing tools commonly used in RNA-Seq data analysis and compared it to 
exceRpt. We generated Combo-Seq libraries from two different in vitro cell models and 
sequenced them in 100- or 35-cycles flowcells. We processed them with CODA or exceRpt and 
noticed how exceRpt discards part of the reads during the trimming step. We show that this is 
more dramatic as the average read length decreases and it is more biased toward some RNA 
species. We also provide an evaluation of Combo-Seq performance compared to conventional 
poly(A) and small RNA libraries prepared from the same RNA samples. We performed 
differential expression analysis to compare the dysregulated genes and miRNA after 
benzo[a]pyrene treatment that can be identified with the different libraries. We show that the 
differentially expressed genes partially overlap between the two types of libraries, while there is 
no overlap of differentially expressed miRNAs. In addition, we performed miRNA RT-qPCR 
validation to solve discrepancies between conventional small RNA libraries and Combo-Seq 
quantification. 
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2. Materials and Methods 
2.1 Thyroid Follicles Culture and Enrichment  
2.1.1 Embryonic Stem Cells Culture and Differentiation   

Mouse embryonic stem cell-derived thyroid follicles were differentiated and enriched 
as described previously (23, 24). The A2Lox.Cre_TRE-Nkx2-1/Pax8_Tg-EGFP mouse ESC 
cells were initially cultured on gamma-irradiated mouse embryonic fibroblasts (MEFs) feeder 
using mouse stem cell medium [23, 24] and incubated at 37 °C, 5% CO2 and > 95% humidity. 
For differentiation into thyroid, embryoid bodies (EBs) were generated by hanging drops culture 
of ESCs (1,000 cells per drop) for 4 days, then collected and embedded in growth factor-
restricted Matrigel (354230, Corning); 50 ml MTG drops containing around 20 EBs were plated 
into 12-well plates. Cells were differentiated using differentiation medium (composed of DMEM 
(31966021, Gibco) supplemented with 15% FBS, vitamin C (50 μg/mL) (A4544, Sigma), 
nonessential amino acids (0.1 mM) (11140035, Gibco), sodium pyruvate (1 mM) (11360039, 
Gibco), penicillin and streptomycin (50 U/mL) (15140122, Gibco), 2-mercaptoethanol (0.1 
mM) (31350010, Gibco)) supplemented with 1 μg/mL of doxycycline (D9891-1G, Sigma) for 
3 days for Nkx2-1 and Pax8 induction, followed by two weeks of maturation by using 
differentiation medium containing 0.3 nM of 8-Br-cAMP (B 007-500, BioLog). 

 

2.1.2 Follicles Enrichment Protocol 
After complete maturation (day 21), Matrigel drops containing the thyroid follicles 

were washed twice with Hanks’s balanced salt solution (HBSS, containing calcium and 
magnesium) (14025050, Gibco) and incubated in a HBSS solution (1 mL/well) containing 10 
U/mL of dispase® II (4942078001, Roche) and 125 U/mL of collagenase type IV (Sigma) for 
30-45 min at 37 °C. The enzymes were inactivated with 10% FBS and organoids were 
centrifuged at 300×g for 3 min. They were resuspended in differentiation medium and enriched 
for thyroid follicles by filtration using a 100 mm cell strainer (43-50100, pluriSelect Life Science 
GmbH) and 30 mm reverse strainer (43-50030, pluriSelect Life Science GmbH).  

 

2.2 Datasets 
The datasets used in this paper were obtained from two sources: (1) the human 

epithelial follicular cell line Nthy-ori 3-1 was seeded at a density of 40,000 cells/cm2 in a 6-well 
plate and exposed for 24 hours in triplicate to 1 μM or 10 μM benzo[a]pyrene (BAP) (B-1760, 
Sigma) dissolved in DMSO (1029521000, Merck) (final concentration of DMSO 0.5%). Six 
DMSO controls were included. Cells were cultured in RPMI 1640 Medium, GlutaMAX™ 
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Supplement (61870036, Gibco) with 10% FBS and 100 U/mL Penicillin-Streptomycin 
(15140122, Gibco). (2) Enriched thyroid follicles were exposed to DMSO 0.5% for 24 hours (5 
biological replicates). For culture, the differentiation medium was supplemented with 8-Br-
cAMP (0.3 nM) and TGF-βRI inhibitor SB431542 (10 μM) (1614, Tocris). At the end of the 
exposure time, cells were lysed in QIAzol Lysis Reagent (79306, Qiagen). Total RNA was 
extracted using the Direct-zol RNA miniprep (R2051, Zymo Research) for Nthy-ori 3-1 cells 
and with the miRNAeasy Micro Kit (217084, Qiagen) for the follicles.  
 

2.3 Libraries Preparation and Sequencing  
50 ng (Nthy-ori 3-1) and 20 ng (thyroid follicles) of total RNA were used as input for 

the NEXTFLEX® Combo-Seq™ mRNA/miRNA Kit (NOVA-5139-53, PerkinElmer). All RNA 
integrity number (RIN) values, as calculated by the Agilent software (25), were 8 or higher. 
tRNA fragments and Y RNA fragments were depleted with NEXTFLEX® tRNA/YRNA blocker. 
Thirteen (13) and 16 PCR cycles were performed for Nthy-ori 3-1 and follicles, respectively. 
Nthy-ori 3-1 samples were sequenced on an S2 Illumina flowcell 100 cycles (v1.5) (Illumina) in 
single-end mode; follicles samples were sequenced on an S4 Illumina flowcell 35 cycles (v1.5) 
(Illumina) in single-end mode. Throughout this paper, we will sometimes refer to the RNA-Seq 
data derived from the Nthy-ori 3-1 and the follicles as “1x100 dataset” and “1x35 dataset”, 
respectively (“1x” means that both libraries were sequenced in single-end mode).  

Poly(A) libraries were prepared on an automated system (Zephyr G3® NGS) with the 
NEXTFLEX® Rapid Directional RNA-Seq Kit 2.0 (NOVA-5198-02, PerkinElmer), 
NEXTFLEX® Poly(A) Beads 2.0 (NOVA-512992, PerkinElmer) and NEXTFLEX® Unique 
Dual Index Barcodes (NOVA-512923, PerkinElmer) using 1 μg of total RNA extracted from 
Nthy-ori 3-1 samples and performing 10 PCR cycles. The libraries were sequenced on an S1 
Illumina flowcell 200 cycles (v1.5) (Illumina) in paired-end mode.  

miRNA libraries were prepared manually with the NEXTFLEX® Small RNA-Seq Kit 
v3 (NOVA-5132, PerkinElmer) from 100 ng of total Nthy-ori 3-1 RNA and performing 18 
PCR cycles. They were sequenced on an S4 Illumina flowcell 35 cycles (v1.5) (Illumina) in 
single-end mode.  

All prepared libraries were quantified on a Qubit 2.0 Fluorometer (ThermoFisher), and 
quality control performed on the 2200 TapeStation System (Agilent) or BioAnalyzer 2100 expert 
(Agilent). The sequencing was done with the NovaSeq 6000 Sequencing System (Illumina). 
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2.4 Data analysis 
2.4.1 RNA-Seq Data Processing 

Data from Combo-Seq libraries was processed with exceRpt (v4.6.3, 2018-03-18) or 
CODA. When using exceRpt, we followed the parameters suggested by PerkinElmer (Table 1) 
(19).  

 
Table 1. Comparison between default and modified arguments in the exceRpt pipeline to analyze Combo-
Seq data as suggested by PerkinElmer. 

Argument Default Modified 
ADAPTER_SEQ 'guessKnown' AAAAAAAA 
MIN_READ_LENGTH 18 15 
STAR_outFilterMatchNmin 18 15 
RANDOM_BARCODE_LENGTH 0 4 
RANDOM_BARCODE_LOCATION '-5p -3p' '-5p' 

 
CODA is composed of three steps. Reads are trimmed using Cutadapt (v3.4) (26) and 

used as input in two different steps: miRNAs are quantified with miRge3.0 (v3.0) (27), while 
genes using RSEM (v1.3.3) with the --STAR option (v2.7.9a). The STAR parameters that are 
hard-coded in RSEM follow the ENCODE3's STAR-RSEM pipeline (28), and we opted for 
these options over the default STAR because they allow read alignment to more loci and permit 
fewer base mismatches than the default (Table 2) (29, 30).  

 
Table 2. Comparison between default STAR arguments and RSEM-modified STAR parameters.  

Argument STAR (Default) 
STAR (ENCODE3’s STAR-RSEM 

pipeline) 
--outFilterMultimapNmax 10 20 
--outFilterMismatchNmax 10 999 
--outFilterMismatchNoverLmax 0.3 0.04 
--alignIntronMin 21 20 
--alignIntronMax 0 1,000,000 
--alignMatesGapMax 0 1,000,000 
--alignSJoverhangMin 5 8 
--alignSJDBoverhangMin  3 1 

 
The primary assemblies of the human (GRCh38) and mouse (GRCm39) genomes were 

downloaded from Gencode (https://www.gencodegenes.org/) (31). For miRNA detection, the 
human (v22) and mouse (v22) annotations were obtained from miRBase 
(https://www.mirbase.org/) (32). BBMap (v38.94) (33), FastQC (v0.11.5) (34) and multiQC 
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(v1.11) (35) are used for quality control. The CODA code is available at 
https://github.com/marta-nazzari/CODA. 

Demultiplexed data from small RNA libraries was processed as suggested by 
PerkinElmer (36) and used as input for miRge3.0. Demultiplexed data from poly(A) libraries 
was processed using a modified version of the Omics Data Analysis Framework for regulatory 
application (R-ODAF) (37, 38): reads were trimmed with fastp (39), and aligned and mapped 
using RSEM with the --STAR option. 

 

2.4.2 Pipelines Comparison 
exceRpt performs adapter trimming and reads size selection in several steps. First the 3’ 

adapter sequence is removed, followed by a combined 5’ 4N adapter trimming and exclusion of 
the 5’ trimmed inserts shorter than 15 nt. As only reads that are 3’ adapter trimmed are reported 
in the summary statistics by exceRpt, we retrieved the number of reads passing both trimming 
and size-selection filters from the output .log files. The count of reads trimmed by CODA is the 
“Reads passing filters” statistic output by Cutadapt. 

The length distribution of trimmed reads was retrieved from the summary file 
“exceRpt_ReadLengths.txt” for the exceRpt pipeline, or after running FastQC for CODA. 

To compare CODA and exceRpt, we analyzed the genes and miRNA counts separately. 
Since exceRpt uses custom-made annotations, a one-to-one feature comparison with the 
Gencode and miRge3.0 ones is not possible. For this reason, we summed all biotypes of the same 
gene in a single count for exceRpt. For CODA, we used the gene counts output by RSEM in the 
file ‘SAMPLE_NAME.genes.results’. In addition, as exceRpt filters out reads mapping to all 
primary endogenous rRNA genes, we mapped all genes to the corresponding biotype using the 
biomaRt R package (40) (41) and removed all rRNA counts from both datasets. If a gene was 
identified in only one of the two samples, its count in the other sample was set to 0. To compare 
miRNA counts, we kept only the annotations that overlapped between the miRge3.0 and 
exceRpt outputs, as trying to manipulate the annotations to match the discordant annotations 
could introduce a bias. To evaluate the percentage of mapped miRNA reads, we calculated the 
total read counts per sample output by miRge3.0 and by exceRpt as reported on the file 
“exceRpt_miRNA_ReadCounts.txt”. If a miRNA was identified in only one of the two pipelines 
for one sample, its count in the other was set to 0. The differences between the two workflows 
are reported in detail in Table 3. 
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Table 3. Main differences between the CODA and exceRpt workflows. 

 Parameter CODA exceRpt 
miRNA 
workflow 

miRNA reference miRBase v22 miRBase v21 
Software for mapping Bowtie STAR 
Software for quantification miRge3.0 Authors’ own code for 

quantification 
Genes 
workflow 

Genes reference Gencode Based on Gencode but 
modified by the 
authors 

Reference annotation GRCh38, version 38 
(Ensembl 104) 

GRCh38, version 24 
(Ensembl 83) 

Software for mapping STAR v2.7.9a STAR v2.5.4b 
STAR parameters that differ from 
the default in either workflow 
--outFilterMatchNmin 
--outFilterMultimapNmax 
--outFilterMismatchNmax 
--outFilterMismatchNoverLmax 
--alignIntronMin 
--alignIntronMax 
--alignMatesGapMax 
--alignSJoverhangMin 
--alignSJDBoverhangMin 
--outFilterMatchNminOverLread  
--outFilterMismatchNmax 

 
 
0 (default) 
20 
999 
0.04 
20 
1,000,000 
1,000,000 
8 
1 
0.66 (default) 
10 (default) 

 
 
15 
10 (default) 
10 (default) 
0.3 (default) 
21 (default) 
0 (default) 
0 (default) 
9 (default) 
3 (default) 
0.9 
1 

Software for quantification RSEM Authors’ own code for 
quantification 

 

2.4.3 Trimmers Comparison 
To show how the trimming steps of CODA and exceRpt compare to other trimmers, 

we processed the raw reads of dataset 1x100 with Cutadapt as set in CODA, exceRpt, 
AdapterRemoval (v2.3.3) [59] or BBDuk (v38.94) from the BBMap suite [33]. In Table 4 we 
report the parameters used for trimming with AdapterRemoval and BBDuk, and the ones used 
in Cutadapt (CODA) and exceRpt, for easy comparison.  

 
Table 4. Arguments used for trimming the 1x100 dataset with Cutadapt as set up in CODA, exceRpt, 
AdapterRemoval and BBDuk. The variable [SAMPLE] is here a placeholder for the sample ID, and 
[OUTPUT_FOLDER] for the folder path where the trimmed files are saved. 

Cutadapt (CODA) exceRpt AdapterRemoval BBDuk 
cutadapt \ 
-u 4 \ 
-a AAAAAAAA \ 
-j 5 \ 

fastx_clipper \ 
-c \ 
-Q33 \ 
-a AAAAAAAA \ 

AdapterRemoval \ 
--file1 [SAMPLE] \ 
--threads 10 \ 
--adapter1 AAAAAAAA \ 

bbduk.sh \ 
in=[SAMPLE] \ 
out=[OUTPUT_FOLDER][S
AMPLE]".fastq.gz" \ 
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Cutadapt (CODA) exceRpt AdapterRemoval BBDuk 
--minimum-length 15 \ 
--output 
[OUTPUT_FOLDER][SAMPL
E].fastq.gz \ 
[SAMPLE] 

-l 15 \ 
-v \ 
-n \ 
-M 7 \ 
-i [SAMPLE] \ 
-z \ 
-o 
[OUTPUT_FOLDER][SAMPL
E].fastq.clipped.fast
q.tmp.gz  

--trim5p 4 \ 
--gzip \ 
--minlength 15 \ 
--output1 
[OUTPUT_FOLDER][SAMPL
E]".fastq.gz" \ 
--basename 
[OUTPUT_FOLDER][SAMPL
E] 

minlen=15 \ 
literal=AAAAAAAA \ 
ftl=4 \ 
ktrim=r \ 
k=8 \ 
mink=3 

 

2.4.3 Principal Component Analysis and Correlation Analysis 
Principal component analyses were performed on variance-stabilized expression levels 

of normalized gene and miRNA read counts using the R package PCAtools (v2.4.0) (42). 
Pearson correlation was used to calculate the correlation between genes read count. To calculate 
the miRNA expression correlation among samples prepared with Combo-Seq and small RNA 
library prep kit, we ranked the miRNAs based on level of expression (miRNA with the highest 
read count = highest rank). When multiple miRNAs had the same read count, they were assigned 
the same rank with the highest value. miRNAs for which the read count was 0 in all samples 
were removed. To evaluate the correlation between miRNAs we used the non-parametric 
Spearman correlation.  

 

2.4.4 Differential Expression and Gene Ontology Analysis  
Differential expression analysis was performed with R using the DESeq2 (43) and 

edgeR (44). To select relevant differentially expressed genes and miRNA, stringent filtering was 
applied using a modified version of the R-ODAF. Briefly, a gene was considered expressed if its 
count per million (CPM) value is ≥1 in at least 75% of the replicates of either group (i.e., BAP 
or DMSO). In addition, differentially expressed genes and miRNAs identified by DESeq2 were 
filtered to remove spurious spikes (for details, see the paper by Verheijen, Meier et al. 2022) (37). 
To increase statistical power, all BAP samples were grouped together and compared to the 
DMSO controls. Gene ontology (GO) (2021) (45, 46) and Reactome (2022) (47) enrichment 
analyses were performed using the web-based tool Enrichr (48) and the FDR was set to 0.01.  

 

2.5 miRNAs Reverse Transcription-qPCR  
Total RNA from the six Nthy-ori 3-1 DMSO control samples was used for cDNA 

synthesis with the TaqMan® Advanced miRNA cDNA Synthesis Kit (A28007, Applied 
Biosystems) according to manufacturer’s protocol. The synthesized cDNA was used for qPCR 
using the TaqMan™ Fast Advanced Master Mix (4444556, Applied Biosystems) and TaqMan™ 
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Advanced miRNA Assay (A25576, Applied Biosystems) following the manufacturer’s protocol 
for hsa-miR-122-5p (477855_mir), hsa-miR-361-3p (478055_mir), hsa-miR-622 
(479106_mir). The program used for the qPCR reaction was 20 seconds at 95 °C (1 cycle), 3 
seconds at 95 °C – 30 seconds at 60 °C (40 cycles) on a CFX Connect™ Real-Time System (Bio-
Rad). Each sample was analyzed in 4 technical replicates. For each sample a technical replicate 
was retained if its Ct value difference from its closest other replicates was lower than 0.6.  
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3. Results 
3.1 Description of CODA  

For the processing of Combo-Seq data, we developed a pipeline named "CODA" 
(Combo-Seq Data Analysis), composed of three different steps (Figure 1). The first step uses 
Cutadapt to trim the 5’ and 3’ adapters and discard reads that are shorter than 15 nt. Since 
Combo-Seq generates libraries from both polyadenylated RNA species and miRNA, the 
workflow splits in two and the trimmed files are used as input for gene and miRNA mapping 
and quantification. To analyze the reads that derive from poly(A)-tailed species, the trimmed 
reads are aligned to the reference genome with STAR and quantified using RSEM. To identify 
miRNAs, the trimmed reads are used as input for miRge3.0. The genes and miRNAs count files 
output by both tools for each sample are then merged into a single table for genes and for 
miRNAs. The pipeline outputs a report with useful QC metrics that can be inspected by the 
user. 
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Figure 1. Schematic representation of CODA: fastq or fastq.gz sequencing files are used as input and 5’ 
and 3’ sequencing adapters are removed using Cutadapt. Reads shorter than 15 nt are also discarded. This 
trimming step retains also reads with a partial or missing 3’ adapter (a point further discussed in the section 
“Trimming and read length distribution” below). Mapping and quantification of miRNA is then performed 
using miRge3.0. Genes mapping and quantification is then performed with RSEM using STAR as aligner 
(which follows the criteria of the ENCODE3’s STAR-RSEM pipeline). As each tool outputs a single file 
per sample, the count files are then merged into a single table for genes or miRNAs. The last step uses the 
BBMap suite and FastQC to gather some summary statistics on the trimmed/mapped reads and MultiQC 
is used to compile all information into a .html report. 

3.2 Comparison of CODA with exceRpt 
3.2.1 Trimming and Read Length Distribution 

Since the first step of both pipelines is adapter trimming, we evaluated the number of 
retained trimmed reads and their length distribution. Figure 2A shows the read length 
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distribution of the 1x100 samples trimmed with CODA or exceRpt. The maximum read length 
of samples processed with CODA (97 nt) is longer than the maximum length identified by 
exceRpt (90 nt). The median number of reads that pass adapter trimming is 89.44% and 90.90% 
of total input reads when using exceRpt or CODA, respectively (Figure 2B). On average, an 
additional 1.46% of total raw reads are retained by CODA and their length is between 91 and 
97 nt. This increase is even more evident with datasets that have shorter reads, like the one 
generated from thyroid follicles sequenced on a 1x35-cycles flowcell (Figure 2C).  

 

 

Figure 2. (A) Read length distribution of 1x100 dataset processed with exceRpt (red) or trimmed with 
CODA (blue). (B) Distribution of trimmed reads expressed as percentage of total raw read count. (C) Read 
length distribution of 1x35 dataset processed with exceRpt (red) or trimmed with CODA (blue). For plots 
A and C, the line represents the average count, while the edges of the shaded area correspond to the highest 
and lowest count among the replicates. 

The maximum read length when using CODA is 44 nt, while it is 37 nt when using 
exceRpt. The median percentage of reads that successfully pass 5’ and 3’ adapter trimming when 
using exceRpt is 73.39% of total sequenced reads. This number increases to 89.12% when the 
same samples are trimmed with CODA, retaining an additional 15.73% of the raw reads. The 
difference in maximum read length identified by the two methods likely lies in the choice of 
trimmer. When sequencing single-end libraries (like Combo-Seq), if a fragment is longer than 
the total number of cycles of the chosen flowcell, only part of the fragment will be sequenced, 
thus partly or completely excluding the 3’ adapter (since single-end libraries are always sequenced 
from the 5’ end). Cutadapt has the option to retain such reads, while the one used by exceRpt 
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with the options set by the exceRpt developers (fastx -M 7) allows only 1 nt mismatch (Figure 
3). If the reads are not clipped, they are discarded (determined by the -c flag in the fastx 
command) (49).  

 

 

Figure 3. Schematic representation of how Combo-Seq reads are sequenced in a 1x35 or 1x100 Illumina 
flowcell. Each line represents a read, the black portion denotes the insert and the number in the middle 
reports the insert length. The 5’ 4N and 3’ 8A adapters are colored in yellow and blue, respectively, and 
the 5’ and 3’ ends are reported. The dots above and below the reads mean that there can be sequencing 
reads with longer or shorter inserts, as reads in a library are characterized by is a distribution of possible 
insert lengths. The green boxes explain that in 1x35 or 1x100 Illumina flowcells, the actual number of 
sequencing cycles is 48 and 101, respectively. For this reason, starting from the 5’ 4N adapter, 48 nt and 
101 nt can be sequenced in total in a 1x35 or 1x100 setting, respectively. In Combo-Seq libraries, when 
the length of adapters+insert is equal to or lower than the total sequencing cycles, they will be sequenced in 
their entirety. For 1x35 and 1x100 flowcells, this means that the insert needs to be 36 and 89 nt long, 
respectively. However, if the insert length is longer, only part of the 3’ 8A adapter, or none of it, will be 
sequenced, leaving the sequenced read with an incomplete, or missing, adapter. Cutadapt provides the 
option to handle partial adapters, and in CODA we allow a minimum overlap of a partial adapter of 3 nt 
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(which is the default value and should result in just 0.07 bases being lost per read [60]). This means that 
an adapter that is 1A or 2A long will not be considered a partial adapter, but a part of the insert itself. This 
explains why in the 1x100 dataset the read count for inserts that are 95 or 96 nt long is 0 (as they are 
incorporated in the 97 nt long reads). Similarly, in the 1x35 dataset the reads that are 42 or 43 nt long 
(meaning they have a 3’ adapter that is 2A or 1A, respectively) are incorporated in the 44 nt-long group. 
On the other hand, exceRpt uses fastx_clipper from the fastx-toolkit package [49] for 3’ adapter trimming 
with the minimum overlap flag (-M) set to 7: this means that there has to be a minimum overlap of 7 bases 
between the provided 3’ adapter (8A in case of Combo-Seq) and the adapter found in the read. If the match 
is less than 7, the read is discarded. 

Effectively, exceRpt discards reads where the 3’ adapter is either 6 A or shorter, or 
missing altogether. This factor is the most impactful on the trimmed read length distribution, as 
1x100 dataset reads trimmed with two other trimmers retaining non-clipped reads show a similar 
distribution as Cutadapt, with a peak at the maximum read length, 97 nt (Figure 4). 

 

 
Figure 4. Reads distribution of the 1x100 dataset trimmed with several trimming software: Cutadapt as set 
up in CODA (cyan), exceRpt (red), AdapterRemoval (black), BBDuk (pink). 

3.2.2 Comparison of Mapping and Quantification 
Since Combo-Seq libraries capture both poly(A) species and miRNAs, our pipeline 

performs separately gene and miRNA mapping and quantification. We compared the reads 
mapping to genes or miRNA using CODA and exceRpt.  

The mapping efficiency is comparable, evidenced by similar percentages of trimmed 
reads mapping to genes or miRNA in both datasets (Table 5). However, since the number of 
reads successfully passing trimming is higher when using CODA, samples processed with it have 
more total mapping reads compared to exceRpt, especially in the 1x35 dataset, going from a 
median 52.01 M (exceRpt) to 60.69 M (CODA) reads. The median count of miRNA-mapping 
reads is instead comparable between the two methods, supporting the observation that, for 
shorter inserts like miRNAs, the 3’ adapters are fully sequenced, and the reads properly trimmed. 
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Table 5. Median counts and proportions of reads mapped to the reference transcriptome (or to exceRpt 
Gencode annotations) and miRNA and quantified with CODA or with exceRpt in the 1x100 and 1x35 
datasets.  

 1x100 dataset 1x35 dataset 

 Read count 
Percentage of 
trimmed reads 

Read count 
Percentage of 
trimmed reads 

 CODA exceRpt CODA exceRpt CODA exceRpt CODA exceRpt 
Total 
trimmed 
reads 

46.32 M 45.50 M 100% 100% 73.37 M 61.69 M 100% 100% 

Genes 
mapping 
reads 

40.07 M 39.36 M 86.50% 86.42% 60.69 M 52.01 M 84.14% 85.60% 

miRNA 
mapping 
reads 

0.13 M 0.12 M 0.27% 0.25% 1.40 M 1.39 M 1.80% 5.95% 

 

3.2.3 Comparison of Genes and miRNAs 
To analyze how many and which genes are identified by either pipeline, we first 

analyzed the overlap of the genes which have a raw read count greater than 0 in the 1x100 and 
1x35 datasets processed either with CODA or exceRpt. While the total read count is higher when 
the samples are processed with CODA, exceRpt maps the reads to more genes (Figure 5A-C, G). 
This is not the case for miRNAs, where a comparable number of mapped features is detected by 
both pipelines (Figure 5D-F, H).  
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Figure 5. Venn diagrams of genes and miRNAs with raw read count > 0 identified in the 1x100 dataset 
(genes: A-C, miRNAs: D-F) or 1x35 dataset (genes: G, miRNAs: H) processed either with CODA (cyan) 
or exceRpt (red) and their overlap. For the 1x100 dataset, the samples are grouped by treatment (i.e., BAP 
10 uM, BAP 1 uM, DMSO control). The total number of identified species is indicated in brackets below 
the method. 

We then analyzed the raw read count distribution per RNA biotype in the 1x100 
dataset (Figure 6A) and observed that exceRpt assigns reads to low-expressed genes belonging to 
several biotypes, whose count is instead 0 in CODA. The read count distribution for protein 
coding genes appears to be bimodal in both pipelines, with two peaks identifiable for “low” and 
“high” expressed genes (Figure 6B).  
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Figure 6. (A) Average raw read gene count in the 1x100 dataset processed with either CODA (cyan) or 
exceRpt (red) divided by RNA biotype. (B) The “protein coding” panel from figure A has been expanded. 
In both figures the x axis is log10-scaled for easier reading. 

Looking at the PCA plots, samples cluster along PC1 according to the pipelined use 
both for genes (Figure 7A-B) and miRNAs (Figure 7C-D), for both the 1x100 and 1x35 datasets, 
showing how the processing method is the biggest source of variation. Additionally, clustering 
along PC2 reflects the BAP-treated versus control condition for the Nthy-ori 3-1 dataset. 
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Figure 7. Principal component analysis (PCA) plots showing PC1 and PC2 of PCA analysis carried out on 
variance-stabilized normalized gene counts for (A) 1x100 and (B) 1x35 samples processed with either 
pipeline. Plots showing PC1 and PC2 of PCA analysis carried out on variance-stabilized transformed 
miRNA counts for (C) 1x100 and (D) 1x35 samples processed with either pipeline (cyan = CODA, red = 
exceRpt). 

Gene counts correlation is stronger among samples analyzed with the same pipeline, 
which remains relatively high across the two methods for the 1x100 dataset (Figure 8A). In the 
1x35 dataset, the correlation among biological replicates analyzed with the same pipeline is also 
high but shows a lower value across methods (Figure 8B). The relatively higher correlation 
between CODA and exceRpt in the 1x100 dataset compared to the 1x35 one could be explained 
by the fact that the median total gene read count is very similar (from 39.36 M with exceRpt to 
40.07 M reads with CODA, with an increase of around 0.71 M reads). For the 1x35 dataset, 
instead, there is a gain of ~8.68 M reads per sample (around +17%, from a median 52.01 M 
with exceRpt to 60.69 M with CODA).  
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Correlation of normalized miRNA counts for both datasets is higher among samples 
analyzed with the same pipeline and between the same sample analyzed with CODA or exceRpt 
(Figure 8C-D).  

Figure 8. Pearson correlation of normalized gene counts for (A) 1x100 and (B) 1x35 samples. Pearson 
correlation of normalized miRNA counts for (C) 1x100 and (D) 1x35 samples.  

To investigate the correlation difference among samples in the 1x100 dataset compared 
to the one in the 1x35 dataset, we analyzed the RNA biotype composition of the Nthy-ori 3-1 
and follicles DMSO control samples. To reduce the background noise and highlight the most 
consistent differences, we focused on biotypes representing at least 1% of total mapping reads 
on average (Figure 9A-B, Table 6). Reads mapping to lncRNA and snoRNA are mainly between 
60 nt and 100 nt long and are thus identified in the 1x100 dataset samples by both pipelines. 
Mitochondrial rRNA (Mt rRNA) reads show two peaks, at 89 nt and 91 nt, but the 91 nt peak 
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is not identified by exceRpt (Figure 9C). snoRNA are almost completely missed by exceRpt. 
Possibly, these reads and other biotypes on average longer than 44 nt do not have a complete 3’ 
adapter and are thus discarded by exceRpt. By recovering longer reads with an incomplete 
adapter, CODA also recovers protein coding reads, which constitute between 40% and 80% of 
the reads with an incomplete or partial adapter (Figure 9D).  

 

 

Figure 9. Average biotype composition of (A) 1x100 (6 replicates) and (B) 1x35 (5 replicates) DMSO 
control samples processed with either CODA or exceRpt. The values are expressed as percentage of total 
gene read counts. Read length distribution for (C) 1x100 and (D) 1x35 datasets expressed as percentage of 
total mapped reads grouped per biotype. Only the biotypes representing at least 1% of total reads on average 
are reported.  
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Table 6. Average percentage of RNA biotypes relative to the total gene read count for DMSO replicates of 
100- or 1x35 datasets processed with CODA or exceRpt. We selected only the biotypes that make up for 
at least 1% of the total read count in at least one replicate. 

 

1x100 dataset 1x35 dataset 
CODA exceRpt CODA exceRpt 

lncRNA 1.70 2.02 0.69 0.76 
Mt rRNA 1.10 0.96 0.49 0.47 
Processed pseudogene 0.47 3.80 3.39 9.18 
Protein coding 93.67 88.58 85.89 86.32 
snoRNA 2.66 1.84 7.40 0.12 
Unprocessed pseudogene 0.12 2.04 0.87 2.12 

lncRNA = long non-coding RNA; Mt = mitochondrial; snoRNA = small nucleolar RNA 
 

Differential expression analysis was performed to evaluate the number of differentially 
expressed (DE) genes and miRNA after BAP exposure of Nthy-ori 3-1 cells (1x100 dataset). 
MA-plots of the dataset processed with either workflow showed comparable distributions for the 
genes (Figure 10A-B), while highly expressed miRNAs are characterized by a higher log2 fold 
change when analyzed by CODA (Figure 10C-D). In addition, the two pipelines identify a 
comparable number of DE genes and miRNA (CODA: 1,201 DE genes, 1 DE miRNA; exceRpt: 
1,251 DE genes, 0 DE miRNA) (FDR = 0.01) (Figure 10E-F) but only a partial overlap between 
genes (Figure 10G).  
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Figure 10. (A, C) MA-plot of the 1x100 dataset samples processed with CODA (A: genes; C: miRNAs). 
(B, D) MA-plot of 1x100 dataset samples processed with exceRpt (B: genes; D: miRNAs). For plotting 
purposes, 0.01 has been the mean read count to account for genes/miRNAs whose expression is 0. The ashr 
method has been used as shrinkage estimator [61]. Volcano plot of (E) genes and (F) miRNAs that pass the 
CPM filter in the 1x100 dataset processed either with CODA (cyan) or exceRpt (red) and that have been 
included in the differential expression analysis carried out with DESeq2 comparing samples exposed to BAP 
to the DMSO control. Every dot represents a gene/miRNA, and the same gene/miRNA identified in both 
pipelines is connected by a grey line. The dotted line represents the FDR = 0.01. (G) Venn diagram of the 
overlap between the differentially expressed (DE) genes identified in the 1x100 dataset processed either 
with CODA (cyan) or exceRpt (red). The total number of DE genes identified by either pipeline is reported 
in brackets below the pipeline name. 

Gene ontology (GO) and Reactome analysis shows how the P-adjusted values for the 
same pathways are mostly lower in CODA (Figure 11A, C) and showing enrichment for more 
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terms (Figure 11B, D). As BAP is known to be a strong inducer of the cytochrome P450 enzymes 
CYP1A1 and CYP1B1 via the activation of the aryl hydrocarbon receptor (AHR) (50), we 
analyzed the expression of these two genes: both result DE at a comparable level (CYP1A1: p-
adj = 5.2e-11 in CODA, p-adj = 4.2e-10 in exceRpt; CYP1B1: p-adj = 1.5e-05 in CODA, p-adj 
= 2.3e-10 in exceRpt) (Figure 11E-F). Taken together, these results show how differential 
expression results are comparable between pipelines, with CODA showing higher sensitivity in 
gene functional enrichment analysis.  

 

 
Figure 11. (A-D) Results of gene ontology (GO) (biological process) and Reactome analysis performed on 
the differentially expressed genes in BAP vs DMSO samples from the 1x100 dataset processed with either 
CODA (cyan) or exceRpt (red) workflows. In figures (A) and (C) the top 10 terms with lowest P-adjusted 
value in each group were selected and then plotted together. If two or more terms had the same P-adjusted 
value, all terms were reported. The dotted grey line corresponds to the set FDR value of 0.01. In figures 
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(B) and (D) all the terms which resulted from the analysis were reported. Each dot corresponds to one term. 
The dotted grey line corresponds to the set FDR value of 0.01. (E, F) Normalized expression values of (E) 
CYP1A1 and (F) CYP1B1 genes as measured in BAP (10 uM dark shade, 1 uM light shade) vs DMSO 
(black) samples from the 1x100 dataset processed with either CODA (cyan) or exceRpt (red) workflows. 
The *** symbol denotes a P-adjusted value < 0.001 as resulted from the differential expression analysis. 

3.3 Evaluation of Combo-Seq Compared to Poly(A) and 
Small RNA Libraries 

To evaluate the genes and miRNA identified by Combo-Seq libraries, we compared 
them to conventional poly(A) libraries (for genes) and small RNA libraries (for miRNAs) 
prepared with the same Nthy-ori 3-1 input RNA. We evaluated the number of expressed genes 
and miRNA using both libraries and performed differential expression analysis to identify genes 
and miRNA dysregulated upon BAP treatment. 

The median total gene read count was 42.4 M and 35.0 M reads for Combo-Seq and 
poly(A) libraries, respectively (Figure 12A), while for miRNAs it was 0.13 M (Combo-Seq) and 
2.78 M (small RNA libraries) reads (Figure 12B).  

 

 

Figure 12. Boxplots of total (non-normalized) count of reads mapped to (A) genes or (B) miRNAs of Nthy-
ori 3-1 samples prepared with either Combo-Seq (red), poly(A) (yellow) or small RNA (blue) libraries. 

Samples cluster along PC1 based on library preparation method and along PC2 based 
on treatment both for genes (Figure 13A) and miRNAs (Figure 13B), showing how the type of 
library is the greatest source of variation. In addition, the greater spread along PC2 for Combo-
Seq samples could be attributed to the libraries preparation over different batches, as opposed to 
the poly(A) and small RNA libraries, which were prepared in single batches, or to the low number 
of miRNA-mapping reads in Combo-Seq samples, as background noise tends to increase with 
small sample sizes. Correlation of genes normalized counts is not very high between the two 
different libraries compared to the correlation within the same methods (Figure 13C). Due to 
the very different sequencing depths of the two datasets, normalization for library size would 
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tend to overestimate miRNA count in the samples prepared with Combo-Seq (Figure 14). We 
then ranked the miRNAs in each sample based on their level of expression (highest read count = 
highest rank) and calculated Spearman correlation of the ranks across samples. The correlation 
plot confirms the PCA results, showing a high correlation among samples prepared with the 
same type of library (Figure 13D).  

 

 
Figure 13. (A) PCA plot of variance-stabilized transformed gene counts of Nthy-ori 3-1 samples prepared 
using Combo-Seq or poly(A) libraries. (B) PCA plot of variance-stabilized transformed miRNA counts of 
Nthy-ori 3-1 samples prepared using Combo-Seq or Small RNA libraries. (C) Person correlation of 
normalized gene counts for Nthy-ori 3-1 samples prepared with Combo-Seq or poly(A) libraries. (D) 
Spearman correlation of ranked miRNA counts of Nthy-ori 3-1 samples prepared using the Combo-Seq 
kit a Small RNA kit. Combo-Seq libraries were sequenced on a 1x100 single-end flowcell, poly(A) libraries 
on a 2x200 paired-end flowcell and small RNA libraries on a 1x35 single-end flowcell. 
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Figure 14. Normalized genes (A to C) or miRNA (D to F) read counts of Nthy-ori 3-1 samples prepared 
using either Combo-Seq libraries (x-axis) or poly(A) (for genes)/small RNA (for miRNAs) libraries (y-axis). 
The axes are log10 transformed and 0.01 was added to every value to account for genes or miRNA whose 
read count was 0. The mean read count was calculated by averaging the normalized count of each group 
replicates (BAP 10 μM (A and D), BAP 1 μM (B and E), DMSO control (C and F)). Every dot represents 
a gene or miRNA, and the identity line is reported in grey. 

To evaluate how the type of library affects genes and miRNA detection, we compared 
the transcripts that are thus considered expressed. On average, as many genes are identified in 
samples prepared with poly(A) as in Combo-Seq libraries (3% more on average) (Figure 15A-
C). On the other hand, small RNA libraries identify 1.8 times more miRNAs than Combo-Seq 
on average, and similarly to genes, most of the ones detected by Combo-Seq overlap with the 
other library (Figure 15D-F).  
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Figure 15. Venn diagram of expressed genes (A-C) and miRNAs (D-F) in Nthy-ori 3-1 samples grouped 
by treatment (i.e., BAP 10 uM, BAP 1 uM, DMSO control) and prepared with Combo-Seq, poly(A) or 
small RNA libraries and their overlap. The total number of expressed species is indicated in brackets below 
the type of library. 

Regression analysis of the average normalized read count of expressed genes and 
miRNAs for each group is not very strong (average R2 = 0.60 for genes and R2 = 0.69 for 
miRNAs) (Figure 16).  

 

Chapter 2

68



 

Figure 16. Scatterplots of normalized genes (A to c) or miRNA (D to F) counts passing the relevance filter 
in Nthy-ori 3-1 samples prepared with Combo-Seq (x-axis) or poly(A)/small RNA (y-axis) library prep kits 
((A, D) BAP 10 uM, (B, E) BAP 1 uM, (C, F) DMSO control). Each dot represents a gene or miRNA, 
and only species that are considered expressed (i.e. passing the relevance filter) by both methods in each 
condition are reported. A linear regression model was computed for each plot and the R2 value is reported 
in the top left corner of the plot. The x and y axes are log10 transformed. 

Next, to identify differentially expressed genes and miRNA in the BAP-treated samples 
compared to the DMSO control we performed differential expression analysis. When the 
samples are prepared with poly(A) libraries or Combo-Seq libraries, 4,462 or 1,186 genes result 
DE, respectively, 967 of which overlap between the two methods (Figure 17A). GO analysis 
shows that most top 10 terms are shared by Combo-Seq and poly(A) and are related to the 
processes of protein localization to telomeres (GO:0070203, GO:1904851, GO:1904816), 
regulation of apoptosis (GO:0042981, GO:0043065, GO:0043069), extracellular matrix 
organization (GO:0030198, GO:0097435, GO:0030334, GO:0030335) and regulation of 
protein localization to Cajal body (GO:1904871, GO:1904869) (Figure 17B). Reactome 
enrichment analysis shows similar results, where on average the top hits tend to have a lower P-
adjusted value in the poly(A) dataset compared to Combo-Seq (Figure 17C).  
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Figure 17. (A) Overlap of differentially expressed genes after BAP treatment compared to the DMSO 
control in datasets prepared with Combo-Seq libraries (red) or poly(A) (yellow) libraries. (B) Results of 
gene ontology (GO) (biological process) and (C) Reactome pathway analyses performed on the 
differentially expressed genes in BAP vs DMSO samples prepared with either Combo-Seq (red) or poly(A) 
(yellow) libraries. The top 10 GO terms with lowest P-adjusted value in each group were selected and then 
plotted together. If two or more terms had the same P-adjusted value, all terms were reported. The dotted 
grey line corresponds to the set FDR value of 0.01. (D) Overlap of differentially expressed miRNA after 
BAP treatment compared to the DMSO control in datasets prepared with Combo-Seq libraries (red) or 
small RNA (blue) libraries. (E) Scatterplot representing the rankings of miRNA in mean read count of 
Nthy-ori 3-1 DMSO control samples. The mean read count was calculated as the average of the replicate 
samples prepared with either a Combo-Seq or small RNA library prep kit. miRNAs were then ranked based 
on their level of expression in each condition (most highly expressed miRNA = highest rank). Each dot in 
the plot represents a miRNA, and miRNAs for which the mean count was 0 in both conditions were 
removed. A total of 1104 miRNAs were ranked and miRNAs with the same level of expression were assigned 
the same rank. The miRNA selected for qPCR validation are highlighted in red. (F) RT-qPCR analysis of 
the selected miRNAs. The bar represents the average Ct value for each sample and the error bars represent 
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the mean ± sd. Each sample was measured in 4 technical replicates. (Modified from the manuscript this 
chapter is based on.) 

Globally, a greater enrichment in both GO (biological pathway) (Figure 18A) and 
Reactome terms results from poly(A) samples (Figure 18B).  

 

 
Figure 18. Results of (A) gene ontology (GO) (biological process) and (B) Reactome analyses performed 
on the differentially expressed genes in BAP vs DMSO samples from the Nthy-ori 3-1 dataset prepared 
either with the Combo-Seq library prep kit (red) or poly(A) library prep kit (gold). All the terms which 
resulted from the analyses were reported. Each dot corresponds to one term. The dotted grey line 
corresponds to the set FDR value of 0.01. 

BAP is a genotoxic compound able to induce apoptosis. For this reason, we analyzed 
the expression of genes known to be induced by TP53, by BAP treatment, or labelled as pro-
apoptotic (Table 7). It must be pointed out that neither of the BAP concentrations tested resulted 
cytotoxic on Nthy-ori 3-1 cells after treatment for up to 72 hours (data not shown). A partial 
overlap of the dysregulated genes can be observed (up: BMF, CDKN1A, CYP1A1, CYP1B1, FAS, 
MDM2; down: BNIP3, BOK, GADD45A), while some genes result dysregulated in either dataset 
(BAK1, BCL2L11, BID, DDB2, RRMB2). 
 
Table 7. List of genes that are induced by BAP, involved in apoptosis, or induced by TP53. The data refers 
to the differential expression analysis carried out in the Nthy-ori 3-1 samples prepared either with Combo-
Seq or poly(A) library kit. If the gene results upregulated, it is reported in red, if downregulated, in blue. 
The name of the library is reported, as well as the Ensembl gene ID and a brief description of the protein 
coded by the gene. 

Combo-Seq Poly(A) Protein function 
BAD BAD Proapoptotic member of the BCL-2 family  
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Combo-Seq Poly(A) Protein function 
BAK1 BAK1 Proapoptotic member of the BCL-2 family 
BAX BAX Proapoptotic member of the BCL-2 family 
BBC3 BBC3 Proapoptotic member of the BCL-2 family 
BCL2L11 BCL2L11 Proapoptotic member of the BCL-2 family 
BID BID Proapoptotic member of the BCL-2 family 
BIK BIK Proapoptotic member of the BCL-2 family 
BMF BMF Proapoptotic member of the BCL-2 family 
BNIP3 BNIP3 Proapoptotic member of the BCL-2 family 
BOK BOK Proapoptotic member of the BCL-2 family 
CDKN1A CDKN1A Inhibitor of cyclin-dependent kinase 2 and 4 complexes. Regulated by 

p53. 
CYP1A1 CYP1A1 Member of cytochrome P450 family. Induced by the AHR after binding 

by BAP. 
CYP1B1 CYP1B1 Member of cytochrome P450 family. Induced by the AHR after binding 

by BAP. 
DDB2 DDB2 Involved in DNA repair. Regulated by p53. 
FAS FAS Member of TNF-receptor superfamily. Necessary for the formation of 

the death-inducing signaling complex (DISC), involved in apoptosis. 
Regulated by p53. 

GADD45A GADD45A Involved in DNA repair mechanism. Regulated by p53. 
MDM2 MDM2 Oncogene. Codes for a nuclear-localized E3 ubiquitin ligase. It targets 

tumor suppressor proteins (like p53) for proteasomal degradation. 
Regulated by p53. 

RRMB2 RRMB2 Necessary for DNA synthesis. Regulated by p53. 
 
Using Combo-Seq samples processed with CODA, we identify only 1 DE miRNA, 

while we identify 9 DE miRNA from small RNA libraries samples. Interestingly, there is no 
overlap between the DE miRNA in the Combo-Seq and small RNA groups (Figure 17C). In 
addition, the only DE miRNA in the Combo-Seq group (hsa-miR-3654) is not expressed in the 
small RNA one. Vice versa, only 6 out of 9 DE miRNA (hsa-miR-1268a/1268b, hsa-miR-186-
5p, hsa-miR-222-3p, hsa-miR-30a-3p, hsa-miR-30c-2-3p, hsa-miR-92a-1-5p) are expressed in 
the Combo-Seq group. To discern which of the two libraries most truthfully detects the miRNAs 
in our samples, we validated the expression of three miRNAs using RT-qPCR in the DMSO 
control samples. We selected miRNAs for which the two datasets disagree in either direction (i.e. 
the rank is high in one dataset a low in the other) or are in concordance (Figure 17D): we selected 
hsa-miR-622, hsa-miR-122-5p and hsa-miR-361-3p (Figure 19). RT-qPCR shows how hsa-
miR-361-3p is the only miRNA detected in the DMSO control samples, at consistent levels 
among biological replicates. On the other hand, hsa-miR-122-5p and hsa-miR-622 are not 
detected (Figure 17E). 
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Figure 19. Normalized read count of the miRNAs selected for qPCR evaluation in Nthy-ori 3-1 DMSO 
samples prepared with Combo-Seq (red) or small RNA (blue) library prep kit. 

Intriguingly, hsa-miR-622 is coded within the keratin 18 pseudogene 27 (KRT18P27) 
(Figure 20A). It is possible that a fragment of KRT18P27 mRNA generated early in the protocol 
of Combo-Seq library preparation, when poly(A) species are retrotranscribed and the RNA-
cDNA hybrid is fragmented by RnaseH, is then erroneously recognized as a miRNA. Analysis of 
the isomiRs of hsa-miR622 reveals how there is a wide distribution of isomiRs across the six 
DMSO replicates detected at a low level (Figure 20B). Interestingly, hsa-miR-622 read count 
calculated by exceRpt is comparable to the one calculated by CODA, supporting the hypothesis 
that this is not a consequence of a mature miRNA processing, but that at least part of the 
fragments derives from KRT18P27 fragmentation (Figure 20C).  
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Figure 20. (A) Screenshot of the UCSC Genome Browser showing the location of hsa-miR-622 and 
KRT18P27 along the genomic coordinates (database accessed on 31/08/2022). (B) Raw isomiRs read count 
of hsa-miR-622 in Nthy-ori 3-1 DMSO samples prepared with Combo-Seq. On the x axis is reported the 
type of isomiR and its coordinates. (C) Normalized read count of hsa-miR-622 in Nthy-ori 3-1 DMSO 
control samples prepared with Combo-Seq as identified by CODA (cyan) and exceRpt (red). 
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4. Discussion 
Combo-Seq is a library prep kit for RNA-Seq that allows to prepare combined mRNA-

miRNA libraries starting from the same sample with very little minimum input (down to 5 ng 
of total RNA). For these reasons, it represents a convenient solution for simultaneously analyzing 
both RNA species from a single sample, even for samples that contain little RNA, such as 
biopsies, extracellular fluids, or organoids. In addition, it provides useful information about the 
relative mRNA and miRNA content of a cell, which to our knowledge cannot be provided by 
any library preparation kit currently available in the market. However, no specific bioinformatic 
pipeline was developed for the processing of this data. To this purpose, the manufacturer 
recommends using the exceRpt pipeline with some modifications (19). Nonetheless, it presents 
some limitations when adopted for the processing of Combo-Seq data.  

In this paper, we illustrated CODA, a pipeline we developed for the processing of 
Combo-Seq data. It is modular and implements free-to-use tools often employed in RNA-Seq 
processing analysis. The first step is adapter trimming with Cutadapt, which we chose because 
its manual clearly states that it can handle partial adapters, a key point especially critical for 
shorter sequencing reads. In addition, Cutadapt is regularly supported and updated, and offers a 
clear and extensive documentation. After trimming, our pipeline performs separate alignment 
and quantification of miRNAs and genes: miRNA detection is carried out with miRge3.0. Gene 
mapping and quantification is done with RSEM based on the ENCODE3's STAR-RSEM 
pipeline. It is important to note that, although we selected certain tools, the strength point of 
CODA is the control that the user has over each step that is carried out and it is possible to 
change each tool according to the user’s preferences. CODA can then be considered a guideline 
on how to analyze sequencing data deriving from Combo-Seq libraries, and the end user is free 
to use it or set up their own. 

To compare CODA to exceRpt, we generated Combo-Seq libraries from two different 
cell models and compared the processing of the two pipelines. We showed that, because of the 
chosen trimmer, the maximum read length of trimmed reads when using CODA is higher than 
the one with exceRpt, and it results in more reads successfully passing. This is more dramatic the 
shorter the sequenced reads are. This tends to affect gene-mapping reads, rather than miRNA 
mapping ones: in fact, when the same samples are processed with CODA, the absolute number 
of reads mapping to genes increases, especially for shorter sequencing reads, where the proportion 
of reads with an incomplete/missing adapter increases. On the other hand, the number of reads 
mapped to miRNAs is almost the same. The two pipelines are comparable at the mapping stages, 
showing similar percentages of reads passing trimming that are aligned to genes or miRNA, 
possibly because they both use STAR as mapper for genes, while miRNA mapping, being more 
stringent and less ambiguous, can be performed by different aligners with similar results. In 
addition, more genes are assigned reads when samples are processed with exceRpt rather than 
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CODA. This difference may be due to the quantification step: while exceRpt adopts its own 
quantification algorithm (20), CODA uses RSEM, which employs an Expectation-
Maximization (EM) algorithm in its statistical model, whereby assignment of multimapping 
reads is determined by estimating the level of expression of deriving from unambiguously 
mapping reads (29). We hypothesize that while exceRpt attributes every read to its highest 
scoring location, RSEM instead allocates reads mapping to very low expressed genes to higher 
expressed paralogues. 

We also observed that the read length distribution in Combo-Seq libraries is not 
homogeneous for all RNAs: some biotypes tend to generate fragments longer than the Combo-
Seq average (which is 21-22 nt (51)). As such, most reads coming from these species will have 
an incomplete/partial adapter when sequenced on a low number of cycles (e.g., using a 1x35 
flowcell like we did). If the pipeline used to process the data cannot retain these reads, they will 
be lost. This can lead to an incorrect estimation of the RNA biotype composition of a sample, 
and loss of potentially interesting data (52, 53). Although two different RNA extraction kits were 
used during the Nthy-ori 3-1 and thyroid follicles processing, the generated RNA-Seq data is 
comparable (54, 55). We believe then the results obtained by the analysis of the 1x100 and 1x35 
datasets have been minimally influenced by this factor. 

We also compared how Combo-Seq libraries perform in comparison to standard 
poly(A) and small RNA libraries for the analysis of mRNA or miRNA, respectively. We showed 
how the type of library is the main source of variation when comparing the two datasets. We 
noticed that conventional poly(A) libraries identify around 4% more genes, while small RNA 
libraries identify almost twice as many miRNAs. The difference in genes identified is most likely 
due to the chemistry underlying the library preparation kit, as very different RNA inputs from 
the same sample prepared with the same kit show very similar percentages of exonic-, intronic- 
and intergenic-mapping reads (56). In addition, for this work, the poly(A) libraries were prepared 
in a single batch in an automated system. The Combo-Seq libraries were prepared manually over 
different batches and the protocol includes several steps. It is then possible that the variation 
introduced during the Combo-Seq libraries preparation reflects in a variability in gene expression 
among biological replicates, which would affect the DE analysis. Considering the miRNAs, most 
of the variability in detection probably arises from the difference in total miRNA read counts. 
Indeed, the number of recovered miRNAs from Combo-seq is dependent on the miRNA content 
of the cells, which seems to be low in the selected Nthy-ori 3-1 cell line. The sequencing depth 
would therefore need to be much higher to reach a number of reads comparable to the small 
RNA libraries. Admittedly, the input RNA used for library preparation is a possible confounder, 
as we did not test how the number of miRNA mapping reads changes with different amounts of 
input, and using a lower amount, which increases the miRNA/mRNA ratio in Combo-Seq 
libraries (57), could result in a greater number of miRNA mapping reads and thus in more 
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miRNAs identified. Small RNA libraries prepared with a high RNA input perform similarly 
when detecting highly expressed miRNAs compared to using a low input, and detect more low-
expressed ones (58).  

Differential expression analysis shows how four times more DE genes are identified in 
poly(A) libraries, but GO top hits are almost the same. 9 versus 1 DE miRNAs result also from 
the analysis in small RNA and Combo-Seq libraries, respectively. While we observed an overlap 
in the DE genes between the two methods, we did not get a similar result for the DE miRNAs. 
In addition, miRNA validation by RT-qPCR is concordant with small RNA libraries: hsa-miR-
622 was detected by Combo-Seq only at high levels, but its expression was absent in RT-qPCR. 
We hypothesize that at least part of the reads assigned to hsa-miR-622 in Combo-Seq samples 
may instead derive from the fragmentation of the KRT18P27 transcript. hsa-miR-122-5p was 
detected at low levels and only by small RNA libraries, which as already discussed have a greater 
read coverage.  

In conclusion, Combo-Seq is a convenient solution to capture both poly(A)-tailed and 
small RNAs starting from very little material and from a single RNA aliquot. In addition, it 
requires less time and money per sample than the combination of conventional separated poly(A) 
and small RNA libraries. However, it presents some inconsistencies when compared to standard 
poly(A) and small RNA libraries, that researchers should be aware of and evaluate when choosing 
how to prepare their samples. 
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Abstract 
Phthalates are a class of endocrine disrupting chemicals (EDCs) which have been shown 

to negatively correlate with thyroid hormone (TH) serum levels in human and to cause a state 
of hyperactivity in the thyroid. However. their mechanism of action is not well described at the 
molecular level. We analyzed the response of mouse thyroid organoids to the exposure to a 
biologically relevant dose range of the phthalates DEHP, DIDP, DINP and DnOP for 24 hours 
and simultaneously analyzed mRNA and miRNA expression via RNA-Sequencing. Dose-series 
analysis showed how the expression of several genes increased or decreased at the highest dose 
tested. As expected with the low dosing scheme, the compounds induced a modest response on 
the transcriptome, as we identified changes in only mmu-miR-143-3p after DINP treatment and 
very few differentially expressed genes. No effect was observed on thyroid markers. Ing5 was 
consistently upregulated in three out of four conditions compared to control, and we observed a 
partial overlap among the genes differentially expressed by the treatments. Gene set enrichment 
analysis (GSEA) showed an enrichment in the treatment samples of the fatty acid metabolism 
pathway and in the control of pathways related to the receptor signaling and extracellular matrix 
(ECM) organization. As ING5 is a component of histones H3 and H4 acetylation complexes, 
we exposed the human thyroid follicular epithelial cell line Nthy-ori 3-1 to DEHP or DINP 1 
μM for 5 days and analyzed changes in chromatin accessibility via ATAC-Seq. While we observed 
a general increase of accessibility compared to the control, we did not identify significant changes 
in accessibility in the identified regions. Lastly, we showed that despite having only a few 
differently expressed genes, different analysis methods could be applied to retrieve relevant 
information on phthalates, showing the potential of in vitro thyroid relevant systems analysis 
EDCs. 
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1. Introduction
Phthalates are a class of manmade compounds used in the manufacturing industry as 

solvents or added as plasticizers, mainly to polyvinyl chloride (PVC) or other polymers, to confer 
flexibility and softness (1, 2). Phthalates are alkyl or dialkyl esters of phthalic acid and their 
functional groups can be linear, branched, or circular (3). Depending on their size, phthalates 
are classified into low and high molecular weight (MW) (4, 5). Low MW phthalates include 
benzyl butyl phthalate (BBP), diethyl phthalate (DEP), di-iso-butyl phthalate (DiBP), dimethyl 
phthalate (DMP) and di-n-butyl phthalate (DnBP), while high MW ones comprise bis(2-
ethylhexyl) phthalate (DEHP), di(2-propylheptyl) phthalate (DPHP), di-iso-decylphthalate 
(DIDP), di-iso-nonylphthalate (DINP), and di-n-octylphthalate (DnOP) (6). They are found in 
common household items, medical devices, construction material and consumer products (6). 
Since they are not covalently bound to the plastic matrix they are contained in, phthalates can 
leach or gas out and contaminate either the environment or be ingested via contaminated food 
(5). Indeed, food constitutes one of the biggest sources of human exposure to phthalates (7). 
Human biomonitoring studies conducted on the general population in Asia, Europe and North 
America show a widespread exposure of the general population to phthalates (6, 8-11). Despite 
this broad use and pervasive environmental presence, they have been recognized as toxic 
substances both in humans and other organisms (12). Once ingested, they are rapidly 
metabolized in the digestive tract to their monoester form, which are the species responsible for 
the phthalates’ toxicity. Low MW phthalates metabolites are then excreted through the urine, 
while high MW metabolites are excreted both via the urine and feces (1). While they do not 
bioaccumulate, the persistent exposure of the population is cause for concern. Short and medium 
chain phthalates have been associated with higher toxicity than long chain ones which has led to 
their banning or restriction in children’s toys or teething products (13, 14). Some of the 
examined compounds have been reported to cause chronic or subchronic toxicity in several 
organs and systems, namely liver, kidney, immune system, testes, uterus, ovary, central nervous 
system, and thyroid in vivo  (2, 15-17). Phthalates can also negatively interfere with the endocrine 
system and are thus considered endocrine disrupting chemicals (EDCs). They have been shown 
to interfere with prenatal and postnatal development in animal models (18), with the female and 
male reproductive systems (19-21) as well as being possibly linked to obesity and type 2 diabetes 
(22-24).  

The thyroid is an endocrine gland positioned in the lower part of the anterior neck and 
is responsible for the production of the thyroid hormone (TH), whose receptors are expressed 
throughout the body (25). The TH is essential for normal growth and development and 
metabolism regulation (26). Its production is mainly regulated by the thyroid-stimulating 
hormone (TSH), which is secreted by the adenohypophysis. In turn, TSH production is 
regulated both by circulating TH levels and the thyrotropin-releasing hormone (TRH), 
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synthesized in the hypothalamus. The main cell type of the thyroid is constituted by thyrocytes, 
which organize in small hollow spheres called follicles and are responsible for synthesizing the 
TH, stored in the center of the follicle (the lumen), in a dense matrix termed colloid. The 
synthesis of the TH starts with active transport of iodine inside the thyrocyte via the sodium 
iodide symporter (NIS in human). In the follicle lumen, it is covalently bound via oxidation to 
the tyrosyl (Tyr) residues of the protein thyroglobulin (TG) via the action of the membrane-
bound enzyme thyroid peroxidase (TPO) (27, 28). Following TSH stimulation, TG is degraded 
in the lysosomes, freeing TH, which can be transported outside the thyrocyte. 

In the thyroid, phthalate treatment has been shown to have an effect in vitro and in 
vivo, causing histological changes, such as reduced follicle size and colloid density, hypertrophy 
of the Golgi apparatus, increase in number and size of lysosomes and alteration of the TH levels 
(2, 15, 16, 29, 30). DEHP has been shown to downregulate Tshr (Tsh receptor) expression and 
interfere with the Tsh/Tshr signaling pathway in vivo (31, 32). In human, the presence of 
phthalate metabolites in urine has been observed in association with alterations of TH and TSH 
serum levels (22, 29). In addition, there is evidence for phthalates altering the methylation status 
in sperm cells (33) and adrenal glands (34) of the offspring of exposed rats, as well as the 
expression or activity of histone deacetylases and histone methyltransferases (35, 36). 

Over the years, great effort has been made to develop thyroid organoids using both 
embryonic and induced pluripotent stem cells (37) which can be used for developing thyroid 
disease models (38) and performing cancer (39), toxicological and drug screening (40). In the 
context of toxicology, in vitro models can offer high throughput capability, mechanistic insight 
into endocrine disruption and reduce the use of animal testing, in line with the 3Rs principles 
for animal welfare (Replacement, Reduction and Refinement (41). 

In this work, we analyzed our ability to identify alterations induced by phthalate 
treatment by using two in vitro models of thyroid. To this end, we exposed mouse embryonic 
stem cell (mESC)-derived thyroid follicles (42) to the high MW phthalates DEHP, DIDP, 
DINP, DnOP for 24 hours and analyzed the transcriptome via RNA-Sequencing (RNA-Seq) 
using the Combo-Seq library prep kit for simultaneous analysis of mRNA and miRNA 
expression. Data analysis revealed the upregulation of the gene Ing5 in three out of four tested 
compounds (DEHP, DINP, DnOP) compared to the control. ING5 is a component of the 
histones H3 and H4 acetyltransferase complexes HBO1-JADE, HBO1-BRPF1 and 
MOZ/MORF (43, 44). To investigate a potential effect of phthalate treatment on the chromatin 
status on thyroid models in vitro, we exposed the human thyroid follicular epithelial cell line 
Nthy-ori 3-1 to 1 uM of DEHP or DINP for 5 days and analyzed the genome accessibility with 
ATAC-Seq (Assay for Transposase-Accessible Chromatin). We used maSigPro to analyze gene 
expression across the dose series and performed gene set enrichment analysis (GSEA) to identify 
enriched pathways. 
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2. Materials and methods 
2.1 Chemicals information 

The following phthalates were used for the experiments described in this paper: bis(2-
ethylhexyl) phthalate (DEHP) (CAS 117-81-7, purity 99.8% ± 0.4%) (67261, Sigma-Aldrich, 
St. Louis, MO, USA), di-iso-nonylphthalate (DINP) (CAS 28553-12-0, ester content >= 99% 
mixture of C9 isomers) (376663, Sigma-Aldrich), di-iso-decylphthalate (DIDP) (CAS 26761-
40-0, purity >= 99.0%) (80135, Supelco, St. Louis, MO, USA) (DINP) and di-n-octylphthalate 
(DnOP) (CAS 117-84-0, purity >= 99.5%) (D201154, Sigma-Aldrich). 

 

2.2 Thyroid organoids Differentiation and Enrichment 
2.2.1 Embryonic stem cells culture and Thyroid Organoids 
Differentiation  

Thyroid follicles were differentiated from the A2Lox.Cre_TRE-Nkx2-1/Pax8_Tg-
EGFP mouse ESC as previously described [42,47]. Briefly, cells were initially cultured on 
gamma-irradiated mouse embryonic fibroblasts (MEFs) feeder using mouse stem cell medium 
[42,47] and incubated at 37 °C, 5% CO2 and > 95% humidity. For differentiation into thyroid, 
embryoid bodies (EBs) were generated by hanging drops culture of ESCs (1000 cells per drop) 
for 4 days. They were then collected and embedded in growth factor restricted Matrigel (354230, 
Corning). 50 mL Matrigel drops containing around 20 EBs were plated into 12-well plates. Cells 
were differentiated using a differentiation medium composed of DMEM (31966021, Gibco) 
supplemented with 15% FBS, vitamin C (50 μg/mL) (A4544, Sigma), nonessential amino acids 
(0.1 mM) (11140035, Gibco), sodium pyruvate (1 mM) (11360039, Gibco), penicillin and 
streptomycin (50 U/mL) (15140122, Gibco), 2-mercaptoethanol (0.1 mM) (31350010, Gibco). 
The differentiation medium was supplemented with 1 μg/mL of doxycycline (D9891-1G, 
Sigma) for 3 days for Nkx2-1 and Pax8 induction, followed by two weeks of maturation by using 
the differentiation medium containing 8-Br-cAMP (0.3 nM) (B 007-500, BioLog).  

 

2.2.2 Thyroid Follicles Enrichment Protocol 
At day 21, after complete thyroid maturation, Matrigel drops containing the thyroid 

follicles were washed twice with Hanks’s balanced salt solution (HBSS, containing calcium and 
magnesium) (14025050, Gibco) and incubated in a HBSS solution (1 mL per well) containing 
10 U/mL of dispase® II (4942078001, Roche) and 125 U/mL of collagenase type IV (Sigma) for 
30-45 min at 37 °C. The enzymes were then inactivated by adding 10% FBS. Organoids were 
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centrifuged at 1200 rpm for 3 minutes. After rinsing twice with HBSS, the follicles were enriched 
by filtration using 30 mm (to remove single cells) (43-50030, pluriSelect Life Science GmbH) 
to and 100 mm reverse strainer (to remove big follicles aggregates) (43-50100, pluriSelect Life 
Science GmbH).  

Resuspended follicles were cultured in subsequent experiments in the differentiation 
medium described above and supplemented with 8-Br-cAMP (10 μM) and TGF-βRI inhibitor 
SB431542 (10 μM) (1614, Tocris), hereafter termed “supplemented differentiation medium”. 

 

2.3 Exposure to Phthalates and RNA-Seq Library 
Preparation  
2.3.1 Exposure to Phthalates 

One thousand (1,000) follicles per well were seeded in triplicate in low-adhesion 48-
well cell culture plates in supplemented differentiation medium (Supplementary Methods) and 
1-10-100 nM-1-10 μM of DEHP, DINP or DIDP or 2-20-200 nM-2-20 μM of DnOP 
dissolved in DMSO (1029521000, Merck Millipore, Burlington, MA, USA) (final DMSO 
concentration 0.5%). Of note, the slightly different dose range for DnOP was caused by an 
unwanted dilution error. We decided to still consider DnOP not differently than the other 3 
phthalates in our following data analysis, considering the dose range still maintains the same 
scaling between each dose and its order of magnitude is comparable to the others. As control, 
1000 follicles per well were seeded in supplemented differentiation medium and 0.5% DMSO 
(n = 5) or medium alone (n = 3).  The plated follicles were incubated at 37 °C, 5% CO2 and > 
95% humidity for 24 hours.  

 

2.3.2 RNA Isolation 
After 24 hours, the follicles were collected, washed once with PBS, and lysed in QIAzol 

Lysis Reagent (79306, Qiagen). Total RNA was extracted using the miRNAeasy Micro Kit 
(217084, Qiagen, Venlo, The Netherlands). All samples had a RIN (RNA Integrity Number) of 
8 or higher. 

 

2.3.3 RNA-Seq Libraries Preparation 
Twenty (20) ng of total RNA were used to prepare RNA-Seq libraries with the 

NEXTFLEX® Combo-Seq™ mRNA/miRNA Kit (NOVA-5139-53, PerkinElmer, Waltham, 
MA, USA). To deplete tRNA fragments and Y RNA fragments, the NEXTFLEX® tRNA/YRNA 
Blocker was used during the library preparation following the manufacturer’s instructions. 
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Fourteen (14) cycles of PCR were performed during the protocol. For some samples, the final 
library concentration was below the pooling concentration used for sequencing (1.6 nM). In 
these cases, the library was prepared again performing 16 cycles. For 3 samples (DEHP 10 μM 
replicate 3; DIDP 1 nM replicate 3; Untreated control replicate 1) there was not enough RNA 
to repeat the library preparation and could thus not be sequenced. The prepared libraries were 
sequenced on an S4 Illumina flowcell 35 cycles (v1.5) (Illumina) in single-end mode. 

 

2.4 Exposures to DEHP or DINP and ATAC-Seq library 
preparation   
2.4.1 Exposure to DEHP or DINP 

The human thyroid follicular epithelial cell line Nthy-ori 3-1 was plated at a density of 
10,000 cells/cm2 on 6-well plates and cultured in RPMI 1640 Medium with GlutaMAX™ 
Supplement (61870036, Gibco, Waltham, MA, USA), 10% FBS and Penicillin-Streptomycin 
(15140122, Gibco) and incubated at 37 ºC, 5% CO2 and > 95% humidity. Cells were left one 
day to adhere, and the following day the media was changed to culture media with DEHP (n = 
6) or DINP (n = 6) at 1 μM in 0.5% DMSO. As solvent control, the culture media was 
additioned with just 0.5% DMSO (n = 6). Cells were incubated for 5 days refreshing the media 
with the compound or DMSO only at day 3. At the end of the incubation period, cells were 
collected and counted manually.  

 

2.4.2 ATAC-Seq libraries preparation 
Fifty thousand (50,000) cells per sample were used to prepare ATAC-Seq libraries. 

Libraries were prepared following the Omni-Atac protocol of Corces et al. (45) with the 
replacement of NP40 from the original protocol with IGEPAL (I8896-50ml, Merck Millipore). 
The tagmentase kit used was Illumina Tagment DNA Enzyme and Buffer Small Kit (20034197, 
Illumina, San Diego, CA, USA) and the indexes IDT® for Illumina® DNA/RNA UD Indexes 
Set A, Tagmentation (96 Indexes, 96 samples) (20027213, Illumina). Seven PCR cycles were 
used for all samples. The prepared libraries were sequenced on an SP Illumina flowcell 100 cycles 
(v1.5) (Illumina) in paired-end mode. 

 
All RNA samples and sequencing libraries concentrations were measured with the 

Qubit 2.0 Fluorometer (ThermoFisher), and quality control performed on a BioAnalyzer 2100 
expert (Agilent, Santa Clara, CA, USA) or a 2200 TapeStation System (Agilent).  
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2.4 Data analysis 
All the scripts used for RNA-Seq and ATAC-Seq data analysis have been collected in a 

markdown file available at https://github.com/marta-nazzari/phthalates_rnaseq_atacseq.  
 

2.4.1 RNA-Seq data processing 
The fastq files were processed according to our previously published CODA pipeline 

(46). Briefly, reads were trimmed from the 5’ 4N and 3’ 8A adapters using Cutadapt (v3.7) (47) 
as recommended by the manufacturer (48). To obtain genes read counts, trimmed reads were 
aligned to the mouse transcriptome (GRCm39 v27) and quantified using RSEM (v1.3.3) with 
the “--STAR” parameter (v2.7.10a), following the ENCODE3's STAR-RSEM pipeline (49, 50). 
To analyze miRNAs, the trimmed files were used as input for miRge3.0 (v0.0.9) (51) using 
miRBase mouse annotations (v22).  

 

2.4.2 ATAC-Seq data processing 
The fastq files were preprocessed using the PEPATAC pipeline (v0.10.4) (52) using 

bowtie2 (v2.4.2) (53) as mapper, samtools (v1.4) (54) as deduplicator and the included Python 
tool “pyadapt” as trimmer. The human genome GRCh38 v38 build was used for alignment.  

 

2.4.3 RNA-Seq samples biotype mapping and outliers 
identification 

Quantified RNA species were mapped to their respective biotypes using the R (55) 
package biomaRt (56). We calculated the percentage of mapped reads per biotype and retained 
only those constituting at least 1% in at least one sample. Outliers for each biotype were 
identified per treatment group (DEHP, DIDP, DINP, DnOP, DMSO, and Untreated) and 
calculated as being 1.5 times the interquartile range (IQR) below the 25th percentile or above 
the 75th percentile:  
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏 𝑏𝑏  <   25𝑏𝑏ℎ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑔𝑔𝑝𝑝𝑏𝑏𝑔𝑔𝑏𝑏 𝑧𝑧) −  1.5 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑔𝑔𝑝𝑝𝑏𝑏𝑔𝑔𝑏𝑏 𝑧𝑧) 

or 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏 𝑏𝑏  >  75𝑏𝑏ℎ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑔𝑔𝑝𝑝𝑏𝑏𝑔𝑔𝑏𝑏 𝑧𝑧) +  1.5 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑔𝑔𝑝𝑝𝑏𝑏𝑔𝑔𝑏𝑏 𝑧𝑧) 

2.4.4 MaSigPro analysis 
Normalized gene counts were used for maSigPro (57) analysis according to the 

maSigPro User’s Guide for Next-Generation Sequencing data (58) for a single series course 
experiment. We set the “tetha” (θ) value to 10 (default), the FDR to 0.05 (default) and the 
“degree” parameter to 3 (this corresponds to a cubic polynomial regression model). The variable 

Investigation of the Effects of Phthalates on In Vitro Thyroid Models with RNA-Seq and ATAC-Seq

91



“Time” with values 0, 1, 2, 3, 4, 5 was used in the model to represent the “Dose” values of 0 
(DMSO control), 1 nM, 10 nM, 100 nM, 1 μM and 10 μM (or 2 nM, 20 nM, 200 nM, 2 μM 
and 20 μM for DnOP).  

 

2.4.5 Differential expression analysis 
Differential gene and miRNA expression analysis was performed comparing the 

phthalate-treated samples to the DMSO solvent control using the R package DESeq2 (59) 
following a slightly modified version of the guidelines of the Omics Data Analysis Framework 
for regulatory application (R-ODAF) pipeline developed by our group (60, 61). Briefly, a first 
filtering step (“relevance threshold”) was applied to select the expressed genes/miRNAs by 
retaining only those whose normalized expression is ≥1 count per million (CPM) in at least 75% 
of the samples in either group (i.e. treatment versus control). To increase statistical power, all 
doses of a single compound were grouped together and compared to DMSO control. The RUVg 
function from the RUVSeq package (62) (k = 2) was used on the genes/miRNAs passing the 
relevance threshold filter to remove unwanted variation. Then, differential expression analysis 
on the expressed genes/miRNAs was performed setting the FDR to 0.01. The resulting 
differentially expressed (DE) genes/miRNAs/snoRNAs were subjected to an additional filtering 
step (“spurious spikes”) to identify those cases in which a very high expression value in only one 
replicate in a group is responsible for a certain gene/miRNA/snoRNA to result differentially 
expressed. To this end, the following formula was applied to every DE gene/miRNA/snoRNA 

for both treatment and control groups 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑔𝑔𝑟𝑟𝑐𝑐𝑟𝑟/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑔𝑔𝑟𝑟𝑐𝑐𝑟𝑟/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 𝑚𝑚𝑐𝑐 𝑔𝑔𝑟𝑟𝑐𝑐𝑐𝑐𝑝𝑝𝑗𝑗

 <  1.4 ×

�𝑖𝑖𝑔𝑔𝑠𝑠𝑏𝑏𝑏𝑏𝑝𝑝 𝑏𝑏𝑜𝑜 𝑝𝑝𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠 𝑏𝑏𝑖𝑖 𝑔𝑔𝑝𝑝𝑏𝑏𝑔𝑔𝑏𝑏𝑗𝑗�
−0.66

, where 𝑏𝑏 refers to any gene/miRNA/snoRNA, and 𝑗𝑗 
to either the treatment or control group. The expression of such genes/miRNAs/snoRNAs was 
manually checked in all replicates to determine whether a gene that failed this “spurious spike” 
filter was indeed a technical artefact or could instead be biologically relevant. 
 

2.4.6 Gene set enrichment analysis (GSEA) 
GSEA was performed using the R package ReactomePA (v1.40.0) (63) and Reactome 

as database (64) using DESeq2 “stat” value for gene ranking. For significance, we set a q-value 
threshold of 0.05. 

 

2.4.7 Differential accessibility analysis 
The alignment files (.bam) output by the PEPATAC pipeline were shifted with the 

deepTools (v3.5.1) (65) utility alignmentSieve to account for the Tn5 transposase duplication 
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at the cut site. To identify differentially accessible (DA) regions, we used a sliding window 
approach with the R package csaw (v1.32.0) (66) and a modified version of the script made 
available by Sheikh and Blais (2022) on bioRxiv (67). For quantification, we used the 5-prime 
reads, a sliding window of 50 bp without overlap, and a minimum number of counts of 50 for 
a window to be retained. To calculate the background, we binned the genome in 10 kb bins. To 
distinguish the signal from the background, we compared each region against the global 
background and set a fold change compared to the background to 3. The differential accessibility 
analysis was performed with the R package edgeR (v3.4.0) (68) and we performed batch 
correction using the RUVs function (k = 5) from the RUV-Seq package (v1.32.0) (62). As 
multiple testing correction should be performed on regions and not windows (69), we merged 
the regions identified as “signal” that are at most 500 bp apart, reaching up to a maximum 
merged region width of 5 kbp, and performed multiple-testing correction using the Benjamini-
Hochberg method (FDR = 0.01). 

Identified differentially accessible regions were annotated with HOMER (v3.13) (70) 
(genome version hg38). Regulatory regions annotations were retrieved from the ENCODE 
Candidate Cis-Regulatory Elements (cCREs) registry (71). Coverage tracks were normalized 
using BeCorrect (v1.1.0) (72) and visuals extracted from the Integrative Genomics Viewer (IGV) 
(v2.13.2) (73). 
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3. Results 
3.1 RNA-Seq results 

To investigate the effect of phthalates on the transcriptome, we generated RNA-Seq 
data from mESC-derived thyroid organoids exposed to four phthalates using in vivo relevant 
concentrations (1-10-100 nM-1-10 μM DEHP, DIDP, DINP; 2-20-200 nM-2-20 μM DnOP) 
for 24 hours. A schematic representation of the exposure regimen is shown in Figure 1. In the 
following paragraphs, we provide some dataset quality control (QC) metrics followed by the 
results of gene expression analysis. 

 

 
Figure 1. Graphical representations of the exposure regimens of thyroid follicles to the phthalates (* = for 
DnOP the concentrations used were 2-20-200 nM-2-20 μM). 

3.1.1 RNA-Seq data QC and outliers identification 
Combo-Seq libraries had a median 51.8 million (M) reads per sample (min = 17.7, max 

= 92.4 M) (Figure 2A), with a median of 97% of sequenced reads with quality score of 30 or 
more (min = 96.4%, max = 97.3%) (Figure 2B). The median number of reads mapped to 
mRNAs was 41.8 M (min = 14.3, max = 78.8 M) and to miRNAs 1.30 M (min = 0.16, max = 
2.2 M) (Figure 2C).  
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Figure 2. RNA-Seq dataset metrics. (A) Number of sequenced reads. (B) Percentage of sequenced reads 
with quality score Q30 > =30. (C) Number of reads mapped to miRNAs (light blue) or mRNAs (yellow). 
Each dot represents a sample. 

As explained in the Methods section, we performed 16 cycles for some RNA-Seq 
libraries to reach the required concentration for sequencing (1.6 nM) (Supplementary table 1). 
In consequence, this increased the percentage of snoRNA-mapping reads (Figure 3A). As the 
read count of the protein-coding genes would be underestimated during DESeq2 normalization, 
we removed the snoRNA-mapping reads from the main dataset and performed the analysis of 
snoRNA genes separately. Boxplot of mapped read distributions per gene biotype after snoRNA 
removal revealed that one DMSO control replicate (DMSO_ctrl_1) was a clear outlier in 
multiple biotypes (Figure 3B). As the DMSO samples would be used as control for all 
comparisons, this outlier would have had a major impact in all downstream analyses, and 
importantly in the most important biotypes (“protein coding” and “miRNA” in particular). 
Although other samples were flagged as outliers in other biotypes (“processed pseudogene” or 
“rRNA”), this was less consistent and did not warrant further samples removal. 
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Figure 3. (A) Genes biotype composition of RNA-Seq samples expressed as percentage of total normalized 
read count. For clarity and to reduce noise, only the biotypes that make up at least 1% of the total in at 
least one sample are reported. The sample names for which 14 cycles during the library prep protocol were 
used are reported in red. (B) Biotype distribution after snoRNA removal. The biotypes that make up at 
least 1% of the mapped reads are reported. The labelled samples are the ones flagged as outliers. 

3.1.2 MaSigPro analysis 
The MaSigPro R package, initially developed to identify changes in gene expression 

along a time series, can also be used to analyze the evolution of the gene expression level across a 
dose range exposure. We then investigated using MaSigPro whether some genes would show 
dose regulation across our six doses (untreated plus five doses). We then allowed the significant 
genes to be grouped into 9 clusters, which include the genes that have a similar trend in change 
in expression over the dose series. For every compound, we observed some clusters with a non-
monotonic dose-response curve (DEHP: 1, 3-5; DIDP: 1, 3-9; DINP: 1, 3-5, 9; DnOP: clusters 
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1, 3, 6, 8) (Figure 4). The genes belonging to the various clusters are reported in Table 1. In 
those indicated clusters, the highest dose (10 μM or 20 μM) was consistently showing to be 
different from the other four. In this cellular system, this dose could be used for phthalates to 
derive a point of departure (PoD) metric, which in the toxicology field represents a dose at which 
a biological response is first observed and can be used to make extrapolations for risk assessment 
(74).  

 
 

 
Figure 4. MaSigPro analysis of the gene expression over the dose series employed in the study (0-1-10-100 
nM-1-10 μM for DEHP, DIDP and DINP, and 0-2-20-200 nM-2-20 μM for DnOP). The curves for 
each compound are color-coded and the compound name is reported in every plot. Each gene was analyzed 
to fit up to a cubic polynomial regression model. Fits that passed multiple testing correction (FDR = 0.05) 
were selected and clustered in 9 groups using hierarchical clustering. If a cluster comprises only one gene, 
the gene name is indicated on top of the plot, otherwise the cluster name is reported. The x-axis reports the 
dose range used (nM = nanomoles per liter, μM = micromoles per liter). The dots represent the expression 
values of each replicate (or the average of each gene if a cluster comprises more genes) and the dotted line 
shows the fit. The genes belonging to the various clusters are reported in Table 1.  
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Table 1. Genes belonging to the different clusters identified by maSigPro analysis (degree = 3, FDR < 
0.05). Note that the same cluster number in the different series does not necessarily refer to the same curve 
shape. 

 DEHP DIDP DINP DnOP 
Cluster 1 Abcf3, Blmh Brf2, Brip1os, 

Capns1, Ccdc84, 
Dpf2, Kank1, Kat7, 
Reep6, Scamp2, 
Tgfbi, Yars, 
Zswim4 

Klf6 Ccnd2, Lor 

Cluster 2 Man1a Celf2, Gm8318 Ddr1 Cbx1, Ccnb1, 
Hspbap1, Kif23, 
Larp7, Lbr, Ndc80, 
Nfyc, Slc7a7, Srsf3, 
Uba2, Zzz3 

Cluster 3 Rrp7a 1600014C10Rik, 
Dnajc8, Eda2r, 
Gm10323, Naa20, 
Zfp87 

Dnajb1, Mxi1, 
Net1, Tbl2 

4833411C07Rik, 
Gm25395, 
Gm7908, Lman2l, 
Pank4, Pcsk1n, 
Pi4k2a, Ptpn23, 
Rnasek, Slc25a34, 
Slc25a39, Slc38a1, 
Slc39a7 

Cluster 4 Dnase1l1 Aplp2, Gorasp2, 
Ppp1r18 

Acaa2, Ing5 Asf1b, Basp1, 
Gm32885, Ncoa4 

Cluster 5 Lipt1, Serpinb9b Cxcl14, Mrps34, 
Nop53, Prpf8, 
Prpsap1, Rab4a, 
Selenow, Slc25a3 

Pnrc1, Setd5 Dap, Ddit3, Gstm1, 
Luc7l, Map1b, 
Pde4d, Slc3a2, 
Slc48a1, Srxn1, 
Tmbim1, Ttc3 

Cluster 6 Nsd1 Lbp, Parm1, Sel1l, 
Tspan7 

Rpl7l1 Gpr137b, Mid1, 
Nat9, Polk, Sel1l, 
Zbtb20 

Cluster 7 Higd2a, Secisbp2l, 
Slc6a2 

2610021A01Rik, 
4930430F08Rik, 
Rab5c, Trmt10c, 
Xrcc6 

Gm7876 Cyb5b, Mtres1, Sys1 

Cluster 8 Mark4, Pkm, 
Ubap1 

Cd2bp2, Ddx6, 
Mgme1, Snx1 

Gm8318 Exoc6, Mrps22 

Cluster 9 Cdc14a Mirt1 Gm28661 Acaa2, Dnajc8 
 

3.1.3 Differentially expressed genes and miRNAs 
Considering the divergent nature of the highest dose compared to the other four, we 

decided to exclude it from the differential expression analysis. Given that for each dose we had 
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triplicates or duplicates, by consolidating all the remaining doses together and comparing them 
to the solvent control, we aimed at increasing the statistical power and detecting gene, miRNA 
and snoRNA expression alterations specifically attributable to phthalate treatment. By doing so, 
we could focus on identifying changes at the compound level while accounting for the different 
response observed with the highest dose.  

Differential expression analysis revealed how all the treatments had moderate effects on 
the cells in terms of number of differentially expressed genes (DEGs), miRNAs and snoRNAs 
(Figure 5): the number of DEGs compared to the control was 5, 5, 10 and 49 for DEHP, DIDP, 
DINP and DnOP, respectively (FDR < 0.01) (Table 2). Only DIDP treatment influenced 
miRNA expression, with mmu-miR-143-3p being downregulated. No effect was observed on 
snoRNA expression as well as on thyroid markers (Supplementary figure 1). 

 
Table 2. List of differentially expressed genes (DEGs) and miRNAs (DE miRNAs) in every phthalate vs 
DMSO comparison (FDR < 0.01). Downregulated genes are reported with blue text, upregulated ones in 
red. DEGs that appear in more than one comparison are in bold. 

 DEHP DIDP DINP DnOP 

DEGs 

Gpd1 Plekha3 Acaa2 Acaa2 Hsd17b10 Plekha3 Tmem80 
Ing5 Cxcl14 Cops5 App Hspa1b Pole2 Trmt61b 
Myh14 Zgpat Idh3g Arhgef10l Idh3g Ppp1r7 Tspan1 
Acaa2 Rpl38-ps2 Ing5 Ccnd2 Ifitm3 Ptp4a1 Ube2g2 
Gm15516 Gm10323 Mid1 Ccni Ing5 Rab5a Uqcrc2 
  Rab5a Cops5 Mid1 Rars Vps25 
  Srrm1 Dnajc8 Mtpn Rnf128 Wasf2 

  Tnrc6b Exoc6 Mzt1 
Rpl19-
ps11 Zc3h11a 

  Ttc32 Fbp2 Npm1 Shroom3 Zfand1 
  Zfp960 Gm21293 Nrip1 Sox4 Zfp330 
   Gm5641 Nucb2 Tjp1 Zfp960 
   Hbb-bs Phlda1 Tmed7 Zswim6 
   Herpud2    

DE 
miRNAs   

mmu-
miR-143-
3p 
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Figure 5. Volcano plots of the expressed genes (A-D), miRNAs (E-H) and snoRNAs (I-L) in each phthalate 
vs DMSO control. every dot represents a gene. Element not differentially expressed (‘n.s.’) are in black. 
The False Discovery Rate (FDR) threshold of 0.01 is indicated as a dotted line on the y axis. Upregulated 
elements (‘FDR < 0.01, log2(Fold Change) > 0’) are indicated in red, downregulated ones (‘FDR < 0.01, 
log2(Fold Change) < 0’) in cyan. The genes above this line colored in black are the ones that fail to pass the 
‘spurious spike’ filter as described in the Methods section. 

Interestingly, despite the weak effects on gene expression, the Inhibitor of growth 
protein 5 (Ing5) gene was consistently upregulated in three out of four treatments (FDR: DEHP 
vs DMSO = 4.44e-3, DIDP vs DMSO = 0.14, DINP vs DMSO = 1.37e-3, DnOP vs DMSO 
= 1.23e-3) (Figure 6).  
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Figure 6. Ing5 normalized expression in each phthalate and DMSO control samples. The different doses 
are reported in the legend. The darkest shade corresponds to the highest concentration (10 or 20 μM), 
while the lightest shades to the lowest (1 or 2 nM). The DMSO control samples are reported in black. 

Other genes differentially expressed in more than one condition were identified: Acaa2 
(DEHP, DINP and DnOP vs DMSO), Plekha3 (DIDP and DnOP vs DMSO) and five genes 
(Cops2, Idh3g, Mid1, Rab5a, Zpf960) dysregulated in DINP and DnOP vs DMSO.  

 

3.1.4 Gene set enrichment analysis (GSEA) 
GSEA was performed using the Reactome database using a q-value threshold of 0.05. 

We identified 123 enriched pathways in the DEHP vs DMSO comparison, 79 in DIDP vs 
DMSO, 173 in DINP vs DMSO and 311 in DnOP vs DMSO (Figure 7).  

 
Figure 7. Volcano plots of the enriched Reactome pathways identified by GSEA analysis in each phthalate 
vs DMSO control (A: DEHP vs DMSO; B: DIDP vs DMSO; C: DINP vs DMSO; D: DnOP vs DMSO). 
Every dot represents a pathway. Pathways with a q-value < 0.05 and normalized enrichment score (NES) > 
0 are in red. Pathways with a q-value < 0.05 and NES < 0 are in cyan. Pathways with q-value >= 0.05 are 
in black (‘n.s.’). The q-value threshold of 0.05 is indicated as a dotted line on the y-axis. 

Investigation of the Effects of Phthalates on In Vitro Thyroid Models with RNA-Seq and ATAC-Seq

101



In both DEHP and DIDP vs DMSO comparisons, most pathways were enriched in 
the control (normalized enrichment score NES < 0). Conversely, we observed a balance between 
pathways enriched in the treatment (NES > 0) and in the control in the DINP and DnOP vs 
DMSO comparisons. To identify common effects across the treatments, we focused on the 
pathways which appeared in all comparisons (Figure 8), thus retrieving 23 terms, 1 enriched in 
the treatment, 22 enriched in the DMSO control. 

 

 
Figure 8. Results of gene set enrichment analysis (GSEA) on Reactome pathways. The reported pathways 
have a q-value < 0.05 and appear in all four phthalates vs DMSO comparisons. 

Among the selected pathways with NES < 0, we identified several terms related to signal 
transduction and extracellular matrix (ECM) organization. The only term with NES > 0 was 
“Fatty acid metabolism”. In Figure 9 the terms are reported with their respective position in the 
Reactome terms hierarchy, for better understanding of their relationships.  
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Figure 9. Common enriched Reactome pathways in all four phthalates identified by GSEA. The top term, 
in uppercase, represents the most parent term in the hierarchy. The colored terms are the ones reported in 
Figure 4, while the terms in a white rectangle are reported for better understanding the relationships among 
terms. If a branch has more children events, it is indicated as “+N events”.  

3.2 ATAC-Seq results 
As explained in the previous section, Ing5 upregulation was observed in 3 phthalate 

exposures out of 4. ING5 is a component of the histone acetyltransferase complexes HBO1-
JADE, that mediates histone H4 acetylation in vivo, and HBO1-BRPF1 and MOZ/MORF that 
mediate histone H3 acetylation (43, 44). For this reason, we investigated whether phthalate 
treatment could have an impact on the chromatin status with ATAC-Seq. To this end, we 
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selected two of the four phthalates, DEHP and DINP, and the highest dose included in the 
differential expression analysis (1 μM). The exposure was increased to 5 days, to allow time to 
any chromatin rearrangements, if any, to take place, accounting for any delay between gene 
upregulation of Ing5 and an actual observable effect on the epigenome. For ATAC-Seq library 
preparation, a viability of at least 90% was required. Unfortunately, we were not able to recover 
enough cells from our thyroid follicles model with this viability. For this reason, we selected the 
human epithelial thyroid cell line Nthy-ori 3-1 (Figure 10). In the next sections some quality 
control metrics of the ATAC-Seq libraries and the results of the differential accessibility analysis 
are reported. 

 
Figure 10. Graphical representations of the exposure regimens of Nthy-ori 3-1 cells to the phthalates. 

3.2.1 ATAC-Seq QC 
ATAC-Seq libraries had a median 82.2 million (M) reads per sample (min = 26.5, max 

= 237.9 M) (Figure 11A), with a median 77.36% (min = 75.46%, max = 79.08%) of sequenced 
reads being successfully aligned to the GRCh38 nuclear genome (Figure 11B). The 
Transcription Start Site (TSS) enrichment score had a distribution between 10.7 and 19.5 
(median 18.1) (Figure 11C). The distribution of nucleosome free regions (NFR), mono-, di-, 
tri- or poly-nucleosome regions was consistent across samples (Figure 11D) and the read length 
distribution profiles typical of ATAC-Seq libraries (Figure 11E). The library complexity metrics 
were within the accepted values recommended by the Encode Project (Figure 11F) (75). 
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Figure 11. ATAC-Seq dataset metrics. (A) Libraries size. (B) Percentage of reads aligned to GRCh38 
nuclear or chromosomal genome, duplicated reads and unaligned reads. (C) Transcription Start Site (TSS) 
enrichment score. (D) Proportion of nucleosome-free, mono-, di-, tri- and poly-nucleosome reads. (E) Read 
length distribution. Each line represents a sample. (F) Boxplots of ATAC-Seq library complexity metrics. 
Each dot represents a sample (green = DEHP, violet = DINP, black = DMSO control). The green and 
orange lines represent the ENCODE thresholds for an acceptable (orange) or ideal (green) metric. (NRF = 
Non-Redundant Fraction; PBC1 = PCR Bottlenecking Coefficient 1; PBC2 = PCR Bottlenecking 
Coefficient 2). Plots (B) and (C) are output by the PEPATAC pipeline. 

3.2.2 Differential accessibility analysis by ATAC-Seq 
We identified 111,133 genomic regions when comparing DEHP-treated and DMSO 

samples, and 118,855 regions in the DINP vs DMSO comparison tested for differential 
accessibility. In both treatments, we observed a general increase in accessibility compared to the 
control, but none of the regions passed multiple-testing correction (Figure 12). 
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Figure 12. Number of differentially accessible regions with p-value < 0.001 or 0.01 and |log(Fold Change)| 
> 1 in the DEHP- or DINP-treated samples vs DMSO control. After multiple-testing correction, none of 
the regions had an FDR < 0.01. 

We annotated the regions with p-value < 0.01 with HOMER to identify the closest 
gene to each region and looked for overlap between DEHP vs DMSO and DINP vs DMSO. 
We identified 4 regions with decreased accessibility and 17 with increased accessibility that 
overlap with regulatory regions (Table 3). 

 
Table 3. Differentially accessible (DA) regions identified both in the DEHP vs DMSO and DINP vs 
DMSO comparisons that overlap with regulatory regions. DA regions were annotated with HOMER to 
identify the closest gene. A description of the gene region where the DA is located is reported. The 
regulatory regions that overlap with the identified DA regions were retrieved from the ENCODE Candidate 
Cis-Regulatory Elements (cCREs) registry (dELS = distal enhancer-like signature, pELS = proximal 
enhancer-like signature, PLS = promoter-like signature). 

cCRE ID cCRE type 
Closest 

gene 
Gene 
type 

Gene 
description 

Annotation 
Accessibility 
compared to 

control 

EH38D2971615 dELS ASPSC
R1 

Protein 
coding 

Alveolar 
soft part 
sarcoma 
chromoso
me region, 
candidate 1 

Intron 3 of 14 Increased 

EH38D2949029 dELS,CTCF-bound BCAS3 
Protein 
coding 

Breast 
carcinoma 
amplified 
sequence 3 

Intron 5 of 24 Increased 

EH38D3590998 dELS,CTCF-bound CCNI 
Protein 
coding 

Cyclin I TTS Increased 

EH38D4073480 
EH38D4073481 
EH38D4073482 
EH38D4073483 
EH38D4073484 
EH38D4073485 
EH38D4073486 
EH38D4073487 

pELS,CTCF-bound 
pELS 
pELS,CTCF-bound 
pELS,CTCF-bound 
PLS,CTCF-bound 
pELS,CTCF-bound 
pELS 
pELS 

CDCA
2 

Protein 
coding 

Cell 
division 
cycle 
associated 
2 

Promoter-TSS Increased 
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cCRE ID cCRE type 
Closest 

gene 
Gene 
type 

Gene 
description 

Annotation 
Accessibility 
compared to 

control 

EH38D3714835 dELS CDK7 
Protein 
coding 

Cyclin-
dependent 
kinase 7 

Intron 11 of 11 Increased 

EH38D3539140 
EH38D3539141 
EH38D3539142 
EH38D3539143 
EH38D3539144 
EH38D3539145 
EH38D3539146 
EH38D3539147 
EH38D3539148 

pELS,CTCF-bound 
pELS,CTCF-bound 
pELS,CTCF-bound 
PLS 
DNase-H3K4me3 
DNase-H3K4me3,CTCF-bound 
DNase-H3K4me3 
DNase-H3K4me3 
pELS 

CPLX1 
Protein 
coding 

Complexin 
1 

Promoter-TSS Increased 

EH38D3817447 pELS DTNB
P1 

Protein 
coding 

Dystrobrev
in binding 
protein 1 

TTS Increased 

EH38D3721344 dELS LHFP
L2 

Protein 
coding 

Lipoma 
HMGIC 
fusion 
partner-like 
2 

Intron 2 of 4 Increased 

EH38D4221907 dELS,CTCF-bound FKTN 
Protein 
coding 

Fukutin Intron 7 of 11 Increased 

EH38D4071656 dELS,CTCF-bound 
LOC1
00507
156 

ncRNA 

Uncharacte
rized 
LOC10050
7156 

Intron 7 of 13 Increased 

EH38D3794981 dELS,CTCF-bound MIR80
56 

ncRNA 
microRNA 
8056 

Intergenic Increased 

EH38D2141456 pELS,CTCF-bound PAFA
H2 

Protein 
coding 

Platelet-
activating 
factor 
acetylhydro
lase 2, 
40kDa 

Intergenic Increased 

EH38D4190148 dELS,CTCF-bound SLC25
A51 

Protein 
coding 

Solute 
carrier 
family 25, 
member 51 

Intron 5 of 5 Increased 

EH38D3296811 
EH38D3296812 
EH38D3296813 
EH38D3296814 

dELS,CTCF-bound 
dELS,CTCF-bound 
dELS 
dELS,CTCF-bound 

SRC 
Protein 
coding 

SRC proto-
oncogene, 
non-
receptor 
tyrosine 
kinase 

Intergenic Increased 

EH38D3526429 CTCF-only,CTCF-bound VPS8 
Protein 
coding 

Vacuolar 
protein 
sorting 8 
homolog 
(S. 
cerevisiae) 

Intron 20 of 46 Increased 

EH38D3015415 dELS CCBE
1 

Protein 
coding 

Collagen 
and 
calcium 
binding 
EGF 
domains 1 

Intron 2 of 10 Decreased 

EH38D3079246 dELS,CTCF-bound PXDN 
Protein 
coding 

Peroxidasin 
homolog 

Intergenic Decreased 
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cCRE ID cCRE type 
Closest 

gene 
Gene 
type 

Gene 
description 

Annotation 
Accessibility 
compared to 

control 
(Drosophil
a) 

EH38D3369502 CTCF-only,CTCF-bound TEX33 
Protein 
coding 

Testis 
expressed 
33 

Intron 5 of 5 Decreased 

EH38D2338583 dELS TME
M72 

Protein 
coding 

Transmem
brane 
protein 72 

Intergenic Decreased 

 
We looked at which of these regions fall within the transcription start site (TSS) or 

transcription termination site (TTS). We identified four regions, all with increased accessibility, 
two located at the TSS of the CDCA2 (Cell Division Cycle Associated 2) and CPLX1 
(Complexin 1) genes, and two located at the TTS of CCNI (Cyclin I) and DTNBV1 
(Dystrobrevin Binding Protein 1). However, when inspecting the normalized read coverage on 
the Integrative Genomics Viewer (IGV), there did not seem to be a clear increase in accessibility 
compared to the control (Table 4, Supplementary figure 2). 

 
Table 4. Differentially accessible (DA) regions identified both in the DEHP vs DMSO and DINP vs 
DMSO comparisons that overlap with regulatory regions and fall within the Transcription Start Site (TSS) 
or Transcription Termination Site (TTS) of the closest gene. DA regions were annotated with HOMER to 
identify the closest gene. The regulatory regions that overlap with the identified DA regions were retrieved 
from the ENCODE Candidate Cis-Regulatory Elements (cCREs) registry (dELS = distal enhancer-like 
signature, pELS = proximal enhancer-like signature, PLS = promoter-like signature). 

cCRE ID cCRE type 
Closest 

gene 
Gene 

description 
Annotation 

Distance 
from TSS, 

nt 

Accessibility 
compared to 

control 
EH38D3590998 dELS,CTCF-bound CCNI cyclin I TTS 28,721 Increased 
EH38D4073480 
EH38D4073481 
EH38D4073482 
EH38D4073483 
EH38D4073484 
EH38D4073485 
EH38D4073486 
EH38D4073487 

pELS,CTCF-bound 
pELS 
pELS,CTCF-bound 
pELS,CTCF-bound 
PLS,CTCF-bound 
pELS,CTCF-bound 
pELS 
pELS 

CDCA2 cell 
division 
cycle 
associated 
2 

promoter-
TSS 

-221 Increased 

EH38D3539140 
EH38D3539141 
EH38D3539142 
EH38D3539143 
EH38D3539144 
EH38D3539145 
 
 
EH38D3539146 
EH38D3539147 
EH38D3539148 

pELS,CTCF-bound 
pELS,CTCF-bound 
pELS,CTCF-bound 
PLS 
DNase-H3K4me3 
DNase-
H3K4me3,CTCF-
bound 
DNase-H3K4me3 
DNase-H3K4me3 
pELS 

CPLX1 complexin 
1 

promoter-
TSS 

-519 
(DEHP vs 
DMSO);  
-94 (DINP 
vs DMSO) 

Increased 

EH38D3817447 pELS DTNBP1 dystrobrevi
n binding 
protein 1 

TTS 139,732 Increased 
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4. Discussion  
In this work, we analyzed the response of mouse embryonic stem cell-derived thyroid 

follicles after exposure to the phthalates DEHP, DIDP, DINP and DnOP in a range of 
concentrations from 1 nM to 10 μM (2 nM to 20 μM for DnOP) for 24 hours. The low dose 
range was selected to reflect the low daily intake of phthalates measured in the general population 
(76), and the relatively short exposure time to detect the initial reaction to phthalates exposure 
by identifying the early changes in the transcriptome. In this way, we aimed at testing whether 
our model would be able to capture the molecular initiating event (MIE) of these phthalates 
which would then be followed by the key events (KEs), to ultimately lead to an adverse outcome 
(integrated in the concept of an adverse outcome pathway (AOP)) (77). We performed RNA-
Seq analysis, and simultaneously analyzed both mRNA and small RNAs from the same samples. 
The dose series analysis showed how most of the identified genes either increased or decreased 
sharply in expression at the highest dose, setting it apart from the others and possibly indicating 
it as a dose to determine a point of departure (PoD) for those genes, which is used in toxicology 
to establish a threshold dose for risk assessment (74, 78).  

The compounds showed a modest effect on the cells at the time and doses of exposure 
in terms of number of differentially expressed genes and miRNAs, while no effect was observed 
on snoRNAs expression. DIDP was the only compound where a microRNA (mmu-miR-143-
3p) was downregulated. This microRNA, together with mmu-miR-143-5p, has been observed 
to be downregulated in several cancers and is thought to have tumour-suppressing activity and 
being a negative regulator of cell proliferation (79-81). Despite the low number of DEGs, we 
observed a partial overlap across treatments (Acaa2 and Plekha3 in 3 treatments, Cops2, Idh3g, 
Mid1, Rab5a and Zpf960 in 2 treatments). It is possible that the higher number of DEGs in the 
DnOP vs DMSO comparison could be explained by the doses used, being twice as high than the 
other phthalates, though still within the same order of magnitude. Acaa2 (Acetyl-CoA 
Acyltransferase 2) is one of the enzymes that catalyses the last step of the mitochondrial beta-
oxidation pathway. Plekha3 (Pleckstrin Homology Domain Containing A3) is involved in the 
regulation of vesicular cargo transport from the trans-Golgi network to the plasma membrane 
and is predicted to be involved in ceramide transport and intermembrane lipid transfer (82, 83). 
Cops2 is a member of the COP9 signalosome complex (CSN), which is involved in decreasing 
the ubiquitin ligase activity of the SCF-type E3 ligase complexes. Idh3g is an enzyme that takes 
part in the Krebs cycle and performs the decarboxylation of isocitrate into alpha-ketoglutarate. 
Mid1 (Midline 1) is likely involved in the formation of multiprotein structures acting as anchor 
points to microtubules. It has also E3 ubiquitin ligase activity towards the protein Igbp1, 
promoting its degradation. Rab5a is a member of the RAS oncogene family and is a small GTPase 
which, in its active form, recruits proteins responsible for vesicle formation, movement, tethering 
and fusion (82).  
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Via gene set enrichment analysis (GSEA), we looked for enriched pathways shared by 
the four treatments to try and identify effects that could be attributed to the “phthalates” EDC 
class. Only the pathway “Fatty acid metabolism” was enriched in all treatments. Interestingly, 
phthalates have been shown to increase the metabolism of fatty acids in the liver (84, 85), but 
also in non-liver tissue such as cardiomyocytes, where increased used of fatty acids for energy 
production was suggested (86). To our knowledge, our analysis is the first observation of the 
conservation of these mechanisms in an in vitro thyroid model. Additionally, among the 
pathways downregulated in the treatment groups we found many related to cell extracellular 
matrix (ECM) organization and receptor signaling. It is also interesting to note that despite the 
low number of DE genes, due to the low doses used, we were still able to detect relevant enriched 
pathways using GSEA.  

Taken together, the results of differential gene expression gene analysis and GSEA seem 
to point to an effect of phthalates on energy production, with genes involved in the cellular 
respiration being dysregulated, and lipid metabolism increasing. 

Ing5 was upregulated in three treatments (DEHP, DINP, DnOP) compared to the 
control. The ING family comprises 5 genes (ING1 to ING5), which have a role in cell cycle 
regulation and cell proliferation by interacting with several partners, such as p53, p300 and 
histone acetylation complexes (43, 87). ING5 is a tumor-suppressor gene which is downregulated 
in several types of cancer including thyroid (88), colorectal (89), breast (90) and lung (91). Its 
protein is a component of the histone acetyltransferase HBO1-JADE, which acetylates histone 
H4 at Lys residues 5, 8 and 12 (H4K5ac, H4K8ac, H4K12ac), MOZ/MORPH, that performs 
histone H3 acetylation, and HBO1-BRPF (H3K14ac) (44, 92). 

In consequence of Ing5 overexpression, we hypothesized that phthalate treatment could 
have an impact on the chromatin status. For this reason, we exposed the human thyroid follicular 
epithelial cell line Nthy-ori 3-1 to DEHP or DINP 1 μM for 5 days and analyzed the genomic 
accessibility by ATAC-Seq. We reasoned that, since Ing5 is not a thyroid-specific gene and its 
expression is not limited to the thyroid, we would be able to observe changes also in a different 
cell model since we would be investigating a general phthalate mechanism rather than a model-
specific response. Differential accessibility analysis resulted in a general increase in accessibility 
in the treatment group, but none of the identified regions passed multiple-testing correction. 
Among the regions with a p-value < 0.01, we identified four common ones with an increased 
accessibility in the DEHP vs DMSO and DINP vs DMSO comparison localized on regulatory 
regions in the TSS or TTS. However, the signal did not seem to reflect a real change in 
accessibility. 

In this work, we showed that even with a stem cell-derived in vitro thyroid model 
exposed to a range of low, biologically relevant concentrations of four phthalates, we were able 
to detect some of the effects that have been previously reported in vivo. Our analysis demonstrates 
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that it is not necessary to use cytotoxic doses in toxicological experiments to obtain observable 
results and that low dose exposure can be analyzed without lowering the statistical stringency. 
We are convinced that 3D in vitro systems, such as organoids, can be a valid alternative to animal 
studies even for EDCs, provided that enough dataset are generated to allow regulators to infer 
risk assessment thresholds. 
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5. Supplementary Material 
Supplementary table 1. RNA-Seq samples produced in the study and the number of PCR cycles performed 
during Combo-Seq library preparation. 

Same name # PCR cycles  Same name # PCR cycles 
DEHP_10_uM_1 16  DINP_10_uM_1 16 
DEHP_10_uM_2 16  DINP_10_uM_2 16 
DEHP_1_uM_1 16  DINP_10_uM_3 16 
DEHP_1_uM_2 16  DINP_1_uM_1 16 
DEHP_1_uM_3 16  DINP_1_uM_2 16 
DEHP_100_nM_1 16  DINP_1_uM_3 16 
DEHP_100_nM_2 14  DINP_100_nM_1 16 
DEHP_100_nM_3 14  DINP_100_nM_2 14 
DEHP_10_nM_1 16  DINP_100_nM_3 16 
DEHP_10_nM_2 16  DINP_10_nM_1 14 
DEHP_10_nM_3 16  DINP_10_nM_2 16 
DEHP_1_nM_1 16  DINP_10_nM_3 16 
DEHP_1_nM_2 16  DINP_1_nM_1 16 
DEHP_1_nM_3 16  DINP_1_nM_2 16 
DIDP_10_uM_1 16  DINP_1_nM_3 16 
DIDP_10_uM_2 16  DnOP_20_uM_1 16 
DIDP_10_uM_3 16  DnOP_20_uM_2 16 
DIDP_1_uM_1 14  DnOP_20_uM_3 16 
DIDP_1_uM_2 14  DnOP_2_uM_1 16 
DIDP_1_uM_3 14  DnOP_2_uM_2 16 
DIDP_100_nM_1 16  DnOP_2_uM_3 16 
DIDP_100_nM_2 16  DnOP_200_nM_1 16 
DIDP_100_nM_3 16  DnOP_200_nM_2 16 
DIDP_10_nM_1 14  DnOP_200_nM_3 14 
DIDP_10_nM_2 16  DnOP_20_nM_1 16 
DIDP_10_nM_3 16  DnOP_20_nM_2 14 
DIDP_1_nM_1 16  DnOP_20_nM_3 16 
DIDP_1_nM_2 16  DnOP_2_nM_1 16 
DMSO_ctrl_1 16  DnOP_2_nM_2 16 
DMSO_ ctrl_2 16  DnOP_2_nM_3 16 
DMSO_ ctrl_3 16  Untr_2 16 
DMSO_ ctrl_4 16  Untr_3 16 
DMSO_ ctrl_5 16    
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Supplementary figure 1. Barplots of normalized expression of some thyroid markers in each phthalate and 
DMSO control samples. the gene name is indicated on top of each plot and the different doses are reported 
in the legend. The darkest shade corresponds to the highest concentration (1 or 2 μM), while the lightest 
shades to the lowest (1 or 2 nM). The DMSO control samples are in black. 
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Supplementary figure 2. IGV screenshots of the four regions identified in Table 4. The tracks have been 
normalized for visualization with BeCorrect (green = DEHP, violet = DINP, grey = DMSO). 
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Abstract 
Endocrine disrupting chemicals are pollutants of human origin that can negatively 

impact endocrine organs, including the thyroid. Due to the central role of the thyroid hormone 
in growth and development and body metabolism, the effect of these chemicals on the thyroid 
is a major environmental concern. However, there is still an incomplete understanding of the 
direct action of endocrine disrupting chemicals on the thyroid functioning at the cellular level. 

We used a range of doses to expose mouse embryonic stem cell-derived thyroid 
organoids for 24 hours to compounds from four endocrine disrupting chemicals classes (OPFRs: 
organophosphate flame retardants, phthalates, PCBs: polychlorinated biphenyls, PAHs: 
polycyclic aromatic hydrocarbons), to methimazole and sodium perchlorate and evaluated gene, 
miRNA, and protein expression patterns using transcriptomic and proteomic analyses. We used 
the transcriptomics and proteomics data alone and in combination to perform differential 
expression analysis followed by gene ontology analysis, and to build a random forest model that 
would allow us to classify unknown samples if belonging to any of the selected EDC class. 

Dose-analysis of the gene and miRNA expression identified the point of departure for 
several genes, such as Aryl Hydrocarbon Receptor targets after PAHs and PCBs treatment. We 
additionally observed non-monotonic dose-responses. Mmu-miR-142a-3p was induced by 
PAHs and we observed a concomitant downregulation of the target protein HMGB1. TPO was 
upregulated by diisodecyl phthalate. Differential gene expression analysis of the class effects 
showed an upregulation by PCBs of Dio1, Tpo and Tshr. PAHs dysregulated pathways related 
to energy production, transcription and translation. There was no overlap among the pathway 
affected by PCBs. We observed enrichment for only two OPFRs, and both affected mRNA 
processing and small molecule catabolism. Similarly to OPFRs, only two phthalates showed 
pathway enrichment, but the terms did not overlap. The response to sodium perchlorate and 
methimazole was affected by the organoid differentiation batch. Despite the weak overlapping 
signals observes for 2 of the classes, machine learning applied to the integrated datasets of 
transcriptomics and proteomics were able to also classify each EDC classes with accuracies 
between 0.997 and 1. 

This study integrates proteomic and transcriptomic data to understand the molecular 
impact of endocrine disruptors on an in vitro thyroid model. We also evaluate the feasibility of 
using methimazole and perchlorate in short-term omics-based studies. 
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1. Introduction 
Endocrine disrupting chemical (EDCs) is a very broad category of environmental 

contaminants that can interfere with the endocrine system. They are widespread in the 
environment and in everyday and household materials, causing the daily exposure of the general 
population. They are known to cause several health effects and are a cause for concern, due to 
their ability to affect reproduction and (neuro)development and to be involved in development 
of cancer, cardiovascular and metabolic diseases such as obesity and diabetes (1).  

Among the hormone-producing organs, the thyroid plays a central role in metabolism 
regulation, homeostasis and growth (2). Thyroid hormone (TH) production starts in the thyroid 
when the thyroid stimulating hormone (TSH) is released by the adenohypophysis in the 
bloodstream and binds to the TSH receptors (TSHR) on the thyrocytes surface. TSHR 
activation induces the synthesis of the two forms of TH: the active form of the TH is 
triiodothyronine (T3), while tetraiodothyronine (T4) is the inactive form. The thyroid mostly 
produces T4 (around 80% T4 and 20% T3 (3)), reflected in the very different total plasma 
concentration of the two types of TH (1.8 nM for T3, 100 nM for T4). After synthesis, the TH 
is released in the bloodstream, where most of it is bound by proteins to prevent degradation. 
Thus, the serum concentration of free TH is very low (5 pM for T3 and 20 pM for T4) (4). In 
the target organs, the TH binds to the thyroid receptor (TR). Once T4 reaches the target organs, 
it is converted to T3 via removal of one iodine atom by deiodinases (DIO). In human, type 1 
deiodinases (DIO1) are located on the plasma membrane and are expressed in the liver, kidney, 
thyroid and hypophysis, while type 2 deiodinases (DIO2) are located on the endoplasmic 
reticulum membrane and have a more widespread (but variable in its level) expression in thyroid, 
heart, brain, spinal cord, skeletal muscle, placenta, skin, retina, cochlea, kidney, brown adipose 
tissue and pancreas (5-9).  

Several classes of compounds are considered EDCs, including phthalates, 
organophosphate flame retardants (OPFRs), polycyclic aromatic hydrocarbons (PAHs) and 
polychlorinated biphenyls (PCBs), which will be the focus of this work. Phthalates are alkyl or 
dialkyl esters of phthalic acid and are used primarily as plasticizers for polyvinylchloride (PVC) 
product or as solvents (10, 11). As they are not covalently bound to the matrix they are added 
into, they can leave the material by direct release, evaporation, leaching or abrasion (12). In 
consequence, human exposure to phthalates can occur via ingestion, inhalation or dermal 
absorption (12), ingestion via foodstuff being the most prominent way of exposure in the general 
population (13). OPFRs include a wide range of halogenated and non-halogenated compounds 
containing phosphorus and are found in engineering plastics, coatings, polyurethane foams and 
textiles [20]. PAHs comprise a large group of organic compounds composed of two or more 
benzene rings and containing only carbon and hydrogen (14). They are formed during the 
incomplete combustion of organic material, including materials employed in energy production 
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at the industrial or household level, and tobacco smoke. The greatest source of exposure in the 
general population is thought to be contaminated or burnt food (15). PCBs are organic synthetic 
compounds that were produced and used until the 1970s as coolants and lubricants in many 
types of electrical equipment, both in industrial and consumer contexts. Due to their high 
chemical stability, they break down slowly and remain in the environment for a very long time. 
In human, PCB contamination mainly occurs via contaminated food and air and when ingested 
they bioaccumulate due to their lipophilicity (16). For all these four EDC classes there is evidence 
of interference with the TH system, directly affecting thyrocytes and TH production, but also 
TH signaling and clearance, competition with TH binding in the serum and interference with 
DIO activity. Some publications, like biomonitoring studies, report negative associations 
between exposure to EDCs and decreased TH serum levels, without mechanistic hypotheses 
((17) for phthalates,  (18, 19) for OPFRs, (20-22) for PAHs, (23-25) for PCBs).  

To provide biological insight into the direct effects of EDCs on the thyroid, we exposed 
mouse embryonic stem-cell (mESC) derived thyroid organoids to 16 EDCs belonging to the 
classes discussed above (phthalates, PAHs, OPFRs and PCBs) for 24 hours. We selected 5 
increasing doses including those identified in biomonitoring studies (1, 10, 100 nM, 1, 10 uM) 
and analyzed the gene and miRNA content. Additionally, we selected the 10 uM dose to also 
perform untargeted proteomics analysis. We first analyzed the transcriptomic and proteomic data 
separately and then integrated them to gain insight on the compounds’ effects performing 
differential expression and gene ontology analyses. We built a random forest (RF) classification 
model to classify unknown samples to any of these classes. We also exposed the organoids to two 
compounds able to interfere at with the production of the TH the protein level (methimazole 
and sodium perchlorate) and assessed their efficacy in evaluating the transcriptomic and 
proteomic impacts of short-term exposures.  
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2. Materials and Methods  
2.1 Chemical Compounds  

The following compounds were used: phthalates: bis(2-ethylhexyl) phthalate (DEHP, 
CAS 117-81-7, 67261 Sigma-Aldrich), di-iso-decylphthalate (DIDP, CAS 26761-40-0, 80135 
Supelco), di-iso-nonylphthalate (DINP, CAS 28553-12-0, 376663 Sigma-Aldrich), di-n-
octylphthalate (DnOP, CAS 117-84-0, D201154 Sigma-Aldrich); organophosphate flame 
retardants (OPFRs) – phosphate esters: tris(1,3-dichloroisopropyl) phosphate (TDCPP, CAS 
13674-87-8, 32951 Sigma-Aldrich), triphenyl phosphate (TPP, CAS 115-86-6, 442829 Sigma-
Aldrich), bisphenol A bis(diphenyl phosphate) (BADP, CAS 5945-33-5, BD117437 Chempure 
GMBH); OPFRs – phosphonates: dimethyl methyl phosphonate (DMMP, CAS 756-79-6, 
D169102 Sigma-Aldrich); polychlorinated biphenyls (PCBs): PCB-118 (CAS 31508-00-6, 
DRE-C20011800 LGS Standards), PCB-126 (CAS 57465-28-8, AMB22734910 Ambinter), 
PCB-138 (CAS 35065-28-2, 35494 Sigma-Aldrich), PCB-153 (CAS 35065-27-1, DRE-
C20015300 LGS Standards); polycyclic aromatic hydrocarbons (PAHs): benz[a]anthracene 
(BAA, CAS 56-55-3, B2209 Sigma-Aldrich), benzo[a]pyrene (BAP, CAS 50-32-8, B-1760 
Sigma-Aldrich), benzo[k]fluoranthene (BKF, CAS 207-08-9, 392251 Sigma-Aldrich), 
dibenzo[a,h]anthracene (DAHA, CAS 53-70-3, 33530 Fluka); methimazole (MMI, CAS 60-
56-0, M8506 Sigma-Aldrich); sodium perchlorate (NaClO4, CAS 7791-07-3, 71853-M Sigma-
Aldrich). Each compound was dissolved in 100% DMSO (1029521000, Merck Millipore), 
aliquoted in single-use vials and stored at -80 C. 

 

2.2 Organoids Differentiation  
2.2.1 Embryonic Stem Cells Culture and Thyroid Organoids 
Differentiation  

Thyroid follicles were differentiated from the A2Lox.Cre_TRE-Nkx2-1/Pax8_Tg-
EGFP mouse ESC as previously described [42,47]. Briefly, cells were initially cultured on 
gamma-irradiated mouse embryonic fibroblasts (MEFs) feeder using mouse stem cell medium 
[42,47] and incubated at 37 °C, 5% CO2 and > 95% humidity. For differentiation into thyroid, 
embryoid bodies (EBs) were generated by hanging drops culture of ESCs (1000 cells per drop) 
for 4 days. They were then collected and embedded in growth factor restricted Matrigel (354230, 
Corning). 50 mL Matrigel drops containing around 20 EBs were plated into 12-well plates. Cells 
were differentiated using a differentiation medium composed of DMEM (31966021, Gibco) 
supplemented with 15% FBS, vitamin C (50 μg/mL) (A4544, Sigma), nonessential amino acids 
(0.1 mM) (11140035, Gibco), sodium pyruvate (1 mM) (11360039, Gibco), penicillin and 
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streptomycin (50 U/mL) (15140122, Gibco), 2-mercaptoethanol (0.1 mM) (31350010, Gibco). 
The differentiation medium was supplemented with 1 μg/mL of doxycycline (D9891-1G, 
Sigma) for 3 days for Nkx2-1 and Pax8 induction, followed by two weeks of maturation by using 
the differentiation medium containing 8-Br-cAMP (0.3 nM) (B 007-500, BioLog).  

 

2.2.2 Thyroid Follicles Enrichment Protocol 
At day 21, after complete thyroid maturation, Matrigel drops containing the thyroid 

follicles were washed twice with Hanks’s balanced salt solution (HBSS, containing calcium and 
magnesium) (14025050, Gibco) and incubated in a HBSS solution (1 mL per well) containing 
10 U/mL of dispase® II (4942078001, Roche) and 125 U/mL of collagenase type IV (Sigma) for 
30-45 min at 37 °C. The enzymes were then inactivated by adding 10% FBS. Organoids were 
centrifuged at 1200 rpm for 3 minutes. After rinsing twice with HBSS, the follicles were enriched 
by filtration using 30 mm (to remove single cells) (43-50030, pluriSelect Life Science GmbH) 
to and 100 mm reverse strainer (to remove big follicles aggregates) (43-50100, pluriSelect Life 
Science GmbH).  

Resuspended follicles were cultured in subsequent experiments in the differentiation 
medium described above and supplemented with 8-Br-cAMP (10 μM) and TGF-βRI inhibitor 
SB431542 (10 μM) (1614, Tocris), hereafter termed “supplemented differentiation medium”. 

 

2.3 Exposures to Endocrine Disrupting Chemicals (EDCs) 
Due to the limited availability of follicles that can be obtained in a single differentiation 

batch, the exposures were performed in three separate experiments (Experiment 1, 2 and 3), in 
which one or more EDCs classes would be tested (Experiment 1: phthalates; Experiment 2: 
OPFRs, PAHs, MMI and PER; Experiment 3: PCBs, MMI and PER). 

For each exposure, differentiated follicles were plated on 48-well cell culture plates at a 
density of 1,000 follicles per well for RNA extraction and transcriptomic analysis, and of ~10,000 
follicles per well for protein extraction and proteome analysis. Phthalates, OPFRs, PAHs and 
PCBs solutions were prepared in supplemented differentiation medium at 1 nM, 10 nM, 100 
nM, 1 uM or 10 uM for EDCs (2 nM, 20 nM, 200 nM, 2 uM and 20 uM for DnOP) and 10 
uM, 100 uM and 1 mM for MMI and PER (n = 3 for each concentration, final [DMSO] = 
0.5% of the volume). DMSO solvent (n = 5) and untreated (n = 3) controls were included in 
each experiment. Due to the greater amount of follicles required for proteomics analysis, samples 
dedicated to protein collection were exposed only at the highest doses (10 uM for EDCs, 1 mM 
for MMI and PER) (n = 3, also for DMSO and untreated controls).  The experimental setup is 
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summarized in Figure 1. The plated follicles were incubated at 37 °C, 5% CO2 and >95% 
humidity for 24 hours.  

Figure 1. Graphical representation of the exposure regimens of thyroid follicles for transcriptomics 
proteomics (note: a 48-well plate as used in the experiments). “Compound” can indicate any of the 
compounds tested, DMSO solvent or media only. 

2.4 Transcriptomics Sample Preparation 
2.4.1 RNA Isolation 

After 24 hours, the follicles were collected, washed once with PBS, and lysed in QIAzol 
Lysis Reagent (79306, Qiagen). Total RNA was extracted using the miRNAeasy Micro Kit 
(217084, Qiagen). All samples had a RIN (RNA Integrity Number) of 8 or higher. 

2.4.2 RNA-Seq Libraries Preparation 
Twenty (20) ng of total RNA were used to prepare RNA-Seq libraries with the 

NEXTFLEX® Combo-Seq™ mRNA/miRNA Kit (NOVA-5139-53, PerkinElmer). To deplete 
tRNA fragments and Y RNA fragments, the NEXTFLEX® tRNA/YRNA Blocker (NOVA-
51312, PerkinElmer) was used during the library preparation following the manufacturer’s 
instructions. Fourteen (14) cycles of PCR were performed during the protocol for samples 
collected in Experiment 1. For some samples, the final library concentration was below the 
pooling concentration used for sequencing (1.6 nM). In these cases, the library was prepared 
again performing 16 cycles. For the samples collected in Experiments 2 and 3, we performed 16 
PCR cycles. Some samples could not be sequenced (Table 1). The prepared libraries were 
sequenced on an S4 Illumina flowcell 35 cycles (v1.5) (Illumina) in single-end mode. 
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Table 1. Samples that could not be sequenced, their respective experiment and the reason why they failed. 

Sample Experiment Reason 
DEHP_10_uM_3 1 Low library concentration 
DIDP_1_nM_3 1 Low library concentration 
Untr_1 1 Low library concentration 
BAA_1_nM_3 2 Sequenced, but mislabeled 
BAP_10_uM_3 2 Sequenced, but mislabeled 
BAP_100_nM_2 2 Sequenced, but mislabeled 
BKF_1_nM_3 2 Not enough RNA for library prep 
TPP_10_nM_2 2 Sequenced, but mislabeled 
DMMP_1_uM_3 2 Sequenced, but mislabeled 
DMMP_10_nM_2 2 Sequenced, but mislabeled 
BADP_1_uM_1 2 Sequenced, but mislabeled 
BADP_10_nM_2 2 Not enough RNA for library prep 
BADP_1_nM_2 2 Sequenced, but mislabeled 
TDCPP_100_nM_3 2 Sequenced, but mislabeled 
PCB138_100_nM_3 3 Low library concentration 

 

2.5 Transcriptomics Data Analysis 
2.5.1 RNA-Seq Data Processing 

The fastq files were processed according to our previously published CODA pipeline 
(26). Briefly, reads were trimmed using Cutadapt (v3.7) (27) as indicated in the Combo-Seq 
manual guidelines (28). To retrieve genes counts, the trimmed reads were aligned both to the 
mouse transcriptome (GRCm39 v27) and quantified using RSEM (v1.3.3) with the “--STAR” 
parameter (v2.7.10a), following the ENCODE3's STAR-RSEM pipeline (29, 30). To retrieve 
miRNAs, miRge3.0 (v0.0.9) (31) was run by inputting the trimmed files using the miRBase 
mouse annotation (v22).  
 

2.5.2 Biotype Mapping and Outliers Identification 
The quantified RNA species were mapped to their respective biotypes using the R (32) 

package biomaRt (33). We removed the reads mapping to snoRNAs (which were analyzed 
separately) and calculated the percentage of mapped reads per biotype. We retained only those 
constituting at least 1% in at least one sample. Outliers for each biotype were identified per 
treatment group (any compound, DMSO and untreated) as being 1.5 times the interquartile 
range (IQR) below the 25th percentile or above the 75th percentile:  
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏 𝑏𝑏 <  25𝑏𝑏ℎ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑔𝑔𝑝𝑝𝑏𝑏𝑔𝑔𝑏𝑏 𝑧𝑧) −  1.5 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑔𝑔𝑝𝑝𝑏𝑏𝑔𝑔𝑏𝑏 𝑧𝑧) 

or 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏 𝑏𝑏 > 75𝑏𝑏ℎ 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑔𝑔𝑝𝑝𝑏𝑏𝑔𝑔𝑏𝑏 𝑧𝑧) +  1.5 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑔𝑔𝑝𝑝𝑏𝑏𝑔𝑔𝑏𝑏 𝑧𝑧). 
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2.5.3 Gene Filtering and Dose Series Analysis 
To filter out low expressed genes, we used a modified version of the Omics Data 

Analysis Framework for regulatory application (R-ODAF) pipeline developed by our group (34, 
35). Briefly, genes/miRNAs/snoRNAs (“features”) were considered expressed if their normalized 
expression was ≥1 count per million (CPM) in at least 75% of the samples in either group (i.e. 
treatment versus control) (“relevance threshold”). The RUVs function from the RUVSeq 
package (36) with k = 2 was used on the features passing the relevance threshold filter to remove 
unwanted variation.  

MaSigPro (37) was used for dose series analysis using read counts normalized with 
DESeq2 (38) following the steps highlighted in the maSigPro User’s Guide for Next-Generation 
Sequencing data (39) and with a single series course experiment. The “tetha” (θ) value was set 
to 10 (default), the FDR to 0.05 and the “degree” parameter to 3 (which corresponds to a cubic 
polynomial regression model). The variable “Time” with values 0, 1, 2, 3, 4, 5 was used in the 
model as a mock variable to represent the “Dose” values of 0 (DMSO control), 1 nM, 10 nM, 
100 nM, 1 uM and 10 uM (2 nM, 20 nM, 200 nM, 2 uM, 20 uM for DnOP). In the case of 
MMI and PER analysis, “Time” assumed the values 1, 2, 3 for the doses 10 uM, 100 uM and 1 
mM, respectively. 
 

2.5.4 miRNA Targets Identification 
The targets of the DE miRNA were retrieved using the miRTarBase release 9.0 for Mus 

musculus (40). 
 

2.5.5 Gene Differential Expression Analysis  
Differentially expressed (DE) features were identified by grouping the samples of a single 

EDC class exposed to 10 uM dose and comparing to the DMSO solvent controls of the 
corresponding Experiment. We used the R package DESeq2 [56] and applied the “3rd quartile 
rule” and “spurious spikes” filters described in the R-ODAF pipeline. After identifying the 
“expressed” features using the “relevance” filter described in paragraph 2.5.3, differential 
expression analysis was performed setting the FDR to 0.01. We applied the “spurious spikes” 
and “3rd quartile” filters to the identified DE features. The former was applied to identify those 
cases in which a very high expression value in only one replicate in a group is responsible for a 
certain feature to have an FDR < 0.01: we applied the following formula to every DE feature for 
both treatment and control group:  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑖𝑖  𝑖𝑖𝑐𝑐 𝑔𝑔𝑟𝑟𝑐𝑐𝑐𝑐𝑝𝑝𝑗𝑗

< 1.4 × �𝑖𝑖𝑔𝑔𝑠𝑠𝑏𝑏𝑏𝑏𝑝𝑝 𝑏𝑏𝑜𝑜 𝑝𝑝𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠 𝑏𝑏𝑖𝑖 𝑔𝑔𝑝𝑝𝑏𝑏𝑔𝑔𝑏𝑏𝑗𝑗�
−0.66

, 

where i refers to any feature, and j to either the treatment or control group. The “3rd quartile” 
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rule retained only those DE features for which the median of either condition (treatment or 
control) is higher than the 3rd quartile of the other condition, and aimed at replacing a fold 
change threshold. After DE features identification, the barplots of the normalized counts were 
manually inspected to determine whether the signal could be a technical artefact or be instead a 
biologically relevant signal. 

 

2.6 Proteomics Sample Preparation 
2.6.1 Protein Samples Processing 

At the end of the exposure period, cells were collected in 1.5 mL Eppendorf tubes and 
pelleted by centrifugation. To each cell pellet, 50 uL lysis buffer (7 M Urea, 2 M Thiourea, 4% 
CHAPS, 30 mM Tris, pH 8.5) was added and after vortex mixing samples were frozen at -80°C. 
Samples were shipped to Atturos (ATT) on dry ice, where they were subsequently stored at -
80°C until processed further. 

Sample preparation of the follicles was performed in two batches, the first containing 
lysates from Experiment 1 (phthalates) and the second containing lysates from Experiments 2 
and 3 (PAHs, OPFRs, PCBs, MMI and PER). 

Cells lysates were digested using trypsin on the S-Trap (Protifi) 96-well plate platform. 
Briefly, lysates were thawed from -80°C and proteins solubilized and denatured using a 10% 
SDS, 100 mM TEAB (pH 7.55) solution, added at a 1:1 ratio. Proteins were reduced and 
alkylated using final concentrations of 10 mM DTT and 40 mM Iodoacetamide, respectively. 
S-Trap binding buffer (9:1 ratio of methanol:TEAB) was added to each sample and loaded onto 
a 96-well S-Trap plate. After multiple wash steps, sequencing grade modified trypsin (Promega) 
was used to digest the proteins overnight (16 h) at 37 °C. After digestion peptides were recovered 
and dried down using a vacuum centrifuge. 

Samples were next prepared for discovery with liquid chromatography with tandem 
mass spectrometry (LC-MS/MS) (Bruker timsTOF Pro coupled to an EvoSep One LC system). 
Briefly, all follicles cell digests were resuspended in 2% acetonitrile/0.1% formic acid and 
peptides were quantified using A215 on a DeNovix DS-11 spectrophotometer. Five hundred 
nanograms of peptide were loaded onto EvoSep EvoTips using the manufacturers’ protocol. 
Samples were introduced onto a Bruker timsTOF in pre-determined worklist run orders. 
Worklists were flanked by commercially available HeLa cell line digests to monitor instrument 
performance over time. Each EDC class was run in batches, separated by blank injections, with 
DMSO control biological replicates injected at the start of each batch (and experiment). 
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2.6.2 LC-MS/MS Data Acquisition 
LC-MS/MS data acquisition of the follicles was also performed in two batches, the first 

containing peptide digests from Experiment 1 (phthalates) and the second containing peptide 
digests from Experiments 2 and 3 (PAHs, OPFRs, PCBs, MMI and PER). 

The 30 samples per day (SPD) EvoSep method (44-minute gradient) was used for these 
experiments. The timsTOF Pro mass spectrometer was operated in positive ion polarity with 
TIMS (Trapped Ion Mobility Spectrometry) and PASEF (Parallel Accumulation Serial 
Fragmentation) modes enabled. The accumulation and ramp times for the TIMS were both set 
to 100 ms, with an ion mobility (1/k0) range from 0.62 to 1.46 Vs/cm. Spectra were recorded 
in the mass range from 100 to 1,700 m/z. The precursor (MS) Intensity Threshold was set to 
2,500 and the precursor Target Intensity set to 20,000. Each PASEF cycle consisted of one MS 
ramp for precursor detection followed by 10 PASEF MS/MS ramps, with a total cycle time of 
1.16 s. 

Pierce™ HeLa Protein Digest Standard (88329, ThermoFisher) was injected in 
triplicate at the start and end of both batches worklist to monitor instrument performance over 
the duration of the run. Follicles samples were run in between the HeLa standards (the full 
worklists are reported in Supplementary table 1).  
 

2.7 Proteomics Data Analysis 
2.7.1 Processing Pipeline  

Data acquired from the LC-MS/MS runs were searched using Max Quant v1.6.17.0, 
again in two batches. The first batch contained MS data from Experiment 1, while the second 
batch contained MS data from Experiments 2 and 3. Data from all three experiments was not 
searched together as the “match between runs” feature was used to enhance the number of 
proteins identified: searching all three experiments together would increase the risk of identifying 
false positives. The full list of search parameters is shown in Supplementary table 2. HeLa quality 
control samples were searched using the same parameters, with the human UniProt fasta file 
substituted with the mouse equivalent. Further data processing was performed using Perseus 
v1.6.15.0 software, where protein data was Filtered according to internal workflows. First, 
proteins identified as “potential contaminants” by Max Quant were removed, followed by those 
that appeared in the reverse protein database. Remaining proteins were exported and analyzed 
further. 

2.7.2 Differential Protein Expression 
Univariate statistical analysis was performed using a Student’s t-test on DMSO 

(control) cells vs each compound exposure group. Multiple testing correction was done according 
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to the Benjamini-Hochberg method and an adjusted p-value of 0.01 was used as a cut off to 
determine significance. DMSO controls were contained within each Experiment (1, 2 and 3) to 
compare to their respective class of EDCs. Proteins were only considered valid if they appeared 
in at least three samples in one of the test groups (i.e., control or exposed). 
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3. Results 
3.1 Transcriptomics and Proteomics Datasets Quality 
Control (QC) 
3.1.1 Transcriptomics QC 

Transcriptomics libraries had good coverage, with the median library size being 64.9 
million (M) reads (min = 17.7 M, max = 171.6 M) (Figure 2A), and high quality (median 96.1% 
of reads with quality score >= 30; min = 85.8%, max = 97.4%) (Figure 2B). The distribution of 
trimmed reads reflected the number of sequenced reads, showing how the trimming was 
homogeneous across samples (median count of trimmed reads 58.5 M; min = 15.8 M, max = 
154.4 M) (Figure 2C). The median number of reads mapping to mRNA (Gencode annotation) 
and miRNAs (miRBase annotations) was 49.2 M and 1 M, respectively (mRNA: min = 14.3 M, 
max = 138.3 M; miRNA: min = 0.16 M, max = 4.3 M) (Figure 2D-E).  
 

 
Figure 2. RNA-Seq quality control metrics: (A) libraries size, (B) percentage of sequenced reads with quality 
score >= 30; (C) number of trimmed reads; (D) reads mapped to mRNA using the mouse Gencode 
annotations; (E) reads mapped to miRNAs using the mouse miRBase annotations. 

To identify possible outliers, we analyzed the percentage of RNA biotype composition 
in the mapped reads after small nucleolar RNAs (snoRNAs) removal (which were analyzed 
separately) (Figure 3). Among the outliers, we identified DMSO replicate 1 (Experiment 1) and 
BAA 10 nM replicate 2 (Experiment 2) to be outliers in multiple biotypes, so we removed them 
from our analyses. Although other samples were flagged as outliers in some biotypes, it was not 
frequent and for this reason they were not removed. 

 
 
 

50

100

150

Re
ad

 c
ou

nt
, x

10
^6

RNA-Seq
Libraries size

A

87.5

90.0

92.5

95.0

97.5

%
 o

f t
ot

al
 s

eq
ue

nc
ed

 re
ad

s

RNA-Seq
% reads with quality ≥ 30

B

40

80

120

160

Re
ad

 c
ou

nt
, x

10
^6

RNA-Seq
Trimmed reads

C

50,000,000

100,000,000

To
ta

l r
ea

d 
co

un
t

mRNA
Mapped reads

D

0

1,000,000

2,000,000

3,000,000

4,000,000

To
ta

l r
ea

d 
co

un
t

miRNA
Mapped reads

E

Chapter 4

140



A 

B 

Multiomics Analysis of the Effects of Endocrine Disrupting Chemicals on Mouse Embryonic Stem 
Cell-Derived Thyroid Organoids

141



C

Figure 3. Biotype distribution after snoRNA removal in the samples of (A) Experiment 1, (B) Experiment 
2 and (C) Experiment 3. The biotypes that make up at least 1% of the reads are reported. The labelled 
samples are the ones flagged as outliers according to the formula presented in the Materials and Methods 
section. 

3.1.2 Proteomics QC 
The number of proteins identified in all replicates of the HeLa technical standards at 

the beginning and end of each run and of experimental samples is reported in Table 2. In run 1, 
3,452 proteins were identified in all HeLa technical replicates (86.39% of all identified proteins), 
3,360 in the experimental samples and 47 in the blank. In run 2, 2,582 proteins were identified 
in all HeLa technical replicates (79.99% of all identified proteins), 2,648 in the experimental 
samples and 104 in the blank. For both runs reproducibility in terms of protein identification 
was consistently high in all groups, which confirmed that instrument stability and performance 
were maintained throughout the worklist runs. The percentage of overlapping proteins varied 
between each group and was lower than that of the HeLa digests. This suggests the variation was 
due to the biological replicates, rather than technical variability. To facilitate a more robust 
analysis, filtering of the proteins was performed prior to any statistical analysis, as described in 
Materials and Methods. 
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Table 2. Number of proteins identified in all HeLa technical replicates (3 at the start, 3 at the end of each 
run) and experimental samples from the LC-MS/MS data acquisition for Experiments 1, 2 and 3. As 
explained in the Methods section 2.6.2, samples from Experiments 2 and 3 were analyzed during a single 
run. 

LC-MS/MS 
data acquisition 

run 
Experiment Sample 

Proteins identified in all 
replicates  

(N and % of total) 
CV 

1 

Experiment 1 
(phthalates) 

HeLa standards 3,452 (86.39%) 1.23% 
Experimental 
samples 

3,630 1.93% 

Blank  47  

2 

Experiment 2 
(PAHs, OPFRs) and 
Experiment 3 
(PCBs) 

HeLa standards 2,582 (79.99%) 3.78% 
Experimental 
samples 

2,648 13.80% 

Blank 104  
 

3.2 Dose Series Analysis of Gene Expression  
We report here the results of dose series analysis on gene expression. The complete list 

of genes dysregulated by all compounds is reported in Supplementary table 3.  
Treatment with phthalates mostly caused a non-monotonic response on gene 

expression, with the highest dose (10 uM) possibly representing the point of departure (PoD) 
for several clusters (Supplementary figure 1). Among the induced genes, we identified Ing5 as 
being consistently upregulated in all conditions. We have previously performed a thorough 
analysis on this dataset which also includes a follow-up study of phthalate treatment using 
ATAC-Seq, and we refer the reader to our other publication (41).   

For the polycyclic aromatic hydrocarbons, we identified a significant signature for 7, 7, 
9 and 4 genes for BAA, BAP, BKF and DAHA treatments, respectively (Supplementary figure 
2). PAHs can bind and activate the aryl hydrocarbon receptor (AhR) a ligand-dependent 
transcription factor (42). Indeed, we observed a steady increase in expression with increase of 
dose of some AhR target genes, namely the Aryl Hydrocarbon Receptor Repressor (Ahrr) (BKF), 
the Cytochrome P450 members Cyp1a1 and Cyp1b1 (BKF, DAHA), NAD(P)H Quinone 
Dehydrogenase 1 (Nqo1) (43, 44) (BKF, DAHA) and the TCDD Inducible Poly(ADP-Ribose) 
Polymerase (Tiparp) (BKF). It is also interesting to observe how BAA and BAP treatment 
drastically decreased mt-Nd6 expression.  

Regarding organophosphate flame retardants (OPFRs), we did not see any effect on 
gene expression by TDCPP. BADP decreased the expression of Lonfr3 and Nkd1 and increased 
the expression of Glb1l2 and Tmem199 in a dose-dependent manner. H3f3b was repressed only 
by the highest dose. For the other genes we observed a non-monotonic response (Supplementary 
figure 3A). DMMP had an effect only a non-monotonic effect (U-shaped) on the expression of 

Multiomics Analysis of the Effects of Endocrine Disrupting Chemicals on Mouse Embryonic Stem 
Cell-Derived Thyroid Organoids

143



three genes (Arpc5l, Cldn18, Gm42826) with the minimum expression between 10 nM and 1 
uM (Supplementary figure 3B). Treatment with TPP increased the expression of Nif3l1 and had 
mostly a non-linear effect on the identified genes (Supplementary figure 3C). 

Regarding polychlorinated biphenyls (PCBs), we observed a sharp reduction of Spop 
and Yrdc and an induction of Myo5c after PCB118 treatment (Supplementary figure 4A). For 
PCB126 we observed a cluster composed of 4 genes (Aldh3a1, Cyp1a1, Cyp1b1, Tiparp) that 
were strongly induced at the 1 uM dose (Supplementary figure 4B). These are Ahr targets, and 
indeed planar PCBs such as PCB126 can act like Ahr agonists (45). PCB138 had only a non-
linear inhibitory effect on Gprc5a and Trim45 (Supplementary figure 4C), while PCB153 
reduced or induced the expression of most of the identified genes in a linear fashion 
(Supplementary figure 4D). 

Methimazole (MMI) and sodium perchlorate (PER) are two compounds that interfere 
with normal thyroid physiology by inhibiting the catalytic activity of Tpo (46) and interfering 
with I- uptake by Nis (47), respectively. MMI is used as a drug to treat hyperthyroidism, while 
PER is classified as an endocrine disrupting chemical by the European Chemicals Agency 
(ECHA) (48). We observed a noticeable overlap between the signatures of MMI and PER in 
Experiment 3 (Supplementary figure 5A-B): 14 out of 22 mitochondrial tRNA genes belonged 
to clusters in which the expression decreased in the two lowest doses (10 uM, 100 uM), only to 
increase, sometimes above the levels of the DMSO-treated controls, in the highest dose (1 mM) 
(Supplementary figure 8C-D). The other genes were Gm15191, Gm6069, Gsn, Mir1291, 
Nop56, Snhg5 and Tmem38b. There was no overlap for the same treatment (MMI or PER) 
between the two experiments. PER exposure in Experiment 3 was the only treatment that 
dysregulated a gene important in the thyroid for the synthesis of thyroid hormone, namely Tshr, 
with the expression increasing at the 10 uM and 100 uM doses and decreasing at 1 mM. 
 

3.3 Dose Series Analysis of microRNA Expression 
Similarly to the genes, we performed a dose series analysis to miRNA expression to see 

whether miRNA expression could be altered in a dose-dependent way (Figure 4). Treatment 
with the four EDCs classes showed interesting dose-effects (Figure 4), with BKF treatment 
inducing mmu-miR-143-3p and PCB118 inducing mmu-miR-499-5p in a dose-dependent 
way. BAP and DMMP treatment reduced the expression of mmu-miR-1249-3p and mmu-miR-
215-5p, respectively. DnOP treatment increased the expression of mmu-miR-335-3p only at the 
highest dose. Although mmu-miR-582-3p and mmu-miR-598-3p resulted dysregulated by 
DEHP and DINP, respectively, the effects were less consistent and we would not confidently 
consider these changes biologically relevant.  
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Figure 4. Results of dose series analysis of on miRNA expression. Barplots of expression values of miRNAs 
that resulted dysregulated in a dose-dependent way as identified by maSigPro (FDR < 0.05). Each bar is a 
replicate, and the different doses are reported in different shades of color. The grey color represents the 
DMSO control, which we considered dose 0 (red = PAHs, purple = OPFRs, blue = PCBs, green = 
phthalates).  

3.4 Differential Expression Analysis 
3.4.1 Differentially Expressed Proteins at 10 uM Dose 

The number of differentially expressed proteins (DEPs) was consistent in the PAHs, 
PCBs and phthalates classes. In the OPFRs, TDCPP treatment induced around four times (207) 
the number of DEPs of BADP (69) and DMMP (85), while TPP had around half (29) (Figure 
5A). Within the OPFRs, most proteins were differentially expressed by a single compound. 
Lsm12 was dysregulated by all four compounds (Figure 5B) but in different directions 
(upregulated by TDCPP, downregulated by the others). Among PAHs, BKF and DAHA shared 
the highest number of DEPs, followed by BKF, DAHA and BAP. This is interesting, as BKF is 
the most potent PAH of the ones select, followed by DAHA, then BAP and lastly BAA. Fourteen 
DEPs were common to all PAHs (Cgn, Ckap4, Eif3i, Fth1, Ist1, Ak4, Pkm, Ndufa12, Parvb, 
Pbdc1, Psmd2, Rs27l, Tra2b, Ubc9) (Figure 5C). Like OPFRs, most proteins were differentially 
expressed by individual PCBs, with multiple compounds sharing 5 or less DEPs and Aldh1a3 
being downregulated by all treatments (Figure 5D). There was little overlap among the other 
phthalates and no DEP was common to all compounds (Figure 5E). Regarding the reference 
compounds MMI and PER, both induced more DEPs in Experiment 2 than 3. The greatest 
overlap was observed between MMI and PER in Experiment 2 (34 DEPs), while 4 DEPs 
overlapped between MMI and PER in Experiment 3. The DEPs overlap between the two 
experiments was 2 for MMI (Itgb1, Ndufa12) and 1 for PER (Sf3a2), respectively (Figure 5F). 
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Figure 5. Number of differentially expressed proteins (DEPs) and their overlap within EDC classes. (A) 
Barplot reporting the number of DEPs. The compounds are grouped per class and the DEPs were 
determined comparing the compound-treated samples (n = 3) to the DMSO control (n = 3) of the 
corresponding experiment (1, 2 or 3) (p-value < 0.01). For the reference compounds methimazole (MMI) 
and sodium perchlorate (PER) the experiment (“Exp2” or “Exp3”) is also indicated. (B-F) Upset plot 
reporting the overlap of DEPs within a compound class (B = OPFRs; C = PAHs; D = PCBs; E = Phthalates; 
F = reference compounds).  

Of note, most thyroid markers or proteins involved in the synthesis of the thyroid 
hormone were inconsistently detected across all experiments (Foxe1, Nkx2-1, Tg, Tpo, Tshr) 
(Figure 6), while others (Hhex, Dio1, Dio2, Duox1, Duox2, Duoxa1, Duoxa2, Nis) were not 
detected at all. Among all treatments, DIDP was the only one that upregulated a thyroid gene, 
namely TPO (Figure 7). 
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Figure 6. Expression of thyroid markers or proteins important for the synthesis of the thyroid hormone. 
The samples are grouped per experiment and the blanks (no injection of sample in the mass spectrometer) 
are also reported (LFQ = Label-Free Quantification). 

 
Figure 7. Tpo protein expression after DIDP treatment. The barplot reports the expression of the Tpo 
protein as LFQ intensity in the DIDP and DMSO control samples in Experiment 1 (LFQ = label-free 
quantitation). 
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3.4.1.1 Gene Ontology Analysis of Differentially Expressed Proteins 

Gene ontology (GO) analysis on the Biological Pathway (BP) (GO BP) ontology 
showed an enrichment only for DMMP and TDCPP treatment for OPFRs. TDCPP had the 
most enriched terms, belonging to the ontologies of ribonucleoprotein biogenesis, assembly and 
organization, mRNA processing, and small molecule catabolic process. The last two terms were 
shared by DMMP as well (Figure 8A). Most PAHs shared terms related to the themes of energy 
production (ribonucleotide metabolism, ATP biosynthesis and aerobic respiration) and 
transcription and translation (ribosome assembly and biogenesis, mRNA processing and splicing, 
cytoplasmic translation) (Figure 8B). Regarding PBCs, there was no overlap of enriched terms: 
PCB118 dysregulated pathways related to basement membrane organization and integrin-
mediated signaling pathway; PCB126 to autophagy, aerobic respiration, tricarboxylic acid cycle 
and pyridine-containing compound metabolic process; PCB138 to protein folding and transport 
from endoplasmic reticulum to Golgi, cytoplasmic translation and regulation of actin filament-
based process (Figure 8C). Similarly, we observed enrichment for two phthalates out of four 
(DEHP and DINP) but the terms did not overlap: DEHP dysregulated pathways involved in 
protein polymerization and positive regulation of cell growth and nuclear transport. DINP 
affected instead the pathways of purine nucleotide and ribose phosphate biosynthetic process, 
regulation of translation initiation and non-coding RNA (ncRNA) catabolism (Figure 8D). GO 
BP analysis on the reference compounds showed how the cell differentiation batch affected the 
enriched pathways the most, with terms related to RNA splicing and mRNA processing, 
ribonucleoprotein biogenesis, assembly and organization and translation being enriched in 
samples treated with MMI and PER in Experiment 2. For PER (Experiment 3) we saw instead 
an enrichment for terms related to protein localization to cell junction (Figure 8E). There was 
no enrichment for MMI (Experiment 3). 
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Figure 8. Gene Ontology Biological Process (GO) analysis of differentially expressed proteins (DEPs). GO 
BP enrichment analysis for (A) OPFRs, (B) PAHs, (C) PCBs, (D) phthalates and (E) reference compounds. 
The enriched terms and the DEPs referring to them are reported (q-value < 0.01). The node size represents 
the number of DEPs participating to the term. 

3.4.2 Differentially Expressed Genes and miRNAs at 10 uM Dose per 
Class 

To identify genes and miRNAs that were differentially expressed at the class level and 
compare them to the identified differentially expressed proteins, we performed differential 
expression analysis grouping the samples of a compound class exposed to the 10 uM dose to their 
respective DMSO control. In this way, we aimed at identifying genes and miRNAs which may 
represent a biomarker of exposure to a certain class.  
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3.4.2.1 Differentially Expressed Genes  

We identified 2, 3, 7 and 88 genes as being differentially expressed after phthalate, 
PAH, OPFR and PCB treatment, respectively (Figure 9A-D). Of these, 4 genes in the PCB 
group overlapped with those identified in the maSigPro analysis: Aldh3a1 was upregulated and 
induced by PCB126 in the maSigPro analysis, Myo5c upregulated and induced by PCB118, 
Fam20a upregulated and Nectin3 downregulated and dysregulated by PCB153 in the same 
direction. Additionally, Dio1, Tshr and Tpo were upregulated after PCB treatment compared to 
the control.  

 

 
Figure 9. Volcano plots of differentially expressed genes (A-D) and miRNAs (E-H) in each class 10 uM vs 
DMSO control comparison. Every dot represents a gene/miRNA. Features not differentially expressed 
(‘n.s.’) are in black. The False Discovery Rate (FDR) threshold of 0.01 is indicated as a dotted line on the 
y-axis. Upregulated features (‘FDR < 0.01, log2FoldChange > 0’) are indicated in red, downregulated ones 
(‘FDR < 0.01, log2FoldChange < 0’) in cyan. The features above this line colored in black are the ones that 
fail to pass the ‘spurious spike’ or ‘3rd quartile’ filters as described in the Methods section. 

GO BP analysis of the DEGs showed enrichment only for PCBs (q-value < 0.01). The 
21 enriched pathways were mostly upregulated (Figure 10A) and related to the biological themes 
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of glucose homeostasis, regulation of fatty acid metabolism, cell growth and development and 
thyroid hormone metabolic process (Figure 10B). 
 

A 
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Figure 10. Results of the Gene ontology – Biological Process analysis of DEGs in the PCB vs DMSO 
comparison (q-value < 0.01). (A) Heatplot of the enriched terms. (B) Emap plot of the enriched terms, 
connecting the ones that share some of the DEGs. 

3.4.2.2 Differentially Expressed miRNAs 

The global expression of miRNAs was not highly affected by treatments (Figure 9E-
H). All were induced compared to the control, some at high level and in all treated samples 
(mmu-miR-182-5p by OPFRs and mmu-miR-335-3p by PCBs), while others at a relative lower 
level and not in 100% of treated samples (mmu-miR-142a-3p by PAHs, mmu-miR-3076-3p 
and mmu-miR-6939-3p by OPFRs) possibly due to a sampling effect driven by the low read 
count (Figure 11). No snoRNA was found differentially expressed. 
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Figure 11. Barplot of normalized read count of differentially expressed miRNAs for each EDC class 10 uM 
vs DMSO control comparison (FDR < 0.01). Every bar represents a sample. The different treatments are 
color-coded (grey = DMSO, color = 10 uM dose). The EDC class is reported at the top of the plots.  

3.5 Integration of Transcriptomics and Proteomics 
To see whether any alteration of gene or miRNA expression reflected on the differential 

expression of proteins, we checked for any overlap between differentially expressed or dose-
dependent changes in gene or miRNA expression and protein expression. 

3.5.1 Overlap between targets of affected miRNAs and DEPs 
Since, in mammals, miRNAs can interfere with protein translation by binding to the 

3’ end of the mRNA (49), we looked for an overlap between the dysregulated miRNAs or DE 
miRNAs and DEPs whose transcript is reported to be their target.  

Interestingly, we identified Hmgb1 as being downregulated after BKF treatment 
(Figure 12) and a target of mmu-miR-143-3p. Of note, mmu-miR-143-3p was detected also in 
BAA treatment, while it did not pass the relevance filter in BAP and DAHA treatments. 
Additionally, Hmbg1 was not differentially expressed in the other PAHs comparisons in a 
statistically significant way. 
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Figure 12. Expression of mmu-miR-142-3p and Hmgb1 in the samples treated with polycyclic aromatic 
hydrocarbons. Barplots reporting the expression of (A) mmu-miR-142-3p and (B) Hmgb1 protein. The 
gene expression is reported as normalized read count, while the protein expression as LFQ intensity. Each 
dose or control has a different color and the DMSO samples refer to Experiment 2. The treatment to which 
each plot refers is reported below the miRNA/protein name (LFQ = label-free quantitation). 

3.5.3 Random Forest Model for EDC Class Features Identification 
We applied a random forest (RF) classification algorithm to the combined gene, 

miRNA and protein expression to see whether we could identify features that would allow us to 
distinguish between a certain EDC class and the other samples. 

To select the genes or miRNAs to use for the model, we used the read count in 
transcript per million (TPM) value and retained the features whose average count across samples 
was greater than 0.5 TPM. Regarding proteins, we initially selected those detected in all 
triplicates, and no further filtering was applied. This resulted in 8,024 features being selected for 
training the model. The trained model was able to accurately classify the 4 EDC classes with 
surprisingly high accuracy (1 for PAHs and OPFRs and 0.997 for phthalates and PCBs). For all 
classes, the Area Under the Receiver Operating Characteristic curve (AUC) was 1 (Figure 13A, 
Table 3).  
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Table 3. Accuracy and AUC for each random forest binary classification model trained to distinguish 
between a certain EDC class and the rest (AUC = Area Under the Receiver Operating Characteristic curve) 
calculated after cross-validation. The mean and standard error are reported. 

 Accuracy AUC 
 Mean Standard error Mean Standard error 
Phthalates 0.997 0.00270 1 0 
PAH 1 0 1 0 
OPFR 1 0 1 0 
PCB 0.997 0.00263 1 0 

 
 

 
Figure 13. (A) Receiver Operating Characteristic (ROC) curves for the trained random forest (RF) 
classification model for phthalates, PAHs, OPFRs and PCBs. (B) Gini importance per biotype for each 
EDC class. 

We calculated the sum of the Gini importance (which measures the importance of a 
feature in the decision tree) per biotype for each model (Table 4) and saw how protein coding 
genes had the most weight in all cases, followed by protein expression. For phthalates, proteins 
had a relatively higher importance than the other classes, while for PCBs they had a relatively 
lower importance. Other noteworthy biotypes were miRNAs, long non-coding RNAs 
(lncRNAs), processed pseudogenes, TEC (“To be Experimentally Confirmed”) and snoRNAs 
(Figure 13B). 

 
Table 4. Importance of biotypes per EDC class in each random forest classification model. The biotypes 
with importance >= 0.1 are reported.  

Phthalates Importance  PAHs Importance 
protein coding 17.600  protein coding  19.900 
protein 6.270  protein   2.520 
lncRNA 0.180  lncRNA   0.635   
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miRNA 0.167  miRNA   0.444   
processed pseudogene 0.126  processed pseudogene   0.443   
snoRNA 0.104  snoRNA   0.263  

     
OPFRs Importance  PCBs Importance 

protein coding 22.200  protein coding  26.800 
protein 2.490  protein   0.889   
lncRNA 0.853  lncRNA   0.577   
miRNA 0.597  processed pseudogene   0.234   
processed pseudogene 0.405  TEC   0.185   
snoRNA 0.137  miRNA   0.170 
TEC 0.116    

lncRNA = long non-coding RNA; snoRNA = small nucleolar RNA; TEC = “To be experimentally 
confirmed” 

It is interesting to note that, despite using 18,024 features, only around 1,000 ended 
up having an importance greater than 0 in each model (Figure 14). 
 

 
Figure 14. Importance per feature ordered by index for each random forest (RF) classification model. Index 
= 1 indicates the feature with the highest importance. The label “Index” reports the index of the first feature 
with importance = 0. 

  

Multiomics Analysis of the Effects of Endocrine Disrupting Chemicals on Mouse Embryonic Stem 
Cell-Derived Thyroid Organoids

159



4. Discussion  
In this work, we exposed previously described mouse embryonic stem cell (mESC)-

derived thyroid organoids (50, 51) for 24 hours to five increasing doses (1-10-100 nM-1-10 uM) 
of endocrine disrupting chemicals (EDCs) belonging to the four classes of phthalates, polycyclic 
aromatic hydrocarbons (PAHs), organophosphate flame retardants (OPFRs) and 
polychlorinated biphenyls (PCBs), and to three doses (10-100 uM-1 mM) of methimazole 
(MMI) and sodium perchlorate (PER), compounds that interfere with the production of the 
thyroid hormone (TH) and which we termed “reference compounds” (MMI is a clinical drug 
while PER is an endocrine disrupting chemical with a known negative effect on the thyroid). At 
the end of the exposure time, we analyzed the transcriptome and proteome with RNA sequencing 
(RNA-Seq) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), 
respectively, to study how the treatments would affect gene and protein expression. Due to the 
limited amounts of organoids that can be obtained in a single differentiation batch and the high 
amount of input cells required for untargeted proteomics, we could only expose the samples 
dedicated to proteomic analysis to the highest dose (10 uM or 1 uM). For transcriptomic 
libraries, we used the Combo-Seq kit, and we were thus able to construct combined poly(A) and 
small RNA libraries. The low doses we selected for the EDCs aimed at reflecting the serum levels 
measured for some of these compounds in human biomonitoring studies, which study the 
exposure to several types of chemicals in the general population (52-56).  

We used maSigPro to analyze whether gene expression would be affected in a dose 
dependent way by EDC treatment (57). The tool performs two sequential regression steps: first 
it selects genes with a non-flat profile (which indicates a lack of change in expression over the 
series), and then it creates the best regression model for each gene that can fit a series (e.g. time 
or dose). The regression model is built upon a polynomial equation. Therefore, it is crucial to 
choose the degree of the polynomial based on the characteristics of the data series under analysis. 
The higher the degree, the more changes of direction in expression are allowed in the modelled 
curve. Our data had 6 or 4 levels (0, 1 nM, 10 nM, 100 nM, 1 uM, 10 uM for EDCs, or 0, 10 
uM, 100 uM, 1 mM for the reference compounds) and we opted for a degree of 3. In this way, 
we would be able to observe non-monotonic dose-responses, which have been described for 
several EDCs and summarized in an excellent review by Vandenberg and colleagues (2012), 
including some of the compounds we selected (58). It must be noted that the tool used limits 
the shapes of the curve that can be fitted, excluding for example exponential or sigmoid curves, 
which can be the case for EDC effects (58). A potential alternative tool for the analysis of dose-
response curves is BMDExpress2 (59), which was developed for regulatory purposes by a 
collaboration of US and Canadian agencies for the identification of benchmark doses for 
toxicogenomic data and will fit the data to several curves (polynomial, sigmoid, exponential). 
However, more doses (at least 7-8) are required by the tool to perform proper modeling.  
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In our results, we could identify the point of departure (PoD) of many genes after 
treatment with phthalates. For PCB126, we observed that the AhR targets Aldh3a, Cyp1a1, 
Cyp1b1 and Tiparp were induced from 1 uM. Indeed, among the selected PCBs, PCB126 is the 
only coplanar congener and possesses AhR-agonistic activity (45). Similarly, we observed an 
effect on the AhR targets gene expression for the strongest AhR agonists among the PAHs (BKF 
and DAHA) (60), but not for BAP and BAA. It is possible, then, that for this model, the PoD 
for BKF and DAHA lies below 1 nM, and for BAP and BAA above 10 uM. Regarding the 
reference compounds, we observed an overlap of 20 dysregulated genes only between MMI and 
PER in Experiment 3, showing the influence of the organoids differentiation batch. Notably, 13 
of these were mitochondrial tRNA genes. However, only 1 and 2 genes overlapped between 
either MMI or PER and any of the EDC-treated samples in Experiment 2 and 3, respectively, 
but with a different profile. Thus, it appears that the actions of MMI and PER are distinct from 
those exhibited by the other compounds tested in the same experiment. Interestingly, none of 
the thyroid markers or genes important for the synthesis of the TH were affected according to 
the dose-series analysis, save for Tshr by PER in Experiment 3.  

Dose analysis of miRNAs expression gave interesting results, and we observed some 
miRNAs being induced (mmu-miR-142a-3p by BKF) or repressed (mmu-miR-1249-3p by 
BAP, mmu-miR-582-5p by BADP, mmu-miR-215-5p by DMMP) by treatment irrespectively 
of the dose, others being steadily induced by treatment (mmu-miR-449-5p by PCB118) or at a 
certain dose (mmu-miR-335-3p by DnOP).  

Interestingly, the protein Hmbg1, target of mmu-miR-142a-3p, was downregulated 
after BKF treatment. HMGB1 is a multifunctional protein: in the nucleus, it acts as DNA 
chaperone binding both to DNA and histones and has a role in regulating gene expression. 
Extracellular HMGB1 acts as a cytokine to promote inflammation and can be released by 
immune cells, stressed, or dying cells. Cytosolic HMGB1 can promote autophagy in response to 
cellular stress (61). Due to the proteomic sample preparation protocol, the main source of the 
Hmgb1 we measured would be mostly intracellular, though it was not possible to distinguish 
between the nuclear and cytosolic content. Mmu-miR-142-3p was induced in the other PAHs 
treatments, but it was not detected in some samples (3 to 5 depending on the compound) and 
was thus not picked up by maSigPro. This could be a consequence of the Combo-Seq protocol 
used for library prep: indeed, the chosen RNA input (from 5 ng to 50 ng) affects the 
mRNA/miRNA ratio, with high RNA amounts leading to more reads mapping to mRNAs than 
to miRNAs. For this work, we opted for 20 ng, and the normalized expression of mmu-miR-
142a-3p is rather low compared to other miRNAs, in the range of 50-100 reads per sample. It is 
then possible that its absence of detection in some samples was a consequence of the technique 
used, and this could hold true for other miRNAs with a similar expression pattern. When we 
performed differential expression analysis comparing the 10 uM dose of all PAHs together to the 
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control, mmu-miR-142a-3p was found upregulated (we selected just this dose to perform a better 
comparison with the results of differential protein expression). Mmu-miR-142-3p has been 
described to promote inflammation (62-64) but also to act as tumor suppressor and negatively 
regulate HMGB1 in in vitro cancer models (65-69).  

To demonstrate whether, with the data available to us, we would be able to identify 
alterations in features expression (genes, miRNAs or proteins) characteristic of a certain EDC 
class, we tried two different approaches: first, we grouped the expression data of all the samples 
exposed to 10 uM of individual EDC classes and compared it to the solvent control, and second 
we tried to apply to the same samples (10 uM or DMSO control) a random forest (RF) 
classification algorithm using the integrated gene, miRNA and protein expression. With the first 
approach, we identified both genes and miRNAs for PAHs, OPFRs and PCBs, while only two 
genes for phthalates. In the case of PCBs, the thyroid markers Dio1, Tpo and Tshr were 
upregulated, suggesting how PCBs could directly interfere with the TH production in the 
thyroid.  

With the second approach, using RF, we built four models (one per EDC class vs the 
rest of the samples) whose accuracy resulted to be 1 (PAHs and OPFRs) or 0.997 (phthalates 
and PCBs). The consistent cumulative changes in features expression and the pattern of these 
changes allow the machine learning (ML) algorithm to progressively build a consensus tree able 
to eventually discern whether a sample belongs to the EDC class it has been trained on or not. 
A limitation of our approach, which is intrinsic to ML algorithms, is that any dataset we want to 
evaluate our models on needs to have the same features of the dataset the models were constructed 
on. This is not always the case for the data at hand, since different RNA-Seq library construction 
approaches or mass spectrometry techniques, bioinformatics tools, identification criteria and 
genome or proteome references can all affect which features are detected and at what levels. An 
alternative approach could be to select a subset of features based on based on their contribution 
of the models (Gini importance value). Indeed, for our models, around 1,000 features 
contributed. For example, a higher threshold for the expression level could be applied, which 
could select features more likely to be detected regardless of the techniques used for data 
acquisition. 

Another limitation was the low number of proteins identified by untargeted 
proteomics. This technique aims at identifying and quantifying as many proteins as possible, 
however, several factors in data acquisition, for example variations in liquid chromatography or 
peptide fragmentation, the stochasticity of the sampling process, the database used, can affect 
peptide detection and limit the number of detected proteins or cause missing data points (70-
72). The stochasticity of the sampling could also cause least abundant peptides that elute at the 
same time of more abundant peptides to not be detected by the machine. This could explain, for 
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example, why we could detect only some of thyroid proteins or proteins important for the 
synthesis of the TH, and their detection was not consistent across experiments.  

Both MMI and PER impact on the transcriptome exhibited inconsistencies across the 
two experiments using different organoids differentiation batches. Based on our results, they are 
not suitable compounds to use as “positive control” for short-term omics studies as the observed 
effects cannot be reliably associated with influencing the process of TH production when 
examining the genes affected.  

In conclusion, we show how it is possible to analyze transcriptomics and proteomics 
data alone or integrated to gain biological insight in the effects of EDCs on in vitro thyroid 
organoids. 
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5. Supplementary Material 
Supplementary table 1. LC-MS/MS worklists for the two runs (run 1 = samples from Experiment 1; run 
2 = samples from Experiments 2 and 3). In each run, blanks, HeLa QC and follicles samples were analyzed. 
Samples were injected in order, from top to bottom. 

Run 1 Datafile name Sample 
2021_08_11_UCD_timsTOF_Cl4_Blank_01 Blank_01 
2021_08_11_UCD_timsTOF_Cl4_HeLa_tr01 HeLa_tr01 
2021_08_11_UCD_timsTOF_Cl4_HeLa_tr02 HeLa_tr02 
2021_08_11_UCD_timsTOF_Cl4_HeLa_tr03 HeLa_tr03 
2021_08_11_UCD_timsTOF_Cl4_Blank_02 Blank_02 
2021_08_11_UCD_timsTOF_Cl4_mU1 mU1 
2021_08_11_UCD_timsTOF_Cl4_mU2 mU2 
2021_08_11_UCD_timsTOF_Cl4_mU3 mU3 
2021_08_11_UCD_timsTOF_Cl4_mC1 mC1 
2021_08_11_UCD_timsTOF_Cl4_mC2 mC2 
2021_08_11_UCD_timsTOF_Cl4_mC3 mC3 
2021_08_11_UCD_timsTOF_Cl4_mDOP1 mDOP1 
2021_08_11_UCD_timsTOF_Cl4_mDOP2 mDOP2 
2021_08_11_UCD_timsTOF_Cl4_mDOP3 mDOP3 
2021_08_11_UCD_timsTOF_Cl4_mDINP1 mDINP1 
2021_08_11_UCD_timsTOF_Cl4_mDINP2 mDINP2 
2021_08_11_UCD_timsTOF_Cl4_mDINP3 mDINP3 
2021_08_11_UCD_timsTOF_Cl4_mDIDP1 mDIDP1 
2021_08_11_UCD_timsTOF_Cl4_mDIDP2 mDIDP2 
2021_08_11_UCD_timsTOF_Cl4_mDIDP3 mDIDP3 
2021_08_11_UCD_timsTOF_Cl4_mDEHP1 mDEHP1 
2021_08_11_UCD_timsTOF_Cl4_mDEHP2 mDEHP2 
2021_08_11_UCD_timsTOF_Cl4_mDEHP3 mDEHP3 
2021_08_11_UCD_timsTOF_Cl4_Blank_03 Blank_03 
2021_08_11_UCD_timsTOF_Cl4_HeLa_tr04 HeLa_tr04 
2021_08_11_UCD_timsTOF_Cl4_HeLa_tr05 HeLa_tr05 
2021_08_11_UCD_timsTOF_Cl4_HeLa_tr06 HeLa_tr06 
2021_08_11_UCD_timsTOF_Cl4_Blank_04 Blank_04 

Run 2 Datafile name Sample 
2022_04_11_UCD_timsTOF_Cl4_Blank_01 Blank_01 
2022_04_11_UCD_timsTOF_Cl4_HeLa_tr01 HeLa_tr01 
2022_04_11_UCD_timsTOF_Cl4_HeLa_tr02 HeLa_tr02 
2022_04_11_UCD_timsTOF_Cl4_HeLa_tr03 HeLa_tr03 
2022_04_11_UCD_timsTOF_Cl4_Blank_02 Blank_02 
2022_04_11_UCD_timsTOF_Cl4_m2U1 m2U1 
2022_04_11_UCD_timsTOF_Cl4_m2U3 m2U3 
2022_04_11_UCD_timsTOF_Cl4_m2C1_1 m2C1_1 
2022_04_11_UCD_timsTOF_Cl4_m2C2_1 m2C2_1 
2022_04_11_UCD_timsTOF_Cl4_m2C3_1 m2C3_1 
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2022_04_11_UCD_timsTOF_Cl4_m2C4_1 m2C4_1 
2022_04_11_UCD_timsTOF_Cl4_m2TPP1 m2TPP1 
2022_04_11_UCD_timsTOF_Cl4_m2TPP2 m2TPP2 
2022_04_11_UCD_timsTOF_Cl4_m2TPP3 m2TPP3 
2022_04_11_UCD_timsTOF_Cl4_m2BADP1 m2BADP1 
2022_04_11_UCD_timsTOF_Cl4_m2BADP2 m2BADP2 
2022_04_11_UCD_timsTOF_Cl4_m2BADP3 m2BADP3 
2022_04_11_UCD_timsTOF_Cl4_m2DMMP1 m2DMMP1 
2022_04_11_UCD_timsTOF_Cl4_m2DMMP2 m2DMMP2 
2022_04_11_UCD_timsTOF_Cl4_m2DMMP3 m2DMMP3 
2022_04_11_UCD_timsTOF_Cl4_m2TDCPP1 m2TDCPP1 
2022_04_11_UCD_timsTOF_Cl4_m2TDCPP2 m2TDCPP2 
2022_04_11_UCD_timsTOF_Cl4_m2TDCPP3 m2TDCPP3 
2022_04_11_UCD_timsTOF_Cl4_m2C1_2 m2C1_2 
2022_04_11_UCD_timsTOF_Cl4_m2C2_2 m2C2_2 
2022_04_11_UCD_timsTOF_Cl4_m2C3_2 m2C3_2 
2022_04_11_UCD_timsTOF_Cl4_m2C4_2 m2C4_2 
2022_04_11_UCD_timsTOF_Cl4_m2BAA1 m2BAA1 
2022_04_11_UCD_timsTOF_Cl4_m2BAA2 m2BAA2 
2022_04_11_UCD_timsTOF_Cl4_m2BAA3 m2BAA3 
2022_04_11_UCD_timsTOF_Cl4_m2BAP1 m2BAP1 
2022_04_11_UCD_timsTOF_Cl4_m2BAP2 m2BAP2 
2022_04_11_UCD_timsTOF_Cl4_m2BAP3 m2BAP3 
2022_04_11_UCD_timsTOF_Cl4_m2BKF1 m2BKF1 
2022_04_11_UCD_timsTOF_Cl4_m2BKF2 m2BKF2 
2022_04_11_UCD_timsTOF_Cl4_m2BKF3 m2BKF3 
2022_04_11_UCD_timsTOF_Cl4_m2DAHA1 m2DAHA1 
2022_04_11_UCD_timsTOF_Cl4_m2DAHA2 m2DAHA2 
2022_04_11_UCD_timsTOF_Cl4_m2DAHA3 m2DAHA3 
2022_04_11_UCD_timsTOF_Cl4_m2Per1 m2Per1 
2022_04_11_UCD_timsTOF_Cl4_m2Per2 m2Per2 
2022_04_11_UCD_timsTOF_Cl4_m2Per3 m2Per3 
2022_04_11_UCD_timsTOF_Cl4_m2MMI1 m2MMI1 
2022_04_11_UCD_timsTOF_Cl4_m2MMI2 m2MMI2 
2022_04_11_UCD_timsTOF_Cl4_m2MMI3 m2MMI3 
2022_04_11_UCD_timsTOF_Cl4_m3U1 m3U1 
2022_04_11_UCD_timsTOF_Cl4_m3U2 m3U2 
2022_04_11_UCD_timsTOF_Cl4_m3U3 m3U3 
2022_04_11_UCD_timsTOF_Cl4_m3C1 m3C1 
2022_04_11_UCD_timsTOF_Cl4_m3C2 m3C2 
2022_04_11_UCD_timsTOF_Cl4_m3C3 m3C3 
2022_04_11_UCD_timsTOF_Cl4_m3-118-1 m3-118-1 
2022_04_11_UCD_timsTOF_Cl4_m3-118-2 m3-118-2 
2022_04_11_UCD_timsTOF_Cl4_m3-118-3 m3-118-3 
2022_04_11_UCD_timsTOF_Cl4_m3-126-1 m3-126-1 
2022_04_11_UCD_timsTOF_Cl4_m3-126-2 m3-126-2 
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2022_04_11_UCD_timsTOF_Cl4_m3-126-3 m3-126-3 
2022_04_11_UCD_timsTOF_Cl4_m3-138-1 m3-138-1 
2022_04_11_UCD_timsTOF_Cl4_m3-138-2 m3-138-2 
2022_04_11_UCD_timsTOF_Cl4_m3-138-3 m3-138-3 
2022_04_11_UCD_timsTOF_Cl4_m3-153-1 m3-153-1 
2022_04_11_UCD_timsTOF_Cl4_m3-153-2 m3-153-2 
2022_04_11_UCD_timsTOF_Cl4_m3-153-3 m3-153-3 
2022_04_11_UCD_timsTOF_Cl4_m3Per1 m3Per1 
2022_04_11_UCD_timsTOF_Cl4_m3Per2 m3Per2 
2022_04_11_UCD_timsTOF_Cl4_m3Per3 m3Per3 
2022_04_11_UCD_timsTOF_Cl4_m3MMI1 m3MMI1 
2022_04_11_UCD_timsTOF_Cl4_m3MMI2 m3MMI2 
2022_04_11_UCD_timsTOF_Cl4_m3MMI3 m3MMI3 
2022_04_11_UCD_timsTOF_Cl4_Blank_03 Blank_03 
2022_04_11_UCD_timsTOF_Cl4_Blank_04 Blank_04 
2022_04_11_UCD_timsTOF_Cl4_HeLa_tr04 HeLa_tr04 
2022_04_11_UCD_timsTOF_Cl4_HeLa_tr05 HeLa_tr05 
2022_04_11_UCD_timsTOF_Cl4_HeLa_tr06 HeLa_tr06 
2022_04_11_UCD_timsTOF_Cl4_Blank_05 Blank_05 

 
Supplementary table 2. Max Quant search parameters for peptide identification.  

Parameter Value Parameter Value Parameter Value 

Version 1.6.17.0 
Separate LFQ 
in parameter 
groups 

FALSE 
MS/MS tol. 
(ITMS) 

0.5 Da 

Include 
contaminants 

TRUE 

Require 
MS/MS for 
LFQ 
comparisons 

TRUE 

Top MS/MS 
peaks per Da 
interval. 
(ITMS) 

8 

PSM FDR 0.01 
Calculate 
peak 
properties 

FALSE 
Da interval. 
(ITMS) 100 

PSM FDR 
Crosslink 

0.01 
Main search 
max. 
combinations 

200 
MS/MS 
deisotoping 
(ITMS) 

FALSE 

Protein FDR 0.01 
Advanced site 
intensities TRUE 

MS/MS 
deisotoping 
tolerance 
(ITMS) 

0.15 

Site FDR 0.01 
Write 
msScans table 

FALSE 

MS/MS 
deisotoping 
tolerance unit 
(ITMS) 

Da 
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Parameter Value Parameter Value Parameter Value 
Use 
Normalized 
Ratios For 
Occupancy 

TRUE 
Write 
msmsScans 
table 

TRUE 
MS/MS 
higher charges 
(ITMS) 

TRUE 

Min. peptide 
Length 

7 
Write 
ms3Scans 
table 

TRUE 
MS/MS water 
loss (ITMS) 

TRUE 

Min. score for 
unmodified 
peptides 

0 
Write 
allPeptides 
table 

TRUE 
MS/MS 
ammonia loss 
(ITMS) 

TRUE 

Min. score for 
modified 
peptides 

40 
Write 
mzRange 
table 

TRUE 
MS/MS 
dependent 
losses (ITMS) 

TRUE 

Min. delta 
score for 
unmodified 
peptides 

0 
Write DIA 
fragments 
table 

FALSE 
MS/MS 
recalibration 
(ITMS) 

FALSE 

Min. delta 
score for 
modified 
peptides 

6 
Write 
pasefMsmsSca
ns table 

TRUE 
MS/MS tol. 
(TOF) 40 ppm 

Min. unique 
peptides 

0 

Write 
accumulatedP
asefMsmsScan
s table 

FALSE 

Top MS/MS 
peaks per Da 
interval. 
(TOF) 

10 

Min. razor 
peptides 

1 
Max. peptide 
mass [Da] 

4600 
Da interval. 
(TOF) 

100 

Min. peptides 1 

Min. peptide 
length for 
unspecific 
search 

8 
MS/MS 
deisotoping 
(TOF) 

TRUE 

Use only 
unmodified 
peptides and 

TRUE 

Max. peptide 
length for 
unspecific 
search 

25 

MS/MS 
deisotoping 
tolerance 
(TOF) 

0.01 

Modifications 
included in 
protein 
quantification 

Oxidation 
(M);Acetyl 
(Protein N-
term) 

Razor protein 
FDR 

TRUE 

MS/MS 
deisotoping 
tolerance unit 
(TOF) 

Da 

Peptides used 
for protein 
quantification 

Razor Disable MD5 FALSE 
MS/MS 
higher charges 
(TOF) 

TRUE 

Discard 
unmodified 
counterpart 
peptides 

TRUE 
Max mods in 
site table 3 

MS/MS water 
loss (TOF) TRUE 
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Parameter Value Parameter Value Parameter Value 

Label min. 
ratio count 

2 
Match 
unidentified 
features 

FALSE 
MS/MS 
ammonia loss 
(TOF) 

TRUE 

Use delta 
score FALSE 

Epsilon score 
for mutations  

MS/MS 
dependent 
losses (TOF) 

TRUE 

iBAQ FALSE 

Evaluate 
variant 
peptides 
separately 

TRUE 
MS/MS 
recalibration 
(TOF) 

FALSE 

iBAQ log fit FALSE 
Variation 
mode None 

MS/MS tol. 
(Unknown) 20 ppm 

Match 
between runs TRUE 

MS/MS tol. 
(FTMS) 20 ppm 

Top MS/MS 
peaks per Da 
interval. 
(Unknown) 

12 

Matching 
time window 
[min] 

0.7 

Top MS/MS 
peaks per Da 
interval. 
(FTMS) 

12 Da interval. 
(Unknown) 

100 

Match ion 
mobility 
window 
[indices] 

0.05 
Da interval. 
(FTMS) 100 

MS/MS 
deisotoping 
(Unknown) 

TRUE 

Alignment 
time window 
[min] 

20 
MS/MS 
deisotoping 
(FTMS) 

TRUE 

MS/MS 
deisotoping 
tolerance 
(Unknown) 

7 

Alignment 
ion mobility 
window 
[indices] 

1 

MS/MS 
deisotoping 
tolerance 
(FTMS) 

7 

MS/MS 
deisotoping 
tolerance unit 
(Unknown) 

ppm 

Find 
dependent 
peptides 

FALSE 

MS/MS 
deisotoping 
tolerance unit 
(FTMS) 

ppm 
MS/MS 
higher charges 
(Unknown) 

TRUE 

Fasta file 

2021.08.13 - 
Mouse 
FASTA - 
uniprotproteo
me_UP00000
0589+reviewe
d_yes.fasta 

MS/MS 
higher charges 
(FTMS) 

TRUE 
MS/MS water 
loss 
(Unknown) 

TRUE 

Decoy mode revert MS/MS water 
loss (FTMS) 

TRUE 
MS/MS 
ammonia loss 
(Unknown) 

TRUE 
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Parameter Value Parameter Value Parameter Value 

Include 
contaminants 

TRUE 
MS/MS 
ammonia loss 
(FTMS) 

TRUE 

MS/MS 
dependent 
losses 
(Unknown) 

TRUE 

Advanced 
ratios 

TRUE 
MS/MS 
dependent 
losses (FTMS) 

TRUE 
MS/MS 
recalibration 
(Unknown) 

FALSE 

Second 
peptides 

TRUE 
MS/MS 
recalibration 
(FTMS) 

FALSE Site tables 
Oxidation 
(M)Sites.txt 

Stabilize large 
LFQ ratios TRUE     

 
Supplementary table 3. List of genes following a dose-response curve after maSigPro analysis (FDR < 
0.05). The number in each EDC column refers to the cluster the gene belongs to. If a cell is empty, the 
gene was not dysregulated after EDC treatment. Note that the clusters numbers across compounds do not 
implicate the same type of curve. 

 Phthalates PAHs OPFRs PCBs Reference 

Gene name D
EH

P 

D
ID

P 

D
IN

P 

D
nO

P 

BA
A 

BA
P 

BK
F 

D
AH

A 

BA
D

P 

D
M

M
P 

T
PP

 

PC
B1

18
 

PC
B1

26
 

PC
B1

38
 

PC
B1

53
 

M
M

I E
xp

2 

M
M

I E
xp

3 

PE
R

 E
xp

2 

PE
R

 E
xp

3 

1600014C10Rik  3                  
2310039H08Rik                   5 
2610020C07Rik                  9  
2610021A01Rik  7                  
2610035D17Rik             9      8 
2610301B20Rik                   4 
2900009J06Rik                6    
4833411C07Rik    3                
4930430F08Rik  7                  
4930581F22Rik                   4 
9430037G07Rik                 8   
AI597479                   5 
AW146154      7            1  
Aamdc                6    

Abcb9                  7  

Abcf3 1                   

Abhd1                6    

Abhd3                3    

Abhd4                2    

Abi2                7   6 
Acaa2   4 9                

Actr3                   6 
Adam9                4    

Adgra3                   3 
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 Phthalates PAHs OPFRs PCBs Reference 

Gene name D
EH

P 

D
ID

P 

D
IN

P 

D
nO

P 

BA
A 

BA
P 

BK
F 

D
AH

A 

BA
D

P 

D
M

M
P 

T
PP

 

PC
B1

18
 

PC
B1

26
 

PC
B1

38
 

PC
B1

53
 

M
M

I E
xp

2 

M
M

I E
xp

3 

PE
R

 E
xp

2 

PE
R

 E
xp

3 

Ahrr       2             

Ak7                   7 
Aldh3a1             2       

Alg8                 9   

Ankrd39                  6  

Anxa10                   7 
Ap1s3                   9 
Aplp2  4                  

Arhgap11a                7    
Arl6ip4                6    

Arpc5l          1          

Asf1b    4                

Atg9a                 2   

Aurkb             3       

B3galnt1                  3  

B830012L14Rik           9         
Basp1    4                

Bbs5                   1 
Bet1l                   5 
Bivm             7       

Blmh 1                   

Blzf1                   5 
Bmt2                8    

Bphl                   4 
Brf2  1                  

Brip1os  1                  

Bst2       9             

Btbd3                   8 
C1qbp                   6 
C2cd4b                3    

Cacng1                8    

Cadm1                   9 
Calcrl      5     8         

Capn2                   6 
Capns1  1                  

Casp2                3  5  

Cav2                 1   

Cbarp           6         

Cbx1    2                

Cbx4                  1  

Cbx5                5    

Ccdc25                  1  

Ccdc43                 1   

Ccdc74a             6       

Ccdc82                   4 
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 Phthalates PAHs OPFRs PCBs Reference 

Gene name D
EH

P 

D
ID

P 

D
IN

P 

D
nO

P 

BA
A 

BA
P 

BK
F 

D
AH

A 

BA
D

P 

D
M

M
P 

T
PP

 

PC
B1

18
 

PC
B1

26
 

PC
B1

38
 

PC
B1

53
 

M
M

I E
xp

2 

M
M

I E
xp

3 

PE
R

 E
xp

2 

PE
R

 E
xp

3 

Ccdc84  1                  

Ccdc90b     3               

Ccnb1    2                

Ccnd2    1                

Ccpg1os                   5 
Ccrl2       8             

Cd2bp2  8                  

Cdc14a 9                   

Cdk12               1     

Cdk13                7    

Cdv3                   6 
Cdyl                5    

Celf2  2                  

Cers6                   8 
Chd6                4    

Chil1                  8  

Cideb                   5 
Cldn18          2          

Cldn7        2        3    

Cmc1                   5 
Cmc4                   7 
Cnbd2             5      4 
Col4a1      3              

Col4a2                9    

Cox7c-ps1                 7   
Cp             1       

Cr1l                  2  

Creld1                8    

Csnk1g3                   6 
Cstf2t                 5   

Ctsz            1        

Cxcl14  5                  

Cyb5b    7                

Cyp1a1       5 4     2       

Cyp1b1       3 3     2       

Cyria                5    

Dab1                7    

Dap    5                

Ddit3    5                

Ddr1   2                 

Ddx6  8                  

Desi2                   6 
Dhrs7b                3    

Dipk1a                   7 
Dmxl2                   3 
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 Phthalates PAHs OPFRs PCBs Reference 

Gene name D
EH

P 

D
ID

P 

D
IN

P 

D
nO

P 

BA
A 

BA
P 

BK
F 

D
AH

A 

BA
D

P 

D
M

M
P 

T
PP

 

PC
B1

18
 

PC
B1

26
 

PC
B1

38
 

PC
B1

53
 

M
M

I E
xp

2 

M
M

I E
xp

3 

PE
R

 E
xp

2 

PE
R

 E
xp

3 

Dnajb1   3                 

Dnajb11                   3 
Dnajc8  3  9                

Dnase1l1 4                   

Dop1a                   2 
Dpf2  1                  

Dpm1                   1 
Dusp2       4             

Echdc3                 9   

Eda2r  3                  

Eif2ak3                   9 
Eif5a2                4    

Elavl1                5    

Eno1                   4 
Enox2                   7 
Epb41l4a                   3 
Epb41l5                 5   

Epn2      1              

Exoc6    8                

Fam149b                   6 
Fam20a               2     

Fam50a                 2   

Fanci       7         9    

Fbxo17                 9   

Fbxo44                   7 
Fbxo9                  1  

Fbxw2            4        

Fetub                 6   

Fgfr1           6         

Fkbp1a                9    

Flvcr1                 3   

Fmo5             4       

G0s2         1           
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Gar1                 2   

Gas2l1     4               

Gata6                4    

Gbp7                 5   

Gem                 3   

Gfod2                 2   
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Glod4                   5 
Glrx5                   3 
Gm10323  3                  
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Gm15501                   5 
Gm20765                4    

Gm21312                4    

Gm22513                   8 
Gm25099                 8   

Gm25395    3                

Gm26532                  3  

Gm28661   9                 

Gm29170                   4 
Gm32885    4                

Gm4221                   4 
Gm42420                   9 
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Gm43201                 6   

Gm45871                   1 
Gm5141                  1  

Gm6069                 7  4 
Gm7876   7                 

Gm7908    3                

Gm7972                 1   

Gm8318  2 8                 

Gm8355                   4 
Gmpr                   2 
Gnpat                   7 
Golph3                 4   

Gorasp2  4                  

Gpm6b                 6   

Gpr107                   1 
Gpr137b    6                

Gpr137b-ps                 7   
Gprc5a              2      

Gpsm1                 2   

Grem2                4    

Gripap1                 2   

Gsn                 7  3 
Gspt1                   6 
Gstm1    5                

H3f3b         3           

Haghl                6    
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Haus4                3    

Higd2a 7                   

Hnrnpdl                 1   

Hnrnpm                 9   

Hpcal4                  1  

Hprt                   4 
Hs3st1                4    

Hsp90b1                   7 
Hspbap1    2                

Htr1d                   9 
Iars                7    

Igfbp6                2    

Ikbke                 2   

Il34                 9  2 
Ildr1                   8 
Ilf3                   9 
Inca1                   5 
Ing5   4                 

Inpp5f                4    

Ipo8                   6 
Isg20                   7 
Itgae           1         

Itgav           5         

Itsn2                 1  8 
Josd1                6    

Kank1  1                  

Kat7  1                  

Kif1b                   6 
Kif23    2                

Klf6   1                 

Klhl11         8           

Klhl28                 1   

Krit1                 1   

Larp7    2                

Lbp  6                  

Lbr    2                

Lgi2                  7  

Lipt1 5                   

Lman2l    3            1    

Lmbrd1                 1   

Lnpk                 1   

Lonrf3         2           

Lor    1                

Lrch4                7    

Lrp12                   6 
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Marchf7                 4   

Mark4 8                   

Marveld2                  4  

Med31                   7 
Mettl8               7     

Mfsd8                  5  

Mgme1  8                  

Mgp         5           

Mid1    6                

Minpp1                   3 
Mir1249                   1 
Mir125a                   1 
Mir1291                 7  5 
Mir135a-1                   7 
Mir141                   1 
Mir181b-2                   1 
Mir1981                   1 
Mir224                   1 
Mir27a                   7 
Mir30a                   7 
Mir324                   1 
Mir340            6       1 
Mir351                   7 
Mirlet7d                   1 
Mirt1  9                  

Mmp17               5     

Mospd2                 1   

Mrm1                  4  

Mroh1                 2   
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Mrps22    8                

Mrps34  5                  

Msantd3                   2 
Mtm1                 4   

Mtmr10                   3 
Mto1           2         

Mtres1    7                

Mxi1   3                 

Mymx                  6  
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Nktr                   1 
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Pdik1l      4              

Pdlim1                   7 
Pdlim5                   6 
Pgp                2    

Pi4k2a    3                
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Poli                   5 
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Polr3b                   2 
Ppp1r18  4                  

Ppp1r2                   9 
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Prdm9                   4 
Prdx4                   5 
Prmt2                1    

Prpf8  5                  
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Psd3                 7   
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Qtrt2                   3 
R3hdm2     2      3         

Rab4a  5                  
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Rab7b                   4 
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Rrp7a 3                   
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Serhl                   5 
Serpinb9b 5                   
Serpinh1                   6 
Setd5   5                 

Sh3bgrl                 4   

Sike1                 5   

Slc20a2                   3 
Slc22a23                   6 
Slc24a3                4    

Slc25a3  5                  

Slc25a34    3                

Slc25a39    3                

Slc30a4                 3   

Slc34a2                4    

Slc38a1    3                

Slc39a7    3                

Slc3a2    5                

Slc41a1                7    

Slc44a1                   6 
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Snx13                 1   
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Spcs3                 5   

Spop            5    3    
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Sptbn2                  7  
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Syt2                 6   
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Tbl2   3                 
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Tgfbi  1                  
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Tmbim1    5                

Tmem117                 6   
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Tnfaip1                   3 
Tnni3                4    

Tomm5           2         

Tor3a                   2 
Trak1               6     

Trim45              1      

Trmt10c  7                  

Trmt44                 9   

Tshr                   8 
Tspan7  6                  

Ttc3    5                

Tubb2b                4    

Tvp23b                   1 
Uba2    2                

Ubap1 8                   

Ufl1                   4 
Ufsp2                   5 
Usp33                 1   

Washc4                 4   

Wdr37                  5  

Xpo7                   9 
Xrcc6  7                  

Yars  1                  

Yrdc            2    1    
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Supplementary figure 1. Results of dose series analysis of gene expression on phthalates (A = DEHP; B = 
DIDP; C = DINP; D = DnOP). Each plot shows the expression values of each replicate (dots) and fit 
(dotted line) of genes for which FDR < 0.05. The Ensembl gene ID and gene name are reported at the top 
of each panel. If a cluster comprises more genes, only the cluster name is reported (the genes are in 
Supplementary table 3). The x-axis reports the dose range used (nM = nanomoles per liter, uM = 
micromoles per liter).   
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Supplementary figure 2. Results of dose series analysis of gene expression on PAHs (A = BAA; B = BAP, 
C = BKF; D = DAHA). Each plot shows the expression values of each replicate (dots) and fit (dotted line) 
of genes for which FDR < 0.05. The Ensembl gene ID and gene name are reported at the top of each panel. 
The x-axis reports the dose range used (nM = nanomoles per liter, uM = micromoles per liter).  
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Supplementary figure 3. Results of dose series analysis of gene expression on OPFRs (A = BADP; B = 
DMMP; C = TPP). Each plot shows the expression values of each replicate (dots) and fit (dotted line) of 
genes for which FDR < 0.05. The Ensembl gene ID and gene name are reported at the top of each panel. 
If a cluster comprises more genes, only the cluster name is reported (the genes are in Supplementary table 
2). The x-axis reports the dose range used (nM = nanomoles per liter, uM = micromoles per liter).  
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Supplementary figure 4. Results of dose series analysis of gene expression on PCBs (A = PCB118; B = 
PCB126; C = PCB138; D = PCB153). Each plot shows the expression values of each replicate (dots) and 
fit (dotted line) of genes for which FDR < 0.05. The Ensembl gene ID and gene name are reported at the 
top of each panel. If a cluster comprises more genes, only the cluster name is reported (the genes are in 
Supplementary table 3). The x-axis reports the dose range used (nM = nanomoles per liter, uM = 
micromoles per liter). 
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Supplementary figure 5. Results of dose series analysis of gene expression on thyroid hormone synthesis 
inhibiting compounds methimazole (MMI) and sodium perchlorate (PER) (A = MMI Experiment 2; B = 
PER Experiment 2; C = MMI Experiment 3; D = PER Experiment 3). Each plot shows the expression 
values of each replicate (dots) and fit (dotted line) of genes for which FDR < 0.05. If a cluster is composed 
of a single gene, the Ensembl gene ID and gene name are reported at the top of the panel. If a cluster 
comprises more genes, only the cluster name is reported (the genes are reported in Supplementary figure 
3). The x-axis reports the dose range used (uM = micromoles per liter; mM = millimoles per liter).  
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Abstract 
Endocrine disruptors are compounds able to interfere with the endocrine system and 

constitute an important environmental concern. Indeed, detrimental effects on thyroid 
physiology and functioning have been described. Differences exist in the susceptibility of human 
sexes to the incidence of thyroid disorders, like autoimmune diseases or cancer. To study how 
different hormonal environments impact the thyroid response to endocrine disruptors, we 
exposed human embryonic stem cell-derived thyroid organoids to physiological concentrations 
of sex hormones resembling the serum levels of human females post-ovulation or males of 
reproductive age for three days. Afterwards, we added 10 µM benzo[a]pyrene or PCB153 for 24 
hours and analyzed the transcriptome changes via single-cell RNA sequencing with differential 
gene expression and gene ontology analysis. e sex hormones receptors genes AR, ESR1, ESR2 
and PGR were expressed at low levels. Among the thyroid markers, only TG resulted 
downregulated by benzo[a]pyrene or benzo[a]pyrene with the “male” hormones mix.  Both 
hormone mixtures and benzo[a]pyrene alone upregulated ribosomal genes and genes involved in 
oxidative phosphorylation, while their combination decreased the expression compared to 
benzo[a]pyrene alone. e “male” mix and benzo[a]pyrene, alone or in combination, upregulated 
genes involved in lipid transport and metabolism (APOA1, APOC3, APOA4, FABP1, FABP2, 
FABP6). e combination of “male” hormones and benzo[a]pyrene induced also genes involved 
in inflammation and NFkB targets. Benzo[a]pyrene upregulated CYP1A1, CYP1B1 and NQO1 
irrespective of the hormonal context. e induction was stronger in the “female” mix. 
Benzo[a]pyrene alone upregulated genes involved in cell cycle regulation, response to reactive 
oxygen species and apoptosis. PCB153 had a modest effect in presence of “male” hormones, 
while we did not observe any changes with the “female” mix. is work shows how single cell 
transcriptomics can be applied to selectively study the in vitro effects of endocrine disrupters and 
their interaction with different hormonal contexts. 
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1. Introduction 
e hormonal status of the individuals contributes to the development of thyroid 

diseases in humans. e incidence of thyroid cancer is higher in females than males (1), with the 
female-to-male ratio peaking at around 15 years of age (when female puberty insets) and 
decreasing to ~2 at around 50-55 years (2, 3). In a rat model, treatment with estradiol was shown 
to promote thyroid tumorigenesis (4). Autoimmune diseases of the thyroid are also more frequent 
in women (5).  

Endocrine-disrupting chemicals (EDCs) is a term referring to environmental pollutants 
that can interfere with the normal functioning of the endocrine system (6). Among the various 
existing EDCs classes, in this work we focused on the polycyclic aromatic hydrocarbons (PAHs) 
and polychlorinated biphenyl (PCBs), selecting benzo[a]pyrene and PCB153 as representative 
for PAHs and PCBs, respectively. For both PAHs and PCBs, the main route of human exposure 
in the general population is inhalation and ingestion of contaminated food and water (7, 8). 
PAHs are organic compounds that derive from the incomplete combustion of organic material. 
ey are able to bind the aryl hydrocarbon receptor (AHR), whose activation leads to the 
induction of cytochrome P450 enzymes, which can metabolize PAHs into toxic and carcinogenic 
compounds (7). PCBs are synthetic organic compounds whose production was banned in the 
1970s due to recognized toxicity. However, owing to their remarkable persistence, they still 
contaminate the soil and atmosphere. PCBs interfere with the thyroid and thyroid hormone 
(TH) activity at multiple levels, by impairing the TH synthesis in the thyroid itself and peripheral 
tissues, decreasing TH transport though the blood and increasing TH clearance (9). 

Since EDCs, by definition, are able to disrupt hormonal processes, it is not surprising 
that sex-specific effects have been observed. Perinatal and developmental exposure to endocrine 
disrupting chemicals (EDCs) impact differently females and males in in vivo experiments 
analyzing cognitive functions and behavior (10, 11), brain development (12) and intestinal 
inflammation (13), indicating a system-wide influence of EDCs. 

e application of single cell technologies to the field of toxicogenomics and 
environmental toxicology is still at an early stage, with Liu et al. (2022) (14) reporting how, in 
the 2017-2022 period of the 2917 articles employing high-throughput sequencing, only 85 
concerned single cell RNA sequencing (scRNA-Seq). Some of the areas of focus are the effects of 
toxic compounds on embryonic development, cell differentiation in vitro and in vivo, in vivo 
response of tissues composed on heterogeneous cell populations, the composition of complex 
microorganism populations.  

To understand how different sex hormone contexts can affect the response of thyrocytes 
to EDCs, we preformed single cell RNA sequencing (scRNA-Seq) on human and mouse 
embryonic stem cell-derived (ESC) thyroid follicles (15-17) after treatment with a mixture of the 
sex hormones beta-estradiol (E2), 5-alpha-dihydrotestosterone (DHT) and progesterone (PG) 
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that resemble the serum levels of the female (luteal phase) and male human sexes of reproductive 
age. We also treated the follicles with the endocrine disruptors BAP and PCB153 in presence of 
either combination of sex hormones. To gain insight into the effects of the treatments, we 
performed differential gene expression analysis and gene ontology (GO) analysis. 

Impact of Endocrine Disrupting Chemicals and Sex Hormones on Human ESC-Derived Thyroid 
Follicles Using Single Cell Transcriptomics

207



2. Materials and Methods  
2.1 Chemicals Information 

e following chemicals were used for the exposure of differentiated thyroid follicles: 
beta-estradiol (E2) (CAS 50-28-2; E1024-1G, Sigma-Aldrich); 5-alpha-dihydrotestosterone 
(DHT) solution, 1.0 mg/mL in methanol (CAS 521-18-6; D-073-1ML, Sigma-Aldrich); 
progesterone (PG), 99%, powder (CAS 57-83-0; P8783-1G, Sigma-Aldrich); PCB153 (CAS 
35065-27-1; DRE-C20015300, LGS Standards); benzo[a]pyrene (BAP) (CAS 50-32-8; B-1760, 
Sigma-Aldrich). All chemicals except DHT were dissolved in 100% DMSO (CAS 67-68-5; 
1029521000, Merck Millipore) (stock concentrations: E2 200 mg/mL, 40 mg/mL PG, PCB153 
50 mM, BAP 50 mM). e chemicals were aliquoted in single-use vials and stored at -80 °C.  

 

2.2 Mouse Thyroid Follicles Differentiation 
yroid follicles were differentiated from the A2Lox.Cre_TRE-Nkx2-1/Pax8_Tg-

EGFP mouse embryonic stem cell (ESC) line and enriched as previously described (15, 17). For 
more information see Supplementary Material.  

 

2.3 Human Thyroid Follicles Differentiation 
Human thyroid follicles were differentiated from the modified HES3 human 

embryonic stem cell line following the protocol described by Romitti et al. (2022) (16). Briefly, 
HES3 cells were infected with lentivirus containing the sequences of the doxycycline (Dox; 
Sigma-Aldrich)-inducible system, TRE_NXK2.1/PAX8_Ubc_rtTA_Neo. Modified cells were 
then initially cultured as Embryonic Bodies (EBs) and then embedded in Matrigel. 
Differentiation into endoderm was induced by Activin A (GFH6, Cell GS) incubation, followed 
by NKX2.1 and PAX8 overexpression promoted by Dox treatment. Sequential treatment with 
cAMP, hrTSH, dexamethasone and TGF-beta inhibitors promoted thyroid differentiation and 
maturation. By day 58, organized and functional thyroid follicles were observed.  

 

2.4 Mouse Follicles Exposure to Hormones and Viability 
Testing 
2.4.1 Exposure to Sex Hormones  

Enriched mouse thyroid follicles were extracted from Matrigel as described in the 
Supplementary Methods and plated in fresh Matrigel droplets at a density of 1,750 follicles in 
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20 µL Matrigel. After 24 hours, the medium was changed with fresh serum-free mouse 
differentiation medium (for composition see Supplementary Methods) without hormones 
(untreated control) or supplemented with “female” (250 pg/mL (0.9 nM) E2, 0.1 ng/mL (0.34 
nM) DHT, 10 ng/mL (32 nM) PG) or “male” sex hormones mixtures (20 pg/mL (0.07 nM) E2, 
0.6 ng/mL (2 nM) DHT, 0.5 ng/mL (1.6 nM) PG) (n = 2 for each condition). e final [DMSO] 
was < 0.001%). Cells were cultured for 24, 48, 72 or 96 hours at 5% CO2, 37 C and 95% 
humidity. After 48 hours, the media was refreshed.  

 

2.4.2 Viability Testing with FACS 
At the end of the incubation period, Matrigel was digested as before, and follicles 

dissociated into a single cell suspension by incubating the samples with TrypLE Express 
(12604021, ermoFisher Scientific) for 10 minutes. Afterwards, samples were washed twice 
with PBS, resuspended in FACS buffer (PBS, 2% BSA, 10 mM HEPES) with a 1:500 dilution 
of Draq7 (25191, Biolegend) and filtered through a 30 µm filter for FACS analysis. Samples were 
run on the BD Accuri™ C6 Plus Flow Cytometer (BD Biosciences) and viable cells were identified 
as being Draq7 negative (Draq7-). Data analysis was performed on the Floreada web app (v1.0) 
(https://floreada.io/). 

 

2.5 Human Follicles Exposure to Chemicals 
Similarly to mouse follicles, differentiated human ESC-derived thyroid follicles were 

extracted from Matrigel and enriched as described in the Supplementary Methods. ey were 
plated in fresh Matrigel droplets at a density of 1,500 follicles in 20 µL Matrigel and cultured in 
serum-free differentiation human medium (for composition see Supplementary Methods) for 3 
days. After 3 days, the medium was changed with fresh serum-free human medium, without 
hormones or with “female” or “male” sex hormones mixtures (at the same concentrations 
described above) and cells were cultured for 3 additional days. e media were further changed 
after 24 hours (7 days post follicles reseeding), this time adding also 10 µM BAP or PCB153 or 
DMSO only as solvent control (final [DMSO] in well = 0.5%) and cells were incubated for 24 
hours (Figure 1). e following 8 conditions were tested: Untreated (i.e. no sex hormones added) 
+ Ctrl (DMSO only) (labelled “Untr Ctrl”); Untreated + 10 µM BAP ( “Untr BAP”); Female 
(i.e. “female” hormones added) + Ctrl (“Female Ctrl”); Female + 10 µM BAP (“Female BAP”); 
Female + 10 µM PCB153 (“Female PCB153”); Male (i.e. “male” hormones added) + Ctrl (“Male 
Ctrl”); Male + 10 µM BAP (“Male BAP”); Male + 10 µM PCB153 (“Male PCB153”). 
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Figure 1. Graphical representations of the exposure regimens of human follicles. 

2.6 Single Cell RNA-Seq Libraries Preparation 
At the end of the 24 hours incubation period, we performed Matrigel digestion of the 

human follicles culture and prepared single-cell suspensions as described for the mouse follicles. 
Cells were manually counted using Trypan blue and resuspended in PBS + 0.04% BSA at a 
concentration of 1,000 cells/µL to recover ~5,000 cells per sample as indicated by the 10X 
Genomics guidelines (18). Cells were used to prepare single cell RNA-Seq libraries using the 
Chromium™ Next GEM Single Cell 3’ Kit v3.1 (PN-1000269, 10X Genomics) and Dual Index 
Kit TT Set A, 96 rxns (PN-1000215, 10X Genomics) following the manufacturer’s instructions. 

Prepared libraries were quantified on the Qubit 2.0 Fluorometer (ermoFisher) and 
quality control performed on a BioAnalyzer 2100 expert (Agilent). Sequencing was performed 
on a NovaSeq 6000 (Illumina) using a SP Illumina flowcell 100 cycles (v1.5) (Illumina) in paired-
end mode. e sequencing data used in this manuscript has been deposited in BioStudies under 
the accession E-MTAB-13502. 

 

2.7 Single Cell RNA-Seq Data Analysis 
Fastq files were generated from Illumina BCL files using the Cell Ranger software 

(v7.1.0) (10X Genomics) tool mkfastq. We then used Cell Ranger count with the options --
include-introns true --expect-cells 5000 to align and quantify reads. We used the Gencode 
reference genome GRCh38 version 32 (Ensembl 98, 2019-09-05). 

Filtered features matrices output by the Cell Ranger software were used for downstream 
analyses using Seurat (v4.3.0.9012) (19). We filtered the samples using the following parameters: 
1,700 < nFeatures < 10,000, nCount > 800 and percent of reads mapping to the mitochondrial 
genome < 12.5%. Data was log-normalized and scaled using the Seurat function ScaleData using 
all genes as selected features. We performed principal component analysis (PCA) using the 2,000 
most highly variable features and selected the top 15 principal components for K-nearest 
neighbor (KNN) graph construction. We clustered the cells with the original Louvain algorithm 
(default) and a resolution of 0.5. Non-linear dimensional reduction was performed with the 
Uniform Manifold Approximation and Projection (UMAP) algorithm using 16 clusters, 
determined using the Seurat function FindClusters. To annotate clusters, we used ScType (20) 
and the full version of the ScType database file available at 
https://github.com/IanevskiAleksandr/sc-type. We selected “yroid” as the tissue type and 
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modified the cell types to include the ones previously described in Romitti et al. (2022) (16) 
(Table 1).  

 
Table 1. Gene annotations used for cell type identification.  

Cell type Genes 
Immature 
yrocytes 

PAX8, FOXE1, NKX2-1, HHEX, TSHR, TG 

Mature 
yrocytes 

PAX8, FOXE1, NKX2-1, HHEX, TSHR, TG, TPO 

yroid 
progenitors 

PAX8, FOXE1, NKX2-1, HHEX 

Goblet cells AGR2, AQP3, ATOH1, BACE2, CDON, CDX2, CLCA1, CREB3L1, FCGBP, 
GALNT12, GUCA2A, ITLN1, KLK1, KRT20, KRT7, LRRC26, MANF, MUC13, 
MUC2, MUC4, MUC5B, NLRP6, PDIA5, PHGR1, PLA2G10, REP15, SLC9A8, 
SPDEF, SPINK4, TFF3, TPSG1, ZG16 

Embryonic 
stem cells 

ABCG2, ANO6, BCL3, BNIP3, CD24, CD59, CD9, CDH1, CDK8, CTNNB1, 
DNMT3B, DPPA2, DPPA3, DPPA4, EPCAM, ESRRB, FBXO15, FUT4, FZD1, 
GAL, GDF3, GJB1, GJB4, GJC1, HES1, HHEX, HMGA2, HOXB5, IL6ST, 
ITGA4, ITGA6, ITGB1, KCNIP3, KIT, KITLG, KLF4, L1TD1, LEF1, LIFR, 
LMNA, MYC, NACC1, NANOG, NR6A1, PCGF2, PECAM1, PITX2, PIWIL1, 
PIWIL2, PIWIL4, PML, PODXL, POU5F1, PRDM5, PROM1, PUM2, SALL4, 
SLC46A2, SMAD1, SMAD2, SMAD3, SMAD4, SMAD5, SMAD9, SOX15, SOX2, 
STAT3, SUMO2, TAF8, TDGF1, TEX19, THY1, TRIM28, TRIM6, ZFP42, ZFX, 
ZIC1 

Airway 
progenitor 
cells 

ABI3BP, AQP3, DAPL1, GSTM2, HPGD, ICAM1, KRT14, KRT15, KRT5, 
PHLDA3, RPS18, SDC1 

Epithelial cells CD24, CEACAM1, ST6GAL1, ITGB4, IL1R1, PROM1, CDH1, KRT1, KRT7, 
MUC1, ICAM1, KRT14, KRT5, ITGAL, CD2, KLK3, ITGA5, ITGA4, ITGA2, 
KRT3, KRT16, SCNN1A, KRT15, ITGA1, KRT2, SCNN1B, SCNN1D, 
SCNN1G, IFI16, BOK, NKD1, FZD6, DKK3, NRP2, SFRP5, RAI14, DEFB1, 
KLK1, AGR2, APOA1, GPA33, ANPEP, CRYBA1, BMI1, BRCA1, MUC16, 
CEACAM5, CTSE, SCGB1A1, EXO1, FOXA1, GABRP, GGT1, SFN, KRT13, LTF, 
SLC46A2, KLK10, P2RX7, CDKN2A, TP63, CDH3, PSCA, AGER, ZFP42, 
SPRR1B, SI, TTR, TM4SF20, TSTD1, SYCN, HBEGF, PIGR, MUC13, 
SELENBP1, ELF3, TSPAN1, GUCA2A, PHGR1, LYPD8, LGALS4, GATA2, 
SEC23B, TSPAN8, DLX5, DGAT2, ITPR2, THRSP, PLA2G4A, SLC25A48, PGR, 
FERMT1, EHF, PLEKHS1, CDKL1, MECOM, MSX1, RNF128, ANLN, CKAP2, 
HMMR, KIF15, CKAP2L, KIF20B, HIRIP3, INCENP, KIF23, PRC1, ECT2, 
CXCL10, CXCL8, CCL20, CXCL17, PRG4, ALOX15, F5, EMILIN2, SPTSSB, 
FMO5, IVL, VSIG2, AQP3, PAQR5, EPCAM, CLDN1, OCLN, MUC5AC 

Cardiovascular 
cells 

ACTA2, CNN1, CALD1, DES 

Fibroblasts IL1R1, FAP, FLI1, CELA1, LOX, PDGFRB, P4HA1, UCP2, CCR2, ITGAL, FGR, 
HCK, TNFRSF1B, PRKCD, ENO3, ABI3, TREML4, PIP4K2A, CD300E, 
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Cell type Genes 
SERPINB10, CTHRC1, TBX18, COL15A1, GJB2, IL34, EDN3, SLC6A13, VTN, 
ITIH5, LUM, DPT, POSTN, PENK, MMP14, COL6A2, FABP4, ASPN, 
ANGPTL2, EFEMP1, SCARA5, IGFBP3, COPZ2, DPEP1, ADAMTS5, COL5A1, 
CD248, PI16, PAMR1, TNXB, MMP2, COL14A1, CLEC3B, IGFBP6, COL5A2, 
FBN1, MFAP5, FKBP10, PALLD, WIF1, SNHG18, CDH11, PTCH1, ARAP1, 
FBLN2, IGF1, PRRX1, FKBP7, OAF, COL6A3, CTSK, DKK1, C1S, RARRES2, 
GREM1, SPON2, TCF21, PCSK6, COL8A1, ENTPD2, CXCL8, CXCL3, IL6, 
CYP1B1, COL13A1, ADAMTS10, CCL11, ADAM33, COL4A3, COL4A4, 
LAMA2, ACKR3, CD55, FBLN7, FIBIN, THBS2, NOV, PTX3, MMP3, LRRK1, 
HGF, FRZB, COL12A1, COL7A1, MEOX1, PRG4, PKD2, CCL19, NNMT, 
FOXF1, HAS1, CTGF, ERCC1, WISP1, TWIST2, RIPK3, DDR2, ELN, FN1, 
HHIP, FMO2, COL1A2, COL3A1, VIM, FSTL1, GSN, SPARC, S100A4, NT5E, 
COL1A1, MGP, NOX4, THY1, CD40, SERPINH1, CD44, PDGFRA, EN1, DCN, 
CEBPB, EGR1, FOSB, FOSL2, HIF1A, KLF2, KLF4, KLF6, KLF9, NFAT5, 
NFATC1, NFKB1, NR4A1, NR4A2, PBX1, RUNX1, STAT3, TCF4, ZEB2, 
LAMC1, MEDAG, LAMB1, DKK3, TBX20, MDK, GSTM5, NGF, VEGFA, 
FGF2, P4HTM, CKAP4, INMT, CXCL14 

 
To calculate the percentage of cells expressing a particular gene, we used the R package 

scCustomize (21) with the default threshold of 0. To identify differentially expressed genes 
between the clusters, we used the Seurat functions FindAllMarkers or FindMarkers with the 
default parameters (logfc.threshold = 0.25, test.use = "wilcox", min.pct = 0.1, min.cells.feature = 
3, min.cells.group = 3, base = 2) and set an FDR threshold of 0.05.  

 

2.7.1 Gene Ontology Analysis 
Gene ontology (GO) analysis was performed with R package clusterProfiler (22) using 

the GO database version 2.1 (2023-01-01) (23, 24). e genes related to the GO term “Lipid 
transport” GO:0006869 were downloaded from AmiGO (25). 
 

e code used for the analysis is accessible in a notebook at https://marta-
nazzari.github.io/scrnaseq-follicles-hormones/.  
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3. Results 
3.1 Viability Testing of Sex Hormones Combinations 

To assess the impact of hormones levels on our in vitro thyroid model, we selected two 
sex hormones combinations that closely reflect the serum levels concentrations of the sex 
hormones progesterone (PG), beta-estradiol (E2) and dihydrotestosterone (DHT) of the human 
male and female sexes at reproductive age and post puberty. We will refer to these two 
combinations as the “male” and “female” condition throughout this manuscript. As the 
concentrations of PG and E2 in the female fluctuate with the menstrual cycle, we selected 
concentrations representative of the luteal phase (post ovulation) (26). 

Due to the long protocol required to differentiate human follicles and the limited 
number of follicles that can be generated in a differentiation batch, we tested the cytotoxicity of 
the selected sex hormones mixtures in a similar model derived from mouse embryonic stem cells 
(mESC) (15, 17). We reasoned that, since the hormones structures and signaling pathways are 
conserved across species, we would still be able to observe any sign of cytotoxicity. To this end, 
we incubated the mouse embryonic stem cell (mESC)-derived thyroid follicles with media 
supplemented with “male” or “female” sex hormones mixtures for 1, 2, 3 or 4 days and tested the 
viability via flow cytometry. No cytotoxic effects on the cells were detected at these 
concentrations, with viability never going below ~ 96% also for thyroid cells, which represent a 
part of the whole population and express GFP+-thyroglobulin (Tg) (Figure 2, Table 2, Figure 3). 

 

 
Figure 2. Viability of mouse embryonic stem cell (mESC)-derived thyroid follicles measured by flow 
cytometry using the viability dye Draq7. e viability corresponds to the percentage of Draq7- cells 
identified in the population. e thyroid cells are the GFP+ subpopulation. Each condition was performed 
in duplicate, and each bar represents a sample.  
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Table 2. Viability of embryonic stem cell (mESC)-derived thyroid follicles measured by flow cytometry 
using the viability dye Draq7, which stains only dead cells. is table reports the individual values plotted 
in Figure 2. 

 All cells yroid cells 
Sample Day 1 Day 2 Day 3 Day 4 Day 1 Day 2 Day 3 Day 4 
Untreated 1 96.23 97.07 97.85 98.71 96.11 96.53 97.62 98.09 
Untreated 2 96.90 96.67 97.71 98.16 96.46 96.16 97.32 97.19 
Female 1 96.44 96.91 97.63 98.64 95.95 96.46 97.05 97.83 
Female 2 96.23 97.19 97.44 98.30 95.76 96.99 96.96 97.52 
Male 1 96.06 96.38 97.66 98.46 95.65 95.72 97.06 97.61 
Male 2 96.00 96.75 97.47 98.21 95.61 96.75 97.14 97.33 

 
 

 
Figure 3. Flow cytometry plots showing the gate strategy for the selection of GFP+ and Draq7+ 
populations. e sample “Female replicate 1 Day 1” is reported here as representative. (A) Gating strategy 
for Draq7+ and GFP+ cells. (B) histogram of Draq7+ cells. (C) Histogram of GFP+ cells (includes both 
Draq7+ and Draq7- cells).  

Since we confirmed that the hormones concentrations were not cytotoxic for the mouse 
cells, we proceeded to perform the exposures with the hormones and endocrine disrupting 
chemicals (EDCs) on the human model. To this end, we treated the follicles for 3 days with the 
“female” or “male” hormones mixtures or media only. After this period, we added 10 µM 
benzo[a]pyrene (BAP) or 10 µM PCB153 for 24 hours and performed single cell (sc) RNA-Seq. 
No toxicity was observed during this experiment based on trypan blue staining. 
 

3.2 ScRNA-Seq Quality Control and Filtering 
e median number of sequenced cells was 3,471 (min = 1,865; max = 5,387), the 

libraries sizes ranged from 19.8 million bases (Mb) to 27.3 Mb (median = 22.3 Mb) and were of 
high quality, with a median 70.4% of bases having a quality score (QS) of 30 or more (i.e. a 
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probability of a sequencing error of 0.001) (min = 70.3%; max = 70.8%). e mean QS was 
between 30.65 and 30.75 (Figure 4).  

Figure 4. Single cell (sc) RNA-Seq dataset metrics. (A) Number of cells per sample. (B) Libraries sizes. (C) 
Percentage of sequenced reads with quality score >= 30. (D) Mean quality score. Each dot represents a 
sample. 

We filtered the samples based on the distribution of the number of features (i.e. genes 
per cell), read count (i.e. mapping reads per cell) and percentage of reads mapping to the 
mitochondrial genome (Figure 5A) retaining between 1,120 and 3,767 cells (Figure 5B). 

Figure 5. (A) Distribution of nFeature (i.e., number of genes with mapped reads per cell), nCount (i.e., 
mapping reads per cell) and percent.mt (i.e., percentage of reads mapping to the mitochondrial genome) of 
the scRNA-Seq samples. e red lines represent the threshold used for filtering (1,700 < nFeature < 10,000; 
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nCount > 800; percent.mt < 12.5). Each dot is one cell. (B) Number of cells per sample before and after 
filtering. 

3.3 Cluster Annotation and Expression of Thyroid Genes 
Cluster annotation identified six cell types: airway progenitor cells, embryonic stem 

cells, epithelial cells, fibroblasts, goblet cells and mature thyrocytes (Figure 6A). Mature 
thyrocytes composed between 5.9% (Female PCB153) and 11% (Male BAP) of the whole 
population (Figure 6B). 

Figure 6. Cell annotation and samples composition. (A) UMAP plot with cells colored for each annotated 
cell type. (B) Cell composition per sample expressed as percentage of the total of each annotated cell type. 

We inspected the expression of the main thyroid markers and other genes important 
for the synthesis of the thyroid hormone (DIO1, DIO2, DUOX1, DUOX2, DUOXA1, 
DUOXA2, FOXE1, HHEX, IYD, NKX2-1, PAX8, SLC5A5, SLC16A2, SLC26A7, TG, TPO) 
(Figure 7). Most genes were expressed in the “Mature yrocytes” cluster, with some genes being 
expressed exclusively in this cluster (DIO1, DIO2, SLC26A7, FOXE1, IYD, PAX8, TG, TPO), 
while others were expressed by subpopulations of other clusters as well (DIO1, DUOX2, 
DUOXA1, DUOXA2, SLC16A2, HHEX, NKX2-1). Interestingly, SLC5A5 (coding for the 
Sodium-Iodide Symporter NIS) did not seem to be expressed in our samples.  
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Figure 7. UMAP plots showing the expression of thyroid marker genes and genes important for the 
synthesis of the thyroid hormone. Each plot includes the cells from all samples. 

3.4 Expression of Sex Hormones Receptors 
Since the sex hormones we selected exert their effects when binding their receptors, we 

investigated the expression of the corresponding genes AR, ESR1, ESR2 and PGR. All these genes 
showed a very low expression across all cell types (Figure 8A-C), including the “Mature 
yrocytes” cluster (Figure 8D). e percentage of cells expressing the genes in the “Mature 
yrocytes” cluster was for 12.5% AR, 1.9% for ESR1, 20.4% for ESR2 and 0.3% for PGR 
(Figure 8E), with the expression levels and percentages of expressing cells being comparable across 
samples (Figure 8F).  

Impact of Endocrine Disrupting Chemicals and Sex Hormones on Human ESC-Derived Thyroid 
Follicles Using Single Cell Transcriptomics

217



Figure 8. Expression of sex hormones receptors AR, ESR1, ESR2 and PGR. (A) UMAP plots showing the 
expression in the samples. Each plot includes the cells from all samples. (B) Violin plot showing the level of 
expression in the “Mature yrocytes” annotated cluster divided by sample. (C) Average expression in the 
different annotated cell types. e values are calculated including all eight samples. (D) Average expression 
in the “Mature yrocytes” cluster. (E) Percent of expressing cells divided by annotated cell type. e values 
are calculated including all eight samples. (F) Percent of “Mature yrocytes” expressing cells divided by 
sample.   
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3.5 Differential Expression Analysis 
In this study, we decided to focus our analysis on the responses of thyrocytes cells, 

therefore we performed differential expression analysis on the “Mature yrocytes” cluster. We 
analyzed several pairwise comparisons, reported in Table 3, which allowed us to investigate 
different aspects of the effects caused by hormones and/or EDC treatment. e number of 
differentially expressed genes (DEGs, FDR < 0.05) was between 0 (response to PCB153 in 
presence of female hormones) and 101 (response to BAP in absence of hormones mixtures) 
(Figure 9). e complete list of genes that passed the filtering criteria for differential expression 
analysis and of DEGs is available in the Supplementary Material. 

Table 3. Pairwise comparisons included in the differential expression analysis. Since we focused on the 
thyrocytes response, we performed the analysis on the “Mature yrocytes” cluster only. e information 
we wanted to obtain from the comparison and the number of resulting differentially expressed genes 
(DEGs) are reported. (Untr = no hormones added, Ctrl = DMSO solvent control.) 

Comparison Aim Number of DEGs 
Male Ctrl vs Untr Ctrl Response to “male” hormones 30 
Female Ctrl vs Untr Ctrl Response to “female” hormones 15 

Male BAP vs Untr BAP Influence of “male” hormones on response to 
BAP 

19 

Female BAP vs Untr BAP 
Influence of “female” hormones on response to 
BAP 

25 

Untr BAP vs Untr Ctrl Response to BAP only 101 

Male BAP vs Male Ctrl Response to BAP in environment with “male” 
hormones 

66 

Female BAP vs Female Ctrl Response to BAP in environment with 
“female” hormones 

21 

Male PCB153 vs Male Ctrl 
Response to PCB153 in environment with 
“male” hormones 

6 

Female PCB153 vs Female Ctrl 
Response to PCB153 in environment with 
“female” hormones 

0 
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Figure 9. Volcano plots of the genes in each comparison reported in Table 1. e name of each comparison 
is reported on top of each plot. For every comparison, the genes that pass the criteria were included in the 
analyses. Every dot represents a gene. e False Discovery Rate (FDR) threshold of 0.05 is indicated as a 
dotted line on the y axis. Ribosomal genes are indicated in green. Genes belonging to the OXPHOS 
pathway coded by the mitochondrial genome and nuclear genome are colored in light blue and blue, 
respectively, and were retrieved from the KEGG pathway hsa00190 “Oxidative phosphorylation” (KEGG 
release 107). Genes belonging to the GO term “Lipid transport” (GO:0006869) are colored yellow and the 
gene name is reported. e other genes, which do not belong to any of the previous three categories, are 
labelled “other genes”. 

3.5.1 Effects on Thyroid Markers 
We then investigated how the level of expression of thyroid markers and other genes 

important for thyroid hormone synthesis were affected by each treatment. 
Only TG expression was affected, by BAP alone and in the context of “male” sex 

hormones (Figure 10), although it seemed to also be downregulated in with “female” hormones 
(but did not reach statistical significance) (Figure 11). 
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Figure 10. Expression of thyroid markers and genes important for the synthesis of the thyroid hormone. 
Violin plots reporting the expression levels in the “Mature yrocytes” cluster divided by sample. A 
horizontal bar with an asterisk on top of the violin indicates that the gene is differentially expressed in that 
comparison (FDR = 0.05, Wilcoxon Rank Sum test). 
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Figure 11. Average expression of thyroid markers and genes important for the synthesis of the thyroid 
hormone in the “Mature yrocytes” cluster divided by sample.  

3.5.2 Effects of Treatment with Sex Hormones 
To gain insight on the effect of the treatment of the thyrocytes with physiological 

concentrations of sex hormones, we focused on the samples exposed to hormones only (“Female 
Ctrl vs Untr Ctrl” and “Male Ctrl vs Untr Ctrl” comparisons). 

Treatment with both mixtures of sex hormones induced an upregulation of ribosomal 
genes and genes coding for elements of the oxidative phosphorylation (OXPHOS) pathway. 
Additionally, “male” sex hormones upregulated genes coding for proteins involved in lipid 
transport and metabolism (APOA1, APOC3, FABP1, FABP6) (Figure 12).  
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Figure 12. Expression of genes belonging to the GO term “Lipid transport (GO:0006869) that are 
differentially expressed in at least one of the comparisons in Table 1. (A) UMAP plots showing gene 
expression in the different cell populations. Each plot includes the cells from all samples. (B) Violin plot 
showing the level of gene expression in the various annotated cell types. (C) Violin plot showing the level 
of gene expression in the mature thyrocytes subpopulation. A horizontal bar with an asterisk on top of the 
violin indicates that the gene is differentially expressed in that comparison (FDR = 0.05, Wilcoxon Rank 
Sum test). 
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 Enrichment analysis of DEGs on Gene Ontology Biological Process (GO BP) showed 
enrichment (q-value < 0.01) for 21 terms, related to the three ontologies of OXPHOS, ribosome 
assembly and translation and lipid transport (Figure 13A-B). Interestingly, OXPHOS and 
ribosome assembly and translation were also enriched in response to “female” hormones (Figure 
13C-D).  

Overall, treatment with mixtures of sex hormones upregulated the expression of 
ribosomal genes and genes involved in the OXPHOS pathway. Additionally, the “male” sex 
hormones mixture upregulated genes involved in lipid transport. 

Figure 13. Results of Gene Ontology enrichment analysis. (A, C) Emap plots and (B, D) heatplots of the 
results of the Gene Ontology – Biological Process (GO BP) enrichment analysis (q-value < 0.01) on the 
differentially expressed genes (DEGs) in the (A, B) “Male Ctrl vs Untr Ctrl” and (C, D) “Female Ctrl vs 
Untr Ctrl” comparisons. For emap plots, the labels are GO BP terms, the size of each circle is proportional 
to the number of DEGs that belong to the GO BP term and a darker color corresponds to a lower q-value. 
e heatplots report the same pathways as the emap plots but display the DEGs involved and their fold 
change with respect to the control. 

3.5.3 Effects on AHR Target Genes 
As BAP is an agonist of the aryl hydrocarbon receptor (AHR), we investigated whether 

the presence of sex hormones would affect the expression of AHR target genes in response to 
BAP.  
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In the mature thyrocytes population, AHR and AHRR showed a low expression 
compared to the other annotated cell types (Figure 14A), with a mean 37.8% and 19.3% of 
mature thyrocytes expressing AHR and AHRR, respectively (Figure 14B). CYP1A1 and CYP1B1 
were expressed by only a thyrocytes subpopulation and were clearly induced by BAP treatment, 
while TIPARP, NQO1 and ALDH3A2 had a more homogeneous expression. ALDH3A1, 
ALDH3B1, ALDH3B2 and CYP1A2 were expressed by very few mature thyrocytes. 

Figure 14. Expression of AHR and some of the genes induced by AHR activation upon BAP binding. (A) 
UMAP plots showing the expression in the different cell populations. Each plot includes the cells from all 
samples. e cell type annotation is also reported for easier interpretation. (B) Percent of mature thyrocytes 
per sample expressing the genes. e threshold of 10% of minimum fraction of expressing cells used for 
differential expression analysis is reported as a dotted line. (C) Barplot of average log2(fold change) of 
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CYP1A1, CYP1B1 and NQO1 in the “Untr BAP vs Untr Ctrl”, “Male BAP vs Male Ctrl” and “Female BAP 
vs Female Ctrl” conditions in the mature thyrocytes population.  

CYP1B1 and NQO1 were upregulated by BAP in presence or absence of sex hormones 
(Figure 15). e level of induction was higher in the “female” sex hormones condition compared 
to the “male” sex hormones or BAP only conditions. CYP1A1 differential expression passed the 
set filters only in the presence of “female” or “male” sex hormones, and the level of induction was 
stronger in the presence of “female” hormones (Figure 14C, Figure 15). CYP1A2 appeared 
induced but was excluded by the filters applied to the differential expression analysis. We did not 
detect any GST among the DEGs.  

Figure 15. Violin plot showing the level of expression of AHR and some of the genes induced by AHR 
activation upon BAP binding in the “Mature yrocytes” annotated cluster divided by sample. A horizontal 
bar with an asterisk on top of the violin indicates that the gene is differentially expressed in that comparison 
(FDR = 0.05, Wilcoxon Rank Sum test). 

Chapter 5

226



3.5.4 Other Effects of BAP Treatment 
3.5.4.1 Effects of BAP Alone 

To understand the effects of thyrocytes to BAP treatment, we focused on the response 
of the sample treated with BAP only (“Untr BAP vs Untr Ctrl” comparison).  

In total, we identified 101 DEGs (43 downregulated, 58 upregulated). Similar to our 
analysis on the sex hormones effect, we observed an upregulation of ribosomal and OXPHOS 
genes, as well as the upregulation of genes involved in lipid transport and metabolism (APOC3, 
FABP1, FABP2, FABP6) (Figure 12C). TTR was also upregulated. To gain further insight into 
the response to BAP treatment, we performed GO BP enrichment analysis. As expected, we 
observed enrichment for terms relating to oxidative phosphorylation, ribosomal assembly and 
translation, but also for the term “Signal transduction by p53 class mediator” (GO:0072331) 
(Figure 16A). e DEGs involved in this pathway were CDKN1A, MDM2, RPL37, RPS27L and 
SOX4 (upregulated), FHIT, PRKN and WWOX (downregulated). Additionally, we observed 
dysregulation of genes involved in the response to oxidative stress: NFE2L2 and ROMO1 
(upregulated) and MSRA (downregulated). 

GO BP enrichment analysis of only the upregulated genes showed enrichment for terms 
related to oxidative phosphorylation, ribosomal assembly and translation, DNA damage response 
and signaling at the G1 cell cycle phase and response to reactive oxygen species (ROS) (Figure 
16B). GO BP analysis for only the downregulated genes did not result in any enrichment.  
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Figure 16. Results of Gene Ontology enrichment analysis. (A) Heatplot of the results of the enrichment 
analysis for the Gene Ontology – Biological Pathway (GO – BP) database in the “Untr BAP vs Untr Ctrl” 
comparison (q-value < 0.01). (B) Emap plot of the results of the enrichment analysis for the GO – BP 
database on the upregulated DEGs in the “Untr BAP vs Untr Ctrl” comparison (q-value < 0.01).  

3.5.4.2 Influence of Sex Hormones Treatment to BAP Response 

We then investigated how the treatment with sex hormones affected the response to 
BAP (“Male BAP vs Untr BAP” and “Female BAP vs Untr BAP” comparisons).  

In both comparisons, we observed a downregulation of ribosomal and OXPHOS genes 
compared to the sample treated with BAP only (Figure 9). Interestingly, the response to BAP in 
a “male” sex hormones environment upregulated genes with a positive role in inflammation 
(SA100A9, SA100A8, SAA1 and SLPI), while the presence of “female” sex hormones 
dysregulated genes involved in transcription (POL2RL) and translation (NACA, SEC62). Of 
note, the percentage of reads mapping to ribosomal genes did not differ among samples (Kruskal-
Wallis test with Dunn post-hoc test) (Figure 17, Table 4). 
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Figure 17. Violin plot showing the distribution of the percentage of reads per cell mapping to ribosomal 
genes in the “Mature yrocytes” population across the samples. e median per sample is reported as a 
bar. 

Table 4. Fraction of reads mapping to ribosomal genes per cell in the “Mature yrocytes” population 
across samples. e minimum, median and maximum values are reported. 

Sample Min Median Max 
Untr Ctrl 0.22 7.33 16.42 
Untr BAP 0.38 7.57 22.78 
Male PCB153 0.43 7.37 33.92 
Male Ctrl 0.52 8.02 17.59 
Male BAP 0.68 7.52 21.15 
Female PCB153 0.19 7.47 19.00 
Female Ctrl 0.25 7.84 22.02 
Female BAP 0.46 8.31 16.45 

3.5.4.3 Differences in Response to BAP in Presence or Absence of Sex 
Hormones 

To see how the presence of sex hormones in the media would affect the response to 
BAP, we focused on the differences in response to BAP in presence or absence of sex hormones 
(comparisons “Male BAP vs Male Ctrl”, “Female BAP vs Female Ctrl” and “Untr BAP vs Untr 
Ctrl”). 

In samples treated with both sex hormones and BAP we did not observe the 
upregulation of ribosomal and OXPHOS genes that we had in the sample treated with BAP 
alone (Figure 9). 
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We observed 31 and 5 unique DEGs in the samples treated with BAP in presence of 
“male” or “female” hormones, respectively (Figure 18A). GO BP analysis on the 31 unique DEGs 
for the sample treated with “male” hormones showed enrichment for terms related to the 
regulation of inflammation, mostly involving the upregulated genes NFKB1, NFKBIA, S100A9 
and SAA1 (Figure 18B), which are NFkB target genes. Additionally, other upregulated DEGs 
that are also NFkB targets were CXCL2, CXCL3, IER2, IER3, IL1R1, IL32, MAPK6 and 
NFKBIZ. e GO BP analysis on the genes dysregulated by BAP + “female” hormones did not 
show any enrichment. 

In summary, treatment with BAP alone affected the expression of pro- and anti-
apoptotic genes, genes involved in cell cycle regulation and response to ROS, as expected being 
BAP a carcinogenic compound. Addition of sex hormones to BAP treatment decreased the 
expression of some ribosomal and OXPHOS genes compared to BAP alone, increased the 
expression of inflammation genes (“male” hormones) or genes involved in 
transcription/translation (“female” hormones). 
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A B 

Figure 18. Comparison of differentially expressed genes (DEGs) in samples treated with BAP compared to 
the control in presence or absence of sex hormones. (A) Venn diagram showing the DEGs overlap among 
the conditions “Male BAP vs Male Ctrl”, “Female BAP vs Female Ctrl” and “Untr BAP vs Untr Ctrl”. e 
total number of DEGs is reported in parenthesis below the comparison name. (B) Gene Ontology – 
Biological Pathway analysis on the 31 unique DEGs in the “Male BAP vs Male Ctrl” comparison. 

3.5.5 Effects of PCB153 Treatment 
Treatment with “female” hormones and PCB153 did not result in any gene being 

differentially expressed, while treatment with “male” hormones and PCB153 yielded 6 DEGs 
(downregulated: AFP, APOA1, APOA4, TTR, S100A9; upregulated: BAX).  
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4. Discussion
To investigate whether different hormonal environments can change the response to 

endocrine disrupting chemicals (EDCs) in the thyroid, we exposed human embryonic stem cell 
(hESC)-derived thyroid follicles to benzo[a]pyrene (BAP) or the polychlorinated biphenyl 
PCB153 in presence of a sex hormones mixture of estrogen (E2), dihydrotestosterone (DHT) 
and progesterone (PG) that would resemble that of the human females and males of reproductive 
age. Since the levels of sex hormones in the female fluctuate with the menstrual cycle, we selected 
the concentrations observed during the luteal phase (between ovulation and menstruation) (26). 
We treated the follicles for 3 days with hormones only to “condition” our cells to the new 
hormonal environment, and then also to the selected EDCs for 24 hours. We then analyzed the 
changes in transcriptome with single cell RNA sequencing (scRNA-Seq) to focus on the response 
of the thyroid population, since, due to the ESC-derived nature of our model, other cell types 
are also present and have not been characterized (16), we did not focus on them for this analysis. 

e expression of the sex hormones receptors AR, ESR1, ESR2 and PGR in the mature 
thyrocytes population were very low. It must be noted that we did not measure the level of protein 
expression, and the levels of transcript and protein do not always correlate (27). According to the 
Human Protein Atlas consensus dataset, all these receptors are expressed in the thyroid, albeit at 
low levels (28). Survey of the literature on the estrogen receptors (ERs) expression in the thyroid 
shows conflicting results. Several reports exist of positive ERs expression in the thyroid (29, 30). 
Other works showed a higher expression of ESR1 than ESR2 (31) or only expression of ESR2 or 
its protein product ER-beta (32, 33). e discrepancies could arise from methodological 
differences, such as different tissue preparations, antibodies used for immunohistochemistry or 
criteria for data evaluation (34). AR (35, 36) and PGR (30, 37-39) gene and protein expression 
in the normal human thyroid has also been described. 

When we treated the follicles with sex hormones only or with BAP, we observed an 
increase in expression of ribosomal genes and gene coding for elements of the mitochondrial 
respiratory chain. is could indicate an increase in the overall requirement for cellular energy 
demand and rate of transcription or a compensatory mechanism due to compromised 
mitochondrial functioning (40). e combination of BAP and sex hormones instead 
downregulated the expression of these genes compared to BAP alone.  

We also observed that the treatment with BAP and/or “male” sex hormones upregulated 
some genes whose products are involved in lipid transport and metabolism. ese genes were 
APOA1 and APOA4 (upregulated by “male” hormones and by BAP in presence of “male” 
hormones), APOC3, FABP1 and FABP6 (upregulated by “male” hormones or BAP) and FABP2 
(upregulated by BAP). It must be noted that the highest expression of these genes was observed 
in a subpopulation of epithelial cells. APOA1 and APOC3 are components of chylomicrons, 
High Density Lipoproteins and Very Low Density Lipoproteins (APOC3 only), APOA4 of 
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chylomicrons, and are reported to be expressed in the liver and small intestine (41, 42) and play 
a role in cholesterol and fatty acid transport. FABP1 is expressed at high levels in the liver, while 
FABP2 and FABP6 in the small intestine. FABP1 transports long-chain fatty acids (LCFA) linked 
to beta-oxidation and can interact with PPAR-alpha nuclear receptors. FABP2 seems to be 
involved in LCFA partitioning into triglycerides (rather than phospholipids). FABP6 has a role 
in chylomicron biogenesis (43). We identified these genes as being part of the Gene Ontology 
(GO) term “Lipid transport”, which comprises 349 proteins at the date of our analysis. It is 
interesting how the expression of this specific group of genes consistently experiences alterations, 
especially given that no single control was employed in the comparative analyses where we 
detected differential gene expression, thereby eliminating the potential for sample bias. To our 
knowledge, the dysregulation of this set of genes by sex hormones and/or BAP in an in vitro 
thyroid model has not been described before.  

Interestingly, in the samples treated with male hormones only and with PCB153 and 
male hormones compared to their control (comparisons “Male Ctrl vs Untr Ctrl” and “Male 
PCB153 vs Male Ctrl”), we observed a concomitant upregulation and downregulation of TTR 
and APOA1, respectively (TTR was also upregulated in the sample treated only with BAP 
compared to control but APOA1 was not). TTR has been described to associate with APOA1 in 
the plasma and is thus present within circulating High Density Lipoproteins. Both are 
amyloidogenic proteins and their function is connected: TTR is a non-canonical protease able 
to cleave APOA1 and increase its amyloidogenicity in vitro (44). Elevated ROS and oxidative 
modifications can lead to TTR aggregation and amyloid formation (45). Indeed, TTR can cause 
senile systemic amyloidosis (46). On the other hand, both APOA1 and TTR can have anti-
inflammatory and antioxidant properties (45). While overexpression of both genes is observed in 
malignancies of the thyroid and other organs, it may be a consequence of cell dysregulation 
caused by the tumor microenvironment (47). us, TTR and APOA1 proteins can interact, and 
it has been described in the brain, serum and amyloid plaques, but not within the thyroid.  

BAP is a known agonist of the aryl hydrocarbon receptor (AHR), a transcription factor 
mostly located in the cytosol in its inactivated state. Upon ligand binding, it moves into the 
nucleus and dimerizes with its binding partner the AHR nuclear translocator (ARNT) (48). In 
the nucleus, the complex activates the expression of genes with xenobiotic metabolizing activity 
such as the aldehyde dehydrogenase 3 family (ALDH3), cytochrome P450 members CYP1A1, 
CYP1A2 and CYP1B1, glutathione-S-transferases (GSTs) and the NAD(P)H quinone 
dehydrogenase 1 (NQO1) (49). Activated AHR also induces the expression of its repressor, the 
aryl hydrocarbon receptor repressor (AHRR) (48) and the TCDD inducible poly (ADP-ribose) 
polymerase (TIPARP) (50). Among all treatments tested in this study (EDCs or sex hormones), 
BAP showed the highest level of DEGs. CYP1A1 and CYP1B1 are the main BAP metabolizers. 
Irrespective of the presence of sex hormones, we observed a strong induction of both CYP1B1 
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and CYP1A1 (although in the response to BAP only, the level of CYP1A1 induction did not 
reach a high enough fold change to pass the threshold in the mature thyrocytes population). 
Additionally, we observed a stronger induction when “female” sex hormones were added, and 
this was true also for NQO1, the other consistent BAP-induced DEG we observed in our dataset. 
DHT has been shown to facilitate the formation of an AHR-AR complex and repress CYP1B1 
induction by AHR agonists (51, 52). On the opposite side, there is evidence for E2 ability to 
induce CYP1B1 induction via ER-alpha activation (53). Angus et al (1999), showed how 
CYP1B1 is expressed at basal levels and can be induced by AHR agonists, while CYP1A1 can be 
detected only with treatment. is induction is strongly correlated with ER status (ER- or ER+) 
and does not depend on AHR levels (54). Oppositely, Spink et al (2003) showed how E2 
treatment of the breast cancer MCF-7 cell line decreased the expression of CYP1A1 and increased 
that of CYP1B1 (55). BAP metabolites are the compounds with biological activity: they induce 
oxidative stress and form DNA adducts that cause DNA damage and trigger apoptosis (56). In 
both the sample treated with BAP only (comparison “Untr BAP vs Untr Ctrl”) and with BAP + 
“male” hormones (comparison “Male BAP vs Male Ctrl”) we saw upregulation of genes involved 
in cell cycle arrest (CDKN1A upregulation) and indirect cell cycle promotion (MDM2 
upregulation in Untr BAP), downregulation of mitophagy (PRKN, the main positive regulator) 
and pro- (BAX upregulation in Male BAP) and anti-apoptotic signals (FHIT and WWOX 
downregulation). CDKN1A expression is transcriptionally induced by activated p53 in response 
to stress stimuli such as DNA damage (57), while MDM2 is a negative regulator of p53 and is 
induced upon p53 activation in a negative feedback loop to restore homeostasis (58). e 
activation of p53 leads to growth arrest and apoptosis (58). Additionally, genes involved in 
response to oxidative stress were dysregulated in the samples treated with BAP only (NFE2L2, 
MSRA, ROMO1) or with the addition of “male” hormones (NFE2L2). NFE2L2 and SOX4 and 
are two transcription factors both upregulated by treatment with BAP alone and previously 
described to be induced by treatment with the BAP metabolite benzo[a]pyrene diol epoxide 
(BPDE) (59). e absence of a clear induction or suppression of apoptosis at the transcriptomic 
level could be due to the reduced time of exposure (24 hours). Indeed, stress signals in a cell can 
trigger several different response mechanisms, and their integration ultimately tips the balance 
between cell survival or death. 

Treatment with BAP in presence of “male” sex hormones (“Male BAP vs Male Ctrl”) 
upregulated some NFkB target genes with a positive role in inflammation (CXCL2, CXCL3, 
IER2, IER3, IL1R1, IL32, MAPK6, NFKB1, NFKBIA, NFKBIZ, S100A9, SAA1) (60, 61). When 
analyzing how “male” hormones influence the response to BAP (“Male BAP vs Untr BAP”) was 
also saw an upregulation of genes involved in inflammation, although fewer (S100A8, S100A9, 
SAA1, SLPI), showing how BAP had a stronger effect on the cells than hormones alone. 
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PCBs have been described as having weak estrogenic activity (potency of 0.000001 
times that of E2) (62, 63). In line with this we observed very weak effects with PCB153 treatment 
in the context of “male” sex hormones, while we did not observe any effect in presence of “female” 
sex hormones. PCB153 is a di-ortho-substituted congener with 6 chlorine substitutions and is 
non-planar. As such, it is not considered a AHR agonist. Increase in serum T4 levels and 
reduction in size of the thyroid follicles were observed following low doses of PCB153 in rats 
(64, 65). Additionally, estrogenic activity of PCB153 is mediated by its metabolites, generated 
by the activity of CYP2B6 in human (which is the only functional member of the human 
CYP450 family 2 subfamily B) (64). However, CYP2B6 was expressed at very low levels in our 
samples, and we did not observe any changes after treatment (Figure 19). It is possible that the 
doses or the time of exposure we selected were not sufficient to observe significant changes in the 
thyrocytes population, and/or that PCB153 is not metabolized sufficiently in our in vitro model. 

 

 
Figure 19. Average expression of CYP1 and CYP2B families in the “Mature yrocytes” cluster divided by 
sample. 

To our knowledge, the effect on thyroid organoids of hormones mixtures resembling 
the physiological concentrations in human males and females has not been analyzed before. 
Bertoni et al. (2015) studied the effects on primary normal human thyrocytes of 10 nM PG and 
observed an upregulation of NIS, TG and KI-67 (a marker of cell growth) (37). Santin and 
Furlanetto (2012) reviewed studies focusing on E2 effects on in vitro thyroid models, showing 
how there is evidence to support the hypothesis that E2 stimulates thyroid cells proliferation and 
function (66). is perspective adds an interesting dimension to our observation that genes 
associated with apoptosis did not exhibit upregulation and cell cycle arrest when combining 
“female” sex hormones and BAP. 

In this work, we made use of single cell transcriptomics to specifically focus on the 
subpopulation of interest, overcoming the limitations encountered by bulk sample analysis. 

Impact of Endocrine Disrupting Chemicals and Sex Hormones on Human ESC-Derived Thyroid 
Follicles Using Single Cell Transcriptomics

235



Indeed, leveraging the level of resolution provided by scRNA-Seq provides the unique possibility 
of investigating the effects of endocrine disruption in a heterogeneous cell population such as 
organoids or tissues.  

In conclusion, we described how different hormonal contexts affect the thyrocytes 
response to EDCs using thyroid organoids by analyzing the transcriptome changes via scRNA-
Seq. We provide an example of how advanced in vitro and genomic technologies can be used to 
investigate toxicological responses to EDCs to reduce in vivo animal testing.  
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5. Supplementary Material 
Supplementary table 1. List of differentially expressed genes. e two terms for the comparison are 
reported above the gene names. “pct.1” and “pct.2” refer to the percentage of cells expressing the gene in 
the first and second term of the comparison, respectively. 

Male Ctrl vs Untr Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 
MT-ND3 1.64E-23 0.669994 0.986 0.979 6.02E-19 
FABP1 1.24E-22 0.610211 0.923 0.726 4.54E-18 
RPS27 6.60E-21 0.502146 0.977 0.962 2.41E-16 
TTR 2.37E-20 0.487502 0.815 0.506 8.66E-16 
RPL39 1.85E-19 0.459062 0.968 0.958 6.76E-15 
NDUFB1 3.62E-15 0.476527 0.941 0.907 1.33E-10 
RPL37 3.68E-15 0.385228 0.968 0.97 1.35E-10 
RPS28 4.36E-15 0.395923 0.977 0.966 1.59E-10 
RPL37A 7.03E-15 0.356004 0.973 0.975 2.57E-10 
ATP5F1E 2.80E-14 0.370022 0.977 0.937 1.03E-09 
RPS29 8.25E-14 0.412182 0.977 0.937 3.02E-09 
RPL38 7.17E-13 0.33256 0.968 0.945 2.62E-08 
ATP5ME 1.89E-12 0.384656 0.955 0.903 6.92E-08 
APOC3 8.56E-12 0.310157 0.739 0.468 3.13E-07 
ATP5MD 1.46E-11 0.350896 0.968 0.932 5.33E-07 
APOA1 1.85E-11 0.435084 0.959 0.802 6.78E-07 
ATP5MPL 8.27E-11 0.29077 0.973 0.945 3.03E-06 
PHGR1 2.26E-10 0.300471 0.635 0.409 8.29E-06 
RPS21 5.01E-10 0.349522 0.973 0.958 1.83E-05 
FABP6 8.00E-10 0.25826 0.59 0.346 2.93E-05 
MT-ND4L 1.20E-09 0.378077 0.91 0.84 4.41E-05 
RPL34 2.01E-09 0.327149 0.986 0.954 7.34E-05 
COX7C 5.65E-09 0.28995 0.977 0.954 0.000207 
SLIRP 1.74E-08 0.295484 0.932 0.861 0.000636 
RPL21 1.51E-07 0.251509 0.995 0.949 0.005509 
NFKBIA 1.87E-07 -0.36876 0.865 0.916 0.006828 
COX6C 1.97E-07 0.315265 0.968 0.945 0.0072 
NDUFA1 2.66E-07 0.253355 0.932 0.861 0.009739 
RPS15A 3.93E-07 0.262184 0.968 0.958 0.014376 
RPS10 8.88E-07 -0.25933 0.955 0.937 0.032501 

 
Female Ctrl vs Untr Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 

RPS28 3.76E-12 0.492423 0.964 0.966 1.38E-07 
ATP5ME 1.83E-11 0.520281 0.938 0.903 6.7E-07 
RPS27 1.91E-10 0.505271 0.946 0.962 6.98E-06 
COX7C 8.60E-10 0.434656 0.964 0.954 3.15E-05 
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Female Ctrl vs Untr Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 
RPL37 1.30E-09 0.427818 0.964 0.97 4.76E-05 
MT-ND3 1.30E-09 0.524482 0.964 0.979 4.76E-05 
ATP5F1E 4.93E-09 0.378813 0.964 0.937 0.00018 
RPL37A 5.78E-09 0.31636 0.964 0.975 0.000212 
RPL39 1.06E-08 0.421201 0.982 0.958 0.000388 
NDUFB1 1.28E-08 0.449788 0.938 0.907 0.00047 
RPL41 9.01E-08 0.327672 0.982 0.954 0.003296 
RPS29 1.66E-07 0.376677 0.955 0.937 0.006067 
RPL38 2.03E-07 0.288763 0.955 0.945 0.007434 
ATP5MD 2.95E-07 0.372947 0.946 0.932 0.010783 
ATP5MPL 1.19E-06 0.281638 0.955 0.945 0.043449 

 
Male BAP vs Untr BAP p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 

RPS29 4.11E-22 -0.533634952 0.961 0.969 1.50474E-17 
RPL38 1.05E-20 -0.461118654 0.937 0.969 3.83445E-16 
S100A9 4.73E-20 0.989374933 0.615 0.274 1.73089E-15 
RPS27 1.87E-19 -0.487194309 0.964 0.982 6.83532E-15 
APOA4 3.71E-18 0.263664201 0.874 0.744 1.35849E-13 
ATP5ME 6.84E-14 -0.382603689 0.91 0.937 2.5018E-09 
RPL37A 5.27E-13 -0.336657499 0.978 0.973 1.92809E-08 
SAA1 1.13E-11 1.123619873 0.472 0.233 4.13796E-07 
S100A8 7.13E-11 0.429091718 0.305 0.081 2.60977E-06 
RPL37 1.49E-10 -0.324024683 0.985 0.973 5.45474E-06 
ROMO1 2.45E-10 -0.293954387 0.855 0.919 8.98081E-06 
NDUFA3 2.56E-09 -0.279210849 0.86 0.933 9.36437E-05 
SLPI 2.71E-09 0.965617271 0.436 0.224 9.91403E-05 
RPS28 2.82E-09 -0.321522501 0.983 0.964 0.000103259 
NDUFB1 3.40E-09 -0.327853581 0.898 0.928 0.000124389 
MT-ND3 4.76E-08 -0.389043663 0.99 0.982 0.001740673 
RPL41 1.30E-07 -0.25140408 0.993 0.991 0.00475818 
RPS21 2.17E-07 -0.311376416 0.959 0.964 0.00794786 
POLR2L 1.09E-06 -0.260455596 0.937 0.955 0.039742053 

 
Female BAP vs Untr BAP p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 

MT-ND3 4.52E-20 -0.98511908 0.953 0.982 1.65527E-15 
ATP5ME 4.23E-18 -0.566374469 0.859 0.937 1.54643E-13 
RPS29 4.79E-17 -0.604602422 0.946 0.969 1.75319E-12 
RPS27 3.16E-16 -0.568783678 0.98 0.982 1.15578E-11 
RPL38 5.73E-15 -0.505110836 0.906 0.969 2.09904E-10 
RPL37A 7.11E-15 -0.505543259 0.953 0.973 2.60166E-10 
PET100 1.26E-12 -0.439338894 0.658 0.892 4.59567E-08 
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Female BAP vs Untr BAP p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 
NDUFB1 5.21E-12 -0.474410919 0.826 0.928 1.90627E-07 
ROMO1 3.03E-11 -0.388175752 0.832 0.919 1.10909E-06 
TOMM7 4.10E-10 -0.314280548 0.819 0.942 1.49987E-05 
ATP5F1E 1.71E-09 -0.315202966 0.94 0.973 6.25888E-05 
RPL39 9.11E-09 -0.324872663 0.966 0.973 0.000333323 
NDUFA3 1.68E-08 -0.318087868 0.792 0.933 0.000614781 
RPL7A 2.17E-08 0.336163737 0.973 0.973 0.000796032 
POLR2L 2.81E-08 -0.345787469 0.913 0.955 0.001028855 
MT-ATP8 4.66E-08 -0.294362415 0.705 0.906 0.001704569 
RPL37 5.90E-08 -0.371169194 0.98 0.973 0.002159258 
RPL29 1.00E-07 0.338091103 0.98 0.973 0.003667142 
SLIRP 1.19E-07 -0.290121324 0.765 0.928 0.004361239 
RPL18 1.49E-07 0.350778768 0.966 0.969 0.005444352 
RPS4X 3.03E-07 0.338933922 0.987 0.987 0.011084103 
COX7C 3.23E-07 -0.306671787 0.94 0.96 0.011812816 
SEC62 3.68E-07 -0.328378238 0.893 0.964 0.0134585 
NACA 1.12E-06 0.309650489 0.98 0.973 0.041091516 
RPL10 1.20E-06 0.379854442 0.987 0.987 0.043841858 

 
Untr BAP vs Untr Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 

RPS27 8.06E-38 0.860539 0.982 0.962 2.95E-33 
ATP5ME 4.35E-35 0.772068 0.937 0.903 1.59E-30 
RPS29 1.21E-34 0.810621 0.969 0.937 4.41E-30 
RPL37A 2.98E-32 0.66002 0.973 0.975 1.09E-27 
PHGR1 3.82E-32 0.589605 0.852 0.409 1.4E-27 
RPL38 3.77E-31 0.657633 0.969 0.945 1.38E-26 
RPL39 1.49E-29 0.689405 0.973 0.958 5.46E-25 
RPS28 3.34E-28 0.710028 0.964 0.966 1.22E-23 
WWOX 2.24E-27 -1.0512 0.767 0.949 8.22E-23 
RPL37 3.33E-26 0.656644 0.973 0.97 1.22E-21 
MT-ND3 8.93E-26 0.962429 0.982 0.979 3.27E-21 
NDUFB1 3.53E-25 0.684443 0.928 0.907 1.29E-20 
ATP5F1E 7.29E-22 0.521584 0.973 0.937 2.67E-17 
CYP1B1 2.12E-21 0.76213 0.439 0.068 7.77E-17 
FHIT 3.58E-20 -0.89553 0.812 0.966 1.31E-15 
RPL34 5.24E-19 0.54049 0.978 0.954 1.92E-14 
RPS21 5.42E-19 0.630514 0.964 0.958 1.98E-14 
TTR 5.53E-19 0.53872 0.825 0.506 2.02E-14 
FABP1 5.85E-19 0.4831 0.924 0.726 2.14E-14 
NDUFA3 2.31E-17 0.457424 0.933 0.848 8.44E-13 
POLR2L 4.15E-17 0.50971 0.955 0.924 1.52E-12 
PRKN 5.97E-17 -0.71219 0.543 0.827 2.19E-12 
ROMO1 6.62E-17 0.445084 0.919 0.903 2.42E-12 
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Untr BAP vs Untr Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 
ATP5MD 7.89E-17 0.483169 0.942 0.932 2.89E-12 
MACROD2 1.18E-16 -0.74213 0.587 0.84 4.32E-12 
APOC3 5.75E-16 0.445396 0.803 0.468 2.11E-11 
RPL41 1.53E-15 0.43384 0.991 0.954 5.59E-11 
PET100 2.42E-15 0.418014 0.892 0.764 8.87E-11 
MT-ND4L 1.73E-14 0.574989 0.933 0.84 6.32E-10 
RPL36 2.37E-14 0.564855 0.987 0.962 8.66E-10 
COX7C 2.25E-13 0.403785 0.96 0.954 8.23E-09 
AF305872.2 5.54E-13 -0.73971 0.717 0.848 2.03E-08 
C16orf74 1.86E-12 0.548763 0.717 0.494 6.8E-08 
RPL36A 2.22E-12 0.478881 0.96 0.941 8.13E-08 
LRMDA 3.58E-12 -0.49144 0.646 0.844 1.31E-07 
SEC62 5.93E-12 0.391158 0.964 0.958 2.17E-07 
FABP2 6.33E-12 0.264666 0.525 0.232 2.32E-07 
UQCR11 1.09E-11 0.376804 0.937 0.958 3.98E-07 
MGLL 2.17E-11 0.593615 0.753 0.608 7.93E-07 
BBS9 2.68E-11 -0.51223 0.726 0.89 9.82E-07 
FABP6 4.30E-11 0.28578 0.628 0.346 1.57E-06 
SLIRP 6.34E-11 0.311663 0.928 0.861 2.32E-06 
RPS26 7.51E-11 0.386076 0.955 0.966 2.75E-06 
NDUFA1 9.49E-11 0.312359 0.906 0.861 3.48E-06 
AC034195.1 2.03E-10 -0.47549 0.332 0.612 7.44E-06 
C4orf48 2.18E-10 0.4061 0.933 0.886 8E-06 
DAB1 2.53E-10 -0.35484 0.184 0.426 9.27E-06 
TOMM7 2.75E-10 0.300894 0.942 0.911 1.01E-05 
EXOC4 3.35E-10 -0.35506 0.91 0.992 1.23E-05 
ATP5MPL 3.54E-10 0.299053 0.924 0.945 1.29E-05 
UBL5 6.12E-10 0.300187 0.937 0.932 2.24E-05 
CCSER1 8.11E-10 -0.66454 0.713 0.865 2.97E-05 
AL049828.1 8.34E-10 -0.44814 0.453 0.684 3.05E-05 
CDKN1A 2.62E-09 0.642884 0.691 0.485 9.6E-05 
MSRA 3.44E-09 -0.2898 0.413 0.633 0.000126 
LGALS3 3.62E-09 0.43309 0.749 0.549 0.000132 
GMDS 4.74E-09 -0.48894 0.7 0.878 0.000173 
TMEM258 5.81E-09 0.289449 0.933 0.928 0.000213 
TG 6.29E-09 -0.6372 0.973 1 0.00023 
SLA 7.68E-09 -0.66324 0.843 0.949 0.000281 
NFE2L2 1.08E-08 0.314589 0.973 0.954 0.000397 
MRPL33 1.32E-08 0.284951 0.879 0.814 0.000482 
ESRRG 1.38E-08 -0.41729 0.628 0.84 0.000506 
SND1 1.56E-08 -0.2846 0.83 0.92 0.000571 
MDM2 1.78E-08 0.676426 0.776 0.629 0.000652 
UQCRQ 1.80E-08 0.306243 0.919 0.924 0.000658 
RPS27L 2.01E-08 0.526241 0.924 0.92 0.000735 
SOX4 2.10E-08 0.566261 0.906 0.865 0.00077 
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Untr BAP vs Untr Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 
COPS9 2.40E-08 0.282449 0.919 0.899 0.00088 
CNTN5 3.20E-08 -0.6618 0.583 0.785 0.001172 
WDPCP 3.45E-08 -0.41921 0.623 0.789 0.001264 
AC021231.1 4.40E-08 -0.26769 0.265 0.481 0.00161 
SON 5.83E-08 0.25125 0.973 0.949 0.002133 
BCAS3 6.23E-08 -0.39561 0.888 0.945 0.00228 
ITGB1 6.80E-08 0.270239 0.964 0.949 0.002489 
FARS2 7.08E-08 -0.27958 0.789 0.878 0.002593 
ULK4 8.77E-08 -0.27686 0.601 0.806 0.00321 
CALR 1.21E-07 -0.41595 0.964 0.954 0.004417 
HSPA5 1.25E-07 -0.48833 0.973 0.958 0.004574 
MT-CYB 1.32E-07 -0.34779 0.996 0.983 0.004829 
SMYD3 1.52E-07 -0.42123 0.906 0.962 0.005551 
TRAPPC9 1.54E-07 -0.38546 0.883 0.966 0.005636 
GDF15 2.01E-07 0.865122 0.287 0.105 0.007362 
LINC01473 2.02E-07 -0.29958 0.735 0.895 0.007389 
TCERG1L 2.28E-07 -0.46082 0.489 0.692 0.008338 
ZRANB2-AS2 2.48E-07 -0.27229 0.359 0.586 0.00907 
SNHG6 3.07E-07 0.256556 0.87 0.831 0.011233 
SCFD2 3.12E-07 -0.3218 0.493 0.688 0.011409 
RBFOX1 3.46E-07 -0.53115 0.184 0.384 0.012671 
SORCS1 3.69E-07 -0.45736 0.57 0.759 0.013511 
DIAPH2 3.72E-07 -0.32183 0.785 0.903 0.013622 
NPAS3 3.72E-07 -0.51003 0.408 0.595 0.013626 
ERC2 3.76E-07 -0.33945 0.444 0.65 0.01378 
UQCRB 3.92E-07 0.25208 0.964 0.932 0.014335 
SNX29 3.99E-07 -0.26351 0.717 0.844 0.014592 
NQO1 4.17E-07 0.556589 0.735 0.633 0.01525 
SYNE2 5.51E-07 -0.3418 0.874 0.924 0.020157 
VTI1A 8.15E-07 -0.29586 0.883 0.92 0.029828 
RAD51B 9.19E-07 -0.47729 0.516 0.705 0.033654 
COX17 1.07E-06 0.298368 0.87 0.806 0.039171 
CDKAL1 1.11E-06 -0.39453 0.892 0.945 0.040628 

 
Male BAP vs Male Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 

S100A9 8.25E-31 0.580759728 0.615 0.131 3.01931E-26 
WWOX 5.22E-25 -0.848719074 0.758 0.955 1.91097E-20 
FHIT 2.73E-21 -0.71769047 0.789 0.946 1.00018E-16 
PRKN 1.91E-19 -0.576626491 0.506 0.806 6.97813E-15 
CYP1B1 8.55E-19 0.808189661 0.458 0.126 3.12768E-14 
MACROD2 3.39E-17 -0.702933638 0.562 0.797 1.24202E-12 
MGLL 2.52E-16 0.651592378 0.755 0.581 9.21041E-12 
NFKBIA 1.47E-15 0.577828427 0.927 0.865 5.39852E-11 
CXCL2 7.08E-14 0.792495865 0.804 0.599 2.58997E-09 
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Male BAP vs Male Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 
CYP1A1 2.91E-13 0.314740935 0.228 0.009 1.06346E-08 
BAX 1.29E-12 0.48600958 0.709 0.572 4.72098E-08 
GDF15 3.28E-12 0.499099292 0.308 0.068 1.1992E-07 
IER3 4.68E-12 0.611690387 0.77 0.608 1.71175E-07 
PHGR1 5.33E-12 0.593511456 0.806 0.635 1.94902E-07 
SQSTM1 6.81E-12 0.58846163 0.971 0.968 2.4921E-07 
SHANK2 2.69E-11 -0.489789082 0.729 0.883 9.84472E-07 
NQO1 5.81E-10 0.546425526 0.707 0.604 2.12747E-05 
SLA 8.92E-10 -0.599413502 0.852 0.928 3.26633E-05 
IER2 9.68E-10 0.501475551 0.908 0.86 3.54141E-05 
CCSER1 1.15E-09 -0.428586741 0.695 0.878 4.19259E-05 
AC034195.1 2.03E-09 -0.412125524 0.375 0.604 7.42016E-05 
APOC3 2.27E-09 0.447937868 0.816 0.739 8.29839E-05 
CALR 3.58E-09 -0.397343386 0.964 0.973 0.000130939 
HSP90B1 3.64E-09 -0.419953552 0.964 0.982 0.00013314 
NFE2L2 6.10E-09 0.317580786 0.947 0.964 0.000223365 
IMMP2L 6.32E-09 -0.308402872 0.797 0.946 0.000231398 
CNTN5 7.92E-09 -0.730292276 0.6 0.784 0.00028977 
BCAS3 8.77E-09 -0.35841189 0.843 0.946 0.000320959 
LINGO2 9.62E-09 -0.422242343 0.591 0.802 0.000351923 
HSPA5 1.09E-08 -0.43482556 0.949 0.982 0.000400709 
CDKN1A 1.12E-08 0.590528341 0.622 0.491 0.000409739 
NFKBIZ 1.68E-08 0.402145281 0.717 0.554 0.000615195 
WDPCP 1.92E-08 -0.309532904 0.622 0.806 0.000702786 
DIAPH2 2.01E-08 -0.420446694 0.69 0.856 0.00073439 
AL049828.1 2.10E-08 -0.300613438 0.484 0.694 0.000767826 
SAA1 3.62E-08 1.192160864 0.472 0.266 0.001325755 
ZNF804B 3.82E-08 -0.677195495 0.119 0.288 0.001399333 
FABP2 4.15E-08 0.367108049 0.554 0.369 0.001517295 
IL32 5.60E-08 0.305460937 0.504 0.311 0.002048163 
SDF2L1 5.67E-08 -0.36194245 0.78 0.896 0.002074151 
CXCL3 6.17E-08 0.497367889 0.441 0.243 0.002258226 
IL1R1 6.24E-08 0.400730335 0.77 0.649 0.002283775 
FARS2 7.90E-08 -0.287827891 0.729 0.887 0.002892902 
NFKB1 9.70E-08 0.526290713 0.85 0.829 0.003549638 
RBFOX1 1.13E-07 -0.360923274 0.182 0.356 0.004132601 
AF305872.2 1.39E-07 -0.381069536 0.705 0.842 0.005075227 
MANF 1.47E-07 -0.33637377 0.821 0.905 0.005367078 
RYR2 1.50E-07 -0.425333317 0.763 0.883 0.005476985 
APOA4 1.81E-07 0.289780459 0.874 0.793 0.006634095 
GMDS 1.83E-07 -0.326702404 0.63 0.811 0.006690353 
SMYD3 1.84E-07 -0.385987999 0.942 0.964 0.006730953 
LITAF 1.89E-07 0.325593248 0.92 0.937 0.006912953 
DLG2 1.91E-07 -0.33804886 0.409 0.626 0.006993066 
EXOC4 2.72E-07 -0.283643063 0.898 0.982 0.009957542 
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Male BAP vs Male Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 
C16orf74 3.17E-07 0.430367101 0.579 0.459 0.011609963 
KRT17 3.40E-07 0.603162324 0.441 0.257 0.012451991 
LGALS3 4.89E-07 0.36089463 0.772 0.667 0.017907663 
CPQ 6.26E-07 -0.296720304 0.797 0.896 0.02292487 
RORA 6.67E-07 -0.402460861 0.787 0.887 0.024415502 
CNTN4 7.14E-07 -0.433073838 0.574 0.775 0.026142651 
MAPK6 7.72E-07 0.268828604 0.852 0.802 0.028266712 
BBS9 9.28E-07 -0.293319472 0.714 0.86 0.033956608 
PPIB 1.03E-06 -0.283851416 0.954 0.968 0.037690825 
ADAMTSL4-AS1 1.05E-06 0.340127158 0.659 0.527 0.038557401 
TG 1.32E-06 -0.450244752 0.973 0.991 0.04825757 
SH3RF3 1.34E-06 -0.2992562 0.329 0.514 0.049081114 
S100A9 8.25E-31 0.580759728 0.615 0.131 3.01931E-26 
WWOX 5.22E-25 -0.848719074 0.758 0.955 1.91097E-20 
FHIT 2.73E-21 -0.71769047 0.789 0.946 1.00018E-16 
PRKN 1.91E-19 -0.576626491 0.506 0.806 6.97813E-15 
CYP1B1 8.55E-19 0.808189661 0.458 0.126 3.12768E-14 

 
Female BAP vs Female Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 
CYP1B1 3.90E-16 1.589700879 0.544 0.08 1.42691E-11 
ZC3H12B 3.81E-09 -0.318346454 0.168 0.5 0.000139568 
FHIT 4.34E-09 -0.821589212 0.779 0.964 0.000159012 
WWOX 4.56E-09 -0.803560906 0.752 0.92 0.000166907 
CYP1A1 5.45E-09 1.177659708 0.262 0 0.000199633 
CCSER1 5.86E-09 -0.749249518 0.664 0.875 0.000214461 
NEB 1.87E-08 -0.671504384 0.322 0.679 0.000684304 
MT-ND3 5.38E-08 -0.547172551 0.953 0.964 0.001969436 
ERC2 8.71E-08 -0.35671122 0.295 0.607 0.003186801 
PRKN 9.57E-08 -0.517140712 0.51 0.812 0.003503268 
AREG 1.76E-07 0.838230537 0.43 0.17 0.006452598 
BCAS3 2.59E-07 -0.451536419 0.772 0.946 0.009494997 
NQO1 3.05E-07 0.800427509 0.725 0.554 0.011165614 
SUMF1 3.77E-07 -0.302302993 0.671 0.929 0.013799057 
LINC01572 4.12E-07 -0.437137033 0.51 0.812 0.015090413 
RORA 4.19E-07 -0.589703167 0.711 0.911 0.01534479 
BBS9 7.69E-07 -0.395655954 0.617 0.875 0.028158199 
SLA 1.02E-06 -0.755535479 0.852 0.893 0.037197373 
MACROD2 1.10E-06 -0.521016949 0.564 0.804 0.04021396 
HSPA5 1.34E-06 -0.604656518 0.94 0.982 0.04909294 
FARS2 1.36E-06 -0.27725397 0.644 0.92 0.049919485 

 
Male PCB153 vs Male Ctrl p-value Average log2(Fold Change) pct.1 pct.2 Adjusted p-value 
AFP 2.74E-12 -0.3088321 0.431 0.734 1.00434E-07 
APOA1 7.00E-11 -0.471154513 0.85 0.959 2.56359E-06 
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BAX 7.58E-09 0.304446201 0.8 0.572 0.000277476 
TTR 1.03E-07 -0.362161171 0.656 0.815 0.003784397 
S100A9 1.14E-07 -0.650652469 0.375 0.131 0.004175226 
APOA4 2.55E-07 -0.42016351 0.662 0.793 0.009321013 
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One of the main aims of this thesis was investigating the direct effects of the four 
studied endocrine disrupting chemical (EDC) classes on in vitro models of thyroid using omics 
approaches, with a particular focus on transcriptomics. For this discussion, we could play the 
role of devil’s advocate and put our approach under the spotlight, to investigate the relevance of 
some of its aspects. 

Exploring EDC Effects on Thyrocytes: Insights 
from Four Chemical Classes 

As explained in the general introduction to this thesis, there are hundreds of EDCs, 
and for this project, sixteen were selected; one could ask themselves what the criteria for choosing 
these specific classes were. They all contaminate the environment, and the general population is 
exposed to them daily mostly via inhalation and ingestion (1, 2). For example, phthalates are 
ingested via contaminated food or water, as they are released from the matrix they are contained 
in (1). Following this route, they are metabolized in the intestine by pancreatic enzymes and by 
liver first (3), and their first and second metabolites are the ones ending up in the systemic 
circulation and henceforth in contact with the thyroid, and these are the compounds responsible 
for the toxic cellular effects, rather than the unmodified chemical (3-7). A direct exposure to 
unmetabolized phthalates could instead occur via intravenous medical devices with plastic 
tubing, or with the use of syringes, to provide some examples. The way our experiments were 
performed, treating the models with primary phthalates, would be representative of this second 
case, showing relevance for the exposure of a smaller, but no less important, population. 

Production of polychlorinated biphenyls (PCBs) was phased out in the 1970s, because 
of recognized toxicity (8). Nonetheless, they are studied to this day. What would the purpose of 
adding them to our panel be if they are already categorized as toxic substances? Our current 
knowledge is that PCBs’ interference with the thyroid system occurs at the level of thyroid 
hormone (TH) transport, signaling or metabolism, while very few reports exist of direct effects 
on the thyroid (9). Unfortunately, the thyroid is an organ often understudied in toxicology. In 
October 2019, we performed an exhaustive review on public data repositories of transcriptomics 
data obtained from thyroid tissue or thyroid models exposed to the EDC panel we used in 
SCREENED. We only found 1 hit, a microarray dataset deriving from rats exposed to 
perchlorate (Figure 1). For this reason, mechanistic insight into the effects of PCBs on the 
thyrocytes is lacking. Notably, together with the exposures to polycyclic aromatic hydrocarbons 
(PAHs), we observed that thyrocytes can respond to aryl hydrocarbon receptor (AHR) agonists 
by upregulating the genes of the CYP450 members 1B1 and 1A2, with the induced levels of the 
former being higher than the latter. To our knowledge, this has been described rarely in the 
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thyroid, and mostly in cancer-derived cell lines. This is relevant because PCBs tend to accumulate 
in the liver and lipid-rich body compartments, and, for example, neonatal exposure via 
breastfeeding can have deleterious developmental effects. Also, absorption via inhalation or skin 
contact would transfer both PCBs and PAHs directly to the systemic circulation (10). 

 

 
Figure 1. Number of toxicological transcriptomics datasets derived from exposure to the SCREENED 
endocrine disrupting chemicals panel. The number of datasets per tissue/system is reported (142 datasets 
in total as of October 2019). The search has been conducted on the following public repositories: Gene 
Expression Omnibus (GEO), ArrayExpress and the European Nucleotide Archive (ENA). Next Generation 
Sequencing (NGS) methods, Affymetrix or Agilent arrays were the selected platforms.  

Organophosphate flame retardants (OPFRs) have been the most elusive class we tested. 
Unlike PAHs or PCBs, they do not have known targets (like the AHR) that they can bind or no 
specific biomarker for exposure (11). The full OPFRs panel was used for two screenings in the 
project: the one in Chapter 4 and a similar one, not presented in this thesis, where we used the 
microbioreactor developed by our collaborators and only two doses (1 nM and 10 uM). 
Transcriptomics analyses of these datasets have given inconsistent results in terms of gene 
dysregulation, meaning that we could not identify compounds that are more “reactive” or toxic 
in terms of number of DEGs (like for PAHs or PCBs, whose reported potency in the literature 
was reflected on the number of dysregulated genes and the level of AHR target genes induction). 
Despite the different chemical structures within the four OPFRs we tested, in Chapter 4 we 
identified one miRNA (mmu-miR-182-5p) upregulated at the class level. The other two we 
identified (mmu-miR-3076-3p and mmu-miR-6939-3p) were detected in all replicates of TPP- 
and TDCPP-treated samples, but in 0, 1 or 2 for DMMP and BADP: this could be both a 
biological effect (given, as just stated, the difference in chemical structure of the four 
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compounds), or a sampling bias, since the normalized read counts were less than 100 (a possible 
shortcoming of Combo-Seq libraries discussed in Chapter 2). Among the four classes, it is the 
one for which we could also find the least peer-review literature, especially for BADP and 
DDMP, making it difficult to place our results in a broader context: indeed, according to a report 
by the American Agency for Toxic Substances and Disease Registry (ATSDR), many health or 
toxicity studies on these compounds performed or sponsored by the industry remain unpublished 
(11).   

In this context, the European project SCREENED, that financed the work carried out 
in this thesis and other related experiments not presented here, generated transcriptomics, 
proteomics and genomics datasets that we made (or will make) publicly available, filling a data 
gap currently present in the field of thyroid toxicology, understudied compared to other organs 
like the liver and intestine. To our knowledge, no extensive transcriptomics and proteomics EDC 
screening has been performed to date on thyroid in vitro models: they are instead mostly 
performed in vivo and in a smaller scale (12, 13). Larger-scale screening often use Zebrafish 
embryos but analyze the expression of thyroid markers (like thyroid peroxidase TPO, thyroid 
stimulating hormone receptor TSHR, thyroid receptor TR, thyroglobulin TG, diodinases DIO) 
or parameters like TPO activity, TR agonism/antagonist or transthyretin (TTR) binding potency 
(14-17). 
 

Integrating In Vitro Models and Omics 
Approaches for Thyroid Toxicology 

This thesis places itself at the crossroads of endocrine disruption testing, in vitro 
methodologies and omics approaches. It was written with the overarching thought of “can we 
use in vitro models to study the effects of endocrine disrupting chemicals using omics”? As all 
complex questions, it requires a complex answer. In the chapters, we observed a limited effect 
directly on thyroid markers or genes/proteins important for the synthesis of the TH: Tpo was 
upregulated at the protein level in response to DIDP treatment and Tshr displayed a non-
monotonic dysregulation induced by sodium perchlorate in Chapter 3. In Chapter 4 we 
observed TG upregulation in the presence of benzo[a]pyrene (BAP), either alone or in 
conjunction with "male" sex hormones, compared to the respective controls. At a first 
impression, if we did not have any previous knowledge of these compounds, we would probably 
not be able to conclude that they are disrupting chemicals with a direct effect on the TH synthesis 
within the thyroid. In toxicology, the duration of exposure is critical. In in vivo experiments, 
short-term testing parallels acute human or mammalian exposure, whereas long-term treatments 
are performed to observe the effects of chronic exposure. In vitro testing, on the other hand, 
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allows to dissect the molecular and cellular responses to chemicals (18). The duration of the 
culture can be limited by several factors, like the onset of cell senescence and death when using 
primary cells, or the limited growth space in the case of cell lines. Nonetheless, while it cannot 
last for months or even years like in in vivo systems, it can be prolonged for up to two to four 
weeks, depending on the cell type. Additionally, innovative approaches like 3D culturing and 
organ-on-a-chip methodologies offer more physiologically representative growth conditions, 
encompassing structure, cell-cell contact, specific microenvironments, and a continuous flow of 
media (19, 20). In the experiments we performed, the exposure to EDCs lasted 24 hours, a 
choice aimed at capturing the early effects on the transcriptome. However, to observe an 
impairment of the TH synthesis machinery, we would have likely needed to prolong the 
incubation time, considering that the half-life of TH is 5-8 days (21): in other experiments 
performed for the consortium (not presented in this thesis), we treated mouse embryonic stem 
cell-derived follicles to benzo[a]pyrene (BAP) for 10 days in the abovementioned 
microbioreactor and observed a dysregulation of several thyroid genes.  

The Organization for Economic Co-operation and Development (OECD) tests 
mentioned in the general introduction measure five endpoints as indicators of thyroid disrupting 
activity: histopathologic changes in the thyroid (increased follicular cell height and decrease of 
colloid area), increased thyroid weight, decrease of serum T3 and T4 levels, increase in serum 
thyroid stimulating hormone (TSH) levels, interference with (embryonic) development or 
metamorphosis. However, in the OECD test guidelines themselves, it is stated that the relevance 
of some endpoints is not discriminative of a compound’s thyroid activity. As can be noted, these 
endpoints do not provide any mechanistic insight into thyroid disruption, as this does not 
concern regulatory risk assessment: what matters is a visible (deleterious) effect on the hormone 
levels or on the organ physiology. If we consider the cited retrospective evaluation of 128 studies 
performed according to these test guidelines, it becomes apparent how the sole observation of 
altered TH serum levels is not an indicative endpoint of thyroid disruption, due to their 
fluctuating levels and high level of standard deviation (22) and indeed, several other thyroid 
endpoints are evaluated. In the case of in vitro assays, on the other hand, the absence of a system 
(i.e. the body) that affects hormone levels removes this element of complexity, making evaluation 
of changes in TH production as an effect of chemical treatment more straightforward.  

Our data alone does not provide conclusive evidence of endocrine disruption, 
underscoring the complexity of elucidating such effect. If we observe a cellular alteration in 
thyroid cells, does it mean that this will reflect in an alteration of the TH synthesis mechanism? 
Is it worth spending time trying to investigate the mechanistic effect of toxic compounds on the 
thyroid? In the case of application of transcriptomics to in vitro testing, comprehensive 
understanding of gene expression changes necessitates an evaluation of their impact on thyroid 
functionality, and incorporating assays, such as measurements of TH, is necessary to determine 
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how transcriptomic alterations reflect into alterations of the TH synthesis machinery. An 
example of such approach is the work by Song et al. (2011) (23), who used microarray data of 
the human follicular thyroid carcinoma FTC-238 line transformed with human recombinant 
TPO exposed to TPO-interfering compounds to identify genes that would allow to determine 
TPO activity. Combining one-way analysis of variance (ANOVA) and class prediction via k-
nearest neighbors, they selected 362 genes that could classify a compound as able to increase or 
decrease TPO activity. A validation with the guaiacol assay, which measures TPO activity, 
showed 66.7% accuracy. 

An additional, different, approach is the use of omics in the context of Adverse 
Outcome Pathways (AOPs): they can help connect changes in gene or protein expression to an 
adverse effect irrespective of the compound that is being studied, being AOPs cell- and 
compound-agnostic. This could be applied, for example, to the categorization of compounds: if 
their action can be traced back to a known Molecular Initiating Event (MIE) and eventual 
Adverse Outcome (AO), they could be classified as toxic or not, and could be an alternative to 
read-across methods. The strong point of transcriptomics, which has been the main focus of this 
thesis, is its ability to provide a snapshot of the expression status of all genes in a cell population 
at a given time, allowing to generate hypotheses that can be further investigated, since it is the 
combined evidence provided by several approaches, the reproducibility of results and the 
continuous accumulation of evidence that contributes to elucidating the mechanisms of toxicity. 

 

In Vitro Thyroid Models 
To be employed in toxicological risk assessment, in vitro systems need to retain the 

functional characteristics of the organ(s) they are aiming at substituting (for example, in the case 
of the thyroid, production of the TH at a measurable level). Additionally, there needs to be little 
batch to batch variability, which ensures reproducibility of the results. The nature of the TH 
synthesis mechanism requires very polarized cells and a lumen where to store the colloid, and for 
this reason the 3D structure is essential for proper thyroid modelling, which explains the great 
effort to develop thyroid organoids as an in vitro system. They can be derived from two cellular 
sources: thyroid tissue from biopsies (24, 25), and embryonic (26-28) or (induced) pluripotent 
(29, 30) stem cells. Both models present advantages and limitations: the cellular population 
derived from tissues is highly enriched in thyrocytes (considering that more than 99% of the 
thyroid cell population is constituted by thyrocytes (31)). However, the starting material is 
limited, especially when coming from patients’ biopsies, which also requires the proximity to 
hospitals and the collaboration with medical personnel. On the other hand, stem cell-derived 
organoids can be differentiated from cell lines (although not in every country due to ethical 
regulations). Unfortunately, such models can be constituted by more than the desired cell type 
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due to the complexity of tightly controlling the differentiation process. This can vary from batch 
to batch, and in case of induced pluripotent stem cells (iPSC), the variability in differentiation 
efficiency due to the donor’s genetic background needs to be added. This is the challenge we 
faced in the work of this thesis. In the models we used for the experiments in the previous 
chapters, the percentage of thyrocytes is between 50% and 10% and varies from batch to batch. 
Additionally, we observed the expression of some genes (like TTR) not native to the thyroid. The 
other cell types do not express thyroid biomarkers (Tshr, Nis, Tpo, Tg), so they are valid models 
for studying the disruption of the TH synthesis pathway if it directly affects those genes. 
However, if the disruption is a consequence of interference with a more “common” cellular 
pathway, which involves genes expressed by other cell types as well, but for which the thyrocytes 
have a particular sensitivity, we will not be able to observe that. This is not an implausible 
scenario: for example, Porreca et al. showed how treatment of the immortalized thyrocyte cell 
line PCCl3 with two known thyroid disrupting chemicals ethylenethiourea and chlorpyrifos 
affected pathways and genes not thyroid-specific, while observing reduction of serum free T4 
and decrease of Tg expression (13). Only techniques that allow to isolate the thyrocyte 
population, such as fluorescence-activated cellular sorting (FACS) or single cell RNA-Seq would 
be able to answer the question, which is the reason why we adopted the latter approach in 
Chapter 5. Unfortunately, these techniques are not yet scalable at the level required by high 
throughput toxicological screenings. Nonetheless, the number of available thyroid in vitro 
models is limited, and what we used are among the best to date. 
 

A Role for In Vitro Omics in Regulatory Testing 
Returning to the initial question “Can we predict thyroid disruption using in vitro 

models using omics approaches?” we could answer “Not at present, not with the existing models, 
but potentially within the next five to ten years”. The paradigm shift in cosmetic testing, for 
which the OECD, in 2009, banned in vivo testing and introduced in vitro methods for the 
assessment of skin and eye irritation and skin sensitization unless technically infeasible serves as 
a noteworthy example (32, 33). The OECD-approved test using a transcriptomic panel is a 
success story and shows the way forward. A possible example of how such a panel for thyroid 
disruption testing could be built is provided by the work of Haggard et al. (2018), who performed 
a screening using TR agonists on Zebrafish embryos and identified 23 transcripts whose 
expression increased after all treatments (34). 

 The discussion of animal testing will always be a divisive one and, particularly in some 
circumstances, I do not envision an equivalent in vitro testing able to substitute it, like the case 
of reproductive effects (although even that has some limitations if we consider the infamous 
example of thalidomide). Even in five or ten years, I would not expect in vivo thyroid testing to 
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be completely superseded by in vitro approaches, however I believe plausible the introduction of 
some tests for thyroid endocrine disruption testing using cell models, considering that some are 
in the evaluation phase by the OECD. Even though OECD’s Testing Guidelines represent 
suggested, and not compulsory, guidelines, the fact that some in vitro tests are in the development 
phase shows a certain degree of confidence towards them: completely forsaking animal testing is 
unlikely to happen (soon or ever I cannot say), but it is a change that happens in small steps, bit 
by bit, test after test.  
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